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An Update On
STh-TEGIC COMPUTING COMPUTER VISION

Robert L. Simpson, Jr., Ph.D.
Lieutenant Colonel. USAF

Program Manager for Machine Intelligence
Defense Advanced Research Projects ALencv
Information Science and Technology Office

Arlington, VA 22209-2308

ABSTRACT

Since 19S5. I have had the privilege of managing the DARPA Strategic Computing Computer \ ion
Fecih-ioeLv Base. ,hich is a sizable subset of the overall DARPA Imace Lnderstandine Procram. After

%ur ,ears of very signlcant activity by this DARPA sponsored computer vision community cOnauctimn its
re-earch under the au'pices of the Strategic Computing (SC) Program. I wish to take this opportunht% to
relate from a global perspective some of these activities and accomplishments of this critical\ important
nat onal research program. This paper is not going to present technical details: those can be lathered !rm
the ,tiher papers in tis volume. My purpose is to present some insight into the coals, structure. .nd
relationships among the various projects sponsored under SC. While I beiese sou will aree that much ha,

-'7phshed. _'ere a, much more research and development needed before the ultimate coai at S C
(Ci'mnuter \ision research is realized.

INTRODUCTION

Fhe ,litimate coal (,I SC computer vision research (SCVision) is to develop knowkledce-baed technoi()\
1ha,. enable the construction of complete. robust, high performance imace understandmc .stem- to

-upitrt ,a %kide range of DoD applications. These applications include autonomous vehicie -tavi.ann.
pntainrterpretation. ,mart weapons, manufacturing, and robotic rrinipuiation. One of the Ieatureu areas
)t re'earch in computer vision has been autonomous ground vehicles. since military vehicle, :reauenti.

periorm dangerous or labor-intensive tasks and in many cases, the capabMies required for a orotic
,eicie appear to be within reach of a concerted research effort in robot vision, computer architecture-.
aid machine planning technologies. The SCVision program is aimed at extendine the state-of-the-art -o
tha: robotic svstein , mil be able to perform such tasks. In addition, this domain is appropriate lr
chaiiencmi mace understanding technology because it focuses on critical component vision tecnnoioies
mat are important to all of the relevant application areas in SC. For example. the navication task tor a
cr,;:nd vehicle requires the representation and understanding of complex dynamic cenes contanin
naural and man-made objects, and the development and use of new computer parallel architectures ,kih
ne,., programming techniques to meet demanding real-time computational needs. These -ame issues are.ermane to photointerpretation. manufacturing, and smart weapons, where real-tme computin_ isues ,re
"articularly critical in this last application. A significant part of the technological results are alsoi n-
expoiited in other DoD programs requiring similar model-based reco,:ition and classification r-rohien-
T.ok ,uch proerams are the Advanced Dicital Radar Imagery Exploitation S\tem (ADRIES , .
),trateuic Computin, Obiect-Directed Reconnaissance Parallel-Procesine Imace L nder;tanciin S\,te
SC;ORPI IS.

Fhe S(C'ision program has focused on three types of demonstration scenarios for ion-,-,ued r .,t
'iuc e': road tollowing. cross-country navigation. and the unification of these first two ,cenaro, into a

,im.ie s.stem to accomplih specific mission coals. Siemificant accomplishments have been demrntrato
h,)r -te aic t%() >cenarios. and current research i, targeted at an intecratcu ,\,,tern. In roac. allav. n

-cvnamrios. a vehicle drises down a stretch o pased or unpaved road. Research ins deait itti t:e
ci)mpiexiy of outdoor illumination and shadow, s. recoLnmon of ground features sucI 1s road iaunoarte,.
aincd the avoidance ,t obstacles us in 3-dimensional sensor data. Road tolloA ,.in, proyides a .eli-oct:rid
Asi alth clearly delimed features of interest, so that basic capabilities kir \ion and rmn 1,1t cart. e

de'. eloped. Road tollowinu demonstrations have achieved the fastest ehicle -peeds. the lon,:e-tdrance<.
and have had the createst number of experiments performed to date.

In -he -iccesslul demonstration of the cross-country navivation scenario. autonomous vehice- ta\ e ,'tti
:r.en across naturaI terrain utnder cidance of 3-D sensors, particularly the laser rarce ,canner. In T.-e

| I" I



demonstrat ions, the goal point was not Visible from the starting vehicle location. The research required
units ing the technology for map-based reasoning With sensor-based planning techniques. The SC%'ision
etbI.ort was aimed at classifying terrain as traversable or nion-traversable usini- a 3-dimensional vehicle
mactel. building a representation for observations oi extended obstacles including slopes, ditches, andi
rock outcrops. and moving the vehicle safely and efficiently along anl automatically planned path. TFhe
cross countrv experiments have successfully driven robots vehicles in complex terrain and difficuit
na'. iational environments.

Finailv. an inteerated scenario will require both on-road and off-road navigation capabilit' as) well as
c I iect recoonition for landmarks and targets of interest. In an integrated system, the robot vehicle %kouidl
r'e assigned a Complex. multi-step mission and the vehicle itself would decide which navigation aind
rerc eption modes were appropriate for each step of the task. An example mission that an intecrat~ed

<teinmighit carry out is the ' overwatch" reconnais sance mission in which the vehicle mnust na'.icat1e 10oIa
antage point overlooking a strategically important location, position the vehicle to properly direct, its

sensors at the location, monitor targets appearing at the location, report on the target movement as
specified by mission constraints, and finally return to its base of operations. Research for huliimg
mtecratedl systems is needed for object and event recognition. dynamically interpreting perce'.cu
intormation to satisty. mission coristr;ttois. niaintaininL consistency with nap-based know ledgie. butidirtc
le:xible softwkare systemn architectures, and incorporatino hm-ih-peed computing hardware. In add;tmon

d .eeopino indivdi-I co-'ponent technologies, ithe SC%\ision procram includes a newk Leneration -,tern
(NOS) that wkill be such an integ~rated sYstem -

To achieve thle coais of all these scenarios. SC'sisiori research addresses four criucat : so
.Knowliedge-based image understandingv: visual modelino anid recognition, dynamic scene rnoton anai.,,i ,
vision-llaied obstacle avoidance and path plannino. and parallel implementation is~e.In addition. -.",
VJ S effort tocuses or, sv.)ter intera tion problems,. The c~oal of '.isual modeling is to develop et fecto. e anu
vificient techniques for describling. storing, andi accessinL: the knowledge necessary t or r-atura oc
m-an-ma, de ohlect interrreiation.\ _'aural objiects sit a,, rock, bushes, and ravines) and Clitura pc:
('1ch as1 buid4ini!s. and fences i must be modeled in such a way that their characteristics can tie~ pro'. ued t

cletfecriv re.oe!nition modules that locate occulrrenlces ot them in sensed data. Dynamic scene :itt)Lon
anais is interpret,, a sequence of images to determine the shape and location of obiects anid to d.......
track mno'.irnc objects. Vision-basedl obstac-le a'. aidanice and path planninL, res earch explores tect 1 dl &' t
plan and follow routes. locate and follow roads, and detect and avoid obstacles on the ia',is it %u
nput. [be research in parallel vision algorithrms tii at developingp vision programming en'.ironiner, kp
iparallel computer architectures and implementi \.isiort altiorithims on them, so that the s ensor%,ax
as:r is performed in real time. The system initgration wkork is neederd to develop syst~emarhtc i

cooirdinate the aIctivites of multiple sensor and -easoning 5' sterns 1(1 perform complex tasks<. In
[the VIis b eine developed as a tocos f .or integratin-o and testinc research results. The purpos e io!e\('
research is to ensure that Complex ivtm ssue,) tire being addressed, to facilitate tr.
demronstrations and evaluations, and to achie'.e acceierated transier of technioloo% to :-pplicm:ta)n'

SC.Ovon whose erriphasis is on know lecig- baedapproachtes to machine percept on. t- 11t
application tasks, that cannot be successfully addressed '.' ih ,imple imagie matching and statisticaian:
For this re~ason. SC~ision research is explicitl\ avoiding, investigations that are hased on stttistiii at
mnatching, whiich has been the subject of extensive re~iearch over the ra~t thu-tv ecars,. 1 : 1l
SC[VIiiin is, expliciti ' a voiding rezearch wkhosec -redoirminani Lotil is the mnodeling, ir simulatioin oto:i, il

str'.SCV: ~ian also ) hsis the s\ stems ianect at .%min - - iteeratinL, '.ision %kith 'tnrAl
,.ontrol otodules in a retiline "Sstem. and investigating_ 'tate-,)I-the-art hd.rck.'.re ic~ct

A re ,' tcms to matke p ractucal i use ot ne.. ha rJ%%.are in nteerated si terns,.

A CCO0 I P1IASH \ I E NTS

I h~e (\ riprogiram has) bilt i)n resulits Iromn the :Ir~t phia~e ('t resetirchi to achtiie icnt:iIm::
-aiarea i : he ioaiar technicail problem aras !;,2 ic iohinet re decrlibdHj-'

\KWN (H-ARATFION SYSTEMN

\ii initial tinpiemntatiort init Jemoostratton at tlic \( IS hia b een comleted at (\Il( It1"
'sic khoa rib-arclhitecture. '.k.ith specialized dat a eprertioisa nd accc-s mne! hods o'-
'ihrte-itncnt-)nal -p.ial reasoning. [lie \()'S riini on lie \-A\-\ a c1.iommiercial \an eiia%1'.eie i1

.,;mptter-cotralle ra " enicle. I bec \A\ LA. int corportecs mllt- -proce-(or tt'tn
.- n.rnnet i~ni'.iic t iertli- i-pose coroponter, -ti~s ~ a , WAl .\k-RP pmaii tnn~ Phe
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application s,:tiware includes a number of vision modules capable of detecting and following roads and
detecting and avoiding obstacles, using algorithms developed in the SCVision program. Percepuon
modules handle sun. shade, and mixed illumination: modules using a laser rangefinder have even driven
the NAVLAB at night. Using the WARP, the NAVLAB has been driven at I meter per second. The NGS
allows road-following and obstacle-avoidance to be combined into a single system. Research during the
past year intevrated capabilities for cross-country travel, and for building maps and retraversing terrain
with less percer- n and higher speeds. The new CORE s),stem will integrate perception, planning, and
path execution -.o a single framework Data collected by the NAVLAB has been distributed to other
SC\ision sites, and several components of the NGS have been transferred to the ALV project at .Mlartin
Marietta in Denver and have been used to drive the ALV.

VISUAL MODELING AND RECOGNITION

Substantial progress has been made within the SC\'ision community for the basic techniques for visual
modeling and recognition. SRI has completed an initial implementation of the Core Knowledge System
(CKS) for vision systems to allow cooperative interactions among sensors, interpreters, controllers and
user interfaces. The CKS, together with new techniques developed at SRI for recovering scene geometry
arid object identity from a sequence of images. provices a basis for understanding both the semantics and
geometry of tie environment being traversed by a moving roboc device. Using the superquadric model.

liPenn has developed a parameter fitting algorithm to extract surface descriptions from clusters of 'D
points from the laser range scanner. Surface parameters include position. orientation, scale. planar ,,r
quadratic surface measures, and two deformation parameters (tapering and bending along the major axis.
Stanford has developed general methods for spectral modeling of objects based on analysis of linear
pro "ections of muitispectral, optical images. ADS also developed an architecture for object modeling and
recognition for autonomous land vehicles. Models of objects such as terrain features. horizon feature>.
coie,. trees and bushes have been developed at both ADS and Stanford. GE has demonstrated
model-directeci object recognition using vertex-pairs as matching leatures between model and scene. Th:e
a!:oriLthm was implemented on the Connection Machine and demonstrated for airplanes and automobile-
An extensise set or algorithms have been developed for recognizing roads and intersections h% CML anc
Miarvland. These algorithms are based on modeling r-ads in terms of their spectral and .eometrrc
properties. and use both optical and range information. 'D range data analysis techniques have been
adxanced at CMU. Hughes. and SRI for recognizing terrain features and man-made objects. TIhe
lCniversitv of Pennsylvania has deveioped techiniques to use superquadrics for representing and
reco,_nizinL andmarks and objects. Hughes has developed techniques to segment color imaery 'or t:,e
recog,_,nition oI natural terrain objects.

DYNAMIC SCENE AND MOTION ANALISIS

The Lnixersitv of Southern California has implemented techniques for robustly est imating, 3D motlon
parameters and computing 3D motion trajectories of movin obiects given features -'trracted trom 'D
:mace eouences. The theory has been deeiopcd for image sequences involving acceleration aci
deccieration. Relatve structure and depth information is a h% product of motion parameter estimation. -I-
<uroort h i %kork. U SC has developed line- and region-based feature extraction and matching techniques
tor etecuno m inc objects in motion >tquences.

Hlone' .'ell i-. iev.eioped quahtatise reasonim and - 2-D- modelin, techniques tor detecinL, and
trackz mor' 'argets from a mobile platform in <rmle cursed road cene,. The concept of fuzz% Iocus
(11 e xantl0n. '. ich allows a ver% accurate determination of the instantaneou; direction of a moving
.thicle ard camera rotations along the two axe> (pan ard tilt orlk ). has been demonstrated. Honekeili

a' ai cn)tbtrated the "'dynamic model matchin" concept for landmark recontion. where the
modei -eneratiin and matching process divoamicailk chafigcs as a function o0 rance to the andmark ani
p:er,?Cctie a, .Ie. eci by a mobile platiorm. l:i addition. ihe have performed initial experiments in di ital
ra ,itecrated *,r:et tracking.

Th: in'. er-' : \la'achusetis has c()lected a ,et )f motion equence', tram tie lartin Marietta AL%
.h!,.:. .rilir 2 -,roiird truth informalror, Irom the vehicles land nas catIon ,stem. as 'kell a< a

,f cv I the en roinment: these ,eq lencees will be made avatlable to the SCVision
r i'. -c'Intific evaluation of motion aliorithins. LN'las> aiso has developed a promisin

S:J:: :t l, :cetn , mputation from image sequences ,-ng, optic tloss lields to tracK -traight hnes.

St.ie' mnitfrnented a technique developed hi \1IT to recover vehicle motion (%ith 6 decrees of
, ; . t eri 7t ,.,o 0 ocatih)ri. using informat;on trom laser range scars. l i , ha> allossci Huches to

, , rirar cgi Iterrain map,, frorm er.,ed data collected durini2 cro'.s,  country experim ents on the
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OBSTACLE DETECTION AND AVOIDANCE

The SC\*ision commnunitv has developed and demonstrated a series of alw~rithms for detectink! obstacles,.
The first algorithms developed for obstacle detection w~ere fast, but could only he used for flat -oads --

crowni-ed or banked roads, or cross-country terrain, could not be handled by such simpie approaches. Thle
SCVision community has continued to develop and demonstrate a series of Alirrithms for LletectinLr
obstacles- Aleorithmns fo~r complex conditions, crowned or banked roads, ior cross-countrv terrain, hake
been dev.eloped at Nlarx land. using derivatives of range; at Huih, byitrrtn neeain map wkith.i
a three dimensional vehicle model and at C.NI U, fitting multiple planeS .wh descriptors, for s;urface
rotichness and slope. At thle University of Pennsylvania. research has emphasii.ed active wion telni~jue\,
and a control scLhemna of peripheral and foveal Imaging has been completed. Thle (N1II. alcorithrns li I, e
successfully driven ehlies throtigh obstacles, both~ on and off road. Thle liucoes 's 'temn ssas u',eoi in,
ses eral cro<s country experiments with the ALV in December 1087. successluilk as oicinc11 WInstacies Joc~l
as trees. rocks. steer 'lopes. iird vullies with paths of approximately 701) meter,. This jemrnontraTi ni

represented thle integration of inap and sensor-based operation of a robotic vehicle in naturai terrain uiiric
tichtik coupled v 'on and triannine systems. It is sienificant that wvith this demnlIstraiilon tlie D.\RP *\cr-.

cnuntry ieennoik-,rv Tm;:e'-one was achieved approximately one year ahead (I 'ciieduic t Peti::'eri
has receis cd cooniicc erome ccocnition fu r their ikavelet Jecomposition (It %!-II Iicn ('It::

superruaclne-.r hafydescriptions is bene, evaluated h\ the post oltte cc r 11,e III.rarai:e
parcel", on Fhe i'.e minis line.

PARALLFEL ( ONIPITING ENVIRONMENTS FOR VISION

Mans 'o (Wis lird atdcrithms have been Implemented on thle differti ,1arJ;1uir~:r',ar
Te (rierror')r \l!"Ie, and Butierflv A significant body of experic'Ice ia. -'ce.n :arei 1

m'-.enennri !;i-. Oithrw, on parallel computers. Now that the hardisar(e ha'i 1ceen eir r -.nrc
mm71t C r c ii tl; i 1h Cl- on 'ott1.are prouirammink! ensironmet I 1(r pai .ci 5 iion i i, !: crct -- \It Ik VI

h - n e in !te T *hk \:-plk lanouac. which 1110os' thle samie low-level smoiir :mr -Ci~ rim c::~ct
int 'P irIs!it :.,,hlitectures. Apply currently generates efficient code oir \\,I- ;I..o A,:,.

her . es: i' . r' and other parallel architecture,,. Developmnrt it \nP1% ,)Tioe -:A0
I i. onw napp~r\:'F- sonto new parallel architecture', and extendinu Apri'.- rn - ci

airc,: :tccrure'. \%' car~ art-. MIIT had concentrated imu usinL! the ( nitr nN c o:-i'

Irarah ei 111d)(M, i moI utaimon and for developinP a vision systiem lir iincon-tratnentde. ti-'''-

n \Iaeun \ Ni I' Jemonstrated for the first time the %hole \dilon \Iaehie 'rms~
:ne'ti rec Icnon rmro i c initei._ration of other cue,,. Some Of those ail!ormi bin' unI ;n eioe It, :t:,!

eC!Cc etectin inolon comnputation. stereo. surface I interpolation. fusin.4W e.ca Ocl~

:ntiimariii a'ed fir. \arkov Random Field models, ind model-bas ediciitn \l. n
je'metied , p5 rar-.! m!iie proce'sinL v,,tem %Wl thboth !at and redundant ps ra mnid-. indt mm t-ti.:
mar:.1, a02lcihtlrn o)n lime (onnection Machine. Rochester has, demonstrated t-I--ierrae
B B\ BitterlIis Pa rai ci Proces',or that show,, linear parallel speedup. R- N iser hii:mltnne

routre' ti~r rim' heFF m!1ac1e procesim i library on the Bu~tterfly usino thle t iiit mSse:-itrb
B B\ .indirnmroe is i ! inailv . olumnhia has also built an Image pro(Ce-sin! c enviri nrrent ra.,t -.tirn "I i.
e:nlted. [tee arid p. rarnid architectures, in the Connection Machine. Cukilumbia ia' Jevelii'ect aind
dem~on-trated m-e;. liofi rIthMnS Ior surtace Shape recovery from textural cus I s-; : ri t;as
recilserie -u rtace pr pr sfrom ,par,,e stereo or range data -

-vFCHNO1,(;1 V RANSFER

>ce'.eri (, Ihe inirr mlc ptnent,, developed under SC-Vision have bleen ir-ati-erreci r i-rma; F-

Fh-i -- he .- \V n t-mo dules from CMNI and Niaryland have been me (rp(iirmite mmit rie \ li nf
\I iriettai I. ito - 'mnit ds ,tems fromn Huches and CIL' have ilris en :tme AI-\ in r i: o--

(I Ir I t i paF rIn mc. r: ie \0(S ;i rch-tecture (hardware and Software I is iioss i-een duplicareri in rI~ A\V
lain c rain') r (i i mrpiete -oulS --S teh oo, s also being used it. -Lie desic I \L i k ocr

rI ,8'I u e Ill i i t iuer'.%aier autonomo' sehicles. Seseral sites are usirme > \i.:otri .;ion

-nitareI mrmeeimn\laictine. Warp. aind Butterfly- software have been e~xpoirted To 1l) :. a
\hhlE ar~ '4(tNI~S. ind a--. far as thle European Communtv' ECRU

PROJECT SUMMARIES

NU Xk%(GENER 01ON % ISbON SlYSTE)I ML

Ie \r.( icrieratiot % -on 'Sssem. beiniv developecl ti'. ('NIt . i ;I armles -. 'ion '-.',1rm -J-. Ire

i rciiiemtciii-t ;induo enibni i son modules, dleseloped at (NW a'I I t-ic h \lit



.Ikcl other > \.:O I ; rat. Ir'L,. Current c:apabiltues of the \GS include road followino, >imple obstacle
a. ik) ic .I n Jr Vlntr J1ri\inp. The blackboard provides communications and coordination
bet'.keer, Jen'in mo iut tudules. The testhed for this s~stem the C\I U NAVLAB. a commercial

en'111.c er(!j ' ONi ni iehicle. The \.AL.AB contains several !eneral-purpose computer
'A )rK~tan, ,i )~n .k~'eil as a \V-\RP) parallel architecture computer: sensors include colir Y\

nunM~_! L ,I Rin IM 'r ranci,_efinder. Res earchers on the NAVLAB can montor the execution of the
" it .'n: i i ch ha heen invaluahle in speeding up research progress and acquirino data tar

1, !li i' in ite, Flie NJS software runs on standard UNIX., which lacilitates rea
tK n~e~a.u'' i! ,!ne \% AR P 'ottware includes fully inteitrated pro~rammino tools and a viSninT

.. 1!ic' ilhe cw'er vlves 0) er time as new modules are inteicrated and ast
.... it -i~m meit'C\ lye. In particular, to consolidate the research prouress., ot the

an'u.e. > Vi OR\ ii,,ter is beino developed to integrate the most[ succe-!ui

r\(*s( )RN %il provide a self-contained softwkare platform iiir the \ GS >,o t
S. .:0 ntode T'l ken 'A ithout the need to constantly redefine the hasic %ehic te

\1ir~ ihicerients are: thie (ODG ER blackboard for nohiile ro!-,ci
.~' it.......ne in iuen~rc r continuous perception And motion eiinirt st'i

cc.:' 'wiie road at I meter ., second: road foliocini- tiiinea :i;'.e%

n:31) eattores and reusinc the mnap to tcuide laiter w~ .:j.
..: to_7 Trav.t.re anid plannino traiectorie,, based in thle map'. eho

.. .~ ~ v Ntii ir rniie'tone' neICLud. iV ii explicit moLelV 1 )I a .nl
.lm) drit. i n hiwh\kav' I "U ,oufldine an. intecratc I

... t t. II \I .. , otm.tin the ..\EORN (ore\aitir vtm li
to.:.ciUmuiated niaip iniiormatiuin 1 I 041
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enviro-iments to 'upport research in imag e understandinL!. This includes the POWERVISION image
under,,tandine environment developed on a SYMIBOLICS LISP Machine and extensions for it to run

under Iceneric (AimmonLisp on SUNS and MIAC uls.

The lra\ -vstern. which is heinev developed at SRI, builds models of objects that evolve over time as
aiditonal data are Obtained from a sensor mounted onl a movine vehicle. The svstem uses inertial
rta-igiation dalta to help track objects from imave to image. It then builds descriptions of the objects and
ec-tauates the s tabilitv of these descriptions over time. Since the appearance of an object can chanc

~:cm~canI,,a the vehIcle approaches it, a lattice of representations is provided that controls the evolution
'I anl 0 1 ects description from a crude blob to a complete semantic model, such as bush, rock, and tree.

Oix! hee descriptions is associated with an object only after the object has been detected and
credmulip-le times and the parameters of description are stable. Stability is defined In a statistica:

!r'eA.Inentled suth a set of explanations; describing reasons for missing an object or having parameter,
Ftag hese explanations can invoke manyv t\pes of knowledge, including the physics of the sensor, the

2er~ormaof , he seglmentation procedure, and the reliability Of the matchinp. technique.

iB. the ed 'I Wi SU these repres entation 'system ll I orm a fully functional core for a recognition arii
te.InI FYc)) and Q I plans; are to extend the ,enieralitv of these techniques, ,o that they clin'

. a x.idie range of vis ion problems. including! autonomous rias cation for w eapon '~e~
e~arte . rid rotic manipulation ari inspection.

D)~ NAM1l( SC'ENE AND MOTION ANALYSIS It~lass. USC. floneywell)

* .1 med at the litill zaton of in rormation from a tequence of image frarnes t ec o

- uj rgti rhitrar motion. Major goas are:

Ithec motion paramecter> ot Ihe en, or:
* r&, i.i t ie motion pa ra meters oi 1tidcetnde ntix moving objects in tne field xe''

* r'e.*xc .e t he depth ot env~ironmnental ibje cts arid point>: and
en c:.:it monion and depth tniormaitiin Itill h nx in nmenial models in %ehicul a7

.lcir:'. la>an importarntl role in xio.it remialns otne (at the more dfitt
atl isiion :-e'earcnh

he to x'':t . Southern Calitorinia tas developed techniques for robustly etIlmamut l
'a~~ii :(mc erii oputirig 3D motionl traiectories of moon\ rig iect>, given teaturesexra I
:.-ee t2 enc'U Flre~e techniques; have t been Implemented in a kk (rking s% 'tern 1(r o....
Iie. ~ aisre:overy o! depth in formvation and rela'Itiv trucitire. To support thi:, w.v 1. "t .

OIcO imc na-ed and region fbased teature extraction anid matchinc technfiues for e.,:cn..o
motn equences. In, addition. uSC hads dev.eloped a technique f(r -lie 1ta.

-o'ce mae equences, that make,, expficit ii e (It occiusions arid %oork.< tor arbu:rair.,'rxe

7 iU SC wor k iin :IreQIIIIv -ite I 0t ot te t1 Ur e e.\tra1CtI I onIr I J j ri nitc.n . tn2 I .
m ore iiipetc .anai%,i, %,tcni thait prov ide' miotion, depth and :"ictr I:.,ta:

.. :.u'ti'21eaccelerationi itiOJIM1. Longer term 2oals are inleerne I *rjr ra
~ iaraI ItI. m e rgn 2 1!1CeQrIo' d eCr-: p I.Io ns ,into global clescr:rtioros ('rich r iN thc :cu~

:t>2rtc Ktem . arallet implemeritations, it motion algorithms ind raniekr ..

''rei t in academia . :rnctu~trx au !: rnni

;exelo)ped (ualitAiixe ar~ii itnd '--I 2-D" mnodelingI tchique01, ' r a.t
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miovino vehicle. The motion parameters of the vehicle will be recovered pasvevb analvzing- image
motion ot points and features across a sequence of imaces. This is necessary in order to recover
three-dimensional information about environmental depth and moving obj ects.

Results from motion analvsis will provide sensor and obtect motion parameters and depth data for
-;ubsec uent knowklediee-basedl processing. The dynamic event perception achieved using this knowledge

wil e useful for vision controlled navigation/ guidlanrce of a vehicle, as well as surveillance and other
'ubs eluent applications of military relevance. The software being developed will be kept compaL.hl.)e with
the (N1 L. blackboard systems so that there is a natural iriteg~ration mechanism. Initially, the Motion
analysis has focused on imag~es from the moving vehicle in road scenes With static obstacles and movinc
ObieCtS ( u'ch as an-other veh-icle). Later, techniques will be considered for dealing with complex scenes
nvolviu a wider % ariety of scenarios includini! off-road stationary and movine objects.

Mawor niilestone.s ire: in 1989 detection and recovery of motion of several movingc objects in more
complex >cenes and integrated motion cues for recogniftion and tracking: in I1990) digital map inteprated
mnotion dectection anid tracking under higih clutter and maneuvering situations: and in 1991 demonstration
ot identtfvin miiitary siwnihicant events in more complex scenies hv combining perceptual cues, reasoninc
Jri expectionsm, and spatial and temporal analyss of dy-namically chaneinescne viewked [rm ruiovtno

L 'r c the Nliri \ larietta ALV, UNI~ass has collected ~e rlMotion sequences, with accurate crounal
lai-11 usiacu both -top-and-shoot and move -and-shoot scenarios for image capture. In order to suppor'.

anmot itas r! rxpe rits; in motion analysis, the .- \LV's land nay iiation ss stemi Was uised to bhain 'ensor
ninnpiraincters:. In addition, thle location of key environmental obj1ects and features, appearing! in the

<eas s rc ortaincd 1''; means of a careful cartographic 'arvey.

Pr Hm't h rcl'eCl tO thle extraction of motion and derin in formation using- traditonal octicai [1)
c:aa % is le~d as, it.ard the exploration of mnethods for COMbininL the local flowidisplacement. i ieids
to r~ n-ke tructures. To provide a more rohu..t estimate of motion and depth parameters.

:aetIri puona the temporal correspondence b.2ts~ en straiht line evments and the chances in
,!,e len~ih 1-et eon '. rtual intersections were dleveloneca and tested on ,everal motion -equences,.

Isnrmna rt2st kt~re ibtained of less than r erroir :a- depth for ibtiects at a distance kot 2()t if

H ~ -~ox ~ejenitonstratiori of thie recovers of en. ~ironmrental depth h% i racking strajight line,:
xe, (Icte'nI oioft )I !he robustness of intevratinie stereo ;nad Motion priocessint2 to extramct occlusion)r

i 11arc'a1d. u 'asecuently. more accurate depth res uiLt'stnd the demonstration of a model-directed
7.ieiat.,, a ,vtcmi ,r an outdoor mobile robot.

O BSTACLEF DETFECTION AND AVOI DANCE (HuLghes and i. Pern

(I isc, Jc .ci red an a lf.orithmn usingv the Nlarkov Ra ocom Field \ I RF) i orma lini to perform
ericIT~ Mcam llom t hine of color imapery.- The NI RF anproach allow ed iis to define i local enerev,

:c~a I cu'sedof twuo paW", One des cribing, the iiractiocn potential between neillhors,, and the
en.'' v ateahi the dii feretice between the predicted : .eanad thle i ibserved data. Within th-e NIR F

PAOc~ rk.tWse wer defined: the line pri cess, --.ich g ove rr., the formatiion ot dtscontiauiie>
arnc~lmd vertical components. and the c .or proce, %0itich pert ornis, smoothini- where

(if !ait eit.SFince the coal 'saIs to compute 1!.c Acurate semntIti in ba-ed n local eneres
ti, e : ia inds the %IRF ,tate that maimtei:e pronailitx ot tha-t 'ev-eeataloo ssllc is

to oo'octhe encrp\ function over the mraice Hug~hes, periormed the mninimi/ation usine
IIOn - c ci r contrihutini- terms : a mnoiithiric :rni a da1ta te:rili. a ' rotein'tla cerL% term) 1(r

n,!It ~ai teri.\A theor% (I par,!Meter interreiaiionhips is, beta, e eoj
'I e >x~tIhiexaconal ind trianguflar iatt 1es fr hie \IRF an order to Model !1atUrir

'IC 5 :r~e.. tait thle tandardl rcctanctilar Lric: :,liikcd

11:10 c' Cue jrnetiiid to itapruise the _ornrpitct::or of piteal W[ retiiain eca
T f %r it-, iini xais implemented to Obtato ti optical floe. iot taco i'ixuil-, itiniaL/at tine
.I I'' ' I I''' itir- smnoothness), constrraint-. itfiitiiar% e ke oclsare petrturpict i11L'

m caniera routatioin hs rniairtc:7xe thle lea'.i ' 5 irc rror an toe iotationai
,iriaiei it ,-rI motion tield. .\atuirl terrai ::oerv was, i-ed for these expreriient. The

* _tjate for casves .kiah srnall dtstii, c %C r bet)ee flaies. [it,, aleuir~thtl i

r utI . maed tpoeaphtcalterrain iortoncflies t'r i \ I I 1) %temt I -timiatikoo
tite lngideisl Provided i-% u.; ric iic o x tem i INS' *tibo~ird rte

7



kehicle. Previous data is used to estimate the elevation change. The ATTIC is now providine the abiliy to
fuse sequences of sensed 3D data into a single representation for a path of over 100 scanned images arid
700 Meters of outdoor natural terrain travel. It is a data representation that provides an integrated
memory of' previously, sensed data by eliminating discrepancies. It may also he useful as a mechanism io
validate or update digital terrain maps.

At the L~ niversitv of Pennsvlvania. the research emphasis has been on multisensorv control and integration
techniques to improke object detection and recognition. Theoretical results are beginning to provide new%
insights for systematic integration policies. The use of superquadrics to determine surt ace parameter,
ofters natural descriptions of 3D objects useful for grasping and obstacle avoidance. Sensor models .
including the physics, noise and other limitations, have been dieveloped to predict quality and reliahIlit., )I
sensor% data. Research at LPenn. using wavelet decomposition of a visual signal has shov~n that the scti

can be deconioed into spatial resolutions of power 2 without loss of information.

The Univers ity of Pennsvainia will continue researching active perception. including development i
control %keie .ith feedback for looking and feeling, the integration of perceptual information into a
coherent tranwA ,.ork. and the development of i-riterion for quality and quaniitv 1)1 information t::atinte
>vstemn mu~t seek. Ton ard,; this ooal, three tasks have been chosen. The first task will investigate cn
, einnentatLIii nMtih .1 feedback strategy combining multiple resolution edge detection (iing Ai-, e
diecompoiiion) .irid ;()cal region owmi-g methods. The second task will extend the cor~iexttmit31

nhape that the iirerquadric Model can describe. The final task will investigate the spectra1i ipriiertie- kit
the %IsuL1 Ilenl o rder to detect color constancy.

PA\RALLEL (CON1l11-1vIN(; ENVIRONMENTS FOR VISION (Maryland. M\IT. CMU. Rochester.
Colum bia)

T wlri. ot %Iiaryland has heen studying how to effectively use thie Connection \laciime to '.e

1,lem a vtUal na' icatiori. This research ha3s proceeded along two direction\ - onc ci nceriec %.'.:tr
ci i. icenii\ [111Ltire'olu-tron and variable resolution image processing and the kecond concerned Aif

proinlem\- i ,ociatred :tith integorating modules across all levels of vijsual Information procesing- intu
-ontIIext (t aIL d ItII iu it % isuialI n avic:eat ion problem.

IA Io alterniti\ e .pprotiches have been developed for effectively using a mastiv Ci parailel i:% !rce. r
peiormineIL mtuitire~oiotnon imiag-e analysis - fat pyramids and redundant pyramids. In the ta: p-. rama
h'. perctihe (it , 7riico:ors is used to represent a pixel at any resolution level. %%ith :hle site (it the h eca

anresn s~ imacie resolution decreases. In the redundant pyramid, Multiple copiles (iA imacn-e, cre e
ait each le~ el ot re,,oltition, wvith more copies being stored as image resolution decreascN. far ihoW tati and
redundant rr- rarnids,. algorithms have been developed for performing basic imacie anak~sis (iperiions 'iii,:tt
A' histi craT~IInmina. table loo)k-ups and convolution. Many of these algorithms ha~ e been irnimenrteu on
the Corlnection \ lachine. \lethods have also ',een developed for representing qiiacltree .. !th -x
Connection Mlachine, and ai hidden surface ac.orithmn has been designed aind moilenientec . inc,
ConnecLilin NIiachirie ba,,ed on .his representation.

\rxln iso concerred With problems associated with Integrating vision module ait 1;i .c.
jroes inO e 'n tie ( nnection M a chine. Pro ject RAMNIBO ( Robots Acting (in N oving2 BC1,die t.i

nava~1tin- ,ne roilL uising visionf so that it can point a laser designator at a ,et of 'en'or irin I :re
nioxed Flck (orrev'pc il aone a surface) by a second robot. isLLI na%) cation ' tr

cntiictcd it N Ian'. land !or -otviT12 such navigation prorblems. PricLress, to date Ca:'
Il-m1emeCToo aI,1)r I1 he1 low%-level %ision system, a sophisticated 1- D pose es timnation proera I-t.. .IIIm' i i

t1~ilt~li2al~ril~tifil running- together on (ie Connection Machine.

\Iflf 1Jl iI o r !i 1 Iri (fircte Connection Machine to explore parallel iesiionuvin
or~~~ ""'i~i?. .ii xtern for unconstrained enironments; -- the \i1on ,lciiine \1IT UmrKae

tin t i:ir-t tie thke kiioie \ ision Machine s\Steifl workingIL from Images to recienitiontirici :enai
'tler i~~ I h l)i ),()i :ontinued to stLud\ the performance ot ilternative. tit.o~n

lie N cia \li~ii d ciroputer ,%,'temn that integrates, several visionl c.ue,, ii) achieve ili ar:rm.n
r ~~ my iininurfent' lor thec tasks iif recognition and navigation. I: 1, Also) aie'-'c*

htiei:i. n r'e' i Ii and highi-level %isitin algorithms, their parallel iniernentait ,n and -,heir
r~tccriii i, [ \'o \Iachirie cirriists iof a movable twko-camrera Eve-Head "'.'eln -- IIe( l!init 4kt.:C

inC itniec: a\Liciue -- ihe mnain compuiationa. engine. Severlprle al itiinttm
Arii-, . ttaee ietsctiiin. tiereii. niotiiur. texture and syv'tace color iill ' to rei-uife:ie -Utcii



developed and implemented. The\ have been integrated using the technique of coupled Nlarkov Random
Field models to prov ide a cartoon-like map of the discontinuities in the scene. In recent months work has
been done to obtain a partial labeling of the brightness edgees in terms of their phvsical origin. As planned.
:nie otput o1 the inteicration stape has been interfaced with a model-based parallel recopnition algorithm.
MIT has also begun a project, together with other faculty in the EE Department. msth non-DARP.A
funding, to develop analog and hybrid VLSI implementations of the Vision Machine main components.

Rocniester has demonstrated SINID-like programs on the BBN Butterfly Parallel Processor that >hosk
imear parallel peedu ' . Cver the past \ear a hybrid architecture involving pipelined and NIINID
parallelism has been de~eloped and integrated with a high performance 9 degree ot freedom robot head.
Mlan% applications tor tine pipeline iincluding, tracking, color histograrnming, feature detection, trame-rate
;etrth maps. frame-rate timle-to-collision maps. large-scale correlations, seementation usinLe motion tilur.

.'ind others i ita~e ireeni written. The efficacy of intimate cooperation between vision computations ina
conroledmotn has bieen demonstrated. Utilities to ease the programming burden tor thie pipeline -;re

reinc desioned.

Like mans iahoratxoric'. Rochester plans to have a high-bandwidth interlace betwkeen lok-le -c. i o, i
t,'nces~lric the !rame -raute pipeline) and a powerful symbolic computin2 envine (a larLce \11\11)c mnte

he B\ ~uterf. Pus ro r~ming.\INI D applications is difficult. and Rocnc'tcr a eacier 1
oieoperatia ste ( PSYiCHLE), performance monitoringt IPPLTTS) and del'ui-,tnc_ 1 IS T.\ I

REPLAY. o: t(, mnate the bh ea icr. Tfie Ps,%che operating system will support the reai -time caei.nar~
, s c'namnic comrputer '.itsion and nih-level planning simultaneously. The development. tools rosicet

ticai atml LISP nitertace to a1 me Itt-proces. multi-proces or application that lsreaa
~vte-~epinc Latitst:cs. s mnhoiic delbueonie. and other "traditional' debuooini2 techniciue, that h as e r.

e usv een a:ia lb I to pa-all I programmers.

P.)cnce<rnasihi irnplemnented object recoitnition aloorithms in neural nets, and de'. iopeci ac r
ea~atin~ or ite r't iinc :onstraint-propacation networks. The domain includes laroe 'et,, cl ec'

,!nc u B> as esin cniue to handle partial and incomplete information.

.receMellon ha' concentrated on developine the Apply programming lancuae for ,-e.t' tn
utpportinc_ :,pplcations of thie Warp machine at various sites. The desvelopment oi Arps ha'c.'y

i irect:ons : apnuA ppl': onto rex parallel architectures;, and e.\tendini! Apply' t ,c,:tonait.
~r~itin irhitewre. tarticularlv Warp. As; Warp is now in use at several sites . weA. e: t e :

,:e.eor~en, t n~k'Aarp applications. includin2 thiose usig. Ap

\nprl' nas i-een marec onto a wide variety fI computer architectures. includinip reconit coranle arra1%'.
<at' 'ittermad th e \leiko ComputinLe Surface: the Carneiiie Miellon Scan Line Arra'. Proce''or. F-T

i Jirnen'nonal fault-tolerant array of Warp cells: i\Varp, the \VLSI imnenatn'(t ii Wri
nL Jrj' d cetviofect nv (:arnete .M ellon and Intel Corporation. and the Huehcs .\i rcra t( rrtio

ll~vxr'- iB., .*rc:tecture. An :mplemncntatinn of Apply on the L niversits of ~'ct'i'Imc
nclr~tnc~' rc::ct'ae s underay. liF) addition, we have corresponded on rcsihlte mrnltieettiti

,Arrm. A it re 'it the Naval Ocean Ss stems, Command and Stanflord Ljniversit\ lI the :i:re:,
mentattoro % V-i s as been usecd tor procramminc. debLucie oh aoaeac acf r

tt~l~itO nu rcr trrnarjce _ona risons;

'a, ia F tee anG lisramid ntaclhine emulator that runs, (n th (ooe:'r \al:n .x

IJtn KnaiK r'''it ()e oh herc,c ors aind communication nait-.s. 13a'ic :azile I..
tx-v-t-' ii ta rrtabiiv ieicin emistino tree anci p-.rarntct .!ir!t~n Ir vx:

inc irt v terpolatiori -5 >ittt

ett t''te 'e.erl ''ti n nclvlsi 5 ion in this) cts irortnient
ei lti'hi 0'iu(tltl icrii r surface orientation at time' vcvvtz',1i n!i
j~ ~ r -t tn rclomn iriacc rrotirtie\, Irom 'oar',e dlioa lii:',::nta

C' I 'v'' ru-i~s 'trr~! dlv ittm'. irci Itas experiptentaiks wrei
'I 'v vs' '7:'toa~tion iocitntxzo.vt t in ai (ui)nnectiot \iihittiev-'>ke i' r e

1 r 1 1 1t r'eF- :r -I ee t: 1 iIlCii't :IeT 11ri-tra ite , t Iie uvt2e tct v" i %'-;~ eve, r'i

r'I 'tt 1LIt i 't. t IIe r I k! V *R PA I InteL!r a t ed I111ace, I 2r , Ir a t c Icxe ttI !
11I rx. t hu-'i-: o ice~ o ~oibnclirndrk i'ece nti Me -1i
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nyolves model-based recognition of a 2-1/2 dimensional moiegiven artificially generated depth and
intensity images. The task is desiened to test low- and Inte rmediate- level processine and communication
between subtasks. including top-down control of low-level processing. The University of Massachusetts
developed a sequential solution to the problem. and a sample parallel solution. which were distributed
along With test data sets to over 25 vendors and research vroups. In October of 1988, a workshop was held
where complete results were presented for the Sequent S~mmetrv-81, Alliant FX-80, Carnegie- Mellon
WARP, and Sun-S and Sun-4 workstations. Partial results wsere presented for the Thinkintc Machines
Connection Machine, and the Intel IPSC-2. Complete simulation results were also presented for the
ASPEN ASP, and the Universitv of Massachusetts/HL-uhes Image Understanding Architecture (ILA).
Other vendors and research groups are continuing to develop their own implementations of the
benchmark. Several benchmark extensions and improvements l.ere suggested by workshop participants.
manyv of which will he incorporated in a future version ot thle specification.

TECHNOLOGY TRANSFER MINaryland et al.)

Martin Marietta Corporation NXIMC) at D' nver. and the Computer Vision Laboratory at the University of
Nlar\ land UMIcollaborated on a study comparini2 methods lor reconstructing the 3D sharpe of roau'.
One method uses video imaces from a s1incle camera, wkhie thle other combines video data with im1ace'
obtained by a ran-e -canner. These methods can he used tor the autonomous steering o1 a vehicle. (ht
S-ata used for thle comparisons w ere actul1 imaces collecteci by the Autonomous Land Vehicle (AL\
The methods are robust and Lave consistent interpretations 1or thle 50 road conticurations tes ted. TYe

NIiC method is potentially more powerful, and would make other methods useless it the rance -canner
xxas; ale to Cover the same field as a video camera. \\ith a limited ranice scanner, however, thle Method-
.pre-ir comnplementary if they are combined so that the \l\IC method provides the ground mrith close to
7,1,e %ehicle. and the U NI method tuses this ieround truth to emtend the 3D reconstruction to most "'I the
%'ible road.

sex cral ;iteS are i.,inL \Warp for applications. particuiari. !n the Stratecic ('omnputine. A DR IES. and
'SCORPIUiS program,;. WVarr is beine used rec0ularly In) t!he StrarLe!oc Computinug program at Carnecie
Mlellon tor control of NA\LAB. including impieirt'enilon ot the SCARF- color road - !olox inc aic-oritom.
Arpl% and W\EB routines have been w~ed in the .-\)RIEls irolram at Science Applications lnternatinnii
(',rnoration . a ndl i the SCOR P1 LS proieram it AIu e -ircra it Corporation. fo- r tasks vvrc

:n.terprettition of >%nuttetic aperture radar mraice'. Rii. Mc'at\artin \1 ,rietta used Applv a-nd WE B
h1e Autonomous, Lind \ehiclex prooram. 1nct Ann' % 'A F B hax e been uted at ES L' Cororauon :

a rnusp rcrans.NI icn of this wkas reported at tht. t\iI e (irouln held in Cherry IHIill. N ew J er~e'.
I --1June i- >'onsored by% GiE Ac o >rxicc I cox vJe rse%.

hI nex well i applx ni SCVision technoit2 ix Je.e t ",ete DARPA Scene D naniic procrani isr

0 \ ion-based bk~htac le detection dojrna roitf itd liehi proiram tron N.ASA.
* \lodel acquis ition and retinement nr'eam i to e aocncv%
0*i de Bomb tnit, QiBKj- 15 trainer :-roe-ram !i,-n AVr I -

IITh iutonomous nay cation sirnulau(ti it%1CKac'e at t','ttaicx lt'eitaniexui no
n'ilere J r the J PL NASA MIars ro'.er rca

F. cte'terK, Butterbiv ott,.are is cisemitated t krxe B\, lt rceix iIaa~ Ihere i' ' ete.:
tepaplers, inaxe transterrec_ some () the heif a. 'C~lilkx. fhrouco n- intraa

LIro )tih e exnt , o !c n t he l~ia i;e 1-rne2hi:e ( nr ir ii oh iharedi anui iccuirec
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the WARP computer, and the WEB and APPLY image processing tools for the WARP. The CML
program for building 3-D maps and following the road using reflectance data drove the ALV in August
19SS. Hughes has performed a successful demonstration of cross-country navigation and obstacle
a.oicdance on the ALV. In addition, the CMU NGS Blackboard has been sent to other ALV contractors
including ADS and FMC.

The NGS Blackboard has been exported to several non-DARPA sites. including NASA-Goddard. DEC.
and Florida Atlantic University (for use in underwater robot design). The 3-D mapping developed at
CMU has been used extensively in designing and building the AMBLER. a prototype Mars Rover walking
robot sponsored by NASA. Other NAVLAB technology has been used by a number of other projects.
includine autonomous navigation of heavy construction equipment.

PROGRAI-M EVOLUTION

The NGS mill continue to evolve as one of the products of SCVision research. Technology transfer to the
NGS from other contractors has been, and will continue to be, mostly through papers and discussions of
results. Similarly, the impact of the NGS on applications systems mill be in terms of ideas demonstrated
and technology developed, rather than in terms of actual code delivered. The perceptual algorithms and
arcnitecture of the NGS have been developed for a land vehicle, and should be directly applicable to the
Arm%', RCC proram. The technology is to a larIe extent also applicable to guiding unmanned air vehicles

/PIONEER. AMBER); assisting a human pilot (Pilot's Associate): and unmanned underwater vehicles
(\I.\L\E,. Non-DOD applications include a strong influence on NASA's Mars Rover program. A
particuiary important future application of autonomous land vehicles will be characterization and cleanup
of hazardous wa. te sites. The amount of work to be done is enormous, and performing the tasks by
humans is very dangerous. The cross-country mapping and traversal capabilities being deveioped and
demonstrated as part of the NGS are ideal buildin2 blocks for future cleanup vehicles.

Buiidinm capable mobile robots requires all o the technologies being developed as part of SCVision:
modelline and recogmition, dynamic scene and motion analysis, obstacle detection and avoidance. and
parallel comruting environments. Combining the individual pieces into working_ svstems requires the
\>tem, olt.%are o the New Generation System. and the real-world testin2 only available ,vth outdoor

rmo ile ro bots. The work to date has solved some of the problems, has developed approaches to other
probiem that work in limited cases or at slow speeds. and has uncovered further research topics.
Continued research. focused on outdoor autonomous naviation. will put us at the threshold of bein able
to huild ,. able real-%korld intellicent systems.

The technitques being developed in SCVision for representin2. recognizing, and reasonne about natural
and man-macie ohiects have applications in many other areas. includine cartoraphv. photoiterpretaton.
.ind tacical target recognition. A natural evolutionarv step for this program would be to explore these
arpiicatinl. In cartography, for example. current tereo mapping techniques work .veil on
do%n .' ard-looki m mages from significant elevations. Howkever. they have trouble with high obliques o1
-cents containin buildings. tree cover, and hig~h relief features. because the matching aIuorithms do not
"ndertand" the three-dimensional nature of these things. In target recogmion the pattern recognition

n~oues explored to date have had very limited uccess for similar reasons.
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SPATIAL UNDERSTANDING: THE SUCCESSOR SYSTEM

Thomas 0. Binford

Robotics Laboratory
l)epartment of Computer Science
Stanford University, CA 94305

ABSTRACT
Progress in general, model-based vision is presented. This reports includes a summary of the Sli(*('lCS-

SOIl system with updates. Tie objectives are mlti-sensor interpretation and stereo mapping. A zeroth
rehe ase of SUCCESSOR has been made. SUCCESSOR is implemented in Commonlisp with device indepen-
dent graphics and user interface to enhance portability. Extensions to tthe modeling system were completed
for the release. Extensive developments have been made in interpretation using Bayesian networks which
expiloit networks built up from object and scene models. Recent contributions have I)een iina(e in Iprcep-
I ual strategies for efficient computation in interpretation, including distributing computation among Iparalhl
processors, kn( "ledge acquisition and resource allocation. An experiment is described in recognizing a class
(it objects from their image contours. Segmentation into color regions is described. Progress has been illade
on curve linking to make extended edges.

1. INTRODUCTION

Model-based vision means different things to different people. We mean general, inodel-based vision
which includes two challenges. One is to provide general methods to use simplifications for special cases, e.g.
few objects, simple environment, or limited range of viewpoints. These methods are valuable for applications
in limited environments. The second challenge is to use models in extremely varied situations and objects
e.g. out-of-doors with trees.

Some objectives of SUCCESSOR are: multi-sensor integration; fundamental vs plierionienological mod-
eling; comprehensive probability models in interpretation.

A theme in SUCCESSOR is fundamental modeling of the total system. Geometric modeling is one aspect
4 systein modeling. Modeling of the perceptual system includes modeling of sensed images and iodieling
l,rceived structures from images, i.e. modeling of sensors, modeling of illumination or sources, modeling
the interaction of surfaces with light and other signals, and modeling perceptual operators.

We consider vision in a complex, three-dimensional world, e.g. the outdoors. The outdoors has great
variability. Trees, bushes, rocks and terrain have great variation in structure and in appearance. There ate
large nimbers of different objects with complex surface markings in complex environments. In industrial
applications, problems can often be engineered to be simple. We have a commitment, that general systenis
can be built up from general purpose components and that many applications will be made possible and

, tfective using specializations of these components together with some general mechanisms for building al
using application-specific operations and knowledge.

The zeroth level release of SUCCESSOR was made in July 1988. The release is about 50,000 lires of
(oiiiionlisp code. Relatively extensive documentation was completed by our standards, although inforial
by higher software standards. An automated documentation facility was implemented. A port of part of
St'( (1'ESSOR has been made to the Mac 11 by Chelberg. We are about to port parts of SUCCESSOI to the
Silicon ;raphics Personal Iris. A port to a SUN is underway by Michael Black of ADS. We are now evalualiug
portable "make" facilities provided by ADS to simplify porting. Probably the most difficult parts to make
iachine-indeendent are graphics and user interface modules. These and development environments are
no specified in the Conimnonlisp standard. To maintain portability, we have defined a device independent
gra dhics module, f)Vh, which includes an elementary user interface module with menus. We are lookinig now
at X-I I as a standard to integrate with DVI.
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Figure 1. CSR and SHGC forms
('u rved Solids of Revolution and Straight Hlomogeneous Generalized Cylinders are the prinitives volilnes in
Ih, CSG modeling system for SUCCESSOR.

2. MODELING SYSTEM

'[he imodeling system was extensively rewritten for the release. Curved Surfaces of Revolution ((SH)
were integrated into the system along with Straight Homogeneous Generalized Cylinders. See figure 1.
Curved Surfaces of Revolution are generalized cylinders with constant, circular cross section, i.e. constanl
sweeping rule along a curve. The representation and intersection code were extended greatly to include ('Slis
and cleaned up. The 2D modeling system for mode]ing cross sections was improved and generalized to allow
arbitrary spline bases for each piece and to allow arbitrary specification of continuity or discontinuity condli-
tions. The implementation remains tied to (r,0) single-valued representation, i.e. star-shaped. Preliiinary
work has been done to generalize the 2D modeling system to use ribbons, i.e. to generalize descriptions
of cross sections to include part/whole graphs with ribbon primitives (generalized cylinders in 21)). Some
work is underway to implement non-uniform rational B-splines (NURBs). Work on surface representatioi
Coilt inles.

Prinutives are constructed with a menu-driven geometric editor similar to Maclraw which aids iii con-
st ructing generalized cylinders by defining their cross sections and sweeping rules as piecewise smooth curves,
i.e. splines. The editor has three windows, cross section spline, sweeping rule, and primil yre solid. which arc
shown in figure 2.

CSG parts models are built with set operations of CSR and SIHGC primitives [Police and Ileahey ].
F"igure 3 shows an example of the intersection of generalized cylinder primitives. Surfaces of generalized
cylinders are defined by two parameters, (0, z). The parameter space is searched by a quadt ree; a box t re,' in
3-space provides a nested set of enclosing volumes corresponding to the quadtree. The hierarchical search iD
guaranteed to find intersections, it is relatively efficiem , and is carried out to relatively high accuracy. Ti1,'s
required are of order 10 minutes on a Symbolics 3600 with Commonlisp code that is not heavily opt iniiz,,.
The resulting ntersections are made consistent by a method which exhausts degenerate cases of polyliedral
intersect ions. Intersections are computed on the parameter space to form trinned surface patcies.

Compound parts and assemblies are defined by affixment operations which define transforinatims llioig
coordinate frames tied to parts. Affixinents are parameterized symbolic expressions which iiay involve 6110.

e.g. in an imrntion. Assemblies are defined by a small language. They are most conveiliientl built wiilI a
geometric editor.

There is a back to front painting algorithn for polygons which does not require a z-bufer. It call be \ery
efficient on computers that have fast polygon painters. The method does not apply to composite o,.h'cl..
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Figure 4. Shaded rendering.

but is useful in the interactive primitive editor.
Z-buffer rendering of polygons is slower than the painting algorithm, but faster than shaded ray tracing,

and is used to generate most of our shaded pictures. Computing time is about 20 minutes for complex
models. Shaded ray tracing remains the most flexible and realistic rendering technique. Here, we again use
the box tree representation of the surface patches to get acceptable computing times. Individual rays are
intersected with the tree associated with a given surface patch. If the ray intersects the corresponding box,
the box is subdivided, and the recursion proceeds. Otherwise the subdivision stops, there is no intersection.
Shadows and texture mapping have been implemented. The complexity is O(N.q) where N is the number
of pixels, and q is the depth of the box trees considered. It is much better than the O(N.4q ) of classical
algorithms, but computing time for complex pictures remains long: several hours.

A variant of ray tracing is done for line drawing display. We compute limbs and edges as for wireframe
display, and do ray tracing only at contour pixels. This method reduces the complexity of ray tracing by a
factor of S/P where S is the total projected area of the objects drawn, and P is the total projected perimeter
of their contours. Complexity is roughly O(vWN.q) (area grows as the square of perime.ter when resolution
increases). This method is relatively fast (about 5 minutes for the elbow).

Graphics is primarily of use for researchers to understand the system and to demonstrate results of
the system. Graphics is one method for modeling images, i.e. modeling appearances of objects. Graphics
methods are useful for individual objects from individual points of view. A challenge in model-based vision
is modeling images in a much more general way, for example for classes of objects like trees for unknown
viewpoints in complex environments, like the outdoors.

A theme in SUCCESSOR is fundamental modeling of the total system. Geometric modeling is one aspect
of system modeling. Modeling of the perceptual system includes modeling of sened images and modeling
perceived structures from images, i.e. modeling of sensors, modeling of illumination or sources, modeling
the interaction of surfaces with light and other signals, and modeling perceptual 3perators.

Material modeling has been included in the modeling system [Ilealey 87a]. Detailed and generic models
of surface reflectance have been included especially in the visible spectrum. Phenomenological models from
physics have been incorporate for both metals and non-metals for specular and diffuse reflectivity. [Ilealey
89b] quantifies and supports the usual assumption made in computer vision and graphics that spectral
properties are independent of geometry. This argument supports the use of normalized color under controlled
circumstances in image analysis. Briefly, the Torrance and Sparrow phenomenological model quantifies
specular reflection, surface reflection. Metals have only surface reflection. The Reichman-Kubelka-Munk
model is familiar in psychology, but. had not. been used in computer vision. It is a phenomenological model
which quantifies body reflection, diffuse reflectivity from the interior of dielectrics. Non-metals have a mixture
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Figure 7. VS(P graph
An exploded drawing of surfaces of an object shows components of the Volume, Surface, (urve and Point
graph of object topology.

of surface and boO v reflection, diffuse and specular reflection. In a later section we (iscuss segment at ion
using color.

Preliminary experiments with new generic modeling capabilities were described at the last IU Workshop
IKricgman, Binford, Sumaneweera 81. That system has been developed further. Although ive plan to

extend generic modeling greally, generic models will be used for several new efforts, namely for generic
prediction, for functional specification, and for a new constraint system which like ACRONYM will include
symbolic expressions wit hi variables which may be partially speciafied. However, the new system incorporates
probabilist ic variables and constraints.

The topological structure of object models is being incorporated in a VSCP graph of volumes, sur-
faces, curves, and points, the topological types of dimension 3, 2, 1, and 0 in 3-space. It is also called the
BFFV graph, terminology froni the blocks world which was i!scd in the Stanford lland-Eye system in 1970.
Tle graph describes fundamental spatial relations in 3-space. It is riot an aspect graph which descviPcs
phenomenological relations (appearance in 2-D projections). Algorithms determine the appropriate con-
nectivity and adjacency structure of the VSCP graph automatically from object models, and allow cutting
and pasting. Figure 7 displays an example. The analysis determines surface continuity automatically, e.g.
boundaries of C' and C 2 patches with tangent and curvature continuity and maintains continuity in the
structure. The VSCP has natural bounding relationships: surfaces bound volumes; curves bound surfaces.
Each body, surface, and edge has a local parameter space domain, mapping function (to map the 2D do-
main onto the 3D range) and reference coordinate frame. Curves correspond to geometric discontinuities
observable generically in the iniage (i.e. except on a compact set of measure zero) [Binford 87]. The surface
discontinuities arise from S1GC termination conditions, discontinuities in the cross section aild sweeping
rule functions, and the intersection of SIIGC's in composite models.

VSCP graphs are hierarchical; they can be used flat if needed. A single C" surface includes the surface
of a body (possibly several). C' and C2 patches correspond to different obscrvables in an intensity image
or range inagee. Physical properties of tle surface such as reflectance or texture can bc exami ned o: this
sn r fare.
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Figure, 8. Iecognition and positioning: a bagel vs. a doughnut.

relate their shape to the shape of the observed objects and to the viewing parametrs. A new approach to
that problem is proposed for object models consisting of collections of algebraic surface patches and their
intersection curves. This includes nearly all representations used in computer aided design and computer
vision, such as CSG models, generalized cylinders, and superquadrics. The image contours considered are
the projections of surface discontinuities and occluding contours.

li:mination theory provides a method for constructing the implicit equation of the image contours of
an object observed under orthographic, weak perspective, or perspective projection. This equation is pa-
rarieterized by the position and orientation of the object with respect to the observer. Determining these
parameters is reduced to a fitting problem between the theoretical contour and the observed data points.

Two measures of fit are proposed: The implicit equation can be directly fitted to the data points.
Alternatively, elimination theory can be used to construct a closed-form expression for the distance between
an image point and the theoretical contour. Position and orientation are then determined by minimizing
the average of this distance over the data points. The proposed approach readily extends to parameterized
models, whose contour equation simply includes additional shape parameters.

A simple recognition and positioning system has been implemented for a world composed of tori of
different. sizes and flavors. It has been successfully tested on several real images of objects such as plastic
rings. doughnuts, and bagels (see figure 8), and has proved to be both reliable and computationally efficient.

4. SEGMENTATION

llealey 891 presents a parallel color algorithm for image segmentation. From an input color image, the
algorithm labels each pixel in the image according to one of several regions with uniform normalized color.
An edge operator is first applied to the image. Rectangular regions are successively split until they contain
no edge elements, i.e. they are uniform. A mean normalized color is computed. Uniform regions are assigned
to matching color regions or used to create new regions. The algorithm has been demonstrated on metal
objects, plastic objects with specularity, and matte surfaces. It has moderate performance and is relatively
fast.

lealey has examined the phenomenological models for body reflectance and specular reflectance. lie has
also examined experimental data for a moderate number of surfaces in order to quantify the range of validity
of the approximation that reflectance is independent of geometry. This is the usual implicit assumption ill
computer vision. lie shows that the approximation is quite valuable, i.e. that it holds over mast viewing
angles.
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I1MAGE UNDERSTANDING RESEARCH
AT SRI INTERNATIONAL

NI~tIM inFi., liler andt Rtlet C. foilt s

33 avenswxood Ax t'iie
\l llt Pairk, ('iliforiii 910l25T

Abstract

Imiage understainliii rt'se~ircli at SRI International is a broad effort spanning the ent ire rangt' ofit itio ii ioil
research. Ili this report we desci'ile wur pro-res inl two programs: the first is concerned with miiod, hiii , thle carthI's
sur1face fromi aerial pliotegriplis: lhe second I., conicerned with visual interpretation for laud navigmi i . Ili :1itilar,

we dlescribe progrcss ti tietiesI of' a core knowledne structure; Ii representinig. recogilizilii. andIrlteii comi-
plex niatural ild iii;u-inate obje~cts; iin recognizing aiid mnodling terrain features and iien-iide ob,(rt5 inl iiiiige
sequiences; in) iiuteracti', ~ tetltis for scenet mnodelinig and scene genieration; Ii aiitoiiated d~i 'cI (Al aid tleliiilail ion
of cultural objects ii tit ingr and Ii auitomated terrain imodellig from aerial iuii'''ury

Introduction

''lle overa Ill gui I (l ti' I i iderstm(InIt ig, research at 811 I Itit ernationalI is to oltI i im so Iil!1 itis to I'l iiiIaiiieit aIl
problemns Ill coiaP1iit r visit ii t lin arte nt'cessarv' to allow maclines to model, liaiiiila t'. intl iidersr anid thitir

eluiroilnlitfroiii "sIso-;wctInrtl datai ;iid stored knowledteo
Ili this report we trscrilt: progress tin two programns.1 The first is concerned with Ii ntiioeing t lit.erlI' siirface

fromi aerial plioto-rajlis: ft' set' 'lt I., conicertled wvith allowimig' a, robotic (device to siiccssfiillv n: vigt'. uhiiouighi,
;iiid I iite-riat Nvit I I. aI natiiia I $-1) (,t% I ironift'i I IItase ( onl re al-t Ime inter pretationl of se,,so rv da;tI a.

lIn ie( discussion of thle rirs-t prograii we lt'scribe our progress Ii developing techniique.- for anitomit et ttrraiii mod0-
'hu frm aria iiiagrv:alitoliaited dletioii and delineation of cultural objects inl aerial iiiimgtrv intl v ineatve

t'cliiues for scoet iiotltiig and sceneo gt'uitratiOii.

Iniilie liscilisoiif, III, stecoiid pri rain we dlescribe p~rogress ili developing tedhniqties for atit tii itoet real-t huec
ret'(ttiilu of terrain11 t4attir-s and mau-nia"de objects froni image sequeiices acuired by a coliinlntiil of raning

cnmiaoti to btothI pligrvaliis we lt'scrilht' progress Ii developing new t~chiniquies foi- ropreseti ii' rocouizint,

iii rendering cotpfxilt a imitl anti itn-inate objects; and the construction of a coire lsiowlolgt' s trict ure (('[KS),
which canIt se.rve ais It nega mI iii sm for a new generation of genleric vision -'Nstvills,' Tlest svst'lls will be

k'iowetge-as triv ii . rat er tlimti is-ttcific (uising techniques ill which donmaiii knctwlelgo is colaltiled it tie(
iitcrltrttative lrtiii.

1111ii 0 ilir;it I lui' iirci t,f (tt ciit'teit wxorkl is -uiill 1pilsis Onl comult"It ojitil peri't'ilicte stcal
lirmuigl the lt'vtttuiimit 4 lgo'it liiiscaal of exploitimug the ntew parallel miacliiiie ;rchliect n iow availall

(e.g... the ('0uiii'ti ii NIhelii'l)

Designi of a Core Knowledge Structure

'[IeI( iatur'd outdloor liriiiitpost s signlificantf obs"tacles to the desigii antd succesful it'rat iou of tlhe
interpretatvr. iiiii.naii I.andt Control funuct ions of a, gemueral-puirpose v'isioni 'yte. my of these
fi rt ions (a i1110 otvet Iwt' lftriit' at I lI've! of coimpletence and reliability necessary to sat isfv thne reeds of an
:liutonmoi:m robotit' lt'vit'e. ['art oft Ie proleii Ilies inl t lhe inability of available t'eclitIlue s' especially vhost Iinvolvedx ill
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:i I,, ur :it In )tis teffort. de(scril-d I ;I prtviolis piji uii IlkiX 1t ;1 "T]. is to lesigni a core kjotwledl.t'
-I I , ! I ,' t It - I ,II -' et iecrat iout otF ktiowlt'(Id't'-,I I tC ' %1"1)1 v 1 s

.A k, InIt I fIt jr ti It e addf ress Iit I Is iask Is I ioxv to)(tvi. aI \%aiy I' (It sc r IbhI It ie ( app varait ce ani~ d(cIar-

:wt, I i i' Im gve th phsical euivirotiiit "o t Iio-rtuig"liv t hat1 w\. Irt' assiltic thfat d'rficletici'.s III available visioni

I,"o 0\'rt'lii'lic kiie acesta uhI'o.kI(w-1 W cmo cott i"(Ilvdlto

V '1 sri1i, as tiel Only or uiltliiii ii 'olitot becaust stitl dttailtd data would be impractical to obtaii.
0rave or list, tit the Interpretive proces such Iow-ltvt'l d;ita would almtost certainly hb' Iniaccurate when
iiIand would quickly degrade as phy~sical clialig''i occur. (I-vtn Illuiniat ion cliaiigt's Woujld Cause at pixel-level(.

ptI.1 4' a)pje; Ir;I I Ice, to becamle u se Itss ) FI Iitallv, -pirit ltretat intl Iust be based on mtore thian Just
ip ac'anid there is no itnuittliattIx. oblviotlis wa.I\ (idsiii and ,toring such soniantic (noipictorial)

J.1~lii a t arlit rarv levels of detail.

It, t 1MIs deine s a Cotmiunity of litilepeaduilt liliteorwi II,. lrittss' thlat cooperate, ini alijeviuig the goals
lisile Miotlelitig svstetin Thlese processes may iepreseiit senlsors. interpreters, controllers, user interface drivers,

it Iw :hr iniformation prccessor. Each process canl he hoth Ii pr-ilucr andi~ a conisumer of Informnat ion. Each lhits
'III,; control over, at certain limiited piortionu of tieh iwtgdiaae resources. 'I'lie ('KS archiiteot re

I lt' :wctss to stored knowledge by hoth Iigograpihic local inm :id I \v si iiaiit ic Cotnt.i

Ant nlit 1:11 iiiiplemnitiit iot) of thel (1KM was coiiiplettd early 111 l9("7, ;1i1id suibstqiieit activity hi'as hiadl two objectives:
Ip,% lie I('1KM' to a variety of distinct percept Wit proltleins. ;1i1d Imlprovitig itid( extenintg i15 Ciaabilities. 'I'le

os: icnliriitreccent eiliiicelienits to tile C7KS have been11 IIW dt'sigti and itnplemieiiatioi ofia tetiploral oirectorv
;111 il11,x to tdviiatilic data, atnd thle couipling" of thel C9KS' to te ( Cartograjiic Modeling Envirotnient (discussed

I:;, t . [IllaisoiiK'Qlialn88jS.

l iwi, irurretitlv several efforts undoerway t lint mai~ke tis' of' C KS as pjirt of a perceptutal systemt. (Cor porat e
il ecojiiei at, (;I-iierad E-Ilictric ('oiijiuy Is, d,~ %,'.pitig an itliceligeiice atialvsis systetm Called Pace.

l%iil It iiiilhs (CKS ais a nmajor counponenit [(1orbyM(,]. It fulses iif iitinfrom itult iple sensors atid utses tie( belief
l c~ n 'lll ;iti si at i~il directory of C'K S to i at iage liyjth I-. is's at itt jiscal objects. ('I\' is also used rotiitelv

111 1,1ll rsearc at SHl. One of the(se elfcrts, whlicli lists tit ciiltext provided by thel (' databiase to constrain
visul pTi'sIii., tslrielv dlescribed below.

A M\ achinie Vision System Built on i th C KS

I it ( or KtiPMlei ge MSvtvtIi was desigtiled to serve as tie ciiitral iinfortmatioin mnaaer for at sensor-based atit-
ii' no1 svst 'iii Ill on'.l of the robot ic vision resea rchi efor ts we dcscrnbc tin thlese proceetlitigs [FisclilerY Strat 891. We

lii itiileu of desigii ig a visiott svsteni for at veli ic t t ha t (-;an recogiiize objects atnd create a map of a piece
Iiitlitle iae it collocts while trawersitig thle area. 'Ihe ('ore lKiouleoge System serves two Imp~ortant

l it Ill i siippilert oh' such a visioti systeml. First, it, cicoil's at world tiodel that exiss beyond the interpretatio
sing' iag'I- or Seqilontce of itnages. such at persistent descripition of the terrain and thle objects that occur there

at i '<a r cot poill at of a visioti systemi t hat is to bench it from its acci tulated experienice aul''lid Nlicl needs sttch
I- u Ibasis for platining future activity. IdeallyHicnetsoth K soudevrb mperaertt

rv detailed itiodel shtouild be developed froin the( haritial ilitertllat ions iiadle by thle Vision systeml as the(
h~,,i i-, peaitt(ll traverses tile areas of itterest.

SMaJld. tliet ,Xistewnro of a world model1 providets tlie context for ittage Interpretatioi. Prior expectatiotns of whlat
h) 1, 1fo11dIlit ati itaemuakes it e.-asier to recogni.'ze, scetie featurles. T[he Conitextual Vision system ( CAS ) we are-(

ismi~n iaki's wide-spread Ise( of the( (9KM for reteei tit(e: world, for controlling its atnalysis dlecisionis. and
I -kiiig tw hi lobal cotisistcuicv of its results. 'Filie (9KM uiiakes it possible for CVM to reasoti about the( full thIree-

li'11111, li ii;It ire of, t he etivironmet. Its coiitext-drivei cotrol st rututre is a mecans for avoiding the(. exponetial
-ii1idxity itilwirit ini visual recognitioni of a coiphex world. '[let cotnclutsiotis drawn by tlte vision system are stored

iiil~'C 1KM itl rethu iiiuieiatly available to at robot's rout c-paiiiig, itavig~atiot, and~ task-specii ussets

1? l'lrl'ls4 ntiuig the Dynamiics of the Environmtett

Iiiigtis p;ast yea;r. we hlave exttetded oitr ditaha' desi nd inldtveloperl aI tietlorology for represeting and
ia ilingt ie ttihira asecs o te (ata. 'hisdesigul aIllows thata access not otily through three-diuicusiotia

il idict s aiit sfittiatitic Cate'gories, ilt throllgh titl' to'lihorald ltthavic r of the( dat a ats well. WVithi this desigui.,
'ti'i'shoiit anl ohijicts identitty atid location itn f ie( world cati bie resotlved. ais, well aisqItvrIf-;abtoiit the fuitutre or past
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lh 'ItI-1:t~ ti tlt conistructin of doal space ip i l lll., of III, motionl paramters of at object. 13'

Fii_ iiil~ III %ii Iti ilt) Ii t, llial spc.it 'anI lbe %tcry elite ''itt to Itr'(id ojt Ilt, fli t lie mution of tin object, or to finld
'i I*cI, I I It -,, Ii I, I a '); I oenI locat loll at sot IeW point illI lIt iii full'. It I., IlilIor tat to choose an ai)p ropriate

rlit I. I :i stt't'c~' liceito' or r't rlival aoiklititagis I to Ille ot )1 t we have lrheadyx "scovXeredi several
ri tI It/it it)is fr o it orinary cla.- sos of' ihot loll ;itti Iluy i l i oI ier if' t(,eedt'' arises. lit add~citionl

1 1, pr tto It~'l iti tll, tiht dual, sitact' aipproaich is tishfil for litolclitg iii'' change in tattributes othier than
it I. .h ,r , vimttle. ''lootit- through color space. growtl oi~f a ulIitii ;nl 'itaie Ill air temipertutre are potential
* pit I 0I5 II. (A r, 'I 'rt I Ii his work is ntow lin preparattoilI.

1) iii(. t Mnltipuilat ion iif' C KS Daitabase~

P, ;111- Ill mt ltll htitaiti of tilt-('K is the phlysical. otdoor 'ttvirottlti'lt it is often uiseftul to view the
;.T z~ti lIIt, itl Is trough sviittltesizo'i Hitnaerv. Several liilterf;i's have bitc rlist rttctel to allow for ititeractiVe

1i, %Vii :td iiiipuitlii of lt(e contetnts of ile diatabuase.

it'i' 'ti >ohtpil.t 'ateil iuttiract ion atnd display ficilit v t l;lt jlt~s beeti o'oist ritet Ied frontt se-veral tools devel-
I it liI lii itrf~i'' llw full i ire'-uhimtensiottal rettth''itg atnd ttiutmiptiion of atny subset of tlie( (latabm~e.

I rilwt- r, rf a rti h'iltilforln is purovideid by tlhe (iartoa _railtic Moolitg lFivirotntvi lat lottatmab

ii t '. ii ft i l tt\ rswii've: iconts cornspon I Ill - to I :tlt (liii a tokiti Ill thli stlset of Iterest nre suerim-

1-,' It ill *I; ipr nt' physical location. Somle objec'ts at'' lisplhteil tsitii ttwrijoiadric printit ives to produt
MtI- t I 1:1t1 1ii het withI stvl'eul Icons. DaIta tokis I ltvtt have spiccdied geotiwt tic mitoeitig- itnformuationi

11 j11 tif r'itat iou: Ilit tetaitider art' dIsplail, tisitig .. totoil''' ittodels sterd itt thme st'lmlanlttc

r'. L 11 t hii r'mhil is at tiolv'rfttl itoiheliig atti di."pl;iv sVst'lII. 'otl'l ii It) ktt aiig't~tlie that Is,
' I' Pd ''Ilitt itit sylithietio- ittt;tg',rv fromt svtttbolic ittf'ot'l1ti~t'mi stirt'tllt thn' ('S.

Rep~resenting, Recognizing, and Rendering Complex Natural and lVan-Mvacle Objects

Ii' It a li t i';i sstiwe address ii this effort is how ii titith ii latrge 'l:~ssof nat tirtd;l and taut-lnad2oljects

It ;III'II1 'tin tallI' Is ii' t fI way. 'Ihe( dloll miti for oi tr resea rch IIs uiltiloorI tiavIxg at ion, it wtclt a robotic d ev Ice st ar ts wit ItI
.111iImi ];d I J I )fl is (I ]I r i't it lland intcremnettally ilpia es, I Ilk Illoilil lld its, r'tlat Ivi position) as it ttuovces to

l ;it oit Iw pitt'~r nt task. We require t lie device to iiipl'ov' its peri'lutce Ih' itti't'iasiltg its ability to recognize
.t.'i al/ot' ''erelsiltg- its processing t Int as Itu sees thlttigs ~i' tiil ovri lIglt

W\'. lotte l'itiltI this typre of liercilutioll task inito thlre' sli ag's: ltod(! itis/iti loon Ittteu OuSsiol ptlainiig, and
t, Cu/itt Ili ii'li intiitilitoll stage, lltset g-athersas tmtchi a priori iltftirmtitll ;Is possille tlot the are'a of initerest.

'11t Ii 11'1 HIiltile soleet iolts froml a st andardl set of cartographtic itents, sticht as teril taps. soil classification ilimps.
"111 .'ad ti'twuorks. Ill addlittionl. gitelt a Specific Iltission, th lI],(S r Itlt'y illterlct it'''lt a ligil 'Itt t his dat abase wxithI

lt~t'rr'slil i'l dsiript ioti ofa; few key featutres. Iit the tiissoli-plattlitg t it lisi'l' rxpior's itissihle vehlicle
Its alti e'll th IIeir vilility itt tetlls of several factors. ott' of whticht is It', lilt ct i )ut of t li cottrol st'st emvt

%%ilit ItI' lt'rt''Pt l Sa t s eli 'I'lte paltilg stage p~rov'iides sttch tilis :its a list of t'\lit dt lattllarks andi ilescri iin
,I' pir- visiiiilit' tuild shlw. Illt thilttirdl Stage, the exetiltioll stage,( ith' yelticle peii'lllts its Iltisloit. Ilavtgat ill"g

at'aloh ta'h's :it)il t1)I;itltig its posit iiot est mnates as it leads toitilil its 01)1 dli'

A\ 1ky, to siit''Ssfiti lt't'Ot'tattce ill all1 three stages is tlti' swt ofi l'pt''s'ittatitlls II"d to il'sir ile ill,' 'li'il'olttleltt

Jn tipt tttv 1w ski'ttlttd Mt the mtolel itist ')nt lat loll proi.~tiji'il tiisltt It ltgi's duittimi th li plaliill
ill( tit:1tcli' ltl ill'' oi'X'~ltlol stage. 'l'lterefot'.tt'l''li5'tttit5 lthto tto 'Irii a wievretyN

I 1: H 1 ;1 it;11 liat tI) (i lijcs lltmust he able to ex prt'tss at 'mg'of ast'i' t tIll;m pr''isitlt ()tr strategy for
t'~I' ili tlits''i''Jt'i'lt iloll issueCs is three-fold. First, woi' re ilt'vt'optitg ;I sit of l'i'lrt'set'Ittiotts for classes of

ir. uch ,Its ti-rrhiti patchieis, rocks ., atti trees. Secoll, we art'( iloe'lopltt ii C or', IKitoxlelgi' Systemt (see a

to1 ".'its saOtiott) to Sertve as all Integr'atinlg tttclln]ill for aill Ow It' itf tt'ili;Iiot at;Ili all ivlt'ittItt' t\itt third,
V..a NJ" %'ulllating (till progriss byx pe'rfortming experilltts itsilig rt'; alllt a olt iiuit' fromi th It''red-rock'' arehl at tlti'
)'lsirttii Nilhri''ttl sit'- oitsid' D~enver,

Ill !- l td;tr,';i util gthtlit'a li l intil -I si f ralg' anlittillisiy p t'otlissttil witht our tiivigatil ti'I:rlt
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>veiral times through flie region to gatler dala. Silice tlut Martin .Marietta persoiel have galhered two additional
>.l's oA, data from the red-rock area for us. We are using ths, data as part of a demonstration in which we bring
together several techniques produced by our loniger-terui investigations. In the subsections below we describe both
le long-terti research and its application to the denonstrationi task of navigating through the red-rock area

Mo i h Iistait iation

114', goal oftle 1110del instantiation stag, is .0 comipile as comiplete a model of the enviroinnent as possible prior to
lhe detfinition or start of a mission. Given a specific mission, the user interactively adds mission-specific information
to tile erivirotiit ital titodel. In our modeling of' tile red-rock region, we started with ETL's 30-meter and 5-meter
digital t.rrain maps of" the area, computed a 0.3-ineter terrain model of the smaller red-rock region, and then added
models of proiie-nt discrete terrain features, such as trees and rocks. The low-resolution terrain maps provided the
global context. The high-resolution miap supplied a detailed groul model and key parameters for the specific object
models.

We constructed the high-resolution elevation map of the red-rock region by applying a stereo technique developed
by our grotp at SII [Barnard88,89]. The resulting map provides a height estimate for each pixel in the original aerial
images. For our images, a pixel corresponls to approxinmately one square foot oit the ground. Although this map
contains some errors, the majority of the iheights are reasonable and at a resolution much higher than is available
from any other source. The prominent rocks and trees are plainly visible.

\, used the detailed height map to construct our initial model of the red-rock region. which consists of a terrain
map and a set of labeled objects sitting on the terrain. We estimated the height, of the terrain under large objects
by interactivelv deleting them from the height map and then filling the resulting holes by interpolation. We used the
Cartographic Modeling Environment (l0ansou&Quau88a b] to build three-dimensional models of the key features.
Wchich we tlen entered into the CKS for permanent storage.

The individual objects are represented by superquadrics with fractal textures or as faceted volunes. Thev are
iltered in the CS according to their semantic categorv and location in the world. Our initial model of the red-

rock region includes about ten large trees, bushes. and rocks. In the future we plan to extend our list of seiialit.C
descriptions and dlevelop recognition techniques that, are specific to these new classes.

Mission Planning

The planning system has two purposes: one is to suggest, and evaluate vehicle paths for accomplishing a mission: I
the second is to compute and "down load'" iiission-specific data and inst.ructions to the vehicle control system. ..\
typical instruction might be to aim a sensor in a certaii lirection and start looking for a particular object at a
sp'cific time. So far we have concentrated on the interactive evaluation of paths and have lust begun to produce
data and instructions for the execution-time perception system.

Our interactive evaluation system is constructed using' tie CKS and the Cartographic Modeling Environment.
It provides the user with the ability to generate sequences of images (i.e., movies) that, correspond to the data that
would be gathered by the vehicle's sensors if the vehicle followed the proposed path through a modeled world. These
svntlietic images provide a dramatic way to visualize a. proposed path. The system can highlight key landmarks so
that tlie user can easily determine the rantge of vehicle positions from which they are visible, their range of shapes,
and so on. With tiis svst em we "drive through" our model of the red-rock region and select navigational land marks
for itse (during the execution stage.

Execution

During t lie executlion stage, the vehice navigates toward its destination by interpreting sensed data in terms of
its predicted model of the world. To accotiplish tihis, it performs, among other things, tile following five functions:
it detects unknown objects, classifies thIem, recognizes landmarks, tracks objects from one image to the next,, and
updates its world and vehicle mod(els. Several groups. including Hughes and Carnegie-Mellon University, have
denionstrated techniques for detecting unknown objects in range data. However, it is significantly harder to classify
these objects into their semantic categories (e.g., rock, hush). Classification is critical for navigation because tihe
vehicle cannot operate safely if recognition is not reliable. For example, the vehicle may be able to run cautiously
over bushes, but not over rocks. We are currently investigating ways to perform this type of object classification by
tisimig the (KS t.o access the semantic properties of an object and the relationships between objects (see a previous
section and these proceedings [Fischler, Strat89]).
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h1'eo'titi I ' ha c' l eic cd a ' ILA t gv fori tIncremenit itlly tulattIng a1 titodl ' ll )1111 w'iti il'It illir1tig .N 1)1it( rt l
bN a rtvii t i liicb (So'ete W 'nxt sectimi andi t liese procev(lting , [Bobick& l3ollc'sS'9a]t

Recognition and Modeling of Terrain Features and Man-Made Objects

Our -Ioal in this resea;rv'h e('uh Is to vleveIloji autoitated methlodls for producitng a tbl'itlic'-licititIl scelie
m1ode1 l tout 111:1ti\ itna'l-'s iii orlel fromi dlifferetnt viewpoints and from lintage Secjiteti1cs. \\eview %I(\ Ii iti'sciii't

alpjroacli ;is anl importatnt way to avoid many of the prohients that hiamper convent tonal st crc t'clinic it's heccause
it provides tihe minijt' wvith pei usl nitavailable information about tite scone. 'Ilie, ''redliiiilati iniformtat ion call
be uised to in1creIase, lie presion of tlie data and filter out artifacts; the new informat ion providd hyv tie addlcitiontal
Miars ("'In help1 to dilamiguato tmatchies for features that. occutr along occlusion boiutidaries utu lit t' miidst of

periodic strlict tos.

W\e lave developed two techniuques for building, three-dimensional dlescrip~tiotis fromttatilt iple lilngi's. Oiii' is aI
ranget-lasevl techntliue t hat builds sconie tmodlels fromr a sequence of range imiages: thle seconid is a miot itn analysis
teu'(litit thait :ctialvZcs loll ,-11lilies of intensity images, The range technique uses dlat a fromt alt intertia HI gidance
senisor on t Ilw eii'. to ('-mijli'it.' for vehicle attitude and position chlties cau1sed by lituips. curlves. a11iul Speed
chamtues. A\s a r'it ti r mn-' ht a aire t ranisformed into a static world-coorditiat e svst 'ii. whlichi is at ieu' -ssa rv first
step for ,,hniosT ;ill lirt her anadlss. cotcombining the data from multiple image11s, WO I'late able to filir out airtifacts
atid l-ilre' a tie otupkt it p) It' tie region in front of thle vehicle. %Ve have clv'uu'lseveral represenitatiotis
o)f t le' l''u-iit'iiuta dat a. itilcdlng height maps, orientation images. and %voxo'l arrays. cacli cf which offers
dlistinct co-he-re-nce and res ,hit ;i d vantages to the analysis procedures.

Ouir ipp ro:iriito 1' 'Iiilingsei tioilels frotm a sequeince of range limages Is t' provide' thet svst 'ii with ha wvIu
a (it )I CIj ;11( ciiiI rreuit lr'pt'c'> ttt bis anid an ability to judge the appioptiat ii ca's of ils r' 'lta i>for[

jcaiticill;I t Is -I it a. 1ie anit of representations is required for two reaisoits. Firsit. it is icc'- I'd t cover the

r Ti (f h1  tI t, psli uca lly lititin uti 1door environmienits. Anid secondl it Is iwcdccl to c(c,- Ill,, 'i i't'iu f dha
i'esIhol )o I I liii hb a t-obot vec'l le exploring thle environment.

lT'o mro"(!lie. ev;Iliation procc.,dutre is tjudge coittinuially the validity of Icsc'riptocmuodf() b.,cI
ais ttew v hi it I1 bo(~t ittc'c. Iliit Ih is schteime thle model of anl object typically goes th tronghia soc- pitette of relire'Set1it at ionls
as Iuww dat~ia'1ro, cthed ta processed. One of these sequences might start with a criude blo)b dcv'iitiu fati

ititiallY detect-1i oliject iticltice a dletailedi structural model derived from a set of liigi-t'esoiii ott lituages. atnd c'td

witil a scjitailt ic I'lhicImcsed ott t lieobject's (description and thle sensor system's task. Th'lis -volit ott ill rt-prc'seiitat tons
Is guddlya trn i' erfrt as -opresentation space": a lattice of represent atotis thiat is t rave~rsed ais inew

inlorniat ionl aiolit allt olitet liCcoitis available. One of these representationis is assoct;it el Nith iiat (lic. ottlx' after
it lhts bceeni jiidgw tic he valdid. WVc evaluiate the validity of an ob)ject's descript ioti in terils of its temtporal st ability.
\\e defitte stability litit a 4sttical sitls' atlIultiented wvitht a set of explanations olleritig rc'asoiis to)r iliisini, ait ob~ject
or hiavinig iclltaini' 'l' htie''Thesc explaniat ions can invoke many types of K utowledge. iniclutd ing t lie phyisics of thle

seo.tilie perforittitlice of tlte segmitetntation procedure, and the reliability of thle nmatchting tchquite. 'To illustrate
li,, pow'i'r of t lies, illcrs we hve iuttplei'iitedi system, which we call TraX, that, cotist rits aici relitics model's of
outdoor objects clot edc in sequceitt s o~f atige data gathered by ait atitotiomotis land v'elticle drivitig', ciOSS-coit iv

[lBobick&' BollesSU9. it ( .Sf p110CC/ill ~s].
We have presented a tnotion ai~llyis techtnique. which we call Epipolar-Plane Imnag' (I'll) Atalysis [lBollos.IBaker,

ktcalmitoiit8Tl. It is basc'cl ott conid.tceringc a dlense sequenice of images as formn i solid bilock of datat. Slici's through
this sol id at a ppropriatelv chiosieni alIi' h iterutix% time and spatial data iii suich at way as. to simptilifv lie partitioning

proleiti: These slices itav' itot ex[lic(it structure than the convent l ionl ittiagos frottill whtichliw% eywin' obt aiiied.
Itt the. paper wi' iliAlmottst rated th lieIcasibility of this novel technique for builditig struictuired, thlre-e-ditnietisional
le-script iolls ouf tlie world.

Recclntly %o.(tax extc'tided t itt' teciliiqe [IBakfer&BI~oles88] to locate surfaces itn the spa)t)ioterliporalI solitl ofdcat~a
Iniste'ad of alvziiig, slices, li (ci li to maintain the spatial continuity of egsfromt oite slici' to the next. T his

stifa'elcitiitu process is lie thbree-dlimenisional analogue of two-dimensional conttourn atialysis. \Vi htave applied it
to a wide,- rainge of idlt a type's andl tasks, including medIical imiages suich as comptuited axial tomiographty (CATI) anid

ngiitcreasottaice Ittagitng ( dIM) (dat a, visualization of higher dinmensionial (i.e., gri'atc'r thtan thtre'e-dlimecnsional)

flitctiotis. iclitigh of obIjects over scale. and assessnment in fracture mechanics.

Wec have- also itipI)Ileittit ccl at version of E111 analysis t hat works increment ally. applying a Kalim an lilt er to update
lie tltree-dimens;iotal cliscript ion of thec world each time a new imnage is receive'd. A,, a re'sult ocf t htese chianige's the

p~rogramtt produces i'xtfeiti'ed thlree-ditiensional cotntotirs instead.( of sets of' isolated pioinits. Th'iese' cotillours e'volve
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hvt il. \\lt' a 'olitour is initially detected,. its n lotio is only Coa'st'lv 'ttiiiate't. However, as it, is tracked
ti('ti,l overi'td tia,'s, its slilpe typically citlipes tit1o a smiooth Ii ree-(limetisioitt curve that ai(curately dlescrilbes

tie Coerre,'Pottditg ltture Ii tilt world. W~e are cuirrently planining a paralel impflemienitation of our stirface-buildig

Interactive Techniques for Scene Modeling: A Cartographic Modeling Environment

Manuital pliotoinit'rpretation is a (lilfictIlt and time-conlsulniing, step Ili the compjilat ion of cartographilc informationl.
Jw'r.fully iautomavted techniques for this purpose are currently incapable of matching the human~ll's ability' to

tmlpho kacekgrouitd knowledge, coniionl senlse, and reasoning inl the iig-terrttontask. Near-terml soluitions
to envue-ae artograip)ly inust, Include both interactive extract ion techniiqiies andl new ways of using computer
techinolo'zv to provide thle end-user wvith wsehil information iii Hte foriii of both image and liti1 )-like interactive
COltipuitr disptlays.

Ini order to support research inl semiautomiated and automiated ronluter-base d cartography, wve have (developed
lie SI ('art ograph ic Modeling Environment. Ini the context of an interactive wvorkstation-based system, the user

Cian nat ip iilate imult ipie images: camera models: (ligitiAl terrain elevation data; point, hle, and area cart ographi ic
fet ii'tS1 and at w ide, assortmein.t of thiree-dimensional objects. Interative ra pal ities inctide free-li andl feat tire entry.
fet Itire editing- ilii the context of task-based constraints, and adj Iis men otliscnvew it.SIticveso

aI set tw toim nldt rary viewpoits mlayv be constructed tising terrain and feat ure itodels iii comibiniat ion wvith texture
inmps aicquired fromi aerial ina'erv. This ability to provide ani end-user wvithI anintrctvl control led scene-
viewing apab ilit v could eliminate the nteed to pioduce hard-copy maps iiiinatty application conitext s Add~it ionial
;iplic]ten s fitelide high-resolution cartographic comtpilat ion, direct ti lization of cart ographtic p)roduicts i (digitail
tormti ;1il get'raI~tiou of itissionl-plauttling anid tralining Sr''ttatios.

lxeeeitt rsen rcli has foctised on (hevelopitig more 11lexible, objet 1eismttits retlrtrangis n ii

pro' (,d jut erlnees to other systms such as thle (lKS. Especially imnportaiit teClittical Imtprovemeiits include a refor-
iiuat ionl of tilie coimut ationmal iodel of tilie viewin~g caieI(ra to (1) reduce dyntamiic range prob~lenis ilii the Z-lniffer,
2) elinmate camiiera t ranisfortiat ion singularities. (3) handle scene facets that lie partially behitnd thle camtera, aid
I) ci ret lv necomit for perspetct ive (list ortion of nearby facets fi text tire-tinalpled terraitn niodels by recuirsive facet

Sit) diviS1(iI

Om-r work Iii t hiis tarea has been (desc ribed iii two papers, one describinig basic design issues for this system
[II tistt ~eit lnd Y~uam and ai(l h ot her providing anl overview of thie Imtpllemntationt [IHansoiivQuaim8].

Automated Detection and Delineation of Cultural Objects in Aerial Imagery

ITe d't ectionl. deli neat ion, and recogittion of any significantly broad class of objects (e.g., buildings, airports,
cut ~tItvt d laud) iii aerial itna-ry has provetn t~o be anIl extremelyV difficult, probleniI. Inl fact, a, nonii tial compIIomemit inl

It' 'ii nt'f i is p roblem. Image partitioning.11 is conlsidlereil to be one of thli most, refractory problems inl machitie

liave- reetit ly formutlated an1 opt fillizat ioll-based approach, applicable bothI to imtage p artit ioniing andI to
>uiIs.~ ttste'ps itt tilhe scene atial sis process, that itnvolves ftndintg the "best," descript ion of tilie image Ii terms of

'ttt jiie ulscrilptivo lanigtuage.

Ili t c as' of liiag part itiolting Lelrrfaecech.LcecSc(thcsr p rocccdIttgs)], we employ a language
th elI itl itag iti terms of regions haintg a low-order polyniomiial intensit v variation pltus white nolse;

rtin 1(tin da ries ar' described by a differential clin code. 'The best (descript ion is (lefilied as thle simplest, onle (inl
fIw't 11tv of, least en1coding leng~th ) that Is also stable (i.e., luittor pett rlatiotts iti the viewintg conditions should

tnot t lie d,.-scripmt loli). Thlis best description is fottid tising at spatially local and parallel optimizationt algorithm
(; st t 11i 'a mi itm provetmtetit over the algorit urn as' First. presented [Lecle'rcS,8] ) that, has been Implemented 0onl thIe

COitti 'ii I Machlte. 'This dlescriptioni is further simplified w~here appropriate by (1) merging tionadjacent regionis
tlt;1t c;t t1)I. itiore silliply (l(scribewl by a simigle polynomial, amid (2) (lescribiig the b~oiidan-ies silig straighit lines andl
of Ifir mi nrgobal filodels.

Ili t imi tjolts where thle reqiired image dhesc ript ion mutst proceed beyond thlit of a delineat ioit of cohierent regions,
Av-i-' alit extettded vocabtfllrv relevant to tlte seiait iirs of thle giettask. lt andl Laclerc (heal with thIe probleni

of' lrmnttrv/sltape dIrertiolt given aI rotugh est inite of where t lie botundary Is located and a set of pltotoilet tic
atnd~ geoi'tric (shape-roustrmint ) models for ;t giveni class of' objects [nt' ecrSS.'thev

26



ill; lt esIlstiil tlit' h shae:l I-itilI ii otlli (I, I ll 'iir nlcd;. as t' starting poilt for finintg a ]()-;l imitilitili

I litl'ilern& Iiact ioll lv. ('1u1hoil'l" I Ills curveIl ;I N vtIC'0tts Iladnattl taid solvinig tile' dyntamiic tijilitiolis. This

,, ItI w Coetli on M\Iilic. It ltIs fIto1 Ippl 'I( to t :1itgt-ltiiil houniiary mlodlels andi tj o trI c'omp~lex miodels

I irtlirttatltt Molein'Urvrotitn b-il' 'ni Cil r. Ii tnt litteractive ritttli, tille- user sttillies5an Initial estiuia

ft' lhe bwon tirv (of somte b)hj'ct (wh'licht itoi h''jl~ '1111 olldx. like' tite otitlijie of' all avroplalte) taId Ownt. It' need

Aittittati' l'l'gi'littlli ot Imtport tltt ':11.'tipit Ijts, Stich tis iiiat-mtttae structures, friutii aerial iitgvll:

kit fIlt Ir-s I [L1 i ak IIa IIis( i ',( ) (/I h t pi din 1 0. FitikI I nson89b] . 'Ie( basis for theit appruoach is aI hI rct loll
1

dli>ritttitatte allhtoi a itittltitilde of' object caiiltts using" a itiodel laiigiilage andil t(e iiiiniititIl-eticoliiig principle.
is appro'ach is tiieii appllied( ill two listilnct %vaN- to till extraction of building-s fromi aerial iiagr: the first is

it (plralt r iled proceditl that "I 5 15 i:1swsiNvly allel C oninectioni %Iaciite imiplemnentat ion ofl t'olijct lye

itls T im I iii' o discover a bu ild it _- i i real tin gi ,Iveti oilI a c rude sketch . T1he1 second is anl alltIo InatIef it . ot lit'sis
li, kr tihat I ttt-lovs thll objective itielisilO' ditttvimis steps Ill the liv ot ll is-6-Oncrationi proclliir', as' e ;1.-4a

IllI til fititll si ;i-os of etkihtlia'. tl~cctioll: lt Ii srial atid parallelI ((olin11ect ion1 Macinie) approaches. tire tihelllt

I-IIll thelir respective areas ut' iti):igt' tili owniti t;l kdlitleatlin if' cultutrtil features. BthI svstcmiii havl'

ii ill tii produce, excrllit re.sults, ill cetllpox sitittitiois where existinig (ty pically local) aplirotictls fa:il. lFituiire

Automated Terrain Modeling fromt Aerial Imagery

iiiiillrsttiiidiiig, commniity. Its inliportahice, gows bl'votld the( oliviotis tapplicat ion to constructmi g gc omtl -c mo dels:
1iiierstaiiiing_ scene geolliet ry IS Ii'eSS ir\ fo r eecive featltire extrtactio antiid other scene aialvsis tnsks. W ' lel
C~iisiderale success has beeii actievel ill ilittioritii Ittirts of thle jprollt. tltete is ito colllpleil tlii-iilpii

svstliiil t hat can performt reliably iiiti wINide, vairlei of sc ile domiiitiis.

The staitlari tapproachi to thle prolleiit1 If st-eilo itiapim.ll ilil\I'5- finding ptii.s of correspondtliii- > ccilitit
ill two itii~5(wh'i ch delpict the( scelle hromt difletelit sptitial loctitionls) anid lisitig trna tigIlttioti toIterii scl'ii

dep~th. Various factors tissocttited withl viliviiig iotilit tis. taindci conitetnt cmu (tiii( th ititt Inlthiig irocss to 17::

tlil:50 ftictors inicltude occliusioni, projectlive or Iliaiitiiiig (list ortioin, featureless tareas, and~ repealted'l or lwrioll'setl
stnrictiircs. Sonie of thlese, problemts cani hIe solved onily by providing the itlachiltIti' withliore lit'( r Ii n, wth ich l titi
take tlhe loriti of addl~itionatl imtiigls (qt. l>'srilt ioiis of't lie oblConttext.

Our rcsearcll strategy li t his task is to (,.II'lloIt('\ew tecliliiutis for thle ky stieps lit thll sterll prliccss. su iiiIs

miatchiing andl initerpolatio.iti. dlit Ilarallel, tCI littegt't;It ( ties new,\ Ideas wvithi existing' teclilinuoS illt I t"oitex of iii

op-rtitional systemi As part of' t his liroce-ss SBRhI lii ipl'eented [Ilanwtiilit] taind evtiluteii ;Itutiu IK 'Iip '

hiiglI -pefrforntaice ste(reo systet i. Ii ri t IestI of exis,1 tngI stern svst unis oit 12 p),Ail's of' dligit taI Iti~ ',,tIctll (I( v IIIo

hIrntimtiollal Society of I~ltrallitrv' oliii >vst etal wtis able to successfullyv prcs Ituore ofI' I li iitts t1;1 loi 11iV
iother sy stein (11 out of l the 12 ptiirs): \%hile ino fritil rtiiikiiig of the test resuIlts will bI' pllislil . it t;fIppr1s. ilitit

tl sseml phiced first (or v(,rv lietr fte n)ltft( oi-iin
t Ohisn l iv si,,I Ill', top iiihe the ll% ( ';, oiii ltit(-ulI.)see 1 t e o tr hi i--sLili~ fd,~

tir rom t'iirnvtl lostl pli hg t lit lir eilr lllri'il-dils taS ln111..rcvr I i

systemll. With the goal of de~veloping llrtic calyvteiii for' 'rtog.rapic anatlysis: lte Itletilod 1, has ii iitipl-Iiii'tlI 'm

ininiuiizes a linear cominaittion of two itInctiotis: MI lthe lpiiItoliItril' l't'hot aisIi'ltil'I with it titwuip. hull (2) tIlw

first-order variationt of the, limap. Ill other1 words, it flttil (t' (tipproxinttutll)s i) limip tlimtr'l tnlyINlii

tOw datta. 'he utoll iliclrllilrats s vet1 Ititiovhtl'c feat itt's thitt pel'itii0 it to sly'e ltirg' i Idlclis Ill ;Ia,1111
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0 1i i III' -vti It tit Illi ti'lVji'iltI lt tIlS srpatatitd itt, tti't avt low-pass or itaitl Itpass iitts 3y
hl l1w III ;ij JJI't~I \11 t1' lilti i fi, II (Ia I Ist-ly t(iiaill zeti (Ilisp ltl' iiiajp) rt'lit it,'t' (tiiicklv a;t low i'tsoiiit ioll.

ti I st,-, ' mIi siili istliiar t Il t Iniit re. Itaol 0o its ,tate-space ait ilit' Ileie~-ligitr resoltitoni.

itlt5. Tllct ala iilipti~alt ttttlsldcriltloll.s vijeti Iiiploiiitent IIg, thet melthlod oil a fillt.- raliltcd parallel IlioC(sshh

>v ~I t ,IIt

;1 0 )11 iiulllat ulp-rcolliplltk.r. 'I'lit ( ohihiect ioul Machlie, hlowever. is a netarly thai arichit'ctuire for this'
class otf lit liods.

lIt pairzllelt It li I, l~ove work. Barnard is llvt'st igathl4- II rietrai-iietwoik iiiotitl for stereo iiimteiiig- that uses a
conilnuouis Ilopfield-style net work to uiiniize the same cost function used in the stochiast ic mode! [Bariiard189a]. The
neural network uises a reprcsentation that is t,\'tn more ighily parallel than ft(i stochiast ic miodel: its representation is
ult a Sil le-vaIlit] tl I(ispIIarity (it('_ depth) ia. but. rather a titree-dimieusional lattice of (lisplirit it-s that is isomlorphic
to) a smiiile fe ilrt'e-djiitisioiah spacet'seeli iv the observer. This represenltatijon call potentially allow thle melthIod
t' oial with I(i liatiolis, that are ( roiilles,ill ii I te sinle-alt)Vied repIresenltationi. suchi as5 occlisioi, t iralsi.,ar)1icy anid
crossover. If siiccts.sfiil. , ie iira-iietwrk approachi could leai to extrelnt'lv fast processing' tiirougti analog. VLSI
iip I 'ittat ol !

\Vllite stereo probilem wvill rtiaiii aI focus of aI portion of our research, ouit primiary effoIt now Is to dlevelolp
an li idrst~ttiliti of how kiitawilgt, of el't-i epthi inforniat ionl can he effect ively uised ill t lie stctimt-par t iongll anid

ol p I itt't~ii t ol taAIks
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In the last year, image understanding research at CMU has been carried out by a team of researchers led by several
faculty: Takeo Kanade, Chiun-Hong Chien, Martial Hebert, Katsushi Ikeuchi, Eric Krotkov, Steve Shafer, Chuck

Thorpe, and Jon Webb. We have been joined this year by Andy Witkin. The group also includes numerous
graduate students, staff, and visitors. Our research spans a variety of topics in machine vision:

* Computer Vision as a Physical Science
• Intrinsic optical models for vision
" Model-based inspection of metal surfaces
" Dynamic stereo based on uncertainty modeling

" Vision Algorithms
" Hierarchical clustering by the NIHC algorithm
" Analysis of repetitive texture

* Geometric Modeling of Objects and Sensors for Vision
" The VANTAGE geometric/sensor modeler
• Automatic generation of object recognition programs
" Framework for geometric reasoning for 3-D vision
" Robust geometric modeling

" Parallel Architectures for Vision
" Software and Hardware for Parallel Vision
" The 2D Machine

" Vision for Mobile Robot Navigation
* Building terrain descriptions from range images
* Road following using reflectance images
* Road following by color vision

* Mobile Robot Systems
* Map-based navigation
* Path planning for off-road travel
• The Autonomous Planetary Rover

1. Computer Vision as a Physical Science
Our research on physics-based methods for computer vision addresses modeling physical phenomena for robust

and reliable low-level vision. It is based on the recent body of research in this area, which has begun to Lonclusively
demonstrate that algorithms derived from models of physical processes are far more accurate and reliable than
heuristically derived algorithms.

Our research in low-level vision includes basic physical models for vision, the application of these models for

visual inspection, and stereo-motion analysis for robut vehicles.

1.1. Intrinsic Optical Models for Vision
The traditional approaches for low-level machine vision involve edge detection or region grouping, which do not

provide very high-quality data for visual interpretation. The shortcoming of such methods is that they are based on
the property of signal coherence -- the premise that each object or surface has a uniform intensity or color signal in

32



the image. This premise is violated by many natural phenomena such as shadows, highlights, and surface texture.
Instead, we are developing a new approach for low-level vision in which physical models are applied to the raw
image data before any other analysis is performed. We call these intrinsic models using the terminology of Fischler,
Tenenbaum, and Barrow.

Our approach has been to apply intrinsic models to conventional imagery, i.e. without special sensors such as
thermal or polarization imaging, and to attempt to provide a subsitute for traditional edge detection and region
grouping. To do this, we (Klinker, Shafer, Kanade) developed a segmentation algorithm based on model cohere,,C,
in which pixels are grouped according to their conformity with a hypothesized instantiation of a physical model, as
opposed to the traditional signal coherence methods. This has been demonstrated to give better results than
traditional segmentation methods [17, 18, 19]. One conclusion from this work was that general-purpose vision
demands the integration of many intrinsic models, not just one at a time (which has been the usual research
paradigm). In particular, tasks such as material type classification require both spatial and spectral analysis, and
both kinds of analysis depend on models of both the scene and the camera.

Intrinsic models are needed for several aspects of the scene: the illumination environment, the optical properties
of materials (primarily reflection), and the imaging system itself. In the last year, most of our effort in this area has
been directed toward models of the imaging system (Krumm, Novak, Willson, Shafer). One of our projects has
been the development of an improved Fourier-domain model of imaging through the analysis of Moire patterns.
Moire patterns are very pronounced low-spatial-frequency waves caused by interference among multiple gratings.
They are used very extensively for industrial surface inspection, but they also arise quite commonly in imaging
fine-grained repetitive patterns. Most work in this area has been based on a "crossed grating" model in which the
camera is modeled as a pair of orthogonal gratings, but this model is not completely accurate. A better model in the
literature is the "sampled grating" model, which explicitly models the integration and sampling patterns of the sensor
array. We have improved on this in a new "recursive sampled grating" model that also includes the effects of video
transmission and subsequent digitization. The value of this model has been sho vn experimentally on real cameras.
Moire pattern analysis appears to be a promising approach for calibration of the spatial properties of an end-to-end
(lens + camera) imaging system.

We have also been studying the automation of imaging systems for high-precision robot vision, and have
developed the "Imaging Space" model for calibration of an automated imaging system [30]. The Imaging Space is
the configuration space for the imaging system, in which each machine-controllable parameter is one dimension.
These parameters include the position and orientation of the camera, lens parameters such as zooin and focus, and
other optical parameters such as filter selection and exposure time. The state of the system is a single point in the
Imaging Space. In active vision, the imaging system follows a trajectory through the Imaging Space; thus,
purposeful control of the imaging system can be formulated as a constraint satisfaction problem to determine the
region of the Imaging Space that can provide the necessary images for the desired task. We are now beginning to
develop the corresponding methods for complete geometric and radiometric calibration of the imaging equipment in
the Calibrated Imaging Laboratory.

1.2. Model-Based Inspection of Metal Surfaces
Inspecting metal surfaces is one of the most difficult tasks; yet, it is one of the most frequently required tasks in

many application domains. Reflectivity of metal surfaces greatly varies even though they comes from the same
process. All existing shape extraction techniques, which rely on assumed surface properties, cannot handle these
variations. We have been working to develop a method for determining the shape of surfaces whose reflectance
properties may vary from Lambertian to specular without prior knowledge of the relative strengths of the
Lambertian and specular components of reflection.
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We kNayar, Ikeuchi, Kanade) have developed a system called "photometric sampling" [28, 29]. The object
surface is illuminated using the extended light sources and is viewed from a single direction. Surface illumination
using extended sources makes it possible to ensure the detection of both Lambertian and specular reflections.
Multiple source directions are used to obtain an image sequence of the object. An extraction algorithm uses the set
of image intensity values measured at each surface point to compute orientation as well as the relative strengths of
the Lambertian and specular reflection components. We have completed a 2D version of the device. Using this
device, we conducted on Lambertian surfaces, specular surfaces. and hybrid surfaces whose reflectance model is
composcd of both Lambertian and specular components. The result show high accuracy in measured orientations
and estimat reflectance parameters.

1-3. Dynamic Stereo Based on Uncertainty Modeling
Dynamic stereo, which is the ability to compute range maps continuously from stereo image L..quences, has

important applications in all aspects of robot navigation and manipulation. Constructing a dynamic stereo system
requires judicious engineering of mathematical models and operational sensing strategies to achieve robustness,
efficiency, and generality. In particular, a carefu! treatment of measurement uncertainty can lead to a reliable
dynamic stereo system. In our previous work in this area (Matthies, Kanade, Shafer), we explored the modeling of
ui,,ertainty and how it can be applied to the interpretation of image sequences. Currently, we are developing the
mathematical and the operational techniques for building a robust and effective dynamic stereo system based on
these results in the explicit modeling of uncertainty.

The central mathematical components of our approach are Bayesian estimation methods applied to random field
models of the range map. The random field models allow us to represent previously estimated range information in
terms of a prior probability distribution for the range map. The Bayesian estimation methods provide optimal
combinations of prior information and new depth measurements when doing stereo matching to compute a new
range map.

These theoretical concepts are embodied in a new technique for dynamic stereo that uses small camera motions
for reliable initialization of a range map in a two-camera stereo system. The small motions provide narrow-baseline
image pairs from one or both cameras of the system. For initialization of the range map, range estimates computed
from these narrow-baseline image pairs are used to compute a highly reliable, more precise range map by matching
in a wide-baseline image pair taken from both cameras. For robots operating in difficult-to-interpret, outdoor
environments, periodic verification of a range map is also essential. This can be achieved with small camera
motions in a similar manner.

In 1988, we developed the basic mathematical models and operational strategies underlying the use of small
camera motion to initialize stereo range maps [23, 24, 31]. Current work is continuing the experimental evaluation
of these methods. A goal for future development is to combine our previous work on motion estimation (1987:
Matthies and Shafer) with the new methods, leading to an integrated visual navigation system for a mobile robot.

2. Algorithms for Vision

2.1. Hierarchical Clustering by the NIHC Algorithm

Clust-ing techniques continue to be one of the mainstays of low-level vision. Computer vision applications of
cluster aralysis, such as high-dimensional Hough transforms and multispectral classification, place stringent
requircmcnts on clustering programs. These applications involve clustering at least thousands of points, detecting
natural clusters in noisy data, and finding clusters in many dimensions. Many clustering procedures developed over
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three decades of pattern recognition research, such as K-means and single linkage, prove effective in simple
situations where the problem size is small or the clusters are compact and well-separated. However, practical
experience applying these procedures to computer vision problems has underscored their limitations. Our research
in cluster analysis grew out of the need to develop efficient and robust natural clustering techniques for large-scale
vision systems.

In 1987 we (Wallace) began experimenting with some new concepts in hierarchical clustering. We investigated
an information static, Gaussian entropy, as an objective function to measure the quality of hierarchical clusterings.
Information measures are not new to cluster analysis, but Gaussian entropy proved very effective in clustering the
real-valued vector data typically found in computer vision applications. We abandoned the standard agglomerative-
hierarchical algorithm because it is not an effective minimization procedure for the Gaussian entropy objective
function. We devised a new minimizction procedure, numerical iterative hierarchical clustering (NIHC), to search
through the space of hierarchical clusterings to find one that minimizes Gaussian entropy. NIHC is competitive with
other hierarchical procedures in time and space requirements. Moreover, in our experiments, we compared the
performance of NIHC with seven other hierarchical algorithms. In once case NIHC found natural clusters where the
results of the textbook algorithms were no better than random. In no case did NIHC perform significantly worse
than the other procedures. Also, the clusterings produced by NIHC satisfy a partial optimality condition that does
not generally hold for the output of the agglomerative hierarchical algorithm.

Two parallel versions of the NIHC are running now on commercial machines -- a shared-memory version on a
32-processor Encore Multimax, and a distributed-memory version on a 16-processor Intel IPSC/2 Hypercube. A
serial version is running on a Cray-XMP. Using the NIHC, we have developed a space-time clustering program to
track time-varying clusters. This has been applied to robot road-following using ERIM range and reflectance data,
to color clusters in RGBxy space (color and pixel coordinates) to measure blob motion in an image sequence, and to
tracking moving obstacles in two-dimensional range data.

2.2. Analysis of Repetitive Texture
We (Hamey, Kanade) have been studying computer analysis of two-dimensional regular repetitive textures in

real-world images [6, 7]. Previous efforts in this field have assumed simple grid-like repetitive structure. In
contrast, we assume only locally simple repetitive structure. This local model of repetition leads to an algorithm that
is able to analyze severely distorted repetitive textures, which occur in real-world scenes. We have demonstrated the
success of this algorithm on a variety of images.

An essential part of describing repetitive textures is extracting the frequency of repetition. However, regular
repetitions admit many alternate frequency descriptions. We define the fundamental frequencies of a repetition as
the two shortest independent vectors between elements of the repetition. The fundamental frequency vectors are the
most perpendicular basis vectors for the repetition, and they correspond to the relative neighborhood graph of the
repetitive pattern. Our algorithm exploits these properties to extract the fundamental frequencies of repetitive
textures.

It is difficult to extract repetition frequency when the element of repetition is also unknown. We propose the
dominant feature assumption as a solution to this problem. Rather than trying to find the unknown repetitive
structure of an unknown texture element, we extract features from the image and rank them according to their
importance (prominence). The repetitive structure of the most prominent (dominant) features is the desired structure

of the entire pattern.

We have developed a four-step algorithm for understanding repetitive texture. Our experimental results
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demonstrate that this algorithm successfully extracts the structure of even severely distorted repetitions in real-world
images.

3. Geometric Models of Objects and Sensors for Vision
Our research in high-level vision includes geometric modeling, model-based vision, and D geometric reasoning.

3.1. The VANTAGE Geometric/Sensor Modeler
Geometric modeling systems allow users to create, store, and manipulate models of three-dimensional (3-D) solid

objects. These geometric modeling systems have found many applications in CAD/CAM and robotics areas. One of
the interesting applications is to build a model-based vision system based on a geometric modeling system. The
relevant knowledge of an object for recognition is extracted from the object model in a geometric modeling system
and is then used for recognition by a vision program.

A geometric modeling system represents a three-dimensional object, while a vision program observes a two-
dimensional appearance and thus requires a 2D representation of a 3D object. In addition, model-based vision
systems use various diverse sensors to obtain visual information. The object appearances are determined by the
product of an object model with a sensor detectability, which tells what features the sensor can "see". Thus, it is
necessary for a geometric modeling system to represent not only an object but also a sensor detectability in order for
the system to be fully used for model-based vision. Suprisingly, however, little research effort has been spent in this
direction, even though some of the early effort in geometric modeling comes from vision applications. This is
probably because the main purpose of geometric modeling systems is to design mechanical objects and the main
concern is how to represent 3D information.

We (Robert, Balakumar, Ikeuchi, Kanade) have been developed the Vantage Lisp-based solid modeling system to
meet this requirement [11, 14, 16]. In particular, we designed 2D symbolic representations and the sensor modeling
module. We also stabilized Vantage throur'h extensive use for various purposes such as the automatic generation of
object recognition program and 3D world representation for navigation. We have shipped Vantage to several other
research laboratories.

3.2. Vision Algorithm Compiler
Historically, and even today, most successful model-based vision programs are handwritten -- relevant knowledge

of objects for recognition is extracted from examples of the object, tailored for the particular environment, and
coded into the program by the implementors. If this is done properly, the resulting program is effective and efficient,
but it requires a long development time and many vision experts.

Automatic generation of recognition programs by compilation attempts to automate this process. In particular, it
extracts from the object and sensor models those features that are useful for recognition, and the control sequence
which must be applied to deal with possible variations of the object appearances.

We (Ikeuchi. Hong, Kanade, Chang, Kuno) have been working on designing a geometric compiler, which
automatically generates a recognition program from an object model [3, 12, 13, 15, 21]. The key techniques in
designing the compiler are: object modelling, sensor modelling, prediction of appearances, strategy generation, and
program generation. For object and sensor modeling in the geometric compiler, we have been using the Vantage
geometric/sensor modeler. We describe geometric and photometric properties of an object using Vantage, and we
have established a method to specify sensor characteristics to Vantage. Based on the geometric and photometric
properties and the sensor characteristics, Vantage predicts the object appearances from various directions under
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various sensors.

Our geometric compiler uses aspects, topologically equivalent classes of object appearances, as a basic tool for
object recognition. We generate a two-step program to classify one appearance of an object into one of the possible
aspects, and then to determine the precise attitude and position within that aspect. We have established a technique
for the geometric compiler to group the appearances systematically into aspects and then represent them
symbolically. We have also established a technique to predicted ranges of uncertainty of geometric features using
the sensor model. These uncertainty ranges are added to the aspect structures.

We have designed the geometric compiler to generate the aspect classification part of the interpretation tree by
performing recursive sub-divisions of possible aspects [12]. This subdivision is performed by examining
uncertainty ranges of aspect features in order of the smallest computational cost for finding features and determining
threshold values. We represent the resulting classification strategy as a tree structure, which we refer to as an
interpretation tree, whose intermediate nodes correspond to classification stages of aspects and store feature kinds
and values for classifications. Each leaf node contains one particular aspect component. We have also finished the
compiler module for attitude determination [13]. At each leaf node, the compiler examines a model face
corresponding to its aspect component to decide how to define the local coordinate system on it, and stores the
method in the node. At the same time, it calculates the transformation from the local coordinate system to the body
coordinate system. We have also finished designing the program conversion part, to convert recognition strategies
into programs [3), and we have prepared an object library, a collection of prototypical objects based on object-
oriented programming.

3.3. Framework for Geometric Reasoning for 3-D Vision
Three-dimensional object description and reasoning is critical for many applications of image understanding such

as robot navigation and 3-D change detection. A system for 3-D image understanding must include geometric
reasoning as a primary component, because geometric relationships among object parts are a rich source of
knowledge and constraint for image analysis. Unfortunately, most work in 3-D image understanding has utilized
limited solid or surface models aad a fixed order of analyzing image features. Such systems cannot take advantage
of the specific properties or relationships in any given image and therefore perform poorly. Our research is aimed at
developing a more general framework for representing 3-D models and relationships, so that vision systems can use
the specific information contained in each image to its best advantage.

We (Walker, Kanade) have been developing a system called 3DFORM [32], based on the Framekit frame
language defined in Common Lisp. This system has been designed with the following properties. which
differentiate it from past geometric representation systems:

" Extensible models: 3DFORM uses frames to model object parts and geometric relations, which allows
the system to be extended easily to incorporate new features. The frames are arranged in a class
hierarchy, so a new class can be defined by simply specifying the differences from existing classes.

" Flexible control flow: The order of computation is controlled by accessing objects' attribute values,
which allows the system to perform top-down and bottom-up reasoning as needed. Active procedures
attached to the frames dynamically compute values as they are needed, avoiding unnecessary
computations.

* Incremental representation and reasoning: Objects may be specified incompletely, or by constraints on
them, rather than a full complete description. Constraints may be quantified by EVERY and SOME, so
that even the number of parts of an object need not be fixed in advance. As constraints on an object
hypothesis are evaluated, the object becomes more completely specified. When two partially specified
objects are successfully matched, the result is a single object which combines the constraints of the
original two.
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During the past year, we have extended the matching capabilities of the 3DFORM system. When two objects are
matched, the system determines whether the two objects are compatible, and if the objects are compatible creates a
new object combining the constraints of both. In this way, two partial objects can be combined to create a third
object which is compatible with and more complete than each of the original two. Determining compatibility and
combining constraints from multiple objects is implemented by simply adding the attributes (including relationship
constraints) of one object to the other, and relying on demons in the attribute slots to signal an error if incompatible
attributes are added. If the objects are compatible, the result will be a single object with all the constraints from both
original objects. In addition, if a particular attribute is constrained to a single value by combining the constraints
from both objects, the value will be automatically computed the next time it is required. This matching process can
be used not only to combine data from multiple views of a single object, but also to combine data from multiple
sensors; to match a partial description of a sensed object with a previously entered model and determine the pose of
the object; or to combine hypotheses derived separately into a single, more restrictive hypothesis.

Using a generic model of a building as a flat-roofed polyhedron with rectangular walls, we have demonstrated the
matching capability by reading in wire frames (three-dimensional edges and vertices) corresponding to two views of
a single building, forming a building hypothesis for each view, and then matching the two buildings. The same
matching paradigm could be used to match 3D geometric data derived from different sensvis, or from the same
sensor at different times.

3.4. Robust Geometric Modeling
Shape, position, orientation, and velocity are all geometric properties, and reasoning about these properties is an

important part of vision and robotics. As much as possible, we wish to automate geometric reasoning by means of
geometric programs. In order that these programs be efficient, we use rounded finite precision arithmetic.
Unfortunately, when we write these programs we find that it is difficult to attain reasonable reliability and almost
impossible to obtain absolute reliability: there always seems to be one more special case on which the program fails.
Theoretical reasons are only no coming to light as to why geometric programs are so much more difficult to make
reliable than purely numerical or purely symbolic programs, but this difficulty is very commonly experienced in
practice.

We (Milenkovic, Kanade) have developed techniques for creating robust geometric programs: geometric
programs with absolutely reliable rounded arithmetic implementations [25, 26,271. We have focused our research
on the domain of line segments in the plane, but the techniques we have developed have broader applications. The
techniques are based on two principles. First, one should use a malleable representation. Specifically, replace each
line segment with a rubber band curve which can be modified as the computation proceeds to reconcile numeric
error with the symbolic structure. Second, one should keep as much of the representation implicit as possible. In
the case of rubber band curves, their exact shapes are unknown at all stages of the computation. Put together, these
two principles make up the hidden variable method which allows us to generate correct geometric information
without the use of exact arithmetic. A certain amount of error is introduced by the use of rubber band curves, but
this can be made to be a small fraction of the error arising from sensor noise and other measurement errors.

4. Parallel Vision
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4.1. Software and Hardware for Parallel Vision
Much of the parallel vision work at Carnegie Mellon centers around the Apply language, a specialized language

for low-level computer vision. We (Webb, Hamey) developed Apply initially as a way of programming the Warp
machine for an important class of image processing algorithms without using W2, the basic language for the
machine. Apply made is possible to develop WEB, a library of about 100 Apply programs for all sorts of low-level
computer vision operations. In turn, the existence of Apply and WEB has made Warp much easier to use, and has
led to interest on the part of other parallel computing groups in implementing Apply on their architecture.

We have worked with several groups in developing Apply implementations. A group at OCE Corporation in the
Netherlands developed an Apply implementation on reconfigurable arrays of transputers; the Apply compiler is
supposed to generate both a transputer program and an optimal configuration of the transputers for the program. At
the University of Leeds, researchers implemented Apply on the Meiko Computing Surface; this implementation of
Apply was recently installed at General Electric Corporate Research and Development Labs in Schenectady. At the
University of Massachusetts at Amherst, an implementation of Apply on the Image Understanding Architectures is
in progress. At Carnegie Mellon, the SLAP (scan-line array processor) computer has been the target of a successful
Apply port.

We have also extended the functionality of existing Apply implementations. Working with Han Wang of the
University of Leeds, we extended Apply on the Warp and Sun so that it could process images of varying size with a
single program, and also so that it could deal with different options for border processing.

Given the success of Apply for local low-level image processing operations, it is natural to consider whether it
can be extended to allow the computation of global image operations, such as histogram and Hough transform. We
have considered extended Apply to use a divide and conquer programming model for these operations; in a paper in
this workshop we show that such a model is useful, by demonstrating how the second DARPA Image Understanding
benchmark can be implemented using such an extended Apply. We also prove that extending Apply in this way is
generally useful; it is the case that any reversible image procesing operation (which gets the same result if the image
is processed top to bottom or bottom to top) can be computed in this way.

Our experience in implementing the second DARPA Image Understanding benchmark on Warp was very
different from the first benchmark. Because of the software tools we have developed and the maturity of the Warp
hardware and software, it required the ef.%rts of only two people to implement the complete benchmark. With the
new extended Apply, even this effort would be significantly reduced.

We have also seen the continued use of our parallel vision work in the robot vehicle work at Carnegie Mellon.
The SCARF road following algorithm was implemented entirely on Warp. Warp SCARF maintains its own internal
state, and does all calculations necessary to predict the road position; the result is that images are fed in at one end of
the Warp array, and out come road predictions at the other end. The resulting implementation is one or two orders
of magnitude faster than a comparable implementation on the Sun.

4.2. The 2D Machine
Computer vision tasks are characterized by a high demand for computation. The goal of the 2D Machine project

(Chien) is to design an image understanding architecture to meet this computation requirement by taking advantage
of the high processing power provided by parallel machines such as Warp and Nectar [1]. The challenge is to rind
the best strategies for mapping data and vision tasks onto underlying parallel architectures. In order to meet this
challenge, we first identify the characteristics of different vision tasks.

Vision processing can be roughly divided into three levels including low-level image processing, mid-level
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feature processing, and high-level object recognition:
" Low-Level Image Processing: Data items are pixels, which are uniformly distributed in the image

space. Operations include simple local or neighborhood operations on a large amount of data. The
inherent parallelism is fine-grained at the pixel level.

* Mid-Level Feature Processing: Data items are 2D features such as points, lines, and regions of which
the distribution in the image space are not uniform. Relations among data items are spatial relationships
such as adjacency, overlapping and containment. Operations on these data items include unitary
operations for computing geometric properties, and binary operations involving spatial relationships.
The potential parallelism is medium-grained at either the feature level or at the level of subsets of
spatially adjacent features.

* High-Level Object Recognition: Data items are natural or cultural objects or subparts of these objects,
which are not uniformly distributed in the image space. Operations include matching between objects
(and their subparts) and possible models. The amount of data items in general is small, but the number
of possible models may be large. The potential parallelism is at the (recognition) task level or at the
level of subsets of the solution space.

The diversity of characteristics in vision tasks dictates several criteria in the design of an image understanding
architecture. In order to cover this diversity, the architecture should:

" provide at least three levels of parallelism including fine-grained pixel-level parallelism, large-grained
task-level parallelism, and medium-grained subtask-level parallelism;

" provide different strategies for data partitioning, dynamic data migration, tasks allocation (scheduling)
and load balancing according to the types of data items, the natural of operations, current data
distribution, and task dependency;

• have suitable data structures for spatial operations and for topological and part/subpart relationships;
these data structures should be suitable for data partitioning and data integration as are necessary in a
distributed environment;

* provide low-latency and high bandwidth communication channels for data migration and task
distribution.

To facilitate data partitioning, data migration, and data integration in a distributed environment, we have selected
the frame and the quadtree as the underlying data structures. For task-level parallelism, a task may consist of a
frame and a desired operation which can be sent to any idle processor for processing. However, the frame structure
is not a good data structure for spatial related operations (binary operations in particular) where spatial adjacency (or
locality) is important to efficient processing. The quadtree, K-D tree, and R-tree are more suitable in this case. The
quadtree structure has further advantages in that its regularity facilitates easy partitioning and integration of the data.

Within the framework of our proposed image understanding architecture, we have pursued the issue of distributed
quadtree processing focusing on data partitioning, load balancing and dynamic data migration [4]. The results of
this initial effort have been implemented on the Nectar hardware prototype currently in operation at Carnegie
Mellon (I].

5. Vision for Mobile Robot Navigation

5.1. Road-Following by Color Vision
Over the last four years, we have developed ever-more-sophisticated road-following algorithms for the NAVLAB

using clustering of color data. This year, we devveloped two new algorithms: SCARF and UNSCARF.

SCARF: In 1988, we (Crisman, Thorpe) completed SCARF, our system for Supervised Classification Applied to
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Road Following [5]. SCARF is the logical continuation of a long chain of road following programs that use color
classification. The first implementation of SCARF in 1986 ran on Sun workstations, with 32 by 30 pixel images, in
about 12 seconds per image. Later implementations of that version ran on the prototype Warp and on production
Warps, with speeds as fast as one image per 4 seconds.

Over the past year and a half, we have upgraded SCARF to use, first, higher resolution images (60 by 64), and,
second, two images to increase dynamic range. This slowed our runs to tens of seconds per image, even on a Warp.

Now, taking advantage of compiler upgrades for the Warp's W2 language, and doing some code restructuring, we
have reimplemented SCARF on the Warp. Our processing time is now down to 2 seconds per image. We moved
almost all of the code onto the Warp cells themselves. Further, we reduced the number of calls to the Warp per
image from 14 (last year) to 3 (earlier this year) to I (now). After initialization, we pass the Warp cells each new
image, and get back only the new road location. All of the system state is saved on the cells from call to call. We
also have debugging versions that can extract classification information for display, but those extra Warp calls and
data movement slow down the system. Current running time is 1 second of Warp time per image.

The full formulation of the probability equation used in classification includes the log of the determinant of each
class. Early implementations of SCARF on the Warp have always avoided logarithms, since there is no log function
in W2. On benign data, this did not cause any problems. But running with the Navlab outside on a snowy day, the
system did not work correctly. In our standard test sequences, each class had approximately the same size
determinant (i.e., the classes had approximately equal variance), so we could safely ignore that term. But on a
snowy day, the "snow" and "road" classes each had very small variance, while the "trees + parked cars + trash
barrel" class had a much larger variance. This imbalance caused improper classifications. We worked with the
Warp group to include a log macro and to compile it into our W2 code. The resulting system performs no better on
most of our images, but dramatically improves performance on snowy days and under similar circumstances.

The resulting system has driven the Navlab many times, along our narrow bicycle path in Schenley Park. The top
speed at which we have run is one meter per second, the length of our test coursc (compared with 20 cm/sec last
year). With the fast processing loop and the complete formulation of probabilities, the vision results are solid.
While vehicle speed has always been a secondary concern of our work, we can now drive at moderate speeds on our
difficult test course, and should be able to use the same system to drive at higher speeds on wider, straighter roads.

UNSCARF: One of our (Crisman, Thorpe) new road detection algorithms for this past year is UNSCARF, for
UNSupervised Classification Applied to Road Following [5]. A large problem with our early road perception work
was dealing with rapidly changing illumination. If the sun is covered by a cloud, the lighting is diffuse and we can
follow roads with a single camera. If the sun is out, there are problems with camera dynamic range, but our methods
that use two cameras work. But if the sun is quickly covered or uncovered by clouds, then colors change and
shadows change and the brightness changes. If object appearance differs greatly between successive processed
frames, current methods have a hard time tracking the road.

UNSCARF places less emphasis on colors and more on shapes. Instead of classifying each pixel according to
statistics from previous images, it groups neighboring pixels using unsupervised clustering methods. We have
found that clustering with 5 parameters (R,G,B and row,col) gives us classes that are both homogeneous in color and
connected in the image. We then piece a road shape together out of those clusters, instead of from individual pixels.
Evaluating candidate roads uses shape cues such as parallel edges, smooth edges, edges the right distance apart, and

so forth. The combination of unsupervised classification and evaluation with shape cues makes UNSCARF tolerant
of the large illumination changes that have given problems to previous systems.
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FERMI: FERMI deals with public highways and roads, tha, have more structure and variation than our Schenley
Park test site (Kluge, Thorpe) [20]. The key to handling diverse roads is explicit modeling of the colors, shapes, and
features of each road type. FERMI has a representation that lists width, maximum curvature, color, surface type,
location of lines, type of shoulders, presence of guard rails, type of adjacent vegetation or soil, illumination
conditions (sunny or cloudy), illumination direction, and so forth. By having many simple experts, one for tracking
each type of feature, we are able to follow many kinds of roads within the same control framework. None of the
individual trackers (edges, lines, color discontinuities, etc.) that we explored in our early work were adequate by
themselves for road following. But by incorporating many of them into a single system, and intelligently selecting
which tracker to use to follow which feature, we expect FERMI to be reliable and flexible. In 1988, FERMI has
been designed and partially constructed, and has driven the Navlab.

5.2. Building Terrain Descriptions from Range Images
We (Hebert, Kweon, Stentz) have made progress in building terrain descriptions from range images in three areas:

terrain descriptions for cross-country navigation of the NAVLAB [8], terrain map building using feature matching
[8, 9], and matching of maps for high-resolution terrain descriptions [10, 22]. A terrain description based on a

polygonal mesh of regions has been successfully used together with a path planner that takes into account the
geometry and kinematics of the NAVLAB. The resulting enables the NAVLAB to navigate through terrain in which
a description in terms of discrete objects is not sufficient. Progress in map building using feature matching includes
the "s* of additional features such as the road edges calculated from reflectance images, and the building of maps
over longer distances. Reliable feature-based map building enabled us to start actively investigating the problem of
using the map built from sensor data for the navigation of a stretch of road previously explored. Since those two
approaches to map building produce relatively low resolution maps, we have developed new algorithms to produce
high resolution maps, that maps for which the resolution is on the order of the resolution of the scanner. In addition,
an efficient algorithm that minimizes the distance between maps by a gradient descent technique leads to a better
estimate of the displacement between individual and to a more accurate composite map. Even though these
algorithms are somewhat computation intensive, they represent a promising direction of research for the building of
high-resolution maps.

5.3. Road Following Using Reflectance Images
We (Hebert) have also been developing methods for road following using active reflectance images from the

ERIM laser scanner. Active reflectance images have two characteristics that make them attractive for road-
following applications: First, they are insensitive to outside illumination, that is no shadows are cast by objects in
reflectance images and the influence of the level of ambiant light on the image is minimal (in fact, any program
using reflectance images would work as well under night conditions). Second, each pixel in the reflectance image is
also a range pixel whose position in space can be derived from the geometry of the scanner. This allows us to
compute the position of the edges of the road found in a reflectance image in the vehicle's 3-D world without any of
the calibration procedures that are typical of the video-based road following algorithms.

Edge detection would be the natural way of finding road edges in grey level images. The nature of the reflectance
data, however, suggests the use of a region-based technique for two reasons: First, the dynamic range of the image is
low, many spurious edges that are of similar strength as the road edges will be found. Second, the intensity of the
road in reflectance images is very stable because it is insensitive to shadows and changes in illumination. This is to
be compared with video images in which the appearance of the road region varies significantly, thus requiring the
use of multiple classes of road and non-road regions. Instead of extracting the road edges directly, a road region
extractor identifies the pixels that are part of the road based on the road location and appearance predicted from a
previous image. This approach to road following has been successfully used for navigation over long stretches of
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road using the NAVLAB [9].

6. Mobile Robot Systems

6.1. Map-Based Navigation
Research on road following and map building leads naturally to the idea of closing the loop by using a map built

from previous observations to guide the navigation on a portion of the world already explored. Such a capability of
map based navigation would enable us to improve the performances of the vehicle in three directions:

" Faster navigation: Perception is typically the bottleneck in autonomous mobile systems because images
have to be processed as often as possible to compensate for the lack of knowledge about the world. If
apriori knowledge of the environment is available from previous observations, perception is needed
only to periodically check that the vehicle stays on the path prescribed by the map. The perception
bottleneck is therefore reduced, thus leading to faster navigation.

" More reliable navigation: Autonomous navigation is unreliable because of the uncertainty associated
with any sensor data and processing. Relying more on a map means relying less on sensor data acquired
during the execution of a navigation plan. Map based navigation should therefore provide more accurate
navigation.

* Simpler perception: A map can provide the expected appearance of the environment at any location.
That includes the expected location of objects, and the expected position and appearance of the road.
This additional knowledge allows for simpler perception processing. -

Athough map-based navigation algorithms could be used with a man made map (e.g. from surveying), using a
map built frorr sensor information does not make any assumptions on the amount of knowledge available to the
system, thus leading to a fully autonomous system. Furthermore, it is difficult to obtain the resolution of a map built
from sensor data by using surveying alone.

Our (Simon, Hebert) ai,-oach to map-based road following proceeds in three steps [91: computation of the
starting position, path planning in the map, path execution and correction. The first step is needed to avoid
constraining the starting position and heading of the vehicle at the beginning of the traversal of the map to those
used to initiate the map building stage. The position and heading of the vehicle with respect to the map are computed
by matching the features, road edges and objects, observed in an image taken at the starting position with the
features of the map that are predicted to be visible given a rough initial guess of starting position. The matching
algorithm is basically the same as the one used for the map building except that in the current implementation, only
road edges and discrete obstacles are used. The map features are predicted by intersecting the sensor field of view
with the map.

Given the starting position, the second step is to compute a path that follows the road using the map. This step is
the most straightforward in that any path planner that provides for smooth paths can be used. In the current
implementation, the path is computed by dividing the center curve of the road into small segments that are
approximated by a small set of arcs that are later sent to the vehicle's controller.

Once a path is computed, the vehicle is ready to follow the road based on the map. Ideally, the vehicle should be
able to correctly execute the path without any perception at all. In practice, however, the vehicle will drift away
from the ideal path due to wheel slippage, and the accumulation of small controller errors and numerical error.
Therefore, the position and heading of the vehicle with respect to the map must be recomputed periodically by
comparing the features that are actually observed while executing the path and the features that are predicted from
the map given the current estimate of the vehicle's position. The question now is how oftcn should we make a
position correction, that is take an image, extract road edges and objects, and match them with the map, in order to
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stay within reasonable bounds of the original path. This problem is the key to map-based navigation: If the
corrections are performed too often we are back to the original road following approach and we loose the benefit of
Eaving a map. If, on the other hand, we do not perform enough co -ections along the path, we may drift
significantly far from the nominal path and eventually run off-road. Furthermore, the corrections should be
meaningful in the sense that enough features should be present at the time of the correction to ensure that the ncwly
computed position is indeed closer to the truth than the currently available estimate. Several strategies are possible
to choose the locations at which corrections should be performed. An attractive strategy is to estimate the
uncertainty on the position and heading as the vehicle moves, a new correction is requested whenever the
uncertainty reaches a threshold that indicates that the vehicle is too far from its nominal path. This approach
guarantees that the distance between the vehicle's path and the nominal path always lies within preset bounds. It
does not, however, guarantee that the images taken at the time at which a correction is needed contain enough
features of interest. Another possible approach is to make a correction whenever the map predicts that features of
interest may be observed from the current position. In our case, it is important to guarantee that the corrections are
performed when objects are visible, since otherwise the correction would be computed on the basis of the road edges
only and would therefore be ambiguous. A correction is therefore computed whenever at least one object is
piedi~cd to be isible f-rom a position alog the path. Matching the predicted objects and road edges from the map
with the observed road and objects provides an unambiguous new estimate of the vehicle's position and heading.

The result of the correction calculation is an offset A=(Ax,Ay,AO) between the nominal position and heading and
the actual values at the time the image is taken. This offset must be used to correct the current course of the vehicle.
This is achieved by shifting the path that has been executed while the image was being processed by A, by
replanning from the current position as given by the shifted, and by replacing the pending set of motion commands
by this new path.

Experiments with the NAVLAB show that it is possible to use a map to efficiently guide the navigation of an
autonomous vehicle. The main benefit is that considerably fewer images have to be processed while retraversing the
map. For example, a short typical stretch would require seven images to be processed using a map, while it would
requ..ire at least 25 images to navigate the same stretch at the same speed. The reason for the discrepancy is that even
if the position of the road were computed perfectly from each individual image, the path planner would not have
information far enough in front the vehicle to plan a stable path that is guaranteed to remain on the road. Although
the same results could be obtained by using a map that is entered manually, it is important to note that the
combination of map building from sensor data and map-based navigation results in a fully autonomous system that
can learn its environment and use its new knowledge to navigate through it.

6.2. Path Planning for Off-Road Travel
Outdoor mobile robots are used in a wide variety of scenarios ranging from those in which the robot operates with

a complete map of its environment and moves between pre-determined goal points to those where the environment
is completely unknown and the robot constructs a map as it explores. Regardless of the particular scenario, all
navigation systems include a basic sense-plan-drive cycle for moving the robot about. The local navigator must
choose the sensing points, plan paths between them, and oversee the execution of the robot's trajectory. To perform
this local navigation, we (Stentz) have developed a new local path-planning method.

A number of constraints must be satisfied. First, sensing points must be selected which enable the robot to
register its position relative to the world or to map new areas. Second, placements (configurations) of the robot in
the environment that will incapacitate it or render it unable t locomote must be avoided. Such configurations
include those that bring the robot in contact with other objects in the environment, as has been modeled in traditional
indoor robotics. Outdoor robots face other hazards as well. Configurations that cause the robot to tip over or place



it in situations where it cannot propel itself forward must also be avoided. Third, kinematic constraints must be
taken into consideration. Most robots are not omnidirectional. They cannot travel between two arbitrary
configurations within given bounds. For example, car-like vehicles cannot translate directly sideways. Fourth,
uncertainty in the robot's position must be handled. This effect ranges from random error in the robot's control to
gross errors such as wheel slippage. A local planner must account for such uncertainty to avoid collisions and to
guarantee goal attainment.

Traditional approaches to the problem have attempted order the constraints in a hierarchy ranging from most to
least severe. The constraints at the top of the hierarchy are used to plan the robot's path while those at the bottom
are used to perform local modifications to the path. The problem with this approach is twofold. First, the constraint
precedence can change dynamically as a function of the robot's environment. Second, there is no guarantee that
local modifications to a planned path will succeed. Thrashing between levels of the hierarchy can result. We have
developed a planner that models all of the constraints in a flat-level system. A single search algorithm is used to
find trajectories, thus avoiding thrashing between levels of the hierarchy.

Since the pose of a car-like mobile robot can be specified using two parameters in position and one in orientation,
the search space is three-dimensional. Searching this space using a dense tesselation is prohibitively expensive;
instead, a recursive space-decomposition algorithm is employed. The planner attempts to plan through large
subspaces (called voxels) of the search space at time, dividing the voxels and planning at a higher resolution as
needed. All constraints in the system (environmental, kinematic, goal, and uncertainty) are expressed as functional
inequalities. The SUP-INF method is applied to the inequalities to determine whether the constraint is satisfied for
all configurations in the voxel, no configurations, or some configurations. For a given voxel, the planner first
computes the maximum amount of uncertainty in the three configuration parameters that could be generated by a
trajectory passing anywhere through the voxel. The voxel is then "expanded" by this uncertainty and is tested for
eaviruameatai admissibility. If all configurations are inadmissible, the voxel is removed from further consideration.
If a mixture exists, planning continues through the voxel at a higher resolution.

If all configurations within are admissible, the voxel is tested for goal attainment. If all configurations are in the
goal space, the planner terminates with success. If a mixture exists, the planning continues at a higher resolution. If
no configurations are in the goal set, the planner determines the set of points on the faces of the voxel through which
the robot can leave the voxel, taking kinematic constraints into consideration. This set of points is constructed
recursively and is represented using a quadtree.

The power of this technique is derived from its ability identify large subspaces through which planning can
proceed quickly, taking uncertainty and goal attainment into account. The planner avoids testing individual
trajectories for kinematic soundness by propagating "bundles" of trajectories through the space in a single operation.
This system was implemented and tested on the NAVLAB driving in rough terrain.

6.3. The Autonomous Planetary Rover
The Autonomous Planetary Rover project, sponsored by NASA, is closely related to our NAVLAB research. In

this project, we (Krotkov, Kweon, Hebert, Balakumar, Caillas) are building a a walking vehicle called the Ambler,
which uses six orthogonal legs to traverse rugged terrain that wheeled vehicles can not negotiate easily [2]. The
Ambler faces many of the same problems as other mobile robots, but it must also operate in rugged environments
like those on Mars, at hazardous waste sites, on ocean floors, and in mines.

Perception research in this project focuses on techniques to robustly construct multi-resolution elevation maps
from range imagery. The approach is to use a variety of sensors to construct the multiple resolution terrain
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representations necessary for tasks including locomotion, navigation, and sample acquisition. Other research aims
to develop innovative gaits for legged locomotion, and to develp a centralized task control architecture to integrate
the perception, planning, and control algorithms. Currently, we are experimenting with integrated systems using
two testbeds: a full-scale leg, and a wheeled mobile manipulator.
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ABSTRACT

This report summarize progress in image understanding research at the University of
Massachusetts over the past year. Many of the individual efforts discussed in the paper are
further developed in other papers in this proceedings. The summary is organized into
several areas:

I. Autonomous Vehicle Navigation
II. Motion Processing
III. Knowledge-Based Interpretation
IV. Image Understanding Architecture

The research program in computer vision at UMass has as one of its goals the integration of
a diverse set of research efforts into a system that is ultimately intended to achieve real-
time image interpretation in a variety of vision applications. A highlight of our recent
research effsrt is the initial integration of a perceptually-based navigation system for our
local mobile robot; this work is represented in four other papers in this proceedings.

I. AUTONOMOUS VEHICLE NAVIGATION

1.1. Mobile Robot Project

The UMass Mobile Robot project is investigating the problem of enabling a mobile
automaton to navigate intelligently through indoor and outdoor environments. At the
foundation of our work is the premise that higher-level vision beyond the first stages of
sensory processing is needed for perceptual control of the robot. In particular the system
will greatly benefit from, and in many cases require, the use of knowledge and models of
objects in the environment.

This project is discussed in several papers in this proceedings: our approach !o world
modeling, planning, and primitive task execution are presented in Fennema et al (Fennema,
Hanson et al. 1989); the world model is developed in a solid modelling package, Geometer,
described in (Connolly and Weiss 1989); mechanisms for optimal 2D model matching, used to
locate landmarks derived from the world model and an estimate of the robot's current
position, are discussed in (Beveridge, Weiss et al. 1989b); and methods for determining the
pose of the robot from the matches are developed in (Kumar 1989).

In the early phases of this research, we wish to balance generality with setting sufficient
constraints on the initial research goals to be achievable. Therefore, the experiments focus
on robust goal-oriented navigation through a partially-modeled, unchanging environment
which does not include any unmodeled obstacles. Later experiments will soften these

lThis work was supported in part by the Defense Advanced Research Projects Agency under
contract numbers F30602-87-C-0140, DACA76-85-C-0008, and DACA76-86-C-0015, and by the
National Science Foundation under grant number DCR-8500332.
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constraints to deal with unnmodeled or moving objects. as well as in partiallyconstraints to learning pat ly
modeled or new environments.

1.2. Implementation on a Multiprocessor

Mobile robot navigation is a computationally intensive activity. One approach to achieving
real-time navioation that we are investigating involves the use of a shared-memory
murtiprocessor (Sequent Symmetry). A C-based language called RS (Pocock ) has been
developed for control of a ,et of real-time cooperative processes, and it has been ported to
the Sequent. Similarly, a group of about ten high level modules involved in the navigaion
system arc also being ported.

The near-terni goil of this effort is to reproduce the experimental capability of navigating
in a modeled environment. Here, the systems issues are paramount and issues of scheduling
limited resources with hard real-time constraints is our research focus. We hope to
demonstrate the multiprocesser version of mobile robot navigation by early Fall,1989.

II. MOTION PROCESSING

A major area of research in our laboratory is the analysis of sequences of images derived
from a moving sense;, The environments that we are examining include indoor hallway
and room scenes, as well as outdoor scenes of the UMass campus. The goals of this work
include the recovery of sensor motion decomposed into its translational and rotational
components. the recovery of environmental depth of key surfaces and objects, and the
detection of independently moving objects and, if possible, their motion parameters.

11.1. Stereoscopic Motion Analysis and the Detection of Discontinuities

One of the most important problems in stereo and motion processing is the recovery of
depth and motion boundaries. A number of algorithms for computing optic flow make a
global smoothness assumption that tends to unnaturally smooth across depth and motion
discontinuities, and this makes later detection of these boundaries very difficult. On the
other hand, knowledge of these discontinuities is very important for the flow and disparity
computations to be correct, especially at occlusion boundaries.

One approach to this problem is to integrate motion and stereo data. (Balasubramanyam
1989) uses information in both the stereo and motion sequences at two time instances to
define a measure of confidence in the presence of motion and depth discontinuities. This
measure can be applied early, prior to the full computation of flow and disparity fields. The
ceneral idea is to use coarse disparity and flow estimates from hierarchical correlation

processes (Anandan 1989 to locate and label depth and motion discontinuities; smoothing is
then inhibited across these boundaries. Discontinuities that are continuous (i.e. unbroken)
in the other dimension are favored. Initial results are presented on both synthetic and real
stereo-motion imagery.

11.2. Smoothness Constraints for Optic Flow and Surface Reconstruction

Snydcr (Snyder 1989) has developed a theoretical analysis of snoothness constraints that is
used in the computation of optic flow and surface reconstruction. It is derived from a
mathematical foundation that lends insight to the heuristic justification of other
smoothness constraints. Under several simple assumptions he derives the most general
possible smoothness constraint, which turns out to be quadratic in the first derivatives of

the flow field, and quadratic in the first and second derivatives of the grey-level image

intensity function. All the best-known smoothness constraints are special cases of this
general form. and the relationship to a few ai examined.
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11.3. 3D Interpretation of Rotational Motion from Image Trajectories

The research -'C Sawhncy and Oliensis (Sawhney and Oliensis 1989) addresses the problem of
discovering the motion parameters of independently moving objects in their natural
coordinate system. This paper focuses on analyzing an extended time sequence of images of
an object rotating uniformly around an axis of arbitrary location and orientation. It
demonstrates how the abstraction of continuous descriptions of multi-frame data can lead to
the recovery of scene motion and structure. Image traces of 3D feature points are
generated from image point correspondences over a sequence of frames. These traces are
described by continuous curves that are obtained by fitting conic arcs to the set of points.
The goal is motion-based grouping of image traces to provide constraints (that are
unavailable in only a few frames) sufficient to extract the motion parameters of
independently moving objects in their natural coordinate system.

11.4. A Motion Data Set from the ALV

Motion analysis has remained an extremely difficult research area. One of the difficulties
has been the lack of motion data with ground truth of known accuiacy. In particular, this
sort of data has not been collected for robot vehicles operating under realistic conditions in
outdoor environments. Thus, the proper scientific evaluation of motion algorithms
intended for practical application has been impossible.

In response to this general problem, our group decided to collect a reasonably large data set
from the ALV (Dutta, Manmatha et al. 1989a; Dutta, Manmatha et al. 1989b) Motion
sequences of about 30 frames each were collected at five different outdoor sites with
different road surfaces, including on-road, dirt-road, and off-road scenarios, Data from the
video camera, laser range finder, and land navigation system were recorded simultaneously
under stop-and-shoot and move-and-shoot scenarios. Ground truth data was obtained using
traditional surveying methods. The data is being made available to the general community
and can be obtained by communicating with Ms. Valerie Cohen at UMass (E-mail address is
VCohen@ CS.UMass.EDU).

III. KNOWLEDGE-BASED INTERPRETATION

111.1. New Schema system

Research in knowledge-, irected vision has begun to focus on two new goals. The first is to
build a control system for vision that is provably near-optimal under certain assumptions.
The ccond is to use machine learning techniques to assume part of the role of the
knowledge engineer. Work is underway on the Schema System II which is designed to
achieve both of these goals.

Previous research with the Schema System (Draper, Brolio et al. 1989) centered around the
realization that different interpretation techniques are needed to recognize different
objects. The process of finding an automobile in an inage is not the same as finding a road
or a tree. The problem has always been how to combine multiple recognition techniques
into a single, coherent system. The Schema System II approaches this problem by viewing
object recognition as search through the space of knowledge states. The general idea is to
use a compile-time analysis to trace ali possible paths through knowledge space in order to
find the most efficient routes.

This framework is being used for learning information that would otherwise have to be
provided by a "knowledge cngincer." The system may be able to learn the expected cost of
each knowledge source (KS) and the likelihood of each possible K' esult to eliminate the
need for user-defined control strategies. The system may also be able to learn which object-
specific combinations of vidence allow the presence of an object to be inferred,
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eliminating the need for user supplied confidence mapping functions. The final phase will

address acquiring new object descriptions by learning new knowledge sources.

111.2. Perceptual Organization

111.2.1. Perceptual Organization of Curved Lines

Image curves often correspond to the bounding contours of objects as they appear in the
image and provide important structural 3D information. In most cases, however, curves do
not appear as coherent events in the image and must be reconstructed from fragments
obtained from low level processes. Dolan (Dolan and Weiss 1989) is developing a system
which exploits principles of perceptual organization, such as proximity and good
continuation, to build multi-scale symbolic descriptions of co-curving or curvilinear image
structure.

Two primitive geometric descriptors of image structure are employed (straight lines and
conic splines) to describe the image structures of interest: collinearities, smooth curves,
inflections, corners, and cusps. In order to manage the computational complexity inherent
in the organization process, the system follows the iterative linking, grouping, and
replacement paradigm developed by Boldt et al (Boldt and Weiss 1987; Weiss and Boldt 1986;
Weiss, Hanson et al. 1985) The image primitives from which larger structures are built are
unit tangents obtained by finding zero-crossings of the Laplacian and computing the local
orientation of each edge point from the local gradient. Preliminary experimental results
from this system may be found in (Dolan and Weiss 1989).

111-2.2. Organizing Surface Boundaries

The ability to find sets of points or lines which belong to a single object or define a single
surface is extremely important in computer vision. For example, Williams and Hanson
(Williams and Hanson 1988) show that when two or more image points are approximately
equidistant in depth (which is often the case when they belong to a single object whose
extent in depth is small relative to its distance to the camera) then the distance to those
points (and therefore the object) can be accurately and reliably recovered. Similarly, the
formidable combinatorics inherent in matching 3-D models to image data can only be
controlled when there is prior evidence that several points or lines belong to a single
object (Beveridge, Weiss et al. 1989b; Burns 1987; Bums and Kitchen 1988). Williams is
developing a system for the perceptual organization of surface boundaries which exploits
Gestalt grouping principles such as proximity, similarity, good continuity, convexity and
symmetry.

Our view is that the goal of perceptual organization is not to assert surface boundaries in
the presence of "noise", but rather to assert surface boundaries in the presence of other
potentially occluding surfaces. The process of explaining an input set of line segments as
the projections of boundaries of opaque surfaces at different depths begins by the insertion
of virtual lines and possible vertices corresponding to potential organizations. For each
member of this augmented line set, a set of constraints (derived from the physical
properties of surfaces) on the role of that line in the final interpretation are asserted.

We envision this constructive or problem posing stage as being followed by an optimization
or "problem answering" stage. The optimization problem consists of a linear or quadratic
objective function subject to linear constraints. Each virtual line and vertex will either be
promoted to a visible surface boundary, a hidden surface boundary or be deleted. As a
natural side effect, wherever possible, the sign of occlusion will be determined. This aspect
of the work, if successful, is tantamount to figure-ground segregation, and has important
implications for obstacle avoidance in robotics and for the enforcement of smoothness
constraints for creation of dense depth maps and optical flow fields.
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111.3. 2D Model Matching

An important problem in model-driven 3D interpretation is how to use approximate
knowledge of the location and orientation of the camera, models of objects in the
environment, and the results of low-level vision to determine the image-to-model
correspondence. The approach we have taken is to separate 2D model-to-image matching
from the determination of the 3D pose parameters (see Section 111.4)

Beveridge (Beveridge, Weiss et al. 1989a; Beveridge, Weiss et al. 1989b) assumes that a 2D
model has been supplied with rough constraints on its image position (e.g. via an
approximate 3D location in a modeled environment). This substantially reduces the search
space of possible model-image line correspondences. The goal here is to determine
correspondences between model and data lines such that an optimized spatial fit will
produce the lowest match error. The search must be carried out across the space of possible
line correspondences and this involves dealing with the complexities of grouping
fragmented data, and missing or erroneous lines. The rotation and translation of the model
that minimizes ihe error in spatial fit for a given set of line correspondences ;,- computed
via a closed-form solution. Interesting experimental results are achieved on images from
our mobile robot domain.

111.4. 3D Pose refinement

Kumar (Kumar 1989) has developed an optimization technique for finding the 3D camera
pose given a set of correspondences between 3D model lines and 2D image lines. The 3D pose
is given by the rotation and translation matrices which map the world coordinate system to
the camera coordinate system. Using the output of the system described in Section 111.3,
these algorithms allow updating of the mobile robot position via landmark recognition..

The approach is based on the constraints developed by Liu et al (Liu, Huang et al. 1988), but
differs in two significant ways. First, rotation and translation are solved for
simultaneously, which makes more effective use of the constraints and is more robust in
the presence of noise. Second, the nonlinear least-squares optimization algorithm used to
solve for rotation and translation is adapted from Horn (Horn 1987); Horn's technique
provides much better convergence properties than does Liu et al's solution method based on
Euler angles (Kumar 1989).

IV, IMAGE UNDERSTANDING ARCHITECTURE

IV.A. Image Understanding Benchmark

The second DARPA vision benchmark represents an integrated vision task across a range of
typical vision processing (Weems, Riseman et al. 1988) Released in March 1988, the
integrated benchmark involves processing from the sensory level, through intermediate
procezin g of symbolic tokens, to matching of data against a set of models, and finally
verification of the hypothesized model in a top-down manner. A sequential solution to the
benchmark was written at UMass and verified by the University of Maryland.

The benchmark was widely distributed and in October 1988, UMass hosted a workshop in
Avon, Connecticut to discuss the results. Representatives were present from the Darpa IU
community, as well as from groups who implemented the benchmark on different
machines. All of the architectures from the Strategic Computing program that are typically
considered for vision applications were involved in the exercise, including the Warp, the
Connection Machine, and the IUA (the Image Understanding Architecture). In addition, the
benchmark was implemented on the Sun-3 and Sun-4, the Sequent Symmetry 81, Intel iPSC-
2, Aspex ASP, and the Alliant FX-80. The results of this workshop are presented in (Weems,
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Riseman et al. 1989) in this proceedings.

I\'.2. Status of IUA Project

The Image Understanding Architecture effort focussed on three main areas: completion of
the IUA prototype with Hughes Research Labs; extensions to the IUA software simulator,
and implementation of the DARPA Benchmark on the IUA simulator.

At the hardware level, progress towards completion of the IUA prototype included redesign
of the feedback concentrator chip (for the associative functions in the CAAPP array),
resubmission of the ICAP communication chips after a failed fabrication run, redesign and
rcsubniission of the 64 processor CAAPP test chips (fabrication was delayed over six months
due to vendor problems), and the design of an I/O subsystem (by Hughes). After several
alternatives were considered, a decision was made to use commercially available
components to construct the system controller. The first prototype board is expected to be
delivered to UMass from the Hughes Research Labs in August, 1989.

At the software level, major changes and extension were made to the IUA simulator. It was
ported to the Sun-3 system, integrated with the Sun windowing environment, and its
interactive graphical capabilities were substantially enhanced. A full ICAP simulator was
developed and merged with the CAAPP simulator to provide two-level simulation
capabilities. This was then ported to the Sequent Symmetry multiprocessor and enlarged to
a full sized (511x512) CAAPP and a 4096 processor ICAP. Unfortunately, memory limitations
on the Sequent limited useful simulations to a 16 processor ICAP configuration. In addition,
numerous improvements were made to the simulator at the basic code level and a number of
vision algorithms were coded and tested.

Finally, a major effort to program the benchmark on the IUA simulator was successfully
completed and reported as part of the Avon conference discussed earlier. The IUA
implementation of the benchmark ran in approximately 80 msecs on the simulator.
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MIT PROGRESS IN UNDERSTANDING IMAGES

T. Poggio and the staff
Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139

ABSTRACT

Our program in Image Understanding has continued to focus on three main projects - the Vision Machine,
object recognition and autonomous navigation -, but it has also covered a wide range of other topics from early
rision modules to analog VLSI circuits for vision and theoretical work on the problem of learning. The first
project - a parallel Vision Machine - has the goal of developing a system for integrating early vision modules
and computing a robust description of the discontinuities of the surfaces and of their physical properties that
can be used for recognition tasks. During this last year, we have interfaced the output of our integration stage
with a parallel model-based recognition algorithm. The second project consists of several approaches to visual
recognition. New theoretical results have been obtained and new systems have been implemented. In addition
to these main themes, we have also worked on the computation and the use of motion, phologrammetry, new
theoretical approaches to shape-from-shading, qualitative stereo vision, analog VLSI circuits and learning.

1 Introduction

We will briefly describe our various projects in inage Understanding. Several of them are discussed in more
detail in other papers in these Proceedings and in those cases we will simply have an appropriate pointer.

2 The Vision Machine
As we described last year in a separate paper, the Vision Machine system integrates several vision cues to
achieve high performance in unstructured environments, mainly for recognition tasks. It is also a tool for
testing our theoretical progress in vision algorithms, their parallel implementation and their integration. The
Vision Machine at presents consists of a movable two-camera Eye-Head system - the input device - and a 8K
CM2. We are improving the parallel early vision algorithms which compute edge detection, stereo, motion.
texture and surface color in close to real-time. The integration stage is based on the technique of coupled
Markov Random Field models, and leads to a cartoon-like map of the discontinuities in the scene, with a
partial labeling of the brightness edges in terms of their physical origin. In the last year, we have interfaced
the output of our integration stage with a parallel model-based recognition algorithm.

2.1 The Vision Machine System

The present organization of the sys n is shown in Figure 1. The image(s) are processed through
independent algorithms or modules corresponding to different visual cues. The full integration scheme
not yet fully implemented - involves finding the various types of physical discontinuities in the surfaces
depth discontinuities (extremal edges and blades), orientation discontinuities, specular edges, albedo edges (or
marks). shadow edges - and coupling them with each other and back to the discontinuities in the visiial cries,
as illustrated in Figure 1. The output of the system is a set of labeled discontinuities of the surfaces around
the viewer. Thus the scheme - an instance of inverse optics - computes surface properties, that is attribuels of
the physical world and not anymore of the images. Notice that we attempt to find discontinuities in surfar,
properties and therefore qualitative surface properties: the inverse optics paradigm does not imply that
physical properties of the surfaces, such as depth or reflcctance, should be extracted prcciscly, everyt r(.
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Figure 1: Overall organization of the Vision Machine.

These discontinuities, taken together, represent a "cartoon" of the original scene which can be used for

recognition and navigation (along with, if needed, interpolated depth, motion, texture and color fields). As

yet we did not integrate our ongoing work on grouping in the Vision Machine. We expect to use a saliency
operation on the output of the edge detection process possibly before the use of intensity edges by the MRF
stage. The grouping based on T-junctions (Beymer, in preparation) should take place on the intensity edges
at the same level as the MRF stage. Initial work in recognition has been integrated in the system. The

Vision Machine has been demonstrated working form images to recognition through the integration of visual
cues.

In the following, we will only sketch the main updates to last year's paper on the Vision Machine [.13].

2.2 The Connection Machine

The new version of the Connection Machine (CM2) that we have now is a small (8K processors) configuration.
The main differences with respect to the CMI are (a) 64k bits memory per processor and (b) a floating point
arithmetic accelerator, shared among 16 processors.

2.3 The Integration Stage and "deterministic" MRF

Recent work by Geiger and Girosi, based on mean-field techniques from statistical physics, has clarified
the role of various parameters in the MRF technique that we use for integration and has led to interesting
deterministic approximations of the stochastic procedures. These schemes have a much higher speed than
the Montecarlo schemes we used so far, while promising similar performance. The work is outlined in these
Proceedings. A similar deterministic sheme was developed recently by Hurlbert and Poggio to solve a specific
integration problem - the integration of color with intensity edges.

2.3.1 A network for image segmentation using color

The goal of segmentation algorithms for color is to find boundaries between regions of different surfaco
spectral reflectances and to spread uniform colors within them, without explicitly requiring the colors to be

constant under changes in illumination. llurlbert and Poggio [22] use color labels that are analogous to the
CIE chromaticity coordinates x and y. Under the single source assumption, they change across space only
when the surface spectral reflectance changes, except when strong specularities at., present. The color edges
themselves are localised with the help of luminance edges, by analogy with psychophysics of segmentat ioh
and filling-in.
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Surfaces are assumed to reflect light according to the neutral-interface-reflection model. In this model
[30] [53], the image irradiance l(., y, A) is the sum of two components, the surface reflection and the body
relect ion:

I(x, y, A) = L(r(x, y), A)[a(r, A)g(6(r)) + bh(6(r))],

where A labels wavelength and r(x, y) is the point on the 3D surface to which the image coordinates (x. y)
correspond. L(r(x, y), A) is the illumination oil the surface. a(r, A) is tile spectral reflectance factor of the
body reflection component and g(6(r)) its magnitude, which depends on the viewing geometry parameters
lumiped together in 6(r). The spectral reflectance factor of the specular, or surface reflection, component
b is assumed to be constant with respect to A, as is true for inhomogeneous materials such as paints and
plastics. For most materials, the magnitude of the specular component h depends strongly on the viewing
geometry. Using the single source assumption, we may factor the illumination L into separate spatial and
spectral components (L(r, A) = L(r)c(A)). Multiplying I by the spectral sensitivities of the color sensors
i = 1. 2.3 and integrating over wavelength yields the triplet of color values (R, G, B), where

R = IR(x, y) = L(r(., y))(aR(r(x, y))g(6) + bRh(6))

and so forth and where the ai and bi are the reflectance factors ii. the spectral channels defined by tle
sensor spectral sensitivities.

\Ve define the hues u and v as

R

anid

G
V R+G+B

at each pixel.
In Lambertian reflection, the specular reflectance fa~ior b is zero. In this case, u and t are piecewise

constant: they change in the image only when the ai(xy) change. Thus u or v mark discontinuities iM
the surface spectral reflectance function, e.g they mark material boundaries. Conversely, image regions of
constant u correspond to regions of constant surface color. Across specularities, u in general changes but
often not much. Thus one approach to the segmentation problem is to find regions of "constant" u and their
boundaries. The difficulty with this approach is that real u data are noisy and unreliable: u is tile quotient of
numbers that are not only noisy themselves but also, at least for biological photosensor spectral sensiti Ities.
very close to one another. The goals of segmentation algorithms are therefore to enhance discontinuiti"s
in u and, within the regions marked by the discontinuities, to smoothe over the noise and fill in the data
where they are unreliable. One method is to regularize - to eliminate the noise and fill in the data, while
preserving the discontinuities. Using an algorithm based on Markov Random Field techniques, we have
obtained encouraging results on real images [43]. The MRF technique exploits the constraint that u should
be piecetwise constant within the discontinuity contours and uses image brightness edges as guides in finding
the contours. An alternative to the NIRF approach is very similar to the deterministic schemes obtained by
Geiger and Girosi and consists of an averaging scheme that simply replaces tile value of each pixel in the hue
image with the average of its local surround, iterating many times over tile whole image. The algorithm taies
as input the hue image (either the u-image or the v-image) and one or two edge images, either luminance
edges alone, or hliminance edges plus u or v edges, or u edges plIs v edges. Tile edge images are obtained for
instanco by performing Canny edge detection. Oil each iteration, the value at each pixel in the hue image
is replaced by the average of its value and those in its contributing neighborhood. A neighboring pixel is
allowed to contribute if (i) it is one of the four pixels sharing a full border with the central pixel (ii) it shares
lie sale edge label with the central pixel in all input edge images (iii) its value is non-zero and (iv) its

value is within a fixed range of tle central pixel value. The last requirement simply reinforces tle edge label
requirement when a hue image serves as an input edge inlage - the edge label requirement allows only those
l':xels that lie on tlie salle side of al edge to be averaged, while the other insures t hat only t hose pixels wit h
sinilar hues are averaged.
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More formally

N' N(C") h

where C'"(hj1 .j) is the set of V(C") pixels among the next neighbors of ij that differ from h'j less
than a specified amount and are not crossed by an edge in the edge map(s) (on the assumption that the
pixel (i.j) does not belong to all edge). The iteration of this operator is similar to nonlinear diffusion
and to discontinuous regularization of the type discussed by Blake and Zisserman, Geman and Geman and
Marroquin [35] [4] [11]. The iterative scheme of the above equation can be derived from minimization via
gradient descent of the energy function

E = Eijj

With

E~j =( 1 - di+,,j )V(hij, hi+,,j ) + (1 - di,j+ 1 )V(hi,j, hi j+l

+( I -d.; -1j ) tV(hij, hi- ,.j ) + ( I - dij_ I ) V(hj , hij- 1 ),

where V(x, y) = V(x - y) is a quadratic potential ar. and constant for Ix - yI above a certain value.
A simple gradient scheme finds the stationary value of h u. ,ying iteratively

dh/dt = ---

With the appropriate value of a one finds exactly the average scheme we ,,se

h -1 = < h >c

where < h >c means axerage over the system of neighborhoods C, defined earlier and the iterations
should respect the underl/yig system of cliques and their chromatic number [36].

Notice that our sclhe/in is a regularization scheme that takes into account discontinuities and uses the
data ony as initial valYes for the iteration scheme. If data are taken into account in the usual way (that is
equivalent to the assu1nption of an observation model which consists of gaussian additive noise) we have

h~j =< h >c -k(hi" - ho~)

where h = u are the hue data. In the latter scheme, the resulting "surface" is a generalized spline.
In the former schwnie we expect that the algorithm will provide asymptotically piecewise constant regions
bound by. disconl iuuities.

[he local a'eaging smioothes noise in the hue values and fills in with uniform hue regions marked by
the edge input,. On images with shading but without strong specularities. the algorithm performs a clean
segment at ion ito regions of different liues.

2.4 Labeling the physical origin of edges: computing qualitative surface at-
tributes

Ph qsical DiL.%onlti hi iti.s

\V,' ,Jassify. ,dg,s according to the following physical events: discontinuities in surface properties. called
inark or albdo edges (eg.. clianges in the color of the surface): ,iscon'inuities in the orient at ion of th'
sIirfa,' patch, calld orenta/lton edges (e.g.. an edge in a polyhedron); discontinuities in the illumination,
Calli , hadow e-dge,.: oc(htdi i bou darcs, which are discontinuities iii the object space (a different object):

111 SprcFular liscolitinlit es,. which exist for non-Lanihertian ohjects.
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Integration ina Labeling with a linear classifier

Gamble. Geiger. Weinshall and Poggio have implemented a part of the general scheme. More specifically,
they have used a simple linear classifier to label edges at pixels where there exists an intensity discontinuity,
using the output of tie line process associated with each low-level vision module. They use the fact that
tie modules' discontinuities are aligned, having being integrated with the intensity edges before, so that the
nonexistence of a module discontinuity at a pixel is meaningful. The linear classifier corresponds to a linear
network where each output unit is a weighted linear combination of its inputs (for a similar application to
a problem of color vision, see [23]). The input to the network is a pixel where there exists an intensity edge
and that feeds a set of qualitatively different, input units. The output is a real value vector of labels' support.

In the system we have so far implemented, we achieve a rather restricted integration, since each module
is integrated only with the intensity module, and labeling is done via a simple linear classifier only. It is still
unclear how successfull labeling can be, using only local information.

2.5 Saliency, grouping and segmentation

A grouping and segmentation module working on the output of the edge detection module is an important
part of a vision system: humans can deal with monocular, still, black and white pictures devoid of stereo.
motion and color. We are now developing techniques to find salient edges, to group them and thereby
segment the image. These algorithms have not been integrated yet in the Vision Machine system.

,aliency ,lfeasure

Edge maps producCd by most current edge detectors are cluttered with edge responses and may have
Pdges caused by noise. This creates difficulties for higher level processing, since the combinatorics of these
algorithms often depends on the number of edge primitives being examined. What is needed is a technique to
focus attention on the "important" edges in L scene. We call such attention focusing techiques that measure
the "importance" of an edge saliency measures. Shimon Ullnan [58] has proposed two different kinds of
saliency measures: local saliency and structural saliency. An edge's local saliency is entirely determined by
feature; of that edge alone. For example, an edge's length, its average gradient magnitude, or the color of
a bounding region serve as local saliency measures. Structural saliency refers to more global properties of
an edge - its relationships with other edges. Although two edges may not be locally salient, if there is a
"nonaccidental" relationship btw.veen them, then the structure becomes salient. Examples of"nonaccidental"
relationships, as pointed out by David Lowe, include collinearity, parallelism, and symmetry, among other
things.

David Beymer has investigated local saliency measures applied to the output of the Canny edge detector.
The edge features we have considered include curvature, edge length, and gradient magnitude. The measure
favors those edges that have low average curvature, long length, and a high gradient magnitude. The saliency
measure eliminates many of the edges due to noise and many of the unimportant edges. The edges that
remain are often the long, smooth boundaries of objects and significant intensity changes inside the objects.
We expect that the salient edges will help higher level processes such as grouping (structural saliency) and
mode] based recognition by allowing them to focus attention on regions of an image bounded by salient

'I Junctions: 7"h(ir Dtcchion and ('se Mn Grouping

In cluttered imagery. imagery containiug many objects occluding one another, it is important to group
oge ther pieces of tle image that come from the same object. In particular. given an edge map produce I

by tle ( anny edge detector, we would like to select and group together the edges from a particular object
before runiing hiigh level recogniiion algorithins on tile edge data. This gruping stage helps reduce the
cemmihirlatorics of th iigher level slages, as tlev are, not forced to consider false edge groupings as objects.

ionsloiuring how occliisioi cues can be use(d iii groiping. we have investigated the detection of T .junctil-
nih grouping rules arising from the pairinig of T junctions. When one object partially occludes aimotho;e

in a (l1ituqed scemnie. -a T .iuictioi is formed betiween tlie two objects. Beymer has developed algorihlhii.
for dctect ill,1 JI jlclitI -is as a postpr 'sSiiug step to tile ('aimy edge detector. The ('anny edge uletctI '.

whi,, vry gool at . ctimg edges, is larticularly bad at detectiig juInictions. liuleed. it was de.'.ig ,ed lo
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detect one dimensional events. This one dimensional characterization of the image breaks down at junctions
since locally there are three or more surfaces in the image. We have investigated how one could use edge
curvature and region properties of the image to reconstruct these "broken" junctions. Often tile way Canny
will fail at junctions is that one of the three curves belonging to the junction will be broken off from the
other two. Beymer has modified an existing algorithm asnd achieved promisisng results in restoring broken
T junctions. Once located in the image, T junctions are represented by three edges, the left part of the top
horizontal edge of the T, the right part, and the stem. The top horizontal edges are the occluding edges and
the vertical stem is the occluded edge. Given the junctions, we can start pairing T junctions and grouping
edge fragments. If we assume that all objects in the scene fit entirely within the image boundaries, all T
junctions must be matched up with a "brother" T junction along the occluded edge joining them. This
constraint helps to classify T junctions, making their detection more robust. Once a T junction is matched
with its brother, we know exactly which edge is the occluded edge (it is the edge that is traced to reach the
brother). so we can group the two occluding edges together. The occluded edge will be extended, starting a
search process to bridge the occluding object. Here we are looking for an opposing T junction on the other
side of the occluding object. If such a pair of opposing Ts is found, we can group together the occluded
edges of the respective T junctions. The application of these grouping rules for occluding and occluded edges
often product closed contours when the Canny edges are fairly good. For each closed contour, we can form
a closed region corresponding to an object or object part in the image. Finally, the T junctions are used to
calculate relative depth information among the regions. In the end, the system can divide the image into
regions corresponding to objects and give their relative depths. Beymer currently has the system working
on "toy" images made from construction paper cutouts.

2.6 Recognition in the Vision Machine

The output of the integration stage provides a set of edges labeled in terms of physical discontinuities of
tile surface properties. They represent a good input to a model-based recognition algorithm like the ones
described by Dan HIuttenlocher and by Todd Cass in the 88 IU Proceedings. In particular, we have interfacing
the Vision Machine, as implemented so far, with the Cass algorithm. We have used only discontinuities for
recognition: later we will use also the information provided by the MRFs on tile surface properties between

discontinuities.
We have more ambitious goals for the recognition stage of the Vision Machine. In an unconstrained

environment the library of models that a system with human-level performance requires is in the order of
many thousands. Thus, the ability to learn from examples appears to be essential for the achievement of
high performance in real-world recognition tasks. Learning the models becomes th cn a primary concern in
developing a recognition system for the Vision Machine. This has not been the case in other approaches of
the last few years, mainly motivated by a robotic framework, some of which will be discussed in section 3.

2.6.1 Learning in a three-stage recognition scheme

Although some of the existing recognition systems incorporate a module for learning object models from
examples (e.g. Tucker's 2D system [32]) no such capability exists yet for the more difficult problems of
recognizing 3D objects [28] or handwriting [8]. We believe that incorporating learning into a general-purpose
recognition system may be facilitated by breaking down the task of recognition into three distinct but
interacting stages: selection, indering and uerification.

st:tclioll

Selection or segmentation breaks down the image into regions that are likely to correspond to sii.gle
objects. The utility of an early segmentation of a scene into meaningful entities lies in th, great reduction
of complexity of scene interpretation. Each of the detected objects can in turn be subjected to separate
recognition, by comparing it with object molels stored in memory. Without prior segmentation. every
possible combination of image primitives such as lines and blobs can in principle constitute an object and
must be checked out. The power of early segmentation may be enhanced by integraling all availal)le visual
rues. especially if the integration parameters are automatically adjusted to suit the particuU.. scene in
question.
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Indexng

By indexing we mean defining a small set of candidate objects that are likely to be present in the
image. Although one cannot hope to achieve an ideal segmentation in real-world situations, partial success
is sufficient if the indexing process is robust. Assuming that most objects in the real world are redundantly
specified by their loral features, a good indexing mechanism would use such features to overcome changes in
viewpoint and illuti nation, occlusion and noise.

What kind of feat ure is good for indexing? Reliably detected lines provided by the integration of several
low-level cues in the process ofscgruentation may' suffice in many cases. We conjecture that simple viewpoint-
invariant combinations of primit ie elements, such as two lines forming a corner, parallel lines and symmetry
are also likely to be useful. Ideally, only 2D information should be used for indexing, although it may be
augmiented soinet iines by qualitative 3D cues such as relative depth.

Vf 1fi catioln

In the verification stage each of the candidates screened by the indexing process is tested to find the best
match to the image. At this stage, the system can afford to perform complicated tests, since the numhr
of candidate objects is small. We conjecture that hierarchical indexing by a small number (two or tiree)
features that are spatially localized in 2D suffices to achieve useful interpretations of most everyday scenes.
In general. however, further verification by task-dependent routines [56] or precise shape matching, possibly
involving 3D information, is required [57] [34] [28] [5] [1] [32].

As an example, T. Breuel (in these Proceedings) has considered the problem in which a recognition
svsteni is not given a fixed set of object models, but rather a set of inage/label pairs from which it has
to, build its own object models that it subsequently uses to identify objects in new images: that is. lie has
considered the problem of model acquisition - in the domain of wire-frame polyedric objects - as an integral
part of the problem of object recognition.

2.7 Future projects

The Vision Machine will evolve in several parallel directions:

" improvement and extensions of its early modules

* improvement of the integration and recognition stages (recognition is discussed later)

" use of the eye-head system in an active mode during recognition task by developing appropriate gaze
st rat egies

" use of the results of the integration stage in order to improve the operation of early modules such as
stereo and motion by feeding back the preliminary computation of the discontinuities

'1 wo goals will occupy most oi our attention. The first one is adevelopment of the overall organization of
the Vision Machine. The system can be seen as an implementation of the inverse optics paradigm: it attempts
to extract surface properties from the integration of image cues. It must be stressed that we never intended
this framework to imply that precise surface properties such as dense, high resolution depth riaps. must be
delivered by the system. This extreme interpretation of inverse optics seens to be conin on. but was not the.
motivation of our project, which originally started with the name Coarse Vision Mach,.( to emplasize the
importance of computing qualitative, as opposed to very precise, properties of the environment. Our point
of view is outlined in these Proceedings by Vdelman and Poggio.

Our second main goal 'n the Vision machine project will be Machine Learning. In particular, we have
Iegun to explore simple learning and est imition techniques for vision tasks. We have succeded in syl bet iz hng
a color algorithin from examples [23] and in developing a technique to perform unsupervised learning [.18] of
(other -iHnple vision algorithms such as simple versions of tie computation of texture and stereo. In addition.
we have used learning techniques to perforin integration tasks, such as labeling the type of discontinuities
in a scene. We have also begun to explore tie connections between recent approaches to learning, suchi
as neural networks, genetic algorithms, and classical methods in approximation theory such as splines.

13ayesiaft techniques and Markev Ranlh'u Field models. We have identified some comnion properties of all
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these approaches and some of the common limitations, such as sample complexity. As a consequence, we
now believe that we can leverage our expertise in approximation techniques for the problem of learning ill
mac -in, vision. Our future theoretical and computational studies will examine available learning tcchniques.
their properties and limitations and develop new ones for the tasks of early vision, for the integration stage
and for object recognition. The algorithms will be tested with the Vision Machine system and eventually
incorporated into it. We will also pay attention to parall;l network implementations of these algorithms: for
this subgoal we will be able to leverage the work we are now doing in developing analog VLSI networks for
several of the components of the Vision Machine. Towards the goal of achieving much higher flexibility in
the Vision Machine we propose to explore (a) the synthesis of vision algorithms from a set of instances and
(h) tlie relinieient and tuning of preprogrammed algoritinis, such as edge detection. texture discrimination.
motion. color and calibration for stereo. We will also develope techniques to estimate parameters of tih.
int egrat ion stage. M uch of our effort will be focused on the new scheme for visual recognit ion of' :i1) object.
whose key con ponen t is tlie autoinat ic learning of a large database of models. 'Ve aim to develop :t protud yf,
of a tloxible vision syste n that can, in a limited way', learn from experience.

3 Object Recognition

In earlier reports, we have des ribed a series of approaches to t he problem of model-based object recognition.
based on matching object shape. Our work has proceeded along a number of fronts.

3.1 Recognition from Matched Dimensionalities

Earlier reports described the work of Grimson and Lozano-P~rez on the recognition of occluded objects
from noisy sensory data under the condition of matched dimensionality. Specifically, if the objects to be
recognized and localized are laminar and lie on a flat surface, or if the objects are volumetric but lie in st able
configurations on a flat surface, then the sensory data need only be two-dimensional (e.g. a single image):
if the objects to be recognized and localized are volumetric and lie in arbitrary positions, then the sensory
data must be three dimensional (e.g. stereo or iimt.>ai data, laser range data). The original technique (called
HAF) was designed to recognize polyhedral objects from simple measurements of the position and surface
orientation of small patches of surface. The technique searches for consistent matchings between the faces of
the object models and the sensory measurements, using constraints on the relative shape of pairs of model
faces and pairs of measurements to reduce the search.

Our empirical work on RAF has advanced along a number of dimensions. First, we have shown that
the RAF framework can successfully recognize and locate objects based on a variety of geometric features:
edges, vertices. curved arcs, planar surface patches, and axes of cylinders and cones. Second, we have also
shown that such features can be extracted from a range of sensory information, including grey level images,
stereo data. motion data, sonar returns, laser striping data and tactile data. Third, we have shown that
the RAf framew,-k can be extended to deal with some classes of parameterized objects. These include ilie
recognition of objects that can scale in size, the recognition of objects that are composed of rigid subparts

omimlmeted irough rotational degrees of freedom (e.g. a pair of scissors) and tile recognition of objects thait
,'an undergo a stretcimug deformation along oue axis.

Our empirical experience with RAF suggested that the method was remarkably efficient when dealing
wit i dat a from a single object, but was inefficient when spurious data was included. To overcome t his, we
hay' incorporatedI a Ilough transform to peselect portions of the search space oil which to focus attention,
al we hiave u,,ed thursliolls omi t le gooc'noss of an interpretation to terminate search. The combin-tion of
t lese two tecliniques resulted in draniatic improvenet in the efficiency of the search method. Based on
thie, o!bse'rvations, we have been developing a formal basis for explaining these results. In particular. we
hav. showt tilie following formal results:

* If all ofth, data is known to have come frott a single object. lie expected atiount ofsearch is quadratic
in tlie nunber of data atn( model features.
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e If spurious dat a is included, the expected amount of search is a. combiiriat.ion of polynomial inl the
imiiiier of dalt 'iand model feat ures, bit exponienial inl the( size of ile actual correct interpretatiOnl.

[ 'sing aI lfligli t ransforit to preselect subhspaces oft lie search space reduces thle values of the parainetirs
ti tite f'omiillxitv hoainls, it still leaves ait txI)olieitial problemu.

* t('sinig [irttat iire te rinat ion of search b ased oil a threshold ont "good" i itr -)ret ation reduces ittie
expec'tedl search. lit particular, if thle scenie clutter is smiall enough Celat lye to thle noise inl the dat a, t0li
exlffcted search becoimes polvyiomial, otherwise It is a low ordher exponential.

Y(o support tdwt use of Hloughi t ransformis and( prtiiiatutre termination of searchl, Eric ( riisoi andl Daiiiel
II lit teiculier have executed a, formial anialysis of these miethiods. IThey have derived formial characterizat Otis.1

for tlilt pfrobab1IilityV of ialse positives inl the Hlotigh space, as a function of t lie noise inl thle dat a and ft(i
('Iuaract'-rist ics of tihpIHough t ransfornm. 'Ie results provide a mieans of evaluiatinig tile effit-at- oft ilc
ll ugh tratisforim, and suggest, t hat one shiould not, inl geiieral . rely onl the Hfoughi t ransfornm to fully sohe%(
lilt- r-c(giiit ion problemi but rat her that one( should use it. as a preprocessor, selectinig out. small siihusp;Ices,

16it1111 wli) i te RAF In bod c.an be appliedl effe'ctively. 'I'lle results support, thle emipirical ohswervat iOS
itecrtiiog the r-diictioui iii search.

riusoui and fII it eiloclier have also (developedl a formial characterization of thli-sliolds For tcr,ia umllg
.' rch .la iiig aiahyir icboiiuds onl such thlreshioldls to expected pirobtabilit ies of errors. 'These formial ru.iilts

li~ivu' letti shown to( agree withI emipirical evidence from several recognit ion systemts.
Mitchi of our earlier work with the( RA F ret-ogititionl sVstemIl dealt with robot it-s environiiietts atid ftli

rff')gi t on of iuiiitrial parts. We have Continued flhis effort. bY' int1egratinig RAF iut o H ie II A N l)Y task-
level] pliuiiiiig systeiii of Lozano-l t~rez. Wke have also conitiinuedl a pilot. stutdy of applying tilie tecliiue to aI
voery fliferetit ihomii iitderwateur localizat ioa. Specifically, we have considered the probulemi of deltriiiii

lit' lot-at iolu of alt aii. otitioils unulerwat-er vehicle buy iat chiitg sensory dhata obtained by tie( vehileo againstl
hathyiviiir o. -hler mjaps of the eiivirotinment. .Sensor modalities Md tide active miethiods such as sonar. and

haiv'methlods such as pressiire readings anud doppler lta from passing ships. WVe have condulcted soji
earl s invdilti expieriiyf-)is ujsing RA F, t ogetlier withI strategies for acqtiring sensor3 dat a to sol ye thIi
If ;iliyzat ion prollf'ii, wi iexcellent results.

(''ir formal ainalysis andl our eiynrcleperience ho il ari~iie that. thle RA F approach to recognit ion fails
to adcfltfiatt'iy deal with HIi lt issue of segmentation of the( 'dat~a int~o sub~sets that are likely to have coiiif
froiii a single (.h1jt'ct . Whiile tit', Houigh t ransformn canm help reduce tHis probtlem, it is model idrivetn. ajif
hentce potet'itially ve-ry txpen'isive' wheni apphliedl to large libraries of oh)r s. As anl alternative to this, Da);vidl

-h," lxs direct lY addfressedI thle Issue of gtereric grouping ili am Imiage. Jacolis has derived ineaslirts for
fltf'rniiig t- prolfalfilty t hat, a set of efIge- fragumenits ill ali ilmage is like'ly to have -onit( froiii a sitigi'
flfjfcct . 'Ilifst' tfaslirts conisidter siiiple iiitasiireiteiits siuch as tflie, s1)iirat ioti of groups of edges. anifll

rfl lV uigiiiieit of groups 1ff edges. 'The recognition systeit!, since it, (does nmot directly conisider thel)ie It'ct
if a II ivf1casioiially be inicorr'ct . However, tests of the( syste'im ()ii a varietyv of images of two d iiieiisi(,ial

fi11l Iirt'f'- dinwi'moiial srtenes sblow,,ar rtiarkal- atid dramatit- rediuct ion ii tlilt' swar-l reqtuired tI. rt'togni7f
* 1jI fr iii a I ,1r;I rv. andf also is quiite e'ff'-ct lx' it idel'tifvi~ig groups off edfge's coinlg from ia sitg il'fI-A

I It, IFc tio' grlfiiing iiitiimisiii is, fart, i' iurly alfharet whitn apfllitfI tol litrarit's 1ff hIjt't-ts. SIcHit'

i.:i';iiii'r. 'ffiflftt'f l lt' grouinig 5t-lifiit' (';ii t lot isf'f tof ldo ct'ft'tive infdtxing lit() a liltrairy
\\' ii. i a lilt tule'

1 c lo inlves t Igalt' tlt w' 4' tatalifIl :rcltitt'ctmrs. such ;is lt(-~ ( fti',,wltfitm~ eii
igjlflhf;lilt pl.ff'rmni;liit', ijrff'.'tt'tts. 'lo ( 'xLs has1 f'ffitld.'tt' litfl'tlltif1iit an i lli

Aif a ri-ilt r gutiti ,dtwiiit ffor tw(f fil'isfiotl on'u' ffiwltfldi it' rtlffortll id tlt. (It, :i
hr -'. I i i ii- lIt,- s\.l', if is'" ai firt-hil ll,'it'li triftfrf tI f ffll(fI 11'd 171( l fV b t a tIl iig S'l.iit ill I It
1j'fr;lilti1-r ' p'-v 1ff t iii ii".d i m, I '' 1f ,(f ;itf 1f~ f rind its ~' ' I ol alt li h ft'rlffn lmi if ' fl lif. ' .tthodIIii\ l'



3.2 Using Recognition for Mobile Robot Localization

Besides the ILANDEY task-level planning system, we have also considered the application of our recognition
technology in the domain of mobile robots, especially for problems of long-term autonomy. David Braunegg
has been considering the problem of constructing and maintaining a world model representation to support
the ;iavigat ion o, leng-term.; autonomous mobile robots. This research focuses on the use of stereo vision to
obtain enough inforniati.,n about the world to enable path-planning and navigation-planning to be performed.
Analysis of the requirements on a representation .vhich can support long-term autonomy La,1,_' k u ,iv .g,.
of a two-level world model, an implementation of which has just been completed. This world model integrates
stereo information acquired from a variety of viewpoints into a consistent whole. The system uses a variation
of the RAF recognition method in conjunction with the model to recognize its location from stereo data.
Experiments are currently underway to explore the efficacy of the method in integrating and maintaining
noisy 3D data about an environment as the mobile robot moves within it over extea)ded periods of time.

4 Using motion

4.1 Direct Motion Vision

Berthold Horn and some of his students are now focusing on improvements in accuracy potentially available
when existing direct motion vision techniques are extended in time. Present methods recover motion and
shape from instantaneous rates of change, or two adjacent frames in the discrete case. While this permits
a reasonably simple formulation of the problem, the accuracy is not great, since the equivalent baseline is
typically quite short. One answer to this problem would be the use of longer time intervals between frames.
But then direct motion vision methods cannot be applied directly; instead, feature-based methods suited to
long-range motion vision problems would need to be applied. The advantages of the direct motion vision
methods, including potentil for simple parallel implementation, sub-pixel accuracy in motion dctermination.
and dense depth map recovery would be lost. One approach is to use a dynamical model of the motion imaging
situation as the foundation for the systematic processing of an image sequence. In these proceedings Joe
Heel describes a systematic approach to the problem of using a sequence of images to estimate a depth map
and motion parameters. The approach leads to a formulation in terms of Kalman filters and to encouraging
initial results with synthetic and natural images. The direct motion vision approach can also be applied to
range images, where there is no concern with scale ambiguity or questions about the accuracy with which
the brightness change equation is satisfied [20].

Other related work by B. Horn focuses on using additional constraint to simplify the direct motion vision
problem. An important practical example of this is the use of fixation, since this introduces a constraint
relating the instantaneous translation dnd rotation of the observer. The idea here is to have one module
that tracks a designate-' patch in the image, while a second module recovers the motion and depth map.
The tracking module uses feedback based on known least-squares algorithms for constant, optical flow in
a patch, as described by H.-H. Nagel and E.J. Veldon and used in the analog VLSI chip developed a;
CaltecH by Tanner and Mead [54]. Unlik- centroid-based and feature-based trackers, this method is not
restricted to bright, blobs against dark backgrounds or specific features such as vertices on polyhedra. All it
needs is sufficient image contrast, particularly at higher spatial frequencies, and some limits on the rates of
deformation of the image pattern.

4.2 Recovering 3-D Trajectories

lii!, rth and NMistler are addressing the problem of recovering the 3-1) trajectory of an object in space fr, i
its changing size and position ii the visual image. Au approximation to the instlanltaneous 3 D heading,)f
ani object can be derived by c mbiiiing t lie projected iniage velocity of the object wit h a rough measu re of
the tnire to collision (7;.) of lie object with the observer. An approximation to T. is given by lhe rati,,

where 0 is tHie angular extent of the object under spherical projection, and d is the rate of ichali' ,,if
L'iis ang~ular size over li tue.'This atpproxiiiat il assiittes that over~ short titue intervals. the v,hlicitv if h



object is constant, and that the object is oriented roughly parallel to the image plane. We have recently
incorporated this approximation to instantaneous 3-D heading into an algorithm that derives the global
parameters of motion of an object undergoing a free-fall trajectory [52]. The algorithm derives the set of
parameters that yield a trajectory through space that best fits (in a least-squares sense) the time series of
positions and 3-D headings of the object. Initial simulations suggest that the algorithm performs well for
small objects in motion.

4.3 Structure-from-Motion with Surface Interpolation

hlildreth and Ando are exploring the integration of the recovery of 3-D structure from motion with surface
interpolation. The motivations for this are two-told. First, many of the structure-from-motion algorithm,
that have been proposed are feature-based, in that they first extract aset of moving features such as intensity
edges, corners, points, and so on, and then derive 3-D structure at the locations of these features. If the final
goal of the structure-from-motion process is to produce a complte surface representation, then restricting
tie initial recovery of structure to the locations of features requires a subsequent stage in which a full surface
is interpolated between the depths at sparse features. Second, most algorithms also assume that a given set
of features persists over an extended image sequence. It would be desirable, however, to allow the structure-
from-motion process to cope with teatures that appear and disappear over tin, , for example, when occlusion
and disocclusion of surfaces occurs.

We combined Ullman's incremental rigidity scheme for recovering the 3-D structure of discrete features
over time with a smooth surface interpolation algorithm. As a set of features moves, its structure is built
tip continuously over time, and at each moment, surface interpolation is performed to fit a c )mpiete surface
over the moving features. The current surface serves as an initial solution for the next moment in time,
and newly appearing points in the scene are assigned an initial depth given by the interpolated surface at
that image location. This scheme allows a full 3-D surface to be built up over an extended time, despite
appearance and disappearance of features.

5 Photogrammetry

B. Horn is continuing to find application of known results in photogramnmetry to machine vision. The optical
flow equations of Prazdny and Longuett-Higgins, for example, are the parallax equations that occur in the
iterative adjustment of relative orientation and exterior orientation [2]. Also, the relative orientation method
using linear equations derived from eight ray pairs have been noted in photogrammetry (and discarded
because of their inability to deal properly with the least-squares version of the problem) [47]. Significant
further improvements of the new iterative relative orientation method reported on in last year's Image
Understanding workshop resulted from a comment by a reviewer of the paper [19]. The equations simplify
if the Lagrange multiplier is not eliminated and the symmetric nornal equations are solved directly.

It has also been found that solutions of the relative orientation problem come in groups of four (not
countiiig baseline reversals) if one doe- not consider the signs of distances along the rays (that is, whether
rays intersect "in front of" or -'behind" the camera). There always is at least one such group. Following a
,urggestion of Arun Netravali, it has been found experimentally, that while there are typically only two or
three such groups of solutions, there can be four or even five. This overabundance of solutions is fort unamely
iot a big issue, since it is rare to have positive signs on all the distances along rays on more than on, of
t'ws oloti'ns." Also. when there is more than one solutions with all intersections ii, front of hoth imaging
vstlemv,. then often one of these sohitions involves very small or very large distances (often less than one

hundlre(;ihs or iiior than ine hundred "hues the length of time baseline).



6 Shape-from-Shading

A recent revival of interest in pholoclinornery, which is what astrogeologists call shape from shading, lead
to a new look at iterative algorithms for this problem and the discovery of a novel method that can handle
complex surfaces as well as integrate height and gradient information provided by other vision modules such
as binocular stereo and motion vision (Horn, these Proceedings). The new method can actually obtain an
exac t solution if the numerical data is exact, despite the fact that it uses a regularizing term. It also lends
Itself to parallel implementation either on high speed ligital computers or in coupled analog networks [18].

Other recent work, summarized by B. Saberg in these Proceedings, involves the application of the
dynamical sytems approach to the solution of shape-from-shading problems [52]. It appears that for the
first tinte the question of the existence of the solution may be apprcached. It seems now to be possiblh
to create --impossible" shaded images images that cannot be shaded views of any real surface under the
assumed lighting and surface reflection properties. This may explain our ability to often separate albedo
variations from shading effects resulting from surface shape. Also, a collection of papers on shape from
shading, including a comprehensive bibliography, is ".bout to appear [16].

7 Qualitative shape descriptors from stereo

Vision is sometimes described as a problem of inverse optics. We mentioned in a previous sect ion that this
does not require the computation of dense arrays of high-precision data of the different physical properties
of surfaces. Human vision does not seem to involve the computation of the precise inverse mapping of
the projection of 3D world onto a 2D retina but something more qualitative. Daphna Weinishall (tliest,
Pr,;ceedings) has concentrated on qualitative information that can be obtained from stereo disparities wit h1
littll computation. More specifically, local surface patches are classified as convex, concave, hyperbolic or
parabolic, using a simple function of image disparities. The axes of minimum and maximnum curvature, as
well as the asymptotic axes (if they exist), are also obtained. The algorithm works well with synthetic images
and exact disparities. It is used to compute axes of zero curvature on real images.

8 Analog VLSI circuits for vision

As we discussed last year, our Vision Machine is mostly specialized software running on a general purpos,
conipliter, the Connection Machine. This is aii ideal system for the present stage of experimentation andI
developtent. Later, it will make sense to compile the software in silicon in order to produce a faster.
cheaper. and smaller Vision Machine. With funding from NSF and DuPont, we are beginning to use analog
VLSI technologies to develop some initial chips as a first step toward this goal. Within the integrated
circuit, the image data may be represented as a digital word or an analog value. While the advantag.:,
of digital computation are its accuracy aii(d speed, digital circuits do not have a.s high functionality per
devic, as analog circuits. Therefore, anaiog circuits should allow much denser computing networks. This
is particularly important for the integration of computational circuitry and photosensors, which will help
to alle iat, ti,- 1/0 t-ilh neck typically experienced whenever imag" are serially transferred beeti
i od le-s.

In those Proreedings Woody Yatng discusses (C'l)s for signal processing and iniaging, describillg sotIe
hsi' oprat ions and iiow those operations can be combined into a ('(' ) processor architect ure for vision. A
ciruit for performing Laplacian-of-Gaussian filtering of tie imiage has been sent to fabrication. The l)lw r
,i-cis>,.s oitlir ((I) circuits for tire iiitegratioii-reconstruction stage of th, Vision .Machine and for stre.

Brttold Iorn ihas studied i, an elegant way different kinds of analog networks for visim tasks [it]. suh
ris r,, yeiv, grids ai circuits with nonlin'ar comiiplnents. li has focused oil networks compost, ofI -l-Ix

iji,-rcrrtittetd passive eletnm,nts, linear amllifiers. and simple nonliiear components [5.1]. \Vhile there, ha,.
I i it ,.xuirsiols inito the dev( plllopn t of ideas ill this ara since th,, very b'giuiitgs of w,,rk ( 'i h

- I a i it was r,,,ntly "tgget. th;t statiarl regtuilri/atio algorithm cat h, it ,jd.'iutt , d iII
, wi,.wrk, ,,f r,,sistir, a i I,; ttris [12]. titch w, rk rettiais to , I ii ,. hr,,.rs- will Ijul, ,it

,air.Il , uII ; ,tttlti',i t, II;t'hiii, ,,f the ca[alihiti,.s of Sminple,, wiuw,,rks to th, teed> ,,f earl \ i- ,m



9 Learning

As we discussed in the last Proceedings, F. C;ir-i., B. Moore and T. Poggio have approached the problem
of learning from the point of view of classical approximation theory. Poggio and Girosi have recently
obtained what we believe is a satisfactory understanding of the learning obtained by "neural" networks
such as backpropagation. In the last Proceedings we had drawn a formal analogy between simple forms of

learning and hyperstirface reconstruction. As a consequence, learning can be achieved by techniques such as
regularization and therefore generalized splines. The connection, however, between these classical methods
and feed forward networks of the backpropagation type remained unclear. Poggio and Girosi have now found
that the missing link is provided by the approximation method of Radial Basis Functions. The Radial
Basis Function approximation method has a sound theoretical basis and a direct interpretation in term of
a feedforward network with one "hidden" layer. Poggio and Girosi have been able to prove its connections
to generalized splines, to regularization techniques and to Bayes' approaches. They have developed several
new extensions of the method and indicated how to address a few general issues in networks and learning
within its formal framework (Girosi and Poggio, in press).

We describe briefly the interpolation and approximation technique called Radial Basis Functions (see for
a review [46]). which has been used in the pas" for surface interpolation with very promising results [9. 131
(clearly surface reconstruction is another application of this technique of interest to vision research).

9.1 Radial Basis Functions

Given a set D = {(.i, 9j) E Rr' x Rji = 1, ... N} of data to interpolate, the Radial Basis Function method
corresponds to choosing the form of the interpolating function as

N

i= 1

where h is a smooth univariate function defined on [0, o) and I1-I1 is a norm on R". This formula means that
the interpolating function is expanded on a finite N-elements basis that is given from the set of functions
h translated and centered at data points. The N unknown coefficients of the expansion can be recovered
imposing the interpolating conditions F(Z ) = Y1. This gives the linear system

N

I= ci h(Iij - I j 1 1 ..., N.
i=t

Defining the vectors Y, Fand the symmetric matrix IH as follows

(Y) t , (C), = c,, (H)1 j = h(lI.j - y,112)
we obtain

provided H is invertible. The invertibility of I depends on the choice of the function h. In fact .Micchelli
[37] pioved the following theorem, that defines a class of functions that we can choose to form thew basis:

Thor(iii 9.1.1 Let (; be a conliuous funct:on on [0, ,. ) and positive on (0. oc). Suppose it.s first dry/ur rlr

.s rolipirlu oIotI101100ic btl not constant on (O, oc). Then for any distinct rectors 1., 1 C I?"

(-l)"-dclC;(lL• - Fjll2 ) > 0

I1e iiljtrpolatio,n conditions can be weakened if the numher of knots is mad, !,oNwr th an th, iml- ,
,,f d at and their coordinates ar' allowed to he chosen arhitrarily [6]. In this ,'as,, ,.t t wit "'. . ,

the r,,orliiates of the Kx knots (K < N) th, interpolalion conditi ons give tlie litear -- 11,7i, i , .

(I h =1 h(ij, - tI-) (i . and o = 1. ..., I). lle matrix II l'ing rectanular I - . t;-



C. PC

Figure 2: The Radial Basis Function network for the interpolation of a bivariate function. The hidden unit
h,, eialuates the function h(II.i- CII2)

is overconstrained and the problem must be then regularized to obtain a reasonable set of coefficients for the
expansion. A least-squares approach can then be adopted and the optimal solution can be written as

F= H+1

where H+ is the Moore-Penrose pseudo-inverse. In the overdetermined case, one has

H + = (HTH)-H z .

As in the previous case this formulation makes sense if the matrix HTH is non singular. Micchelli's theorem
is still relevant to this problem, since Poggio and Girosi proved the following corollary:

Theorem 9.1.2 Let G be a function satisfying the conditions of Micchelli's theorem and Y1 , ... ,;N a N-
tupla of vectors in R'. If H is the (N - s) x N matrix H obtained from the matrix Gj = G(II; - YjlI2 )
deleting s arbitrary rows, then the (N - s) x (N - s) matrix HTH is not singular.

The first layer consists of "input" units whose number is equivalent to the number of independent variables
of the problem. The second layer implements the set of radial basis function and its number of units is equal
to the number of knots. The units of the second layer are in general fully connected to the units of the
first one. The third layer consists of one unit (for a scalar function) connected to all the units of the second
layer and computing a weighted sum of their outputs. The weights are the coefficients of the radial basis
expansion and are the only unknown of the problem. Since spline interpolation can be implemented by such
a network, and spline are known to have a large power of approximation we have then shown that an high
degree of approximation can be obtained by just one hidden layer network.

n.2 An extension: Generalized Radial Basis Functions

Poggio and Girosi noticed thaL the knots of the radial basis expansion have been kept fixed, the weights
being the only unknowns. To make the method more flexible they propose to consider even the knots as
unknowns and to look for the configuration of weights and knots that minimizes the least square error on
the data. The problem consists then in finding the values of the coefficients ci and knots t" that minimizes
the function

N K

E =Z( } - .1ch(2 -

A gradilent-descent approach can be adopted to find the solution to this problem. The values of c, and F,
are then regarded as the coordinates of the stable fixed point, of the following dynamical system:

OE

OE

at
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where ,. is a parameter determining tile microscopic timescale of tile problem and is related to the rate of
convergence to the fixed point. Defining tile interpolation error as

K

Ai -i ch(~I~ _ F.112 )

we can write the gfitdient terms as

N
- = "- :X ~l, /ole

0E F"--4c,, i(1- 12 )

where h' is the first derivatives of/i. Equating . to zero we notice that at the fixed point the knot vectors

t,, satisfy the following equation:

- i

wher 2lol). The optimal knots are then a weighted sum of the data points. The weightwhere P~' = Aih'(jj.Fi _ F '

P of the data point i for a given knot o is high if the interpolation error Ai is high there and the radial
basis function centered on that knot changes quickly in a neighbor of the data point.

9.3 RBF are equivalent to regularization

Interesting connections between RBF and regularization techniques arise when the basis function are chosen
to be Gaussian. Let us consider the RBF method in its original formulation, having chosen the basis function
to be a Gaussian G. The coefficients of the expansion are the solution of the linear system Y- = G" where
(G)ij = G(JIIli - yj 112). If data are noisy a well known technique [55] to regularize the solution is to substitute
the previous linear system with the following

= (G+ A I)F

where A is a small parameter and I is the identity matrix. We now show that the same approximating
function can be obtained from a pure regularization approach. Let us consider the following functional

EI[F] = j__lYi- F(i)) 2 + A J diZE a,-(D' F(i,))2

i rn=0

where A is a parameter. D 2 .. = 2m, D 2tz+l = f,72,n, V 2 is the Laplacian operator and the coefficients i,,,

are to be chosen. It can be easily proved [61] that by posing a,, the function that minimize.s this
functional can be written as

N

F (.F) ci(II =4112)

whore ,G is a Gaussian of variance a7 and the coeficiei i s satisfy the linear system V = (G+ AI)F, that is the
same as before. So in this case RBF and regularization are equivalent. Notice (hat changing the coefficients
a.m is equivalent to selecting another basis function h, inswead of G. II fact it can be shown that the st (,,,
amid h art related by lhe following distributional partial differential equation:

_ a,,,U 7,2= s '
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The stabilizer described above is not the most general one. Other types could have been chosen, depending
on the a priori information about the surface to be reconstructed. The previous one is suitable if we want
to keep local the interaction between a data point and its neighbors, since the Gaussian falls off very quikly,
that is the *,interaction" is short range. It can be shown that this is related to the presence of a term of
degree zero in the stabilizer [61]. For example, in two dimensions, if we chose a stabilizer like

dxdy +[( 2 ±2 F2 ( F ) (2F )2]

this leads to a Radial Basis Function of the type h(IliI 2) = ;IIF
2 logi lij. This kind of interaction is clearly

long-range, as it should be, since the corresponding functional is the bending energy of a thin plate of infinite
extent (Duchon and Meinguet gave the name thin plate splines to the solution of the interpolation problem
obtained minimizing this functional).

The same kind of results can be obtained in a third way, in the networks framewo,k. Let us consider
the network of fig. 2 and the problem to find the "synaptic" weights. If we adopt a least square criterion
we recover the usual linear system 1" = G", but often it is considered an advantage to keep the connections
from growing to infinity, and so the following functional is minimized:

N

E2 YF] - ci J. K 2 - + A

where the last term gives an high price to the configurations in which some coefficient ci is very high.
It is immediate to see that the minimization of this functional leads to the solution of the linear system
Y= (G + AI). This shows the equivalence between some of the "new" neural networks techniques and
classical regularization.
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ABSTRACT

This paper summarizes the USC Image Understanding research projects and provides references to more detailed
sources of information. Our work has focused on the iopics of: robotics vision, mapping from aerial images, motion
analysis, some general techniques and parallel processing.

1 INTRODUCTION

This paper summarizes our research projects during the past year. Some of this work is described in more detail
in other papers in these proceedings[l, 2, 3,4]; this work is covered only briefly in this summary. We also provide
references to details for work not described elsewhere in these proceedings.

Our research activity has fociussed on the following major topics:

" Robotics Vision

a Mapping from Aerial Images

" Motion Analysis, and

" Parallel Processing

2 ROBOTICS VISION

Our concentration here has been on description of 3-D shape and recognition of objects based on shape. We have
made some major progress in these areas in the last year. We have studied techniques using range data, a pair of
stereo images, aid a single intensity image. We have also constructed some range finders in our laboratory. We
have been developing methods for both sur'\c, J volume descriptions. Both methods rely on the same underlying
philosophical concepts - that complex shapes ,teed to be described by decomposition into "simpler" parts and that
the inter-relations of the parts are a significant aspect of the shape description. The decomposition can be carried
out successively to the desired level of detail. We call such descriptions structued, hierarchical descriptions.

2.1 RANGE DATA UNDERSTANDING

Range imagery provides an interesting domain of application in which the measurables in th - image relate directly to
the shape of the objects in the scene (as opposed to their texture, color, reflectance, etc. in intensity imagery). Our
goal is to perform high level tasks such as object recognition and pose identification. Such geometric reasoning can
only be performed using object-centered descriptions. We briefly outline the advances we have made in designing
range finders to acquire depth images, in generating object-centered descriptions, and in recognizing complex obiects
in scenes with substantial occlusion.

*This resebrch was supported, in part, by the Deferse Advanced Research Projects Agency contracts DACA76-85-C-0009
and F33615-87-C-1436, order No. 3119 and monitored by the U.S. Army Engineer Topographic Laboratories and Air Force
Wright Aeronautical Laboratories respectively.
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Range finders

We have two diffeient range finding systems available to generate a range map of a given 3-D object, both of them
based on active triangulation. The first consists of an independent laser system generating a sheet of light projected
on the target object, which is placed upon a translation or a rotary table driven by a personal computer. This
computer includes a video digitizer board to which two CCD cameras, looking at the scene from both sides of the
sheet of light, are connected. For each camera, the projection of the 2-D curve consisting of the intersection of the
laser plane with the object is extracted. As our calibration procedure establishes the geometric transformation that
back-projects any point of the image plane to the corresponding point in the laser plane, we are able to reconstruct
the 2-D curve in the laser plane. Hence moving the object step by step provides a dense map of the surface of the
object either in cylindrical coordinates (rotary table) or cartesian coordinates (translation table)(51.

Besides its low cost, this system has several advantages over similar existing systems. First of all, we use two cameras
to limit the well known occlusion problem and we integrate range data obtained from these cameras into . single
range image. The calibration of each camera is very simple, has a sub-pixel accuracy, and is performed only once
as the laser and the camera do not move. Our data acquisition uses an interpolation technique that produces very
accurate depth measurements (typically 0.2mm precision at 1m) and our system also provides intensity data in
registration with the range data.

In the case where we can not or do not wish to move the scene on a tray, we use a system that consists of a nematic
liquid crystal mask inserted into a slide projector to provide an illumination pattern and a CCD camera looking at
the scene from a different angle. The hardware was provided courtesy of Prof. S. Inokuchi from Osaka University,
and the details of the system can be found in [6]. The main advantage of this system is speed, since by projecting a
set of n Gray-coded patterns onto the scene, we obtain depths for 2' lines.

Generating surt, ce descriptions

In order to obtain useful surface description%, we need not only to devise a proper formalism using the criteria of
richness stability and local support, but also to design proper implementation tools to deal with real images (noise,
quantization and digitization).

We hL.,e chosen to segment range images into simple surface patches, whose boundaries correspond to surface
discontinuities (Co) or surface orientation discontinuities (CI). Each surface patch is then globally approximated by
a bivariate quadratic polynomial. The details can be found in [7]. This segmented representation of a scene may be
viewed as a graph whose nodes capture information about the individual surface patches and whose links represent
the relationships between them, such as occlusion and connectivity. Simple reasoning on these relationships is used
to decompose the full graph into disjoint subgraphs corresponding to different objects. An example is shown in
figure la-c.

The success of this representation critically depends on our ability to compute the necessary attributes, such as
gradients and curvature, from an image in the presence of noise. We have found adaptive smoothing to be a tool of
great value for such operations. The details can be found in [8, 9], but the ideas can be summarize as follows: The
general purpose of our Adaptive Smoothing scheme is to smooth a signal - whether it is an intensity image, a range
image or a planar curve - while preserving and even enhancing its discontinuities. This is achieved by repeatedly
convolving the signal with a very small averaging filter modulated by a measure of the signal discontinuity at each
point. A relatively small number of iterations is needed to obtain a smooth signal suitable for features extraction.
In range images, we use curvature features such as curvature extrema or zero-crossings which are easily detected and
directl) localized after Adaptive Smoothing as opposed to Gaussian Scale-Space approaches where a tedious tracking
procedure is needed.

3-D Object Recognition

We have been able to use the above descriptions to achieve successful recognition of complex objects in scenes
containing multiple objects that are only partially visible and are occluding each other. An example of recognition
is presented in figure 1(d), and a detailed treatment can be found in [10,11]. For the purpose of matching, a model
is reprrsented by a set of such descriptions from multiple viewing angies, typically 4 to 6. Models can therefore
be acqui-ed and represeiited automatically. Matching between the objects in a scene and tlhe models is performed
by three modules: the screener, which finds the must likely candidate views for each object, the graph matcher,
which performs a detailed comparison between the potential matching graphs and computes 'he 3-D transformation
btween them, and the analy7er, which takes a critical look at the results and proposes points to split and merge
r tbjpct graphs.



(a) Original Scene (shaded) (b) Inferred objects
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(c) Graphs (d) Results

Figure 1: Segmnentation of a complex range image.
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Current focus

Our interest is in using our current range understanding sytem as a core and in extending it in the following ways:

" Other representations
The current system can only handle cartesian maps, whereas different sensors may furnish data more easily
expressed in cylindrical or spherical coordinates.

" Automatic model acquisition
The current model representation by a set of partial views should be modified to describe the entire object by
a single graph. This procedure should be done automatically by merging the different views of an object. We
are investigating this merging both at the data and symbolic level.

" Parameter sensitivity
The segmentation of range images into a set of surface patches depends on a few thresholds, similar to the ones
used in edge detection. This dependence can be significantly reduced by observing the distribution of errors
between the original data and the best surface fit. If the errors are not randomly distributed, the patch can be
resegmented with tighter parameters.

" More general patches
The current method can handle a large variety of complex objects, under the condition that the boundaries
between the patches are sharp. When the object resembles a free form surface, the approach used here breaks
down, because it forces us either to accept a bad polynomial approximation, or to introduce phantom boundaries
to preserve the goodness of fit.

2.2 SHAPE DESCRIPTIONS FROM INTENSITY IMAGES

Deriving reliable shape descriptions from one or more intensity images is much more difficult than from range data
because the information we can extract is sparse and imperfect. Our feature extraction methods do not find all of
the object boundaries and many of the boundaries may correspond to shadows, surface markings and noise. Thus,

our description methods must distinguish between various kinds of boundaries in addition to generating the shape
descriptions themselves, i.e. the segmentation and the shape description problem can no longer be separated.

We have developed two separate systems for this task. Both use a representation for object shape that assumes that
the objects of interest have some symmetries and that segmentation and description can be achieved by finding these
symmetries, which can be thought of as resulting from the projections of generalized cones. Generalized cones have
been used extensively in previous shape analysis work, usually, however, perfect data, such as that available from
a range finder, is assumed. In earlier work, we described a technique to work with sparse and imperfect data that
assumed that the scene contained a class of objects known as linear, straight, homogeneous generalized cylinders [12].
Our new method is able to handle much more general objects.

Our technique represents a complex object by decomposition into simpler parts. Our task now is to find which
boundaries outline a part and how the parts are inter-related. We do this based on a simple observation:

object parts are of finite extent, hence they must be terminated by a boundary or by another part.

Our initial hypotheses as to where object parts may be found is based on finding symmetrical pairs of boundaries
which could constitute the "axial contours" of a generalized cylinder (or a "ribbon"). Even in simple scenes, this can
produce hundreds of possible alternatives. The choice between these multiple hypotheses is made based on the above
observation, namely that real parts must terminate somewhere. This process is highly effective in narrowing the
list of hypotheses and also produces hierarchical, segmented descriptions for complex objects simultaneously. This
method is described in more detail elsewhere in these proceedings[3].

In another approach, we attempt to implement a process of "perceptual grouping." Again, we use the symmetry of
contours to form initial hypotheses. The choice between multiple hypotheses is based on a process of competition
between them. Competition is implemented in a highly parallel "constraint satisfaction network." Further geometric
reasoning is applied between the hypotheses that survive this competition. Good segmentation has been obtained
for a variety of highly complex scenes in our experiments. Yet higher levels of reasoning can be applied if a pair of
stereo images are available resulting on complete 3-d description of visible parts of the objects in the scene. This
technique is described in detail later in these proceedings[4].

2.3 DEPTH FROM STEREO

Our previous stereo methods (13, 141 relied on segments derived from connected edgels as primitives. In the presence
of texture, however, this continuity along segments cannot be enforced, since the segments tend to be very short and
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Figure 2: Some figures for which we readily perceive 3-D shape from contour alone.

disconnected. We have made significant progress in building a system that aims at robustness with respect to scene
characteristics, from textured outdoors scenes to highly regular man-made objects. It offers the advantages of both
area-based (dense map) and feature-based processing (accurate disparity) by combining them wherever possible. In
the current version, the area-based process occurs first and is refined by the integration of edge information. It
is based on our observation that whenever there is enough "texture" (measured as intensity variation in a small
window), then a correct correspondence can be obtained by a local process. The area based approach proceeds
by computing a texture for each image view and performing a simple cross correlation between them. A match is
accepted if it corresponds to a peak for both views and this peak is high enough. The resulting dense disparity
image containing a few holes and incorrect matches is then filtered using the smoothness assumption to fill small
gaps and remove small spikes. Note that contrary to the case of feature based stereo, this smoothness assumption
is justified since we reason about patches of opaque objects, and that we can make inferences about occlusion and
detect "penumbral" areas (visible in only one of the views). This disparity map is a smoothed version of the true one,
however, because of the finite width of the windows used in processing. The problem is most acute at Co (depth) and
C1 (crease) discontinuities, but can be solved by introducing the edge information: the disparity map is adaptively
smoothed [9] subject to the constraint that the disparity at edgels is fixed. It is important to note that this method
gives an active role to edgels parallel to the epipolar lines, whereas they are discarded in most feature-based systems.
We have obtained very good results on complex scenes in different domains, as shown in the paper included in these
proceedings [1].

2.4 SHAPE FROM CONTOUR

In another project, we are investigating how the 3-d shape of an object can be inferred from its contour in a
single view. Most previous work in this area has been in the domain of polyhedral objects with only some limited
techniques available for analysis of curved surfaces [15,16,17]. We have been studying objects such as shown in
figure 2. Our basic assumption is that much of an object's 3-d shape is given by the symmetries in the figure and
that non-symmetric figures give poor 3-d impressions to humans as well.

Our technique uses certain constraints for determining the orientations of the points on the surface in 3-D based on
the following assumptions:

* Observed skew symmetries in the image correspond to real symmetries in 3-D
* That a certain contour in the image is planar

In [181 we have shown that in some cases these constraints are sufficient to uniquely determine the 3-d surfaces from
contour alone. However, we view these techniques as still being preliminary with much more analysis needed for
complex shapes. In particular, we need to examine if the assumptions hold in all cases of complex shapes.

The techniques for determining shape from contour, including our method outlined above, usually assume that the
image is obtained by orthographic projection. We have also been working on generalizing the techniques to work
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with perspective projection. We find that some of the equations are more complex but the orthographic techniques
still apply. One surprising result of our analysis is that in some cases the perspective analysis actually gives tighter
constraints than orthographic analysis. These techniques are described in [19].

3 MAPPING FROM AERIAL IMAGES

Our goal here is to produce high-quality symbolic maps of complex, cultural scenes from aerial image data. For some
time, we have been working with the domain of large commercial airport complexes. Such scenes have a variety of
features such as the transportation network (runways, taxiways and roads), buildings (terminals, hangars, etc.) and
mobile objects (airplanes, trucks, cars, etc.). Our aim is to produce descriptions of the individual objects in the scene
as well as an integrated description of the entire scene including the functional relationships between the parts.

Our motivation for this work is two-fold. Firstly, the specific tasks are of great practical significance for a variety
of applications. Secondly, we believe that the problem domain provides a rich testbed for experiments in building
high-performance visual "expert" systems. We do not necessarily imply that the exact algorithms developed for this
task will also be useful for all other tasks, but merely the hope that the approach will carry over for similar tasks.
We also believe that experience with specific domains is essential to development of more generic vision systems.
Mapping requires dealing with a multiplicity and variety of objects in a natural environment that contains texture
and markings. The solution requires use of powerful "bottom-up" descriptive techniques as well as the use of domain
knowledge. Such capabilities are obviously going to be needed by vision systems in other domains also.

Our approach in the design of the system is that it must be modular and that the modules interact mostly at high,
symbolic levels. In airports, for example the modules may be for detecting and describing the transportation network,
the buildings and the mobile objects. Detection of one type of object, such as a taxiway, may aid in increasing the
confidence of a structure believed to be a passenger terminal (and vice-versa). However, we believe that such
interaction takes place at a high level, after symbolic, object level hypotheses have been formed. This process can
be considered hierarchical; each module has sub-modules that operate in a similar way. Thus, the transportation
network module may consist of runway, taxiway and road modules; each of which operates somewhat independently
but uses context provided by the detection of other structures. Some structures may be more prominent and easier
to detect, for example, runways are easier to detect than taxiways. In that case, the former provides the context for
detection of the latter.

In our analysis, we do not assume specific knowledge of the scene, such as would be given by a detailed, current
map of the specific airport complex. Instead, we only have generic information that the scene being viewed is an
airport complex. Our approach is basically one of "hypothesize and verify." Various grouping operations relying
on geometry, object shape and context form hypotheses that are then verified according to some desired attributes.
Our system detects runways first, as they are more prominent and can provide the needed context for detection of
taxiways (and many other objects in the scene), as these are much less constrained in shape and appearance than
the runways. The converse is also true, i.e. finding taxiways connected to a runway can help increase the confidence
of the detected runway.

In another project, we have been developing methods for detection and description of complex building structures
[20, 21]. We have achieved what we believe is a major success in this effort and we are able to handle buildings
with wings of different heights. The shapes are restricted to being compositions of rectangles, however. The key to
the method is a technique for perceptual grouping of low-level features into meaningful high-level structures. This
method is described in detail in a paper in these proceedings [4]. We expect that this technique can be generalized
to work for a broad classes of objects, in aerial scenes and in other domains, and is a major focus of our current
research.

Further validation of hypotheses should, ideally, take place in the context of the larger system that is also reasoning
about other objects in the scene, such as the remainder of the transportation network, other buildings and the mobile
objects. Location of these objects will mutually affect the confidence levels of the descriptions of other objects. Many
interesting questions arise in the implementation of such interactions, such as the nature of the interaction and the
order in which it takes place (i.e the control structure). We are investigating alternative techniques for this in our
current work. The techniques described here should be viewed as a module for the larger system to operate with.
Regardless of the fine structure of the larger system, it is our belief that the system needs modules which are fairly
competent at finding the major, individual structures without the global context. The global context is useful to
refine or confirm the initial hypotheses and in some cases to initiate new hypotheses but can not be a substitute for
high quality description modules.
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Figure 3: Portion of LOGAN scene

3.1 AN EXAMPLE

Previously we have reported on our work in the extraction of runways [22]. Our technique consists of hypothesizing
runways by using linear segments, forming anti-parallels from them and then grouping the anti-parallels on the basis
of continuity and collinearity. The verification of the hypotheses comes from detecting expected markings on the
runways [23]. We have applied these techniques to a variety of airport scenes with success. In recent work, we
have further enhanced our verification technique. In earlier work, all processing was performed at one resolution.
This resolution is not adequate to detect all markings on the runway, on the other hand it is very expensive and
unnecessary to process the entire image at the highest available resolution. For the task of verification of specific
features, however, we can focus on just selected parts of the image and resegment it at the needed high resolution.
Thus, we have a case of the results of higher level symbolic processing guiding the low-level segmentation on a second
pass. We have found this technique to be highly effective in detecting subtle marks on the runway surfaces that
increase our confidence in the detection of the runways.

Consider the scene shown in figure 3, a 2200 x 800 pixel image of a portion of Logan International Airport in Boston.
The verified runway hypotheses are shown in figure 4. We are able to locate 71% of the centerlines, 63% of the
sidestripes, 100% of the threshold and touchdown marks, 70% of the long distance marks, 56% of the short distance
marks, and 89% of the blastpad marks. Additional markings are obtained by re-segmenting small portions of the
image. We have tested this feedback step by looking for missing centerlines and blastpad marks. This brings the
centerlines to 96% and the blastpad marks to 100% . Note from the markings detected in our example that the
runways can be readily classified as precision instrument runways [24]. However, at this stage we do not attempt to
specifically assign a confidence value to each detected runway. Z

Taxiways are much more complex objects than runways, as they can have a wider range in their geometrical param-
eters; they can be short or long, have a variety of widths, be straight or curved, and connert a variety of airport
components. Taxiway dctection is aided by the descriptions of previously detected run- t s, .nd also by knowledge
of airport design [241. We know for instance, the minimum acceptable distance between ', -ay and a runway if
they are parallel, or the minimum angle that a taxiway may form with a runway. We as. tow that taxiways do
not cross but join runways. Taxiway crossings however, are allowed.

The first step in detecting taxiways is to find long fragments which may correspond to fragments of taxiways. We
select apars representing potential taxiway fragments in a manner analogous to the selection of potential runway
fragments [22]: they have a range of widths, and either are parallel to a runway or, form an angle greater than 250
with a runway. Selected fragments are joined on the basis of continuity and collinearity, to form "long" straight
hypotheses.

The secund st'p attempts to extend these straight portions of taxiways. This work is in progress at this time; it
includes the following context dependent processes:

1. Extension based on Aircraft Support: A large aircraft on a taxiway will cause the taxiway hypothesis to
fragment, thus to extend the taxiway fragments, we first try to detect aircraft by looking for symmetries due
to the aircraft wings and fuselage at each fragment end. If an aircraft is detected, the taxiway is extended the
length of the aircraft.
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Figure 4: Verified runways and taxiways

2. Extension based on Runway Context: We attempt to extend or discard taxiway hypotheses fragments based
on their spatial relationships to verified runways in the scene. The following steps are taken:

(a) Fragment intersects runway: The taxiway hypothesis fragments are extended until they intersect a runway. .
If the intersection angle is greater than the minimum intersection angle and the distance between the
taxiway hypothesis fragment and the runway intersection point is small, we look for additional evidence
to extend the fragment into the runway. This evidence includes checking for shorter apars collinear to
the taxiway in this region and, failing this, the detection of aircraft in this region. If we find sufficient
evidence, the taxiway hypothesis is extended into the runway.

(b) Fragment is parallel to runway: If the taxiway fragments are parallel to one of the verified runways, we
look for small wide apars joining the end of the taxiway fragment to the runway indicating the presence
of a taxiway apron.

(c) Extension based on Taxiway Intersection: (see below)
(d) Extension based on Resegmentation: It is possible that a material change in the taxiway caused problems

for the initial grouping processes. We attempt to extend the taxiway fragments by resegmenting image
windows extending beyond the fragments' ends, and looking for evidence of taxiway continuation. This
process is continued until no further evidence is found. At this point, we repeat steps (a) and (b).

The apars representing hypotheses of straight portions of taxiways are shown in figure 4. In this result, only process
I was applied. Extension of taxiways based on intersections (process 2c) attempts to describe the junctions and
connections among taxiwsys and between taxiways and runways. The accurate description of the junctions between
pathways also helps determine their function. Some are used as holding aprons; some are exit ramps (the closer to
the end of the runway, the smaller the angle between them, with angle determining the allowed exit speed); some
are merely connecting pathways; the continuous centerline determines the "legal" turns and paths; and so on.

The image in figure 5a, a portion of the image previously shown in figure 3, shows the intersection of four taxiways,
and connections between taxiways and runways when these are not parallel to each other.

We describe the junctions by explicitly locating the boundaries, or portions of the boundaries, of the sections of
roadways that connect the previously detected runways and straight portions of taxiways. We use the geometrical
relationships among these to compute the size and shape of the search windows where we look for the boundaries.
Our method distinguishes two types of junctions: L-junctions (typically between portions of taxiways), and T- L
junctions (typically joining taxiways and runways). More complex junctions, such as the one in figure 5, are viewed as
overlapping L-junctions. Note that there are no junctions between crossing runways; they are considered overlapping.

For each pair of potential "joinable" (nearby and converging) fragments we distinguish an "inside" and an "outside"
boundary. The inside boundary, if it exits, would be found on the side where we measure the smaller angle between
the two elements. On tbe other hand, T-junctions are considered to have two "inside" boundaries. A second
classification involves the boundaries themselves. Some are curved while others are straight. The curved boundaries
- in airport design - actually consist of circular or parabolic sections. However, we model the straight boundaries
Fs two straight lines, and the curved boundelries by means of cubir splines. For each boundary we apply both models
and then the choose the better fit.
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(b) Selected connections (c) Underlying edges and evidence of markigs

Figure 5: Taxiway junction at LOGAN
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We look first for the inside boundary, and then for the outside boundary. (There is always an inside boundary.
However, at complex intersections there may be no outside boundaries.) If there is no evidence of an inside boundary,
we do not look for an outside boundary. The method is as follows:

1. For each pair of joinable elements collect the context information to compute a search window for the inside
boundary.

2. Look for an inside boundary. We compute a series of splines using three points for each: two anchor (fixed)

points (at the ends of taxiway fragments or inside runways) and a sliding point (which moves approximately

along the bisector of the two elements). For each spline, we compute the overlap of the spline with the underlying
intensity edges. The spline that returns the highest number of edges is taken as a hypotheses (possible inside
boundary) if the following criteria are met:

(a) The length of the underlying boundary (or boundary fragments) is at least one half of the length of the
spline. In other words, allow 50% boundary fragmentation and/or partial spline-to-boundary fit.

(b) The "junction" between the spline and the element boundaries is smooth (150 tolerance), i.e., the tangent
to the spline at the intersecting edge points is similar to the direction of the edge.

3. Compute a search window for an outside boundary using information from the detected inside boundary.

4. Look for outside boundary. A process similar to that for inside boundaries. Compute a series of splines using

two anchor points and a sliding guide point. We compute the intersection of each spline with the underlying

intensity edges. The spline that returns the highest number of edges is taken as a hypotheses (possible outside
boundary) if similar criteria are met.

Figure 5b shows the original underlying edges, the taxiway and runway context (shaded areas), and the selected

connections we compute. As before, verification consists of finding the markings we expect. Our method looks for
the centerlines along he roadway as follows:

1. Re-segment and collect context information: We resegment the image to include all intensity edges in the

neighborhood of the junction.

2. Compute the search window and look for centerline edges. The search process is similar to that for inside

boundaries. We compute a series of splines using two anchor points and varying the position of the guide point.
We also look for the certerline edges along the straight portions of taxiways.

Figure 5c shows the re-segmented edges, the inside boundaries used to help locate the evidence of centerlines, and

the evidence found. Further details and examples are given in [25].

We have developed two techniques to detect buildings. One [201 is based on shape constraints for detection, and

the shadows that buildings cast for verification and obtaining three dimensional information. The second [21,4],

is more suitable for complex structures. It uses perceptual organization to generate multiple building hypotheses

from a stereo pair of images. Next, promising hypotheses are selected by a constraint satisfaction network based

on Hopfield's model. The selected hypotheses (rectangular subparts) are then processed by stereo to compute three

dimensional descriptions. An example is given in figure 6. Figures 6a,b show a stereo pair of a terminal building at

Logan Airport. The rectangles selected and matched by stereo are shown in figures 6c and d respectively. Figure 6e

shows a rendered view of the building generated from an arbitrary view point using the 3D information computed.

We have been working with airport scenes representing extremes of complexity that are encountered in major com-

mercial airports (smaller airports are much easier to analyze). These represent a wide spectrum of runway types and

conditions; different runway surface materials, homogeneous and non homogeneous surfaces; runways with shoulders

of the same or different material and of various widths; and so on. The performance of the technique shows a high

degree of reliability if good image quality and adequate resolution are available.

We believe that the results that we have obtained indicate very good performance and indicate that the method will

work well on other examples. Also, it must be realized that it is not our contention that the various objects can be

analysed in isolation. Their detection and description is dependent on the various objects in the scene. Interaction

among such objects is part of our current research. We do believe that the results that we can obtain indicate that

our methods will provide very high quality input to the larger system.

4 MOTION ANALYSIS OVERVIEW

We have a number of ongoing efforts in the analysis of sequences of images including analysis based on a moving

observer and the detection and analysis of moving objects. Autonomous navigation provides the context for much
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of the work, though the techniques are of much broader utility. The effort is supported by our "Knowledge-based
Vision Techniques" contract as part of the DARPA strategic computing program.

Motion analysis using long range or feature point analysis techniques forms the central focus of our work. This
approach involves extracting a set of consistent features from a sequence of images (lines, corners, contours, regions,
etc.), finding the corresponding features in consecutive frames of the sequence by a series of frame to frame matching
operations, and finally computing three-dimensional motion estimates based on the series of correspondences, which
also produces depth information for the feature points. These problems have been addressed separately and to a
lesser extent together in a combined system. Our work on spatio-temporal analysis and merging a series of depth
maps does not fit directly in this scheme, but both do use a feature based analysis to guide the processing and
improve the results. This overview discusses the current status of the research in these areas.

4.1 FEATURE MATCHING IN MOTION IMAGES

Elsewhere in these proceedings [21 we describe a method to establish correspondences between images in a motion
sequence. The matching method is similar to our previously reported work[26], but we now use multiple scales and
better primitives. We first smooth the images with adaptive filters at different scales, then detect edgels, link them
and extract segments and super-segments at each scale. We then match the detected features hierarchically, starting
with the larger scale, using an extension of our matching algorithm, in the following way (assuming the higher mask
is h and the lower is 1):

1. Match the two images using features detected by mask h.

2. Match the results of the same image smoothed by h and by I for both images.

3. Combine the results to obtain predicted matches for the images smoothed by 1.

4. Match the images smoothed by I using the predictions.

Advantages

1. Edge localization: Hierarchical Smoothing with adaptive filters at different scales yields a hierarchical set of
features. But, unlike zero crossings of Laplacian of Gaussian masks (the features previously used), they shift
the edges by no more than a pixel between scales, thus matching the same image for different scales becomes
trivial. Any edge detector can be applied to the smoothed images, since they are nearly piecewise constant
and free of noise. We have used Canny's edge detector to obtain edges that now represent real events and are
accurately located (unlike zero crossings).

2. Hierarchical Matching Matching images smoothed by large masks is relatively easy, as only a few strong
features are preserved. These are later used to restrict and guide matches for finer masks, thus reducing both
errors and computation time.

Applying this method to real images produces very good results. We have been able to match less closely spaced
flames yet obtain better results than with previous approaches.

4.2 CHRONOGENEOUS MOTION

Our earlier work in motion estimation from matching points assumed that the motion was constant through the
several (e.g. 5) frames[27]. By developing a technique that includes time along with 3-D position we have derived
a Chronogeneous Motion estimation technique[28]. This allows for the description of the constant motion cases
assumed by most researchers, as well as some cases of accelerated motion. This technique builds on our earlier work
in multi-frame motion estimation and the derivations both extend and confirm the earlier theoretical development.
We have implemented a basic 3D structure from motion with acceleratior case. This case has a closed form solution
given point correspondences in multiple frames. Such a soultion is not possible for the general case of chronogeneous
motion. The case of structure from known motion or motion from known structure is much easier and also has a
closed form solution. This method is being tested on synthetic data to determine the effects of quantization error
and noise in the input data.

4.3 NAVIGATION

One task for an autonomous land vehicle (ALV) is to use sensory data such as range and/or color images for visual
navigation. The vehicle has an inertial system that provides a good estimate of the vehicle position and orientation
with respect to a world coordinate system. As these measurements may deviate while the vehicle is moving, one task
of the vision system is to correct the estimate of the vehicle position.
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(a) Left view of building (b) Right view of building

(c) Selected rectangles (left view) (d) Selected rectangles (right view)

(e) Rendered 3-D view of building

Figure 6: Terminal building at LOGAN
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Figure 7: Local Cartesian Elevation and Color Maps.

We chose to work in the context of an unknown environment using range and color images obtained from Martin
Marietta Aerospace. Knowing the position and orientation of the sensors with respect to the vehicle coordinate
system along with their parameters, we first established the geometric transformation that links the range data to
the color data. Thus, given a point in the color image where the fields of view of the two sensors overlap, it is
possible to find the 3-D coordinates of that point using a ray-tracing technique and the range image. Hence, the
output of an edge detection operator applied to the color image can be transformed into a 3-D edge map. Updating
the position of the vehicle thus consists first in matching the current 3-D edge map with the previous one, using the
knowledge of the position of the vehicle from its internal sensors (this method is currently under development and
gives promising results) to guide the matching process. The position of the vehicle is then updated by computing
the 3-D transformation between matched 3-D edges using a least-square technique.

Whether or not we rely on the vision system to update the vehicle position, it is usefull for autonomous navigation
purpose to generate a global cartesian elevation map (GCEM) of the area "explored" so far by the vehicle. For each
position of the vehicle, we construct a local cartesian elevation map (LCEM) derived from the range data using a
one pass technique. Along with the LCEM, we also derive a local cartesian color map (LCCM) by "painting" the
LCEM using the same geometric transformations discussed above. Figure 7 provides results obtain for one position
of the vehicle: the upper left frame shows the color image while the upper right frame shows the range image (after
adjusting for the ambiguity interval). The lower left frame shows a down-looking view of the computed LCCM while
the lower right frame shows a perspective view of the computed LCEM. The local maps can then be merged into a
global map given the successive positions of the vehicle and the matching procedure used for adjusting the vehicle
positions. Figure 8 shows a down-looking view of the computed global cartesian color map (GCCM) after merging
successive local maps. The filled-in circles give the trajectory of the vehicle, with the world coordinate system shown
in the upper left of the image.

4.4 MOTION FROM THE SPATIO-TEMPORAL VOLUME

Most approaches to motion analysis only use two or three image frames, therefore the estimates are unstable and
noisy. In [29, 30], a method which shows how to utilize many frames is introduced. The principle behind this approach
is to find the velocity components of an edge point along several different directions by taking slices in the temporal
direction.

A slice is a collection of 1-D images of small width taken from successive frames in the sequence at the same position.
This spatio-temporal data structure provides an easy way to trace a line segment through frames by finding paths
in a slice. A path may be induced by any portion of an object boundary. When the object moves, the projection of
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Figure 8: Global Cartesian Color Map.

the boundary sweeps out a surface in the 3-D spatio-t#mporal image volume, which is the image sequence with time
as the third dimension. The slope of this path is used to compute the displacement in the direction parallel to the
orientation of the slice.

The topology of paths in a slice gives important information to detect occlusion or disocclusion by extracting A or
Y junctions. The combination of results from multiple slices centered on a given point enables us to estimate its
velocity in the direction normal to the tangent to the spatial curve. Each frame receives several messages from earlier
image frames if there exists occlusion or disocclusion in the frame. Based on the location of occlusion or disocclusion
and 8-connectivity, the segmentation of edge points into contours becomes easier because the ambiguity of the three
way junction is resolved. The edge points in the first frame of the image sequence are then segmented into contours.
From the normal flow field, the occlusion information gathered during slice analysis, and the spatial structure of the
contours, the correct optical flow field induced by motion is then recoved under smoothness constraints.

Our programs work very well on synthetic image sequences but only achieve limited success on real image sequences,

mostly because of fundamental problems in low-level processing. For this reason, we have now decided to choose
smooth curves instead of edges as tokens. Smooth curves are generated by breaking linked contours where the tangent
changes more than a certain threshold. Slices centered at the middle point of each smooth curve in both frames are
taken and paths are extracted from those slices. Hash tables are set up with smooth curves as entries, associated
with the correponding curves in the other frame linked by paths as the stored values. Unlike other methods, the
correspondence among smooth curves with linking paths is rarely ambiguous. Smooth curves are grouped according
to their connectivity in both frames. Now the global matching problem can be divided into smaller pieces, groups
from both frames with paths linking their component curves are used to set up the global matching and velocity
estimation. Figure 9 shows two frames from an image sequence with a chair inside the window. Figure 10 shows the
smooth curves extracted from the two frames while matching groups are shown with the same texture. L

Next we intend to detect or confirm the existence of occlusion or disocclusion. Special attention is paid to curves
joining at a junction or at the ends of a group of connected curves, these are places where occlusion or disocclusion
(uncovering) may take place. Slices are taken at those places and analysed to find if Y and A junctions exist. We
also intend to estimate the displacement of curves from one frame to the other. Curves from one group are moved to
fit the location of its matching group with corners serving as anchors. The best fit is then used to estimate the flow
of the curve. The detection of occlusion or disocclusion, and the estimation of 2-D velocity are our current research
topics.
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(a) Fifth frame (b) Fifteenth frame

Figure 9: Two frames from an image sequece with a chair

(a) Fifth frame (b) Fifteenth frame

Figure AO: Matches among groups of smooth curves
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4.5 INTEGRATED MOTION SYSTEM

In previous workshops[31], we have described the basic integrated motion system. We have continued to develop
and use this system for testing each of the components (feature estraction, matching, motion estimation, and motion
feedback to matching). This past year, we have concentrated on both the integration of the contour-based matching
system with the region-based system, and the computation of three-dimensional depth and structure from the motion
analysis. Three-dimensional motion estimation produces scaled estimates of the actual motion. The scale factor
cannot be determined without other information (actual depth to a point, actual motion of a feature, etc.), but the
relative depths can be derived from the different magnitudes of computed 3-D motions of features that are known
to have the same actual 3-D motion (e.g. on the same object).

Region based approaches give a single motion and position estimate for all the points in the region. We are extending
the capabilities of the system to produce more structure estimates for each matching region by using the contour
based matcher to get correspondences for many points along the region contour. The contour matching programs
assume that the positions of the contours are similar from frame to frame to reduce the searching necessary to
produce a consistent match, but with the limited possible matches available when matching the contours from know
matching regions (both an initial 2-D motion estimate and the lack of other possible matches) we can use the contour
matcher with much larger disparities. The larger motion disparities are necessary to reduce the errors in the motion
estimation process and to improve the structure estimateb of the objects.

5 PARALLEL PROCESSING

We have several projects concerned with parallel processing techniques. These include one that is implementing
current algorithms on the Connection Machine and another that is studying general techniques for implementing
image understanding algorithms on parallel architectures.

Physical boundaries of objects are very important descriptors and are likely to generate edges during the imaging
process. Even though the reverse is not true, it is reasonable to assume that the early stages in image analysis consist
of detecting such discontinuities. Due to the complexity of the physical world and of the imaging apparatus, and
to multiple sources of noise, the signal to be processed is complex, and the detection of such discontinuities is non
trivial. Features detected locally are validated only by considering a more global context.

Computer vision problems always pose a challenge to today's computer systems. Early vision tasks occuring at the
pixel level usually involve at least 64k (256 x 256) elements. Massively parallel processors can alleviate the problems of
image processing because the operations are mostly spatially homogeneous. The Connection Machine [32] is a Single
Instruction Multiple Data (SIMD) machine having between 16k and 64k processors. The Connection Machine Model
CM-2 has 64 kilobits of bit-addressable memory for each processor instead of 4 kilobits for the CM-I. One of the two
modes of communication among the processors is through the physical grid connection (the sc-called NEWS network
since the connections are in the four cardinal directions), allowing fast direct communication between neighboring
processors. This facilitates the image processing, especially the low level processing of vision tasks.

To allow the machine to handle images with size more than 64k (or 16k), the Connection Machine supports virtual
processors. A single physical processor can be divided into several virtual processors by serializing operations in time,
and partitioning the memory in each processor. This allows the user to process images with sizes greater than the
physical number of processors. As the virtual-to-physical (VP) ratio increases, the size of the local memory of each
(virtual) processor decreases accordingly, and the speed of execution is slower than the speed of a physical processor
by approximately the VP ratio.

Adaptive Smoothing is an edge preserving image smoothing algorithm in which we iteratively convolve the image with
a mask whose coefficients reflect the degree of continuity of the underlying image surface. It has the nice property
of detecting edges accurately at different sca ,  Tigher level vision tasks, such as stereo and motion correspondence
problems, can therefore be easily tackled 'v 'g a multiple scale approach with adaptive smoothing. Since the
computation of Adaptive Smoothing iqu,: *y very local information, only a 3 by 3 neighborhood, it provides a
direct massively parallel computation stru-ture w1 'h is extremely suitable for the NEWS network on the Connection
Machine. We haie implemented it on the Con _n Machine with 16k processors and 64k bits local memory per
processor.

With the 16k processors, a 128 x 128 x 8bit image can be processed at one pixel per physical processor, namely
the VP ratio is I. We have experimented with the adaptive smoothing on images of various sizes with different VP
ratio and observed its performance. Since the computation of adaptive smoothing involves the exponential function,
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the adaptive smoothing on the Connection Machine is performed using floating point arithmetic. With a Vax front
end and the parallel Lisp (*Lisp) implementation, each iteration takes about 50 msecs on a 256 x 256 x 8bit image
without a floating-point accelerator. In order to compare the performance to the algorithm on a serial machine, we
have also implemented the Adaptive Smoothing on a Symbolics 3645. It takes about 40 seconds for each iteration
of adaptive smoothing on the Symbolics 3645 over an image of the same size (256 x 256 x 8bits). Thus the speedup
we get from the Connection Machine over the serial implementation is about three orders of magnitude.

To identify corresponding locations between two stereo images, or among a sequence of images in a motion analysis
problem, is difficult because of the false targets problem (see [33]). The false targets problem can be alleviated
either by reducing the range and resolution of the disparity or reducing the density of the matching features in
the image. One commonly used method to obtain both resolution and range of disparity information is to apply a
multi-resolution algorithm. At coarse resolution, the density of the matching features is low, therefore reducing the
probability of false targets. The information obtained from the matching at coarse resolution can be used to guide
the matching at fine resolution to get the desired high density disparity information.

Gaussian filtering has long been recognized as a popular smoothing operation. The scaling behavior prevents new
features from appearing as the scale goes from fine to coarse. It and its derivatives can be efficiently implemented.
Also it can be easily mathematically analyzed. Its accuracy on edge detection, however, has also been long criticized.
When using Gaussian filtering as a multi-resolution operation for stereo matching, we have to deal not only with the
tedious coarse-to-fine tracking along scale space but also with accuracy of the disparity information at coarse scale.

One of the most attracting features of our scheme is that the edge locations do not move along the scale, which
enable us to construct a straightforward implementation of a multi-scale stereo matching algorithm. We have
implemented a multiple scale stereo matching algorithm which is based on Drumheller and Poggio's [341 parallel
stereo implementation on the Connection Machine. Our implementation not only greatly reduces the number of
possible matches at each scale but also obtains a dense disparity map at fine scale.

In our work on parallel techniques for image understanding we have studied several storage and data access problems
arising in mapping image algorithms onto parallel machines, parallel implementations of techniques developed by
our group on hypercube and mesh based architectures, and continued our efforts in parallel computations on recon-
figurable VLSI arrays and reduced meshes[35, 36]. (This work has been partially supported by AFOSR under grant
AFOSR-89-0032.)

In iconic processing of image arrays several data storage and access problems arise. These problems become partic-
ularly important while implementing such tchniques on parallel machines. An image can be represented by a two
dimensional array. Access to row vectors, column vectors, diagonals and subarrays are required heavily in image
computations. Also, while implementing partitioned VLSI arrays and special purpose arrays, access to various sub-
arrays is needed. We have developed a novel memory system for image processing. Latin squares, which are well
known combinatorial objects for centuries, are used as the skew function of the memory system. We have introduced
a new Latin square with desired properties for image array access. The resulting memory system provides access
to various subsets of image data (rows, columns, diagonals, subarrays, etc.) in constant time while it uses a simple
circuitry for address generation. This memory system is the first known memory system that achieves constant time
access to rows, columns, diagonals and subarrays using minimum number of memory modules [37].

We have studied efficient parallel implementation of symbolic techniques developed by our vision group on hypercube
SIMD arrays such as the Connection Machine. In particular, we have studied data movement technqiues for imple-
menting stereo and image matching using high level primitives. By preprocessing the model, routing information
is derived which is employed during the match phase. Our technique is simple and efficient and can be used on
current parallel machines such as the Connection Machine. Notice that methods based on sorting can solve the data
transport problems arising in the computation. However, in a model with if objects, these data transport problems
can be solved in O(log N) time with a small constant factor by preprocessing the structure of the model. Similar
techniques have been developed for performing such computations on mesh based architectures. We are currently
implementing such data movement techniques on the Connection Machine at USC-ISI.
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ABSTRACT

This paper briefly summarizes research in image understanding conducted at the University of Maryland
during the 14-month period January 1988 through February 1989. The areas covered include motion analysis,
navigation, early vision, matching, parallel algorithms, pyramid techniques, and geometry.

MOTION ANALYSIS

CORRESPONDENCELESS METHODS

We have shown that a binocular observer can recover the depth and three-dimensional motion of a rigid
planar patch, without using any correspondences between the left and right image frames (static) or between the
successive image frames (dynamic). We have studied uniqueness and robustness issues with respect to this prob-
lem and have obtained experimental results from the application of our theory to synthetic and real images. []

SPACE-TIME FILTERING

In the process of extracting the optical flow through space-time filtering, we have to take into account con-
straints associated with the motion uncertainty, as well as with the spatial and temporal sampling rates of the
temporal sequence of images. The motion uncertainty is shown to satisfy an inequality, as a consequence of the
use of the Crame'r-Rao inequality, which is a function of the filter parameters. On the other hand, the spatial
and temporal sampling rates have lower bounds, which depend on the motion uncertainty, the maximum support
in the frequency domain and the estimated optical flow. These lower bounds on the sampling rates and on the
motion uncertainty are constraints which constitute an intrinsic part of the computational structure of space-
time filtering. They are of a different nature than the ones used in regularization theory, because they do not
dictate any arbitrary constraints on the parameters being computed, but instead arise as a natural consequence
of the estimation process. By conjugating these constraints, we are able to devise an algorithm which describes
an adaptive procedure of estimating the various parameters involved in space-time filtering. This corresponds to
an instance of an adaptive system, through which the variables involved in the process of space-time filtering are
allowed to vary inside a range which is consistent with the various intrinsic constraints governing the process.
121

BINOCULAR FLOW ANALYSIS

We have analyzed image flow fields from parallel stereo cameras to determine the relative three-
dimensional translational velocities of the camera platform with respect to objects in view and to establish stereo
correspondence of features in the left and right images. A two step procedure is used. In the first step, the three
components of the translational velocity are determined from linear equations whose coefficients consist of the
sums of measured quantities in the two images. Separate equations are developed for cases where measurements
of either the full optical flow or the normal flow are available. This computation does not require feature-to-
feature correspondence. In the second step of the calculation, the same equations are used, with the computed
translational velocities, as a constraint to find features in one image that correspond to given features in the
other image. Preliminary experiments with synthetic flow fields indicate that the method gives accurate results
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even in the presence of noise. 13]

FLOW FROM TEMPORAL EDGES

A new method for the detection of motion and the computation of optical flow has been developed. In the
first step of the calculation the intensity history at each pixel is convolved with the second derivative in time of
a temporal Gaussian smoothing function. The zero crossings in a sir.le frame of the resulting function indicate
the positions of moving edges. Spatial and temporal derivatives of the function zt the zero-crossing locations are
then used to compute the component of the flow that is not nal to the zero-crossing contours. Both the detec-
tion of motion and the computation of the normal velocity are insensitive to slow temporal and spatial changes
in the image intensity that are caused by illumination effects rather than motion. The relationship of this work
to gradient based flow measurement techniques has also been formulated. (41

OPTIMAL USE OF POINT CORRESPONDENCES

One of the problems associated with any approach to the structure from motion problem using point
correspondences, i.e. recovering the structure of a moving object from its successive images, is the use of least
squares on dependent variables. We have formulated the problem as a quadratic minimization problem with a
non-linear constraint. We have derived the condition for the solution to be optimal under the assumption of
Gaussian noise in the input, in the Maximum Likelihood Principle sense. This constraint minimization reduces
to the solution of a non-linear system which in the presence of modest noise is easy to approximate. We have
developed two efficient ways to approximate it, and have defined some inherent limitations of the structure from
motion problem when two frames are used that should be taken into account in robotics applications that
involve dynamic imagery. Our formulation introduces a framework in which previous results on the subject
become special cases. (51

TRACKING

A mathematical theory for visual tracking of a three-dimensional target of known shape moving rigidly in
3-D has been developed, and it has been shown how a monocular observer can track an initially foveated object
and keep it stationary in the center of the visual field. Our goal is to develop correspondence-free tracking
schemes and get rid of the limitations inherent in the optical flow formalism. A general tracking criterion, the
Tracking Constraint, has been derived, which reduces tracking to an appropriate optimization problem. The
connection of our tracking strategies with the Active Vision Paradigm has been shown to provide a solution to
the Egomotion problem under the assumption of knowledge of shape. Tracking strategies based on the recovery
of the 3-D motion of the target have been devised under the above assumption. A correspondence-free scheme

has been derived, which depends on global information about the scene (provided by linear features of the
image) in order to bypass the ill-posed problem of computing the spatial derivatives of the image intensity func-
tion, and amounts to the solution of a linear system of equations in order to estimate the 3-D motion of the tar-
get. An important feature of these tracking strategies is that they do not require continuous segmentation of the
image in order to locate the target. Supposing that the target is sufficiently textured, dynamic segmentation
using temporal derivatives of the linear features provides sufficient information for the tracking phase. There-
fore, this approach should perform best when previous ones fail, namely in a complex visual environment.
Experimental results demonstrate robustness in the presence of noise. (6]

APPARENT MOTION

The existence of two separate mechanisms for the processing of apparent motion, the short- and long-range
processes, as proposed by Braddick in 1974, has been analyzed through many different psychophysical experi-
ments. In particular the fact that for the short-range process there exists an upper bound for the spatial dis-
placement and temporal interstimulus interval between successive stimulus presentations was confirmed by
several of these experiments. In order to gain a more formal understanding of these issues, we have analyzed the
phenomenon of apparent motion from the point of view of a reconstruction problem. This allowed us to use the
sampling theorem to analyze the problem of temporal (spatial) reconstruction of uniformly translating patterns.
In the case where the velocity field can only be extracted with uncertainty, it can be shown that there exists a
maximum temporal (spatial) sampling interval, such that aliasing does not occur. We suggest that, in the case
of the short-range process, due to its temporal (spatial) reconstruction ability, a similar effect could intervene in
the limitation of its activity to a small spatio-temporal scale. 171
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ERROR ANALYSIS

Relativ? rction between objects and the viewer generates a time-varying image which, in principle, can be
used as a source of 3D information about the structure of the objects and the relative motion. One approach to
obtaining 3D information from time-varying imagery is to utilize the image flow field and its derivatives. The
characteristics of the image flow field depend both on the relative motion and the surface of the object. Thus,
given the image flow field, in theory, one can invert the problem and recover the relative motion and the struc-
ture of the object. We have analyzed the intrinsic reliability of such an approach; i.e. assuming that the image
flow field is known accurately, except for quantization error, we have derived closed-form expressions for the
error due to quantization in the recovered 3D motion and structure parameters. These expressions are essential
for revealing the intrinsic limitations of the approaches used for the recovery of the 3D parameters from a given
image flow field and are thus of great practical importance. 18]

MULTI-FRAME METHODS

The main issue in the area of motion estimation given the correspondences of some features in a sequence
of images is sensitivity to error in the input. The main way to attack the problem is redundancy in the data.
Up to now all the algorithms developed either used two frames or depended on restrictive assumptions and ad
hoc techniques. We have developed an algorithm based on multiple frames that employs only the rigidity
assumption, is simple and mathematically elegant, extremely flexible and, most importantly, is a major improve-
ment over the two-frame algorithms. The algorithm does minimization of the mean square error, which we have
proved equivalent to an eigenvalue minimization problem. One of the side effects of this mean square method is
that the algorithm has a very descriptive physical interpretation in terms of the "loaded spring model". [91

NAVIGATION

ROAD FOLLOWING

A method for the reconstruction of a road in 3D space from a single image has been developed. The world
road is modelled as a space ribbon generated by a centerline spine and horizontal cross-segments of constant
length (the road width) cutting the spine at their midpoints and normal to the spine. The tangents to the road
edges at the end points of cross-segments are also assumed to be approximately parallel. These added con-
straints are used to find pairs of points (matching points) which are images of the end points of world cross-
segments. Given a point on one road image edge, the method finds the matching point(s) on the other road
image edge. For images of road turns, a point on one road image edge has generally more than one matching
point on the other edge. The extra points belong to "ghost roads" whose images are tangent to the given road
image at these matching points.

Once pairs of matching points are found in the image, the reconstruction of the corresponding world cross-
segments is straightforward since cross-segments are assumed to be horizontal and to have a known length.
Ghost road cross-segments are discarded by a dynamic programming technique. A benchmark using synthetic
roads has been used in tests of the method, and the sensitivity of the road reconstruction to variations in width
and bank of the actual world road has been evaluated and compared to the sensitivity of two other algorithms.
Experiments with a sequence of actual road images as the Autonomous Land Vehicle (ALV) moves down a road
have also been performed. f101

A new scheme for reconstructing the 3D shape of roads from camera images was subsequently developed
based on the local flatness approximation. In this scheme, all equations are written in terms of NHC vectors
defined by quantities directly observable on the image plane. Hence, analysis is done solely in the image
domain: No 3D solution is constructed in the scene. Much consideration was given to computational stability
with regard to possible inaccuracy of image data. A relaxation scheme was defined which always guarantees the
global consistency of the computed solution. The singularities of the constraint resulting from the local flatness
approximation has also been analyzed. [11

MOTION PLANNING

Motion planning for a point robot has been studied in a time-varying environment. Obstacles are convex
polygons which move in a fixed direction at a constant speed. The point to be reached (referred to as the desti-
nation point) also moves along a known path. The concept of "accessibility" from a point to a moving object is
introduced, and is used to define a graph on a set of moving obstacles. The graph is shown to exhibit an
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important property: if the moving point is able to move faster than any of the obstacles, a time-minimal path is
given as a sequence of edges in the graph. An algorithm has been developed for generating a time-minimal path
and its execution time has been analyzed. [121

QUALITATIVE NAVIGATION

Visual navigation is a major goal in machine vision research, and one of both practical and basic scientific
significance. The practical interest reflects a desire to produce systems which move about the world with some
degree of autonomy. The scientific interest arises from the fact that navigation seems to be one of the primary
functions of vision in biological systems. Navigation has typically been approached through reconstructive tech-
niques since a quantitative description of the environment allows well understood geometric principles to be used
to determine a course. However, reconstructive vision has had limited success in extracting accurate information
from real-world images. We have shown that a number of basic navigational operations can be realized using
qualitative methods based on inexact measurement and pattern recognition techniques.

Navigational capabilities form a natural hierarchy beginning with simple abilities such as orientation and
obstacle avoidance, and extending to more complex ones such as target pursuit and homing. Within a system,
the levels can operate more or less independently, with only occasional interaction necessary. We have studied
three basic navigational abilities: passive navigation, obstacle avoidance, and visual homing, which together
represent a solid set of elementary, navigational tools for practical applications. It has been demonstrated that
all three can be approached by qualitative, pattern-recognition techniques. For passive navigation, global pat-
terns in the spherical motion field can be used to robustly determine the motion parameters. For obstacle
avoidance, divergence-like measurements on the motion field can be used to warn of potential collisions. For
visual homing an associative memory can be used to construct a system which can be trained to home visually
in a wide variety of natural environments. Theoretical analyses of the techniques have been presented, and
working systems have been implemented and tested. [13]

EARLY VISION

BOUNDARY-PRESERVING REGULARIZATION

Many problems in low-level vision and in several other scientific or engineering disciplines are ill-posed in
the sense that their solutions do not exist, are not unique, or do not depend continuously on the data. We
approach these problems with Tikhonov regularization. That means we seek a solution that is a compromise
between the requirements of consistency with constraints imposed by the data and of consistency with a priori
smoothness assumptions. Unfortunately, the solution obtained blurs boundaries and makes it hard to recognize
where the real world variables change sharply. We approach this difficulty by assuming the errors (the incon-
sistency between data and solution) at nearby points are correlated and we first deblur the errors before regular-
izing. Similarly we have to deblur the smoothness term of our variational condition before we can apply regular-
izacion theory. In general decorrelation is a hard problem, but making special assumptions about the blurring
kernel (e.g. the kernel is Gaussian or more generally Levy stable), we can recover the magnitude of the deblurred
error (or smoothness) as a linear expression in terms of the original error (or smoothness) and its derivatives. We
are, in effect, imposing a requirement that not only the error but also its derivatives should tend to be small
(because noise is often far from being white). The resulting variational condition is not the optimal condition
but the Euler-Lagrange equations will be linear if the constraints are. We also suggest a convex approximation
technique for solving the piece-wise smooth interpolation problem which results in a convex condition if the ori-
ginal constraints were linear. [14]

SIGNAL AND NOISE ESTIMATION

When we examine a set of data, it is often "obvious" that the data can be interpreted as values of a par-
ticular type of function (e.g., linear) corrupted by a particular type of noise (e.g., zero-mean, spatially station-
ary). We have investigated a qualitative approach, based on Bayes' theorem, that may justify such interpreta-
tions. We have dealt primarily with data that are samples of a real-valued function of a single variable, but
similar ideas apply to functions of two or more variables, to vector-valued functions (e.g., curves or surfaces), as
well as to the problem of finding natural clusters in sets of points. [15]

An algorithm has been developed and tested for estimating noise variance in images. The only information
available to the algorithm is the corrupted image and the white nature of the zero mean Gaussian noise. The
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algorithm recovers the variance of the noise in two steps. First, the sample variances are computed for square
cells tessellating the noisy image. Several tessellations are applied with the size of the cells increasing four-fold
for consecutive tessellations. The four smallest sample variance values (the outcomes of the first four order
statistics) are retained for each tessellation and combined through an outlier analysis into one estimate. The
different tessellations thus yield a variance estimate sequence. In the second part of the algorithm, the value of
the noise variance is determined from this variance estimate sequence. The algorithm has been applied to 500
noisy 256X256 images derived from seven prototypes of classes often employed in computer vision and image
processing. In 98% of the cases the relative estimation error was less than 0.2 with an average error of 0.06. All
the operations in the algorithm are parallel and if they are implemented on an image pyramid, the variance of
the noise is recovered in O[log(imagesize)] processing time. (16]

CLUSTER DETECTION IN NOISE

If a feature space contains a set of clusters and background noise, it may be difficult to extract the clusters
correctly. In particular, when we use a partitioning scheme such as k-means clustering, where k is the correct
number of clusters, the background noise points are forced to join the clusters, thus biasing their statistics. We
have developed a preprocessing technique that gives each data point a weight related to the density of data
points in its vicinity. Points belonging to clusters thus get relatively high weights, while background noise
points get relatively low weights. k-means clustering of the resulting weighted points converges faster and yields
more accurate clusters. [17]

Cluster detection algorithms using mean values as center estimates suffer from inaccuracy when the distri-
butions of points in clusters are not Gaussian or when unevenly distributed background noise is present. We
have developed a mode-based cluster detection algorithm using a least median square error measure for the
center estimates. The algorithm locates the centers with reasonable accuracy under biased background noise.
Its complexity is 0 (n log n) in general, and this is reduced to 0(n) for data on a lattice. [18]

DIFFERENTIATION

Computation of the derivatives of an image defined on a lattice structure is of paramount importance in
computer vision. The solution implies least square fitting of a continuous function to a neighborhood centered
on the site where the value of the derivative is sought. We have developed a systematic approach to the prob-
lem involving orthonormal bases spanning the vector space defined over the neighborhood. Derivatives of any
order can be obtained by convolving the image with a priori known filters. We have shown that if orthonormal
polynomial bases are employed the filters have closed form solutions. The same filter is obtained when the fitted
polynomial functions have one consecutive degree. Moment preserving properties, sparse structure for some of
the filters, and relationship to the Marr-Hildreth and Canny edge detectors have also been established. Expres-
sions for the filters corresponding to fitting polynomials up to degree six and differentiation orders up to five, for
the cases of unweighted data and data weighted by the discrete approximation of a Gaussian, have been tabu-
lated. [191

LINE FITTING

A method to improve the estimate of least squares line fits to thin stripes in images has been developed.
By using the geometry of local gray level patterns and their contrasts, the accuracy of the least squares line fits
can be improved markedly. The improved method's performance is comparable to that of the Canny line detec-
tor. [201

In fitting a straight line to a noisy image, the least square method becomes unreliable if non-Gaussian
outliers are present. We have developed a the Least Median Square (LMS) method, which provides:

- protection against distortion by up to 50% of contaminated data;

- good efficiency in the presence of various type of noise;

- an amount of computation comparable with the least square method. J211

HYPERACUITY

In spatial hyperacuity the subjects discriminate a stimulus feature relative to a reference, with an accuracy
significantly better than the grain of the retinal mosaic. We have shown that the normalized thresholds have a
dichotomous behavior; they are either insensitive to the spatial parameter in the experiment or increase very
steeply with it. This behavior is explained by the involvement in the processing of pixel (receptor) accuracy
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information about the structure of the stimulus. A computational model employing optimal filtering reproduces
the experimental data and suggests that processing of spatial hyperacuity tasks in the human visual system is
optimal. [22]

TEXTURE SEGREGATION

We have studied human perception of texture segregation in patterns composed of two textures where each
texture contained two types of elements. The elements were arranged in a striped pattern in the top and bot-
tom regions and in a checked pattern in the center region. The observers rated the degree to which the three
regions were seen as distinct. When the elements were squares or lines, perceived segregation resulting from
differences in element size could be cancelled by differences in element contrast. Minimal perceived segregation
occurred when the products of the area and contrast (areal contrasts) of the elements were equal. This depen-
dence of perceived segregation on the areal contrasts of the elements is consistent with a simple model based on
the hypothesis that the perceived segregation of the regions is a function of their differential stimulation of spa-
tial frequency channels. However, two aspects of the data were not consistent with quantitative predictions of
the model. First, as the size difference between the large and small elements increased, the ratings at the point
of minimum perceived segregation increased. Second, the effect of changing the fundamental frequency of the
textures was not predicted by the model. These discrepancies may be explained by a more complex model in
which a rectification or similar nonlinearity occurs between two stages of orientation- and spatial-frequency-
selective linear filters. [231

LOCAL OPERATIONS ON DOT PATTERNS

When a local operation is performed on the pixels in an array, the new value of the pixel is a function of
the old values of the pixel and its neighbors. We have introduced the more general concept of local operations
on labelled dot patterns, where the new label of a dot is a function of the old labels of the dot and a set of its
neighbors (e.g., its Voronoi neighbors). Such operations may change the positions of the dots, in addition to
changing their "values". These ideas are illustrated with examples of operations that perform local feature
detection (e.g., isolated dot detection, cluster edge detection, dotted curve detection) and "enhancement" (e.g.,
"smoothing" the dot spacing or "sharpening" the edges of diffuse clusters), as well as "morphological" opera-
tions. [24]

MATCHING

ORDERED MATCHING

Matching of two digital images is computationally expensive, because it requires a pixel-by-pixel com-
parison of the pixels in the image and in the template. If we have probabilistic models for the classes of images
being matched, we can reduce the expected computational cost of matching by comparing the pixels in an
appropriate order. We have shown that the expected cumulative error when matching an image and a template
is maximized by using an ordering technique. We have also presented experimental results for digital images,
when we know the probability densities of their gray levels, or more generally, the probability densities of arrays
of local property values derived from the images. [25[

A generalization of the ordered matching problem is the problem of optimally ordering a set of operations,
the outcomes of which are random. We have developed procedures for finding the optimal dynamic strategy and
the optimal static strategy for solving this problem. We have also considered a constrained form of the problem
and shown that it has a simple optimal strategy, and we have investigated the complexity issues involved in
finding optimal strategies. [261

LOCATION SELECTION IN MATCHING

We have developed a technique to further reduce the computational cost of template matching by using
probabilistic knowledge about local features that appear in the image and the template. Using this technique
the most probable locations for successful matching can be found. We have analyzed how the size of the
features affects the computational cost and the robustness of the technique. We have shown experimentally that
even simple methods of feature extraction and representation can reduce the computational cost by more than
an order of magnitude. [27]
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MATCHING RUN LENGTH CODES

We have developed an algorithm to reduce the computational cost of template matching by using run
length representation of the image and the template. Using this technique we compare only locations in the
image and the template where the total mismatch accumulation may change. This method works best for
images and templates with long runs. We have studied conditions under which the algorithm will be efficient,
and tested it experimentally on both randomly generated and real images. In some cases, using this approach
yields more than 20-fold speedup. [281

MATCHING POLYGONAL ARCS

We have developed an efficient algorithm for matching two rectilinear polygonal arcs. We first show how
to match two arcs of the same length by decomposing them into a set of pairs of corresponding straight line seg-
ments having the same length. The distance measure of each such pair of line segments is calculated by refer-
ring to the distance of one of six possible configurations of pairs of segments. We then show how to find the
relative position of the two arcs which yields the best match by minimizing the distance function. After analyz-
ing the case of arcs having the same length, we show how to use the results and a representation of rectilinear
arcs as strings generated by four primitives to obtain an efficient algorithm for arc matching. This algorithm is
based on our earlier algorithm for run-length string matching. [291

BOOLEAN OPERATIONS ON POLYGONS

A robust algorithm for set operations on pairs of polygons has been developed. The algorithm is capable of
operating on the class of vertex-complete polygons which properly includes the simple polygons. The algorithm
uses carefully chosen data structures and is easy to describe. We have given a proof of its correctness and an
analysis of its complexity. [301 It has also been generalized to sets of polygons, using a boundary representation
for the input and output polygon sets. The polygons in each set can be either island or hole polygons. We show
how to make the basic algorithm more efficient by using inclusion trees that can be built from the polygons in
each set. The implementation is table-driven and is facilitated by the use of efficient data structures. The algo-
rithm can be applied to efficient matching of images that can be decomposed into regions having polygonal
boundaries. [311

MAP REGISTRATION

To obtain a map of the ocean floor, a multibeam echo-sounder system capable of measuring depth is
installed aboard a ship. The ship sails for several miles along a straight track and collects a swath of depth
data. Then it changes its course and collects another swath of data, doing this repeatedly in such a way that
each swath overlaps with a few others. However, because in the middle of the ocean it is very difficult for the
ship to know its accurate position, the overlapping swaths are almost always misregistered with respect to each
other. We have developed an automated system for obtaining a correctly registered map of the ocean floor.
Because each swath of data overlaps with several others, the registration is performed both at local and global
levels. The "primitives" used for local matching are contours of constant depth which are extracted from the
data and are represented by means of a modified chain code method. The main heuristic guiding the search for
matching contours of equal depth is their apparent proximity to the middle of the unregistered overlapping
region. The degree to which two contours match is determined by the correlation of their respective chain codes
and the geometrical proximity of their nodes. All "best" matches are considered tentative until their geometri-
cal implications are evaluated and a consistent majority has emerged. To do global matching a cost function
has been constructed and minimized. Terms contributing to the cost include violation of local matches as well
as compression and bending of the swaths of data. [321

SYMBOLIC MODEL MATCHING

Existing expert vision systems generally match models to images using only numeric "goodness-of-fit"
measures. The computation of such measures usually involves the combining of incommensurate quantities and
the loss of low level knowledge that could be useful at higher levels. The methods employed, and hence the
software developed, often cannot be generalized for use within other domains or at other levels of abstraction.
We feel that there is a need for a more general symbolic image/model matching paradigm, and for the develop-
ment of software tools that implement it. We have formulated motivations for the development of a general
purpose symbolic matcher, developed an implementation, tested it on real-world image iata, and discussed
important requirements that any such system ought to meet. [33]
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PARALLEL ALGORITHMS

GRAPH MATCHING

We have performed experiments with a parallel algorithm for matching attributed relational graphs. The
algorithm generates a state space tree in a breadth-first manner and then evaluates the tree by computing the
edit distance for each candidate solution. The parallelization method used is best suited for MIMD-type comput-
ers. The first target machine is the Butterfly Parallel Processor, in which the programs were developed on Uni-
form System software supporting a shared memory model of computation. The second multiprocessor is a link-
oriented Transputer-based system. In this system, concurrent processes communicate through message channels.
The experiments showed that nearly linear speedup can be achieved by parallelizing the algorithm in the outer-
most loop. [341

BORDER TRACKING

We have studied parallel implementation of a generalized one-pass algorithm for border tracking of objects
in thresholded binary images. The input image is scanned from top to bottom, from left to right. On each row,
partial border descriptions produced on previous rows are updated according to run ends on the current row.
Borders are represented by crack code strings following the outer borders in a clockwise direction, and the inner
borders in a counterclockwise direction. The parallelized version of the algorithm has been implemented on a
Butterfly Parallel Processor. The program was developed based on the Uniform System approach. The input
image is partitioned into equal sized blocks, and each partition is assigned to a separate processor. Partially
completed border descriptions gathered from the blocks are finally merged in parallel. [35]

POSE ESTIMATION

We have implemented Linnainmaa and Harwood's pose determination algorithm on the Butterfly Parallel
Processor (BPP) and Hathi 2 parallel computers. The architecture of the BPP is based on a shared memory
model, whereas the Hathi 2 is based on a distributed memory model. The algorithm is computationally very
intensive, which makes it suitable for parallel processing. The program was parallelized using the processor farm
technique, thus enabling automatic load balancing. The experiments show that the algorithm is very easy to
parallelize. Furthermore comparison of the two architectures shows that the Hathi 2 is much more powerful
than the BPP. Due to different implementation technologies, it is not, however, possible to say whether one of
the architectures is in general better than the other. [361

HIDDEN SURFACE COMPUTATION

We have developed a data parallel quad-tree algorithm for computing hidden edges in a scene consisting of
polygons in 3-space. The algorithm is based on Warnock's hidden-edge algorithm, but actually computes a
quad-tree representation of the image, rather than the image itself. It runs in time proportional to the number
of polygons in the scene and to the log of the desired resolution. It has been implemented on the Connection
Machine. [37]

GENERALIZED MATRIX INVERSION

The generalized inversion of a matrix has many applications. We have studied the parallel implementation
of the Ben-Israel-Greville algorithm for finding the Moore-Penrose inverse of a matrix. This algorithm is highly
suitable for data-level parallelism and has several advantages: linearity, stability, reliability, determinism and
scalability. Connection Machine experiments with random matrices of different dimensions have been per-
formed. [38]

Theoretical results concerning partitioning of large matrices for g-inversion have also been investigated,
and the complexity and performance analysis of these methods on the Connection Machine have been studied.
It turns out that the use of the virtual processor configuration on the Connection Machine is of comparable
efficiency to using any partitioning scheme, when the multiplicative iterative scheme is used for g-inversion. [39]

TENSOR PRODUCTS

Tensor products are widely used in the evaluation and interpolation of functions as well as 2D and 3D
image blocks. We have also implemented the tensor product method on the Connection Machine. [40]
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SPLINE-BLENDING APPROXIMATION

Wee have studied the projection operator technique for multivariable cardinal spline-blending approxima-
tion on the Connection Machine. This technique requires data-parallel operations for polynomial (single and
multivariable) evaluation and hence is well suited for implementation on the Connection Machine. The basic
operations needed are the inner product and the tensor product of vectors whose components are polynomials or
their evaluated values. Spline-blending approximation has several applications: finite-element methods, digital
image processing, optical flow and topography. (411

NEURAL NETWORK SIMULATION

Partitioning a set of N patterns in a d-dimensional metric space into K clusters-in a way that those in a
given cluster are more similar to each other than the rest-is a problem of interest in image analysis, astrophy-

KN$
sics and other fields. As there are approximately Ai possible ways of partitioning the patterns among K clus-
ters, finding the best solution is beyond exhaustive search when N is large. We have shown that this problem in
spite of its exponential complexity can be formulated as an optimization problem for which very good, but not
necessarily optimal, solutions can be found by using a neural network. To do this the network must start from
many randomly selected initial states. The network has been simulated on the NASA MPP (a 128 X 128 SEMD
array machine), where we used the massive parallelism not only in solving the differential equations that govern
the evolution of the network, but also in starting the network from many initial states at once thus obtaining
many solutions in one run. We have obtained speedups of two to three orders of magnitude over serial imple-
mentations. [421

PYRAMID SIMULATION

We have developed an algorithm for fast addition on the fat pyramid. The fat pyramid is a pyramid in
which the storage space and the processing power allocated to a single node increase as the root of the pyramid
is approached. The addition algorithm is based on a carry-lookahead technique. The computation time of the
algorithm is proportional to log p + q for operands of size p * q bits, when p processors are used to deal with
the numbers. The addition algorithm was simulated on the Connection Machine. [43]

A pyramid programming environment on the Connection Machine has been developed. The mapping
between the Connection Machine and pyramid structures is based on a scheme called Shuffled 2D Gray Codes.
A pyramid [tough transform, based on computing the distances between line or edge segments and enforcing
merge and select strategies among them. has been implemented using this programming environment. J441

PYRAMID TECHNIQUES

PYRAMIDS AND PRISMS

An image pyramid is a hierarchy of representations of the input, derived by recursive smoothing and deci-
mation. Image pyramids are built, in log(imagesize) time with the consecutive levels having their size and reso-
lution reduced by a constant factor. Similar structures with the representations decreasing only in resolution but
not in size are also of interest. Such constant size multiresolution representations of the input can be simulated
on image pyramids by increasing the number of values stored in the cells of the host structure. Constant size
representations allow parallel processing in applications such as scale-space filtering and mulliresolution edge
detection. 1.151

PYRAMID ROBUSTNESS

Image pyramids have been used by many investigators as computational structur-s for multi-resolution
image processing and analysis. We have subjected such pyramids to various structural perturbations and inves-
tigated their effects on the functions of the pyramid. The perturbations ranged from adding Gaussian noise to
the weights of the generating kernel, to generating a hierarchy of completely irregular tessellations of the image
field. We have shown that homogeneous parts of the low resolution representations of the input image may be
recovered by renormalizing the corrupted weights. Multi-resolution algorithms transposed to irregular (stochas-
tic) structures exhibited only a small decrease in performance. We conclude that, pyramidal algorithms are
robust and are only weakly dependent on the underlying structure. We suggest, that some of these pyramidal
algorithms may also serve as computational models for perceptual phenomena. (46

102

€I



BIMODALITY ANALYSIS

The bimodality of a population P can be measured by dividing its range into two intervals so as to max-
imize the Fisher distance between the resulting two subpopulations P, and P 2. If P is a mixture of two
(approximately) Gaussian subpopulations, then P1 and P 2 are good approximations to the original Gaussians, if
their Fisher distance is great enough. For a histogram having n bins this method of bimodality analysis requires
n - 1 Fisher distance computations, since the range can be divided into two intervals in n - 1 ways. The method
can also be applied to "circular" histograms, e.g. of populations of slope or hue values; but for such histograms
it is much more computationally costly, since a circular histogram having n bins can be divided into two inter-
vals (arcs) in n(n - 1)/2 ways. The cost can be reduced by performing bimodality analysis on a "reduced-
resolution" histogram having n /k bins; finding the subdivision of this histogram that maximizes the Fisher dis-
tance; and then finding a maximum Fisher distance subdivision of the full-resolution histogram in the neighbor-
hood of this subdivision. This reduces the required number of Fisher distance computations to
n(n - 1)/2k2 + 0(k). For histograms representing mixtures of two Gaussians, this method was found to work
well for n /k as small as 8. 1471

IMAGE SEGMENTATION

If an image contains regions whose gray level populations differ only slightly from that of the background,
it may be difficult to detect their presence by statistical population analysis, since they may not give rise to
significant bimodality. If the regions are relatively compact, however, in the sense that they do not consist pri-
marily of border pixels, the image's bimodality can be significantly increased by local averaging. Thus local
averaging followed by bimodality analysis can be used to detect compact regions that differ slightly in gray level
population from their background. This method may also be useful in detecting objects that differ texturally
from their backgrounds, where initial local filtering may yield only slight differences between the object and
background gray level populations in the filtered images. [48]

BORDER DELINEATION

A pyramid technique for delineation of compact objects has been developed. The borders of the objects
are detected in a ;ow resolution representation of the input, a higher level of the pyramid. The pixels on the two
sides of an edge are the roots for two classes (object and background). The two classes are employed in two
independent top-down tree growing processes. The information is passed downward by adjusting confidence
measures. The employment of multiple roots defined on the smoothed representation of the input contributes to
the robustness of the method at very low signal-to-noise ratios. 1491

HOUGH TRANSFORM

We have developed a divide-and-conquer Hough transform technique for detecting a given number of
straight edges or lines in an image. This technique is designed for implementation on a pyramid, and requires
only 0(log n) computational steps for an image of size n Xn. [50]

CONTOUR PROCESSING

A novel hierarchical approach toward fast parallel processing of chain-codable contours has been
developed. The environment, called the chain pyramid, is similar to a regular non-overlapping image pyramid
structure. The artifacts of contour processing on pyramids are eliminated by a probabilistic allocation algo-
rithm. Building of the chain pyramid is modular, and for different applications new algorithms can be incor-
porated. We have implemented two applications: smoothing of multi-scale curves, and gap bridging in frag-
mented data. The latter is also employed for the treatment of branch points in the input contours. A prepro-
cessing module allowing the application of the chain pyramid to raw edge data has also been developed. The
chain pyramid makes possible fast, O[log(image-size), computation of contour representations in discrete scale-
space. [511

PICTURE PARSING

We believe that pyramids are a natural architecture for implementing a general method of syntactic pat-
tern recognition. Pyramids can be used to extract syntactic primitives (local features, edges/curves, or regions
of simple shapes) from an image and to compute their properties They can also be used to identify hierarchical
arrangements of primitives, thereby parsing the image (in parallel) in accordance with the rewriting rules of
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"coordinate grammar". [52]

GEOMETRY

HEXAGONAL GRIDS

Square and hexagonal spatial samplings, because of their processing ease, are used most widely in image
and signal processing, However, no rigorous treatment of the quantization error due to hexagonal sampling has
appeared in the literature. We have developed mathematical tools for estimating quantization error in hexago-
nal sensory configurations. These include analytic expressions for the average error and the error distribution of
a function of an arbitrarily large number of hexagonally quantized variables. The two quantities, the average
error and the error distribution, are essential in assessing the reliability of a given algorithm. For comparison we
have also computed the corresponding expressions for square spatial sampling, so that they can be used in com-
paring the magnitude of the error incurred in hexagonal versus square quantization for a given algorithm. They
can thus be used to determine which sampling technique would result in less quantization error for a particular
algorithm. Such a comparison is important due to the paramount role that quantization error plays in computa-
tional approaches to computer vision. [53)

METRICS

In computer vision a variety of metrics are used to determine the distance between lattice points. The
three which are encountered most often are city block distance, chessboard distance, and Euclidean distance. A
set S of lattice points will be said to be (r, 8)-metrically independent if the congruence of S and T under the r
metric implies congruence under the s metric for every digital set T. Necessary and sufficient conditions are
obtained for sets to be metrically independent with respect to the three given distances. Conditions on the
interpoint distances are also determined which permit a set to be imbedded in the digital plane with these
metrics. (54]

DIGITAL GEOMETRY ON GRAPHS

Many of the standard concepts of digital geometry, particularly those involving connectedness and distance
properties of subsets of a digital image, can be generalized to subgraphs of an arbitrary graph G. Algorithms
for connected component labeling, distance transform computation, etc., can be defined that require time 0(n),
where n is the number of nodes of G. Parallel algorithms for these computations can also be defined, using
various modes of parallel computation. We can also define "continuous" integer-valued functions on graphs, and
can show that the distance transform is the largest such function having (at least) a given set of zeros. [55]

CONTOUR CODES

An isothetic polygonal arc is one that has all its sides oriented in two orthogonal directions, so that all its
angles are right angles. Such an arc is determined (up to congruence) by specifying a "code" sequence of the
form i A1 C12 ... am- 1 Am-, am, where the a's are positive real numbers representing side lengths, and the .4 's
are single bits that specify whether the arc turns left or right between one side and the next. We have
developed basic properties of this code, and shown how to derive various geometric properties of the arc (or the
region it bounds, if it is closed) directly from the code. [56]

MEDIAL AXIS TRANSFORMS

The Medial Axis Transform represents a region of a digital image as the union of maximal upright squares
contained in the region. We have studied the problem of computing geometric properties of the image from a
representation that generalizes the squares to rectangles. We have given algorithms for a number of problems
using n processors where n is the number of upright rectangles. Our algorithms compute the perimeter, eccen-
tricity, center of gravity, moment of inertia and area of the region covered by the rectangles in 0(log n ) time.
The results are faster than previous results and are optimal (to within a constant factor). The contour of such a
region may contain as much as 0(n 2 ) pieces; our algorithm computes the contour with a worst case running
time of 0(n). We also give an optimal parallel algorithm to construct the medial axis transform representation
given an array representation of the image. [57]
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DOT PATTERNS

We have defined random processes that generate planar dot patterns in which the dots have a tendency to
cluster, or in which clustering is inhibited. We have also defined processes for labeling a given point pattern in
such a way that neighboring points tend to have, or not to have, the same labels. The patterns generated by
such processes can serves as test data for image analysis algorithms that operate on spatial configurations of
local image features. [581

MARKOV RANDOM FIELDS

Generating a Markov random field image is a computationally very expensive process on a sequential pro-
cessor. We have developed a parallel algorithm to perform this task and have implemented it on the Connection
Machine. We show on theoretical and experimental grounds that a 40% degree of parallelism is optimal for this
algorithm. In our implementation we demonstrate a 40% degree of parallelism and an effective speedup of more
than 70 times over the sequential implementation on a Vax 11/785 running Unix. [591

OTHER TOPICS

TESTING GEOMETRICAL CONFIGURATIONS

We hav, developed a general formulation for testing particular geometrical configurations of image data.
The procedure consists of hypothesizing and testing: We first estimate an ideal geometrical configuration which
supposedly exists, and then check to what extent the original edge data must be displaced to support the
hypothesis. Thus, all types of tests are reduced to computing a single measure of edge displacement without
involving ad-hoc measures and threshold values depending on the problem. Also, no explicit forms of probability
distribution need be introduced. All the procedures are described by explicit algebraic expressions in unit vec-
tors which represent points and lines on the image plane, so that no computational overflow occurs and no
searches or iterations are required. [60]

IMAGE INTERPRETATION: PROGRAMMED PICTURE LOGIC

The objective of the PPL project is to design and implement a general and modular logic-programmed sys-
tem for two-dimensional interpretation of image theories in image structures obtained by image analysis. Impor-
tant subsystems include heuristic search for object instances with optimization of goodness-of-figure, and pro-
cedures for computing basic image components, locales for searches, and predicates. Some of these have been
illustrated in an application to aerial images of suburban neighborhoods. [61)

PLANNING

The value of enabling a planning system to remember the plans it generates for later use was ack-
nowledged early in planning research. The systems developed, however, were very inflexible as the reuse was
primarily based on simple strategies of generalization via variablization and later unification. We have
developed an approach for flexible reuse of old plans in the presence of a generative planner. In our approach
the planner leaves information relevant to the reuse process in the form of annotations on every generated plan.
To reuse an old plan in solving a new problem, the old plan along with its annotations is mapped into the new
problem. A process of annotation verification is used to locate applicability failures and suggest refitting stra-
tegies. The planner is then called upon to carry out the suggested modifications-to produce an executable plan
for the new problem. This integrated approach obviates the need for any extra domain knowledge (other than
that already known to the planner) during reuse and thus affords a relatively domain-independent framework for
plan reuse. We have studied the realization of this approach in two disparate domains (blocks world and process
planning for automated manufacturing) and have proposed extensions to the reuse framework to overcome
observed limitations. We believe that our approach to plan reuse can be profitably employed by generative
planners in many applied domains. [62]

DISTRIBUTED LEARNING

Most methods of learning in distributed environments are based on gradient descent algorithms that
involve changing the weights of the network in order to minimize the difference between the expected and actual
input-output behaviors. The successes of such "motion in weight space" methods have been limited due to their
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inability to capture the implicit constraints of the behavior and properly distribute them among the units of the
network. An alternative system has been developed, one based on inotion in constraint space. It relates the
input-output behavior of a connectionist network to a Boolean expression in disjunctive normal form, where each
hidden unit of the network learns to detect one of the conjunctive parts of the expression. The potential con-
straints at a processor are the states of an input configuration that correctly activates the outputs. These con-
straints are added and removed from the processors in such a way that the correctness of the behavior of the
network is maximized. Unlike gradient descent methods, which may become trapped in local minima, or simu-
lated annealing methods, which may need an infinite amount of time to reach a good state, this system deter-
mines a correct solution to many problems very quickly. Unlike most traditional "machine learning" algorithms,
this system can learn concepts in parallel, is capable of continuously adapting to new information, and is highly
resistant to feedback error. Applications to problems such as recognizing (learning) 2-D shapes (such as fish
tails) show the potential of the applicability of the method to practical problems. [63, 64]
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Image Understanding and Robotics Research
at Columbia University

John R. Kender1

Peter K. Allen
Terrance E. Boult

Department of Computer Science
Columbia University, New York, NY 10027

0 Introduction

Over the past year, the research investigations of the Vision/Robotics Laboratory at Columbia University
have reflected the interests of its four faculty members, two staff programmers, and 16 Ph.D. students. Several of
the projects involve other faculty members in the department or the university, or researchers at AT&T, IBM, or
Philips. We list below a summary of our interests and results together with the principal researchers associated
with them. Since it is difficult to separate those aspects of robotic research that are purely visual from those that
are vision-like (for example, tactile sensing) or vision-related (for example, integrated vision-robotic systems), we
have listed all robotic research that is not purely manipulative.

The majority of our current investigations are deepenings of work reported last year; this was the second
year of both our basic Image Understanding contract and our Strategic Computing contract. Therefore, the formof this year's report closely resembles last year's. Although there are a few new initiatives, mainly we report the

new results we have obtained in the same five basic research areas. Much of this work is summarized on a video
tape that is available on request.

We also note two service contributions this past year. The Special Issue on Computer Vision of the
Proceedings of the IEEE, August, 1988, was co-edited by one of us (John Kender 127]). And, the upcoming IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, June, 1989, is co-program chaired
by one of us (John Kender [23]).

0.1 Low-Level Vision

0.1.1 Polarization and Specularities
1. New methods for using polarization to segment specular highlights and to separate reflectance

components (Larry Wolff [44, 49]).

2. New methods for classifying material surfaces into conductors and dielectrics using the polarization
of specular highlights (Larry Wolff, and Terry Boult [45, 50, 51, 52]).

0.1.2 Image Warping
1. A survey of image-warping techniques (George Wolberg [40]).

2. A novel data structure and algorithm for warping to and from arbitrary shapes (George Wolberg
[41, 391).

3. A new, highly efficient, general method for achieving 2-D image warps by separating the transform
into two successive 1 -D warps (George Wolberg [42, 43]).

0.1.3 Optic Flow, and Rotational Motion
1. New, provably optimal algorithms for determining optic flow based on smoothing splines (Anargyros

Papageorgiou, David Lee of AT&T Bell Laboratories, Greg Wasilkowski of the University of
Kentucky [30]).

'This work was supported in part by the Defense Advanced Research Projects Agency under contracts N00039-84-C-0165 and
DACA76-86-C-0024.
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2. New algorithms for the smooth interpolation of rotational motions (Ken Roberts, and Kicha
Ganapathy and Garry Bishop of AT&T Bell Laboratories [31]).

0.2 Middle-Level Vision

0.2.1 Physical Stereo
1. A unified theory of generalized physical stereo vision for the determination of several first and

second order local surface properties (Larry Wolff [46, 53]).

2. A new method for determining local surface orientation from a continuous variation of photometric
stereo, called "photometric flow fields" (Larry Wolff [47, 54, 55]).

3. A new invariant within two-camera stereo that allows the determination of the orientation of lines
and surfaces in a manner insensitive to baseline measurement error (Larry Wolff [48, 56, 57]).

0.2.2 Regularized Surface Reconstruction
1. A critical study of regularization methodology (Terry Boult [8]).

2. Investigations into the stability and error properties of a new integrated stereo matching, surface
reconstruction, and surface segmentation (Terry Boult, Liang-Hua Chen, and Mark Lerner [9, 13]).

0.2.3 Sensory Fusion
1. A new method for classifying textures based on the relative contributions of independent texture

methods to a fused texture percept (Mark Moerdler [28]).

2. A method for fusing texture and stereo (Mark Moerdler, and Terry Boult [29]).

3. A working system, now in production, for the spline-based recovery of smooth oceanographic
positional information from noisy, conflicting input (Terry Boult, and Barry Allen of Columbia
University's Lamont-Doherty Geological Observatory [10]).

4. An initial reexamination of depth-from-focus, for possible use in fusing with stereo and/or texture
(Terry Boult).

0.2.4 Shape from Dynamic Shadowing
1. A patent for shape from darkness, a discrete method for deriving surfaces from dynamic shadows

(John Kender, and Earl Smith [26]).

2. A parallelizable, optimal algorithm for shape from continuous shadows (Michalis Hatzitheodorou,
John Kender [20, 21]).

0.3 Spatial Relations

0.3.1 Representations of Objects
1. An elegant representation for lines in three-space (Ken Roberts [32]).

2. New, robust measures for the error of fit of superquadric models to range data (An Gross, and Terry
Boult [17, 18]).

3. An investigation into efficiently-computable invariants that quickly relate reflectance information to
certain classes of generalized cylinders (Ari Gross).

4. The design and initial implementation of a system to numerically recovery the parametric
representations of volumes from multiple types of data, and multiple sensor types (Terry Boult).

5. New algorithms for efficient viewpoint planning (Dino Tarabanis, and Roger Tsai of IBM Watson
Laboratory [38]).
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0.3.2 Representations of Space
1. A survey of algorithms for the representation of space and free-space path planning (Monnett

Hanvey [191).

2. An analysis of the complexity of efficiently updating of digital distance maps in dynamic, greater
than 2-0, environments (Terry Boult [1 1]).

0.3.3 Theory and Practice of Navigation
1. An analysis of the complexity of topological navigation by landmarks, with applications to the design

of sensors and robot instruction languages (John Kender, Avraham Left, and ll-Pyung Park
[24, 25]).

2. Systems issues in real-time robotic navigation (Monnett Hanvey, and Russ Andersson of AT&T Bell
Laboratories).

0.4 Parallel Algorithms

0.4.1 SIMD Algorithms
1. Analysis of two novel and several existing algorithms for depth interpolation using optimal numerical

analysis techniques (Dong Choi, and John Kender [14, 15, 161).

2. A method for shape-from-texture based on distortions in image autocorrelation (Lisa Brown, and
Haim Schvaytzer of Cornell University [12]).

3. Programming environments and image pyramid emulation for the Connection Machine (Hussein
Ibrahim, Lisa Brown, and John Kender [22]).

0.4.2 Pipeline Algorithms
1. Grey-level corner detection in real time (Ajit Singh, Mike Shneier of Philips Laboratories [33, 341).

2. An integrated system for real-time visual object tracking (Peter Allen [1, 4]).

3. New algorithms for motion perception in real time (Ajit Singh [35, 36, 37]).

0.5 Robotics and Tactile Sensing

0.5.1 Integrated Environments
1. Integrated environments (Peter Allen, Paul Michelman, Ken Roberts, Amy Morishima, and Steve

Feiner [2, 5, 6]).

0.5.2 Multi-fingered Object Recognition
1. Haptic recognition via active exploration with a robotic hand (Peter Allen, Ken Roberts [3, 7]).
We now detail these efforts, many of which are documented by full papers in these proceedings. We also

include short discussions of work in progress.

1 Low-Level Vision
We have explored three areas of low-level vision, and the results that we have obtained in each of them

came via the careful exploitation of new equations, representations, or settings for standard, traditional problems.

1.1 Polarization and Specularitles
Prior to this research, the segmentation of specular highlight regions, and the separation of reflected light

into diffuse and specular reflection components, could only be solved on dielectric materials (insulators).
Additionally, previous algorithms were sensitive to color. However, by using polarization information, specular
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regions can be identified on both metals and dielectrics on a per-pixel basis, without the use of a segmentation
procedure, as long as a controllable polarizing filter can be placed between the camera and the object. Most
ordinary light sources are unpolarized, but light reflected off dielectrics tends to be much more polarized and is
more easily separated. A few minimal restrictions on the phase angle between light, object, and camera, must
apply; these and other qualitative statements have be made quantitatively precise. Initial experimental evidence
is very encouraging, on a variety of metals, insulators, and metallic and non-metallic paints and glazes [44, 49].

Closely related to this method--indeed, derived from the same equations--are new methods for classifying
material surfaces into conductors or dielectrics by using the polarization of specular highlights. As with the
segmentation algorithms, they depend on the empirical determination of the polarization Fresnel ratio. Originally
developed for use with point sources, the methods have also been extended to allow their computation to be
based more typical extended sources, such as fluorescent tubes [45, 50, 51, 52].

Because both classes of algorithms have the same initial front-end requirements, both can be run in parallel
on the same image for simultaneous material classification and separation of reflection components. In addition,
a third class of algorithms can exploit further relationships implicit in equations for the polarization of reflected
light, in order to determine local surface orientation properties (discussed below, under "middle-level" vision).
Thus, the theory unites three very different roles of early vision: object composition, object position and
orientation, and environmental lighting and reflections. Under construction is an integrated set of vision
algorithms that does these (and other) tasks, called POLARIS, for POLarization And Radiometric Integrated
System.

1.2 Image Warping
Many imaging situations call for small local geometric corrections on the retina; many graphic situations call

for large ones. Remote sensing, medical imaging, and television commercials with special effects all share the
need to elastically deform images to some ground truth or some aesthetic demand. Done in software, image
warping can be thought of as a reconfigurable lens system. The existing technology is extensive, but relatively
slow, constrained by numerous side conditions, and subject to many errors and aberations. A search for better
algorithms resulted first in a comprehensive survey of image-warping techniques [401).

The literature is largely silent on the problem of efficiently and smoothly mapping between two image
regions which are delimited by arbitrary closed curves; such regions do not have the universally assumed four
corners. The second result was the specification and verification of an algorithm that instead treats an image
region as a collection of interior layers around a skeleton [41, 39]. These layers impose a type of local polar
coordinate system which allows each shape to be "unwrapped" into a tree-like representation. Region-to-region
warping is then defined by a natural mapping between the two resulting trees. Although there is no a priori way of
defining quality of mapping, the results are aesthetically pleasing.

The third and most recent product is a new, highly efficient, general method for achieving 2-D image warps
by separating the 2-D transform into two successive 1 -D warps [42, 43]. It therefore extends the power of existing
hardware systems that perform more limited classes of transformations by similar decompositions. However, this
method shows that off-the-shelf hardware, in the form of digital filters with only minor modification for 1 -D image
resampling, can be used to realize arbitrary mapping functions cheaply and at video rates.

Further work will make use of this approach for performing high-speed elastic matching of deformed
images. By using the spatial lookup tables introduced here, improved metrics for the quantification of deformation
are possible. Extensions to 3-D may also be straightforward.

1.3 Optic Flow, and Rotational Motion
Optic flow computations are traditionally cast as continuous partial differential equations, but then are

solved by discrete difference methods. Although there have been numerous approaches to the problem, differing
in both equations and boundary conditions, few results have been obtained concerning the quality of solutions
and their error. However, when the problem is cast in the domain of smoothing splines, and if boundary flow
values obey Dirichlet constraints, several results are possible [30]. There is a unique solution; sparse, iterative
methods can be sued to solve the resulting discrete system; error can be predicted. Further, the Chebyshev
method of solution requires little global exchange of information, so it is eminently suited for parallelization. These
results appear to be applicable to other low-level vision problems as well.

Looking now instead to the problems of smooth flow by a single object in three space, it is apparent that the
understanding and interpolation of rotational motion (as in a "perfect spiral" football pass) is important in computer
animation, robot control, and hypothesis-guided computer vision. A new, closed-form algorithm for doing so has
been implemented, based on representing motions as quaternions on the unit three-sphere [31]. Resulting
displays of interpolated values, and the computer animation sequences based on them, are smoother and more
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perceptually realistic than existing methods.

2 Middle-level Vision
We have exploited the theory of physical stereo to produce many methods for determining object position,

orientation, and curvature. There are at least five now. We have found several powerful alternatives to standard
regularization methods, and one of them has led to a non-traditional, one-step method for stereo matching,
surface reconstruction, and segmentation. It forms the fuither basis for a novel stereo-texture fusion system, and
holds the promise of further fusion work, possibly with depth-from-focus. The fusion work has already lead to an
operational system in use outside the vision community. Research on shape-from-shadows has yielded a patent
and optimal, parallelizable, distributed algorithms.

2.1 Physical Stereo
The theory of generalized physical stereo has produced five different applications at the middle levels of

vision.
In the first, local surface orientation can be calculated by varying the wavelength and/or the linear

polarization of a single incident light source [53]; only two settings of a polarizer are necessary for uniqueness of
solution. This is a motionless variation on photometric stereo, and has been one of the earliest results from the
theory. However, further study of the method has shown that the process of computing local surface normals can
be made to rely simply on the empirical determination of the polarization Fresnel ratio; this is the same parameter
necessary for determining the materials of an object and the components of a reflection. Thus, a formerly implicit
factor is now seen to be a unifying parameter.

More practically, a second new technique to measure local surface orientation has been based on a more
complete theory of the reflection of light. This theory combines the Torrance-Sparrow theory of reflection with the
Wolff polarization theory of "quasi-monochromatic" (monochromatically filtered) light [46]. The technique enables
surface orientation to be uniquely measured in arbitrary lighting by placing a simple monochrome filter and a
linear polarizer in front of the sensor; two images taken at two orientations of the polarizer suffice. The equations
that govern the calculations, called the polarization state matrix equations, are elaborate, but they are only a
special case of the larger family of generalized physical stereo imaging equations.

These equations can be exploited to derive a third technique: the accurate determination of second order
variations of smooth object surfaces as a function of height above the image plane. This technique uses a
generalization of surface Hessian methods, which overconstrains the solution for the surface Hessian matrix,
giving the second order variations of the smooth surface.

A fourth and very recent method for determining local surface orientation is based on a new imaging
concept, the "photometric flow field" across an optic sensing array [47, 54, 551. Conventional optic flow considers
the rate of change in the physical position of the image of an object, as the object actually moves in three-space.
In contrast, photometric flow considers the rate of change in the image irradiance of the image of a stationary
object, as the illumination geometry moves in three-space instead. Such photometric flow fields can be used to
determine local surface orientation and surface curvature. The method may be generalizable to extended light
sources.

A fifth corollary to the theory of generalized physical stereo is a method to compute surface orientation from
the stereo correspondence of linear features such as polygonal edges, or internal linear markings or texture
[48, 56, 57]. It is in contrast to standard stereo, which tises point correspondences to compute the orientation of

a plane from the 3-D position of three or more coplanar points. Stereo using line correspondence instead
computes the orientation of a plane from the orientations of two or more coplanar lines. In the ideal world these
two methods are exactly equivalent. But in the experimental world with measurement error, the errors inherent to
measurement of surface orientation from line correspondence stereo does not grow nearly as fast with respect to
baseline translation errors or with respect to distance from the baseline. Analysis and Monte Carlo simulations are
shown to support this. There may be other vision algorithms which use also profit from the use of equivalent
geometric constructions to combat error.

2.2 Regularized Surface Reconstruction
Defining the meaning of "smooth surface" is one of the burdens of surface regularization. In a survey

paper, some of the benefits promised by the regularization framework are contrasted to some of its unheralded
difficulties, particularly the problems of determining appropriate functional classes, norms, and regularization
stabilizing functionals 18]. When regularization is subjectively tested via established procedures of psychology,
the results of the methodology applied to the surface reconstruction problem often gives worse results than
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certain other non-traditional formulations (which are also presented and analyzed).
One of these non-traditional methods provide the basis for a non-heuristic algorithm which simultaneously

reconstructs surfaces and segments the underlying data according to the same energy-based smoothness
measure [9]. It is founded on the use of reproducing kemel-based splines, which allow efficient calculation of
upper and lower bounds on surface energy. The system naturally deals with occluded objects, and also with
sharply slanted surfaces, such as roads as seen from a vehicle.

This work on non-heuristic segmentation has been further extended into the development and testing of a
new unified approach to stereopsis; it identifies the stereo matching criteria with the already combined non-
heuristic reconstruction and segmentation criteria [131. This energy criterion can be interpreted as a measure of
match ambiguity, which is used to rank order all potential stereo matches. Stereo matching, surface
reconstruction, and surface segmentation are therefore done in one step, according to one criterion. In tests so
far, the method results in fewer unmatchable features than the Marr-Poggio-Grimson method. A parallel
implementation is planned, to be followed by comparative performance analyses under various formulations of
surface energy, and for various scenes.

2.3 Sensory Fusion
Existing work on the fusion of five different shape-from-texture methods has suggested a novel approach

for classifying textures [28]. Each of the methods is tuned to certain image phenomena; the five are shape from
spacing, shape from orientation, shape from size, and shape from absolute and relative eccentricity. Given a
single texture patch, particularly one under perspective, each method will respond differentially according to the
degree it believes the patch possesses cues that the method can exploit to derive shape information. These
differential strengths can now all be gathered together as a signature feature vector for the texture. Although
such vectors may not have any easily assignable "natural meaning", they can be manipulated in the usual way by
standard pattern recognition or image segmentation techniques.

Having found ways of integrating into one process the three steps of stereo perception, and into another
process five methods of texture perception, it was inevitable that the two processes themselves would be fused
[29]. The resulting system now combines information in two fundamentally different ways, by intra-process and
inter-process integration. For standardization reasons, inter-process integration necessarily incorporates a priori
assumptions about surfaces, such as degrees and measures of smoothness; it comr-inicates such data in a
standardized way via a blackboard organization. In operation, the stereo process uses we relative accuracy and
sparseness of the centroid of texels to begin feature localization, later switching to traditional zero-crossings. The
work is further characterized by the choice of smoothness measure; roughly it minimizes variation in the 1.5
derivative, not the second. Final integration is achieved by weighting the surface constraints that are output by a
process, by an amount that is inversely proportionally to the peak number of constraints a process can output;
otherwise stereo, which is denser, would always outrank texture processing.

Applying this fusion technology to a real-world problem led to the successful completion of an operational
system for oceanographers. These programs, now in constant use by researchers mapping strctures beneath the
ocean floor, integrate navigational and positional information in order to recover the path of smoothly moving
ocean vessels. The system's use of smoothing splines is backed by a clever heuristic to ignore faulty outliers in
the data. The analysis and review of the project includes documentation of the negative results produced by
more standard, "optimal" methods [10]).

Further pursuing the idea of multi-sensor fusion, initial re-implementation and testing has begun on
algorithms for depth-from-focus. The experimental project will implement the three leading depth-from-focus
algorithms, in order to comparatively determine their cost/accuracy trade-offs. The most efficient one becomes a
candidate for further sensor fusion studies.

2.4 Shape from Dynamic Shadowing
The discrete version of a method for extracting surface shape information based from object self-shadowing

under moving light sources has been awarded its patent [26].
The continuous version has seen extensive analysis, leading to a optimal, parallelizable algorithm [20, 21].

The two-dimensional problem is solved by decomposing it into a series of one-dimensional slices in the plane of
the moving light source; these can be solved in parallel. Each strip is computed using as a basis a family of
interpolating splines of an junusual piecewise linear form. The solution is checked against a side system of
inequalities in order to preserve the implicit information that points interior to a shadowed region must lie below
that shadow line; if the solution fails, a non-linear approximation algorithm accommodates the failing constraints.

The problem has a natural parallelization, not only into slices, but also into hill-and-valley segments; the
latter parallelism has been implemented on a loosely coupled network of workstations. A smoothing spline
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approach has been developed to regularize noisy data. The question of optimal information (i.e., where to put the
illuminants) has been solved in some very restricted cases; basically, the problem is dominated by the tangent of
the incoming light ray angle. A full analysis of optimal light placement is being pursued.

3 Spatial Relations
We have invented, explored, or improved several representation schemes for objects they occupy and the

light they reflect or obscure: lines, polyhedra, superquadrics, generalized cylinders, and sensor models. We have
(literally) surveyed the representations of empty space, and how the representations can be efficiently changed as
objects move. Even in one dimension, navigation is provably hard; we are examining two and more, in simulation
and in the lab.

3.1 Representations of Objects
A new representation for a line in Euclidean three-space has been discovered, which uses only four

parameters, the minimal number allowable, and still avoids singularities and special cases [321. Without
sacrificing convenience of computation, it is no longer necessary to represent lines in the more traditional six- I
parameter forms (such as Plucker coordinates, or point-and-orientation form), although the new representation
has the added advantage that it is easy to convert to those forms. The representation, involving two parameters
for position and two for orientation, readily generalizes to Euclidean n-space, where it uses 2n-2 parameters: n-1
for position, and n-1 for orientation.When modeling objects by means of superquadrics, the primary concern in parameter estimation is the
proper choice of the error-of-fit measures that control the nonlinear least square minimization techniques. The
effectiveness of four such measures was tested on many examples using noisy synthetic data and actual range
images, including multiple views of the same object, and including a superellipsoid with negative volume--the
latter being an important primitive for constructive solid geometry-based modeling. Existing measures of fit
appear inadequate, and a new one that performs significantly bette, was developed and verified [17]. In process
is the verification of these predicted differences in complete recovery systems using real data.

A related model of volumes, generalized cylinders, is not nearly as well-defined as superquadrics are. Only
certain subclasses appear to be well-specified and well-behaved under reflectance. It would be valuable to be
able to quickly and cheaply test an image for the presence of a member of one of these subclasses; these tests
could serve as gatekeepers to more expensive algorithms in a general polymorphic shape recovery system. The
test need not calculate any parameters; it might exploit invariants that simple confirm or deny membership without
any attempt at reconstruction. One such subclass, the straight homogeneous generalized cylinders, can be
shown to possess a limited form of such invariants, under various rotational transformations and imaging
conditions [18]. The test make good use of contour information as well as image intensity; contour is most useful
in recovering the axis, and intensity in recovering any tilt. A prototype system is under construction.

Another new project, the PROVER System (Parametric Representation of Volumes: Experimental
Recovery System) is designed to allow numerical recovery of parametric representations from multiple types of
data, and multiple sensor types. An important feature of the system is its use of explicit sensor error models.
Initial implementations are underway, and a prototype system with restricted parametric representations and data
types is already running. The system will be used to develop accurate sensor error models, and will help
demonstrate the effect of such models in the recovery of parametric volumes. Because of the significant
computation cost of the approach, a parallel implementation is already underway.

Experience with merging multiple sensor data sources usually results in examining the sensor modeling
problem from the perspective of the automatic generation of viewpoint, geometric, and sensing constraints.
Assuming an assembly or an inspection domain, such an analysis is based on both CAD/CAM object models and
low-level sensor models. The emphasis is on the automatic and intelligent handling of partial object descriptions,
and partial or total sensor occlusions. The automatic generation of sensor viewpoint is a natural place to begin.
The goal is to be able to automatically select a viewpoint for a vision sensor from which features of interest on an
object will satisfy particular constraints in the image, among them, visibility. A prototype system has been
developed that computes the regions in space where a face of an object occludes the target features [38]. The
geometric model of the object is polyhedral, but its faces may be concave and multiply-connected.

3.2 Representations of Space
A survey of some 80 papers dealing with environmental representations of mobile robots has been I

completed and revised [191. Most of these representations assume a static two-dimensional world, and acomplete bird's-eye knowledge of free space and obstacles. The survey also proposes a taxonomy of this new
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field: it describes map primitives, such as frames of reference and map symbols, and representations, such as
dehydrated free space (mixed polyhedra, and vertex graphs), simple mosaics (tessellations, distance maps, and
quadtrees), and reconstituted free space (convex cells, and freeways). There continues to be a relative paucity of
results on qualitative, topological navigation, however.

Extending previous work on path planning in dynamic environments using digital distance maps [11,
complexity bounds have recently been derived on the constrained distance transform for computing digital
distance maps. Further, the method has been extended to handle path planning with spatially varying distance
metrics. In particular, digital terrain maps (currently synthetic) can provide auxiliary information (for example,
surface height and ground-cover) that affects distance measures in a spatially-varying way. Such spatially
varying distance cost problems are relatively frequent, and vertex based algorithms do not generalize well to
these problems; their strengths under dynamic updating, however, are being investigated.

3.3 Theory and Practice of Navigation
A model has been formalized for topological navigation in one-dimensional spaces, such as along single

roads, corridors, or transportation routes; it demonstrates that the problem is surprisingly difficult computationally
[24, 25]. The model includes three levels of abstraction: the concepts and representations of the world itself (a

version of "Lineland"), the world as abstracted into symbols and landmarks by an omniscient map-maker, and the
world as experienced by a limited navigator who follows the map-makers directions. Having also modeled the
navigator's sensors in a primitive way (a sensor here being more like a feature detector), it is straightforward to
shcw that the problem of choosing an effective and efficient subset of sensors for navigation via landmarks is
NP-complete. However, simplifying heuristic evaluation functions do exist, and are being explored for their
effectiveness. The method has also been extended to a grid-like version of two dimensions, with similar results.
It still remains that a "good" set of directions is ill-defined and intractable.

Work on the mobile robot platform of AT&T Bell Laboratories continues; sonar and custom VLSI vertical-
edge detecting vision now cooperate, albeit weakly. The edge-tracking Kalman filter has been further refined, and
initial models of the corridors and their effect on vertical edge positioning is being investigated.

4 Parallel Algorithms
We have analyzed the performance of the parallelization of several computationally optimal algorithms for

depth interpolation; since the problem is typical of others at the low-level of vision, the optimality results should
easily transfer. We have invented a particularly simple, accurate, and robust shape-from-texture algorithm based
on image autocorrelation that appears to outperform human observation on real scenes of roads, dirt, and grass.
We have designed and implemented a near-optimal programming environment for validating parallel pyramid-
based SIMD algorithms on the Connection Machine. On our PIPE, we are implementing a system for optic flow
dotermination that fuses the results of intensity correlation methods and spatiotemporal energy methods; the
method has already generated a robust grey-level corner detector as an offshoot. The PIPE is fast enough to
provide real-time robot arm control information, which we are preparing to demonstrate by the dynamic grasping
of moving objects.

4.1 SIMD Algorithms
Many constraint propagation problems in early vision, including depth interpolation, can be cast as solving a

large system of linear equations where the resulting matrix is symmetric, positive definite, and sparse. Analysis
and simulation of several numerical analytic solutions to these equations for a fine grained SIMD machine with
local and global communication networks (e.g., the Connection Machine) shows that two methods are provably
optimal in terms of computational complexity [14, 15, 16]). For a variety of synthetic and real range data, the
adaptive Chebyshev acceleration method executes faster than the conjugate gradient method, if near-optimal
values for the minimum and maximum eigenvalues of the iteration matrix are available.

When these iterative methods are implemented in a pyramidal multigrid (coarse-medium-fine) fashion,
using a fixed multilevel coordination strategy, the multigrid adaptive Chebyshev acceleration method executed
faster than the multigrid conjugate gradient method again. This appears to be the case because an optimal
Chebyshev acceleration method requires local computations only. These methods have now been validate on
actual range data.

As a possible front-end to such depth interpolation tasks, a new method for determining local surface
orientation was developed from rotationally invariant textures based on the two-dimensional two-point
autocorrelation of an image [12]. This method is computationally simple and easily parallelizable, uses
information from all parts of the image, assumes only texture isotropy, and requires neither texels nor edges in the
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texture. Applied to locally planar patches of real textures such as roads, dirt, and grass, the results are highly
accurate, even in cases where human perception is so difficult that people must be assisted by the presence of
an artificially embedded circular object. However, follow-up extensions attempting to use the method for )on-
isotropic textures, even with built-in heuristic biases, were not successful. Nevertheless, the algorithm has
several exploitable mathematical elegancies, and is amenable to parallel implementation.

As part of our efforts under Strategic Computing, three programming environments that support research
on stereo and texture algorithms were developed, in parallel image pyramid style 1221). The current and final
programming environment has been designed, installed, and documented; it is a highly efficient pyramid machine
emulator that executes those image function primitives on the (University of Syracuse) Connection Machine 2. It
cleverly reduces communication contention by an elegant, and probably optimal, embedding of the pyramid within
the hypercube network. Mesh operations take only a small fixed amount of overhead proportional to the size of
the hypercube; parent/child operations run in a smaller fixed time independent of hypercube size. This code is
publicly available.

4.2 Pipeline Algorithms
Real-time "pixel-parallel" versions of a variety of image processing algorithms have now been developed for

our PIPE architecture. Based on our past experience with pipelined processors [33], already installed have been
algorithms for spatial filtering, spatiotemporal filtering, and pyramid-based spatial processing. Most recently, a
novel grey-level template-driven corner detector that combines the advantages of two previously orthogonal
approaches has been designed and validated; it executes in real time [34].

One application of these real-time algorithms is in real-time motion tracking [1, 41. The motion in a scene is
found by using spatio-temporal filters on a PIPE. The PIPE is able to update motion energy centroids at 10 HZ
and this information is used to update the position of an arm mounted camera which tries to keep the object
centered in the field of view. Latencies in the communication system between arm and camera effectively reduce
the arm movement rate to 4 HZ. The system is being developed in order to pick moving objects in real-time with
our Utah-MIT hand.

Robustness of robotic algorithms is a paramount concern; such reliaDility can be achieved using an
information-fusion based approach. A prototype system is under development that combines multiple cues for a
visual measurement, along with an associated confidence; the grey-level corner detector is the first example.
Next under investigation is image-flow extraction, using a unified mathematical framework for matching-based
and gradient-based techniques [35, 36, 37]). The two techniques are nicely complementary; intensity correlation
methods work best in structured scenes, and spatiotemporal energy methods are more suited for textured
scenes.

5 Robotics and Tactile Sensing
We have made great progress in integrating a Utah-MIT hand into our robotics testbed. We have

developed a number of low-level sensing and actuation primitives that allow one to easily program the hand for
simple tasks. In addition, we have been exploring human psychology to understand the ways that humans use
active touch and to apply these strategies to our robotics environment.

5.1 Integrated Environments
The Utah/MIT dextrous hand provides a new set of tools to study intelligent touch and grasping. Cartesian-

based low level control algorithms for the hand, and a more hybrid scheme using both tendon force and tactile
contacts will eventually be part of a comprehensive grasping environment. It will be capable of performing tasks
such as locating moving objects and picking them up, manipulating man-made objects such as tools, and
recognizing unknown objects through touch. In addition, the integrated programming environment will allow
grasping primitives to be included in an overall robotic control and programming system that includes dextrous
hands, vision sensors, and multiple degree of freedom manipulators [2, 5, 6].

The system has been used to perform a number of grasping tasks, including pick and place operations,
extraction of circuit boards from card cages, pouring of liquids from pitchers, and removing light bulbs from
sockets. These tasks have been programmed using DIAL, a parallel, graphical animation language developed by
Steven Feiner. DIAL permits task-level scripts which can then be bound to particular sensors, actuators, and
methods for accomplishing a generic grasping or manipolation task. We are currently exploring ways to extend
an environment such as DIAL to allow programming of a hand to be a first-class primitive in a robotic
programming environment.
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5.2 Multi-fingered Object Recognition
It requires intelligence and model building to emulate the human ability to recognize objects haptically: that

is, by only using external tactile sensors, and internal force and position sensors. However, superquadric models
have proven to be surprisingly easy to recover from sparse and noisy sensor data [3, 7]. This appears to be
because of their small number of parameters, and consequently their ability o recover the shape descriptions of a
very large class of objects. Generic or prototypical recognition strategies are straightforwardly possible.

In experiments, a database of 6 objects consisting of undeformed superquadrics (a block, a large cylinder,
a small cylinder) and deformed superquadrics (a light bulb, a funnel, a triangular wedge) was each recovered
accurately, with extremely sparse data, typically 30-100 points. This is about 100 times less data than with range
sensing, but it has the advantage of not being restricted to a viewpoint that only exposes half the object's surfaces
to the sensor. Work is underway to extend this system to include segmented objects, multiple representations of
objects, and the dynamic updating of representations.

Using piezo-resistive tactile sensors mounted on the Utah-MIT hand,, we are currently implementing robotic
analogs of human haptic shape recovery methods such as shape from enclosure, shape from contour and shape
from lateral extent.
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Abstract
The vision group at Rochester is engaged in investigating several aspects of parallel and real-time computer

vision with the overall goal of implementing a set of basic sensory-motor behaviors which could serve as a founda-
tion for more sophisticated abilities, and integrating these primary behaviors into multi-modal systems. The
emphasis is on behaviors which have relevance to, and can be implemented to work robustly in, a broad range of
real-world environments since these are most likely to be useful as fundamental skills.

Our recent work includes commissioning the Rochester Robot, a 3 degree of freedom, two-eyed robot head
mounted on a Puma 761 arm, and connected to a Datacube image processor. Several real-time visual behaviors
have been implemented, including a vestibulo-ocular reflex (VOR), vergence, and target tracking. Research was
also performed in various theoretical aspects of computer vision including parallel evidence combination, parallel
object recognition, principal view analysis, and extended Kalman filtering.

1. Reconstruction and Segmentation in Parallel -- Data Fusion
Integrating disparate sources of information has been recognized as one of the keys to the success of general

purpose vision systems. In the work of P. Chou and C. Brown [Chou87, Chou88a, Chou88b], data fusion is used to
accomplish reliable segmentation and reconstruction in parallel. The computation is formulated as a labeling prob-
lem. Local visual observations for each image entity are reported as label likelihoods. They are combined con-
sistently and coherently in hierarchically structured label trees with a new, computationally simple procedure. The
pooled label likelihoods are fused with the a priori spatial knowledge encoded as Markov Random Fields (MRFs).
The a posteriori distribution of the labelings are thus derived in a Bayesian formalism. A new inference method,
called Highest Confidence First (HCF) estimation, is used to infer a unique labeling from the a posteriori distribu-
tion. HCF has the computational advantages of efficiency and predictable running time. It degrades gracefully,
and follows a least-commitment strategy. ITs results are consistent with observable evidence and a priori
knowledge, and (not least) it out-performs other known methods. The comparative performance of HCF and other
methods has been empirically tested on synthetic and real scenes, using both intensity and sparse depth data for sen-
sor fusion experiments.

2. Principal Views
During 1988, Nancy Watts pursued research leading to progress in the difficult problem of characterizing the

different views presented to an observer (in either perspective or orthographic projection) by a non- convex
polyhedron. This work was a continuation of her earlier work which produced an algorithm for computing all views
of a convex polyhedron. This research is still in progress, but has resulted in a paper presented at ICPR [Watt88].

The usual approach to this problem is from the point of view of abstract computational geometry, in which
existence proofs and non- constructive techniques based on tNem abound. Watts' work is distinguished by her
desire to specify data structures and algorithms that will not only enumerate views but will allow them to be used in
applications. Her earlier work interfaced nicely with a graphics program that produced sample images from any
given view region for convex polyhedra.

To stand a chance of success in the violently combinatorial and geometrically complex situation that arises
with non-convex objects, Watts restricted her work to a large class of objects that includes many every-day
manufactured objects. She was able to catalog the incidence phenomena that take place in the projective process,
and use this information to design data structures and algorithms for characterizing the aspect graph of objects in
her class. The main computational tool is "plane sweeping", which is a way to keep track of regions of 3-space as
their vertices are encountered by a plane sweeping through space.
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3. Parallel Object Recognition
Paul Cooper worked on the general problem of parallel object recognition. The particular instance chosen for

implementation was the recognition of Tinker Toy objects from images.
One development was a solution to the Tinker Toy matching problem that accommodates the geometric

parameters of the object. That is, an object is recognized not just from its topology, but also from the geometric
characteristics such as the lengths of the pieces and the angles between the pieces at the junction. The key to this
solution was framing the labeling problem so that the geometry of the junctions was implicitly encoded. When
framed in this manner, the labeling problem can be solved by the application of the massively parallel constraint
satisfaction network developed earlier by Swain and Cooper [Swai88]. The application of the network to the
Tinker Toy matching problem with geometry is reported in [Coop88b].

Another development was the use of domain specific information to generate optimized constraint satisfac-
tion nets. Implementing the general form of Swain and Cooper's [Swai88] network to solve Tinker Toy matching
proved infeasible due to resource requirements. But a way of exploiting the characteristics of the Tinker Toy
matching domain in order to optimize the general network was developed, resulting in a smaller network that could
be (and was) built. Later, a way of specifying domain characteristics for arbitrary domains, was discovered, allow-
ing optimized networks to be built, in an analogous manner, for any domain. This work is described in two papers
by Cooper and Swain [Coop88b, Coop88c].

The final and most important development was a method for matching Tinker Toys that could incorporate
inexact and uncertain information. The crux of this solution was the use of coupled Markov Random Fields to
solve, simultaneously, the segmentation and matching problems in the Tinker Toy domain. The architecture of the
solution is essentially the same as that of previous work [Coop88a, Coop88b], in that the problem is framed as a
labeling problem in the unit/value connectionist design style. However, instead of adopting discrete constraint satis-
faction [Coop88b] or discrete connectionist relaxation [Coop88a] as the formal machinery, Markov Random Fields
(MRFs) are used. With a MRF representation, priors are combined with hypothesis likelihoods to yield a probabil-
ity distribution of solutions with rigorous Bayesian semantics. The result is a scheme that can recognize both
occluded objects, and ones obscured by noisy data.

A final report on the MRF project as well as everything else will be available in the thesis [Coop89].

4. The Rochester Robot and Gaze Control
During the summer of 1988 a team at the University of Rochester commissioned the Rochester robot, consist-

ing of a Unimate PUMA 761 arm and a three-dof, two-eyed robot head [Brow88a, Brow88b, Ball88, Olso88]. The
robot is interfaced with a Datacube MaxVideo image processor which allows implementation of real-time visually
controlled behaviors. A number of basic reflexes were implemented for controlling the gaze of the robot, including
adaptive tracking, vergence, and a vestibulo-optic reflex. We believe that an active vision system can use such skills
to advantage as building blocks for behavior. We also maintain that appropriate active control of the visual system
can significantly simplify visual processing in many cases. An example of this is the kinetic depth mechanism dis-
cussed below.

The first gaze control mechanism developed was the vestibulo-ocular reflex or VOR. This is a reflex that sta-
bilizes images on the retina to compensate for head motion. Stabilization aids low-level vision by keeping edges
sharp, and reducing motion blur. We noticed that motion blur could contribute positively to image segmentation if
it could be used to blur objects that were NOT to be attended. Thus it would reduce high-frequency image
phenomena such as edges and textures that are distracting to segmentation algorithms.

Rimey and Brown, on the suggestion of Ballard, implemented the functional equivalent of the VOR using a
builtin facility of the robot command language, and implemented a motion-blur amplifier in MaxVideo. The results
are gratifying -- the moving head causes severe blur of scene components that are not fixated, thus throwing the
fixated objects into strong relief.

A second development was a system due to Tilley and Ballard that successfully tracks moving objects. This
real-time adaptive tracking mechanism effectively implements a "smooth pursuit" system. The basic idea is to
extract an image patch and use it, with some pre-processing, as a real-time correlation template. This worked fairly
well, allowing the robot to "lock onto" a point of interest and maintain a stable gaze while the object or the robot
moved. As in the case of the VOR, such stabilization of the region of interest can both simplify analysis of the
objects at that point, and aid segmentation through motion blurring of irrelevant background details.
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A third reflex was a gross vergence system implemented by Olson. Here, vergence is based on a global
disparity calculated between subsampled left and right images. Thus it reflects large-scale image phenomena, not
high-resolution ones. The work is reported in [Olso88]. The basic image-processing mechanism for implementing
the global disparity calculation is the cepstral filter, which is defined as the fourier transform of the logarithm of the
power spectrum. This operation is equivalent to correlating the left and right images, using a nonlinear operation to
sharpen the correlation peaks. The computation leads to a measure of global disparity in image x and y, which is
translated into radians of rotation via a small-angle approximation. Applying the compensating rotation verges the
camera.

An example of using gaze control to simplify visual processing is the kinetic depth mechanism [Bal188]. The
object of this work is to produce a depth map in real time using optic flow produced by head motions and
knowledge about those head motions. The idea is simply that the retinal flow of a patch of image of a static 3-D
scene induced by a head motion depends on the depth of the scene producing the image patch and upon the head
motion. It also varies with the fixation of the eyes. If the eyes fixate a patch of scene during head motion (using
either tracking or vestibular feedback for example), optic flow is zero at that point. Thus with fixation kinetic depth
provides depth information relative to the fixation point. A real-time kinetic depth algorithm was successfully
implemented using a simple Horn-Schunck optic flow calculation, and table lookup in our MaxVideo hardware.

Gaze control in biological organisms involves several processes that may interact in non-trivial ways. Brown
has developed a model and a simulator for studying the interaction of five basic gaze control processes: saccadic
motion, smooth pursuit, vergence, vestibulo-ocular reflex, and head motion. This work has allowed us to formulate
and test control strategies for integrating these interrelated behaviors into a unified system.

5. Kalman Filtering and Optimal Estimation Experiments

Recent work by Brown addresses the application of Extended Kalman Filtering (EKF) to basic visual
behaviors, and in particular, to the problem of tracking an object moving in a complex manner. Kalman filtering is a
form of optimal estimation characterized by recursive (i.e. incremental) evaluation, an internal model of the dynam-
ics of the system being estimated, and a dynamic weighting of incoming evidence with ongoing expectation that
produces estimates of the state of the observed system. The primary reference is [Bar88].

The basic Kalman filter is an iterative loop. Its input is the system measurements; its a priori information is
the system dynamics and noise properties of system and measurement; and its useful outputs are the innovation
(the difference between the predicted and observed measurement, by which the filter's performance may be
quantified), and the estimated system state updated. The (first order) Extended Kalman Filter (EKF) is a version of
the Kalman filter that deals with nonlinear dynamics or nonlinear measurement equations, or both. It linearizes the
problem around the predicted state (a second-order EKF makes a second-order approximation). The basic filter
control loop still applies, but measurements are predicted using a nonlinear measurement equation h, and in the cal-
culations for filter gain, state update, and covariance update, the Jacobean of h is used. Likewise state prediction is
accomplished using the nonlinear state equation f and the state prediction covariance is computed using the
Jacobean off. These generalizations call for extensions to the EKF data structure in which functions (as opposed to
matrices) are attached to the filter.

Brown has applied the EKF to the problem of tracking a moving target from a moving observer when the tar-
get may maneuver, i.e. depart from the basic, steady-state, "normal" dynamic behavior. A method termed variable
dimensional filtering was used, which essentially substitutes a different, higher order filter when departure from the
modelled trajectory is detected. He also addressed ways of tracking a moving target against a cluttered background,
comparing the performance of track splitting, nearest neighbor standard filter, and probabilistic data association
filter approaches under various conditions. The results of this work are reported in a paper in these procedings.

6. Visual Navigation

In fall 1988 Randal Nelson joined the faculty and the vision group at Rochester having completed his PhD at
the University of Maryland. The dissertation research involved the description and implementation of a set of foun-
dational abilities for visual navigation. In particular, visual methods were described for performing passive naviga-
tion, obstacle avoidance, and homing in general, real-world environments (Nels88d]. This work fits nicely within
the framework of active vision which the group is currently pursuing and, since he intends to continue work along
similar lines, a summary of the dissertation results follows.
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Passive navigation is a process by which a system obtains information about its rotation and translational
motion. This information is useful in navigation to stabilize and direct the motion of the system. Visual methods
attempt to obtain the motion parameters from a time-series of images [Gibs50, Praz80, Hotn8l, Hild83, Lawt83,
Long84, Koen86]. The problem is hard because solution methods tend to be extremely sensitive to small errors in
the input, while accurate image flow or point correspondence information is difficult to obtain [Tsai8l, Adiv85,
Anan85, Nage86, Verr87]. The dissertation shows how accurate motion parameters can be obtained from inaccu-
rate flow data by utilizing image information over the entire visual sphere [Nels88a]. Essentially global topological
constraints are used to stabilize the process. It is interesting to note that such spherical images are available to flying
insects such as bees and dragonflies, so there is a biological precedent.

Obstacle avoidance refers to the ability of a system to move about in the environment without striking the
objects in it. This is a fundamental navigational behavior. It is shown that computation of divergence-like proper-
ties of the visual flow field provides qualitative cues which are invariant under rotation of the system and which are
sufficient to permit the system to avoid collisions. The method is applicable in general environments, the only
requirement being the presence of sufficient visual texture to allow the image flow to be roughly approximated.
Empirical measurements show that sufficient texture is present in ordinary objects such as stones, trees, and faces.
The method was implemented and used successfully to control the motion of a camera in various environments.

Homing is the process by which an autonomous system guides itself to a particular location on the basis of
sensory input. This is a slightly more sophisticated, but still fundamental navigational ability. In the dissertation, a
method of visual homing using an associative memory [Hint8l, Ack185, Rume86, Smo186,] based on a simple pat-
tern classifier is described [Nels88c]. Homing is accomplished without the use of an explicit world model by utiliz-
ing direct associations between learned visual patterns and system motor commands. The technique is analyzed in
terms of a pattern space and conditions obtained which allow the system performance to be predicted on the basis of
statistical measurements on the environment. The method was implemented and used to guide a robot-mounted
camera in a three-dimensional environment. This work is described in the paper visual Homing Using an Associa-
tive Memory in these proceedings.
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KNOWLEDGE BASED VISION FOR TERRESTRIAL ROBOTS

Daryl T. Lawton Tod S. Levitt
Advanced Decision Systems Advanced Decision Systems
1500 Plymouth Street 1500 Plymouth Street
Mountain View, CA 94043 Mountain View, CA 94043

1. INTRODUCTION

The Knowledge Based Vision Project [Lawton et.al. - 86, Lawton et.al. - 87, Lawton et.al. - 881 is concerned
with developing terrain recognition and modeling capabilities for autonomous land vehicles. One of the basic

functions of the vehicle is to elaborate this terrain map of the environment. Another is to successfully navigate
through the environment using landmarks. For functioning in realistic outdoor environments, we assume
vehicles with laser range finders, controllable cameras. and limited inertial sensing. '[lhe range finder is
used for mapping and navigating through the immediate environment. The cameras are used for object
recognition and recognizing distant landmarks beyond the access of the range sensor. We also assume
realistically limited perceptual and object recognition capabilities. In particular, it will see things that it
won't be familiar with and can't recognize, but which can be described as stable visual perceptions. The
vehicle will not always be able to recognize the same object as being identical from very different points
of view. It will have limited, inexact, and undetailed a prior terrain information generally in the form of
labeled grid data. Critical questions for this work are how to:

" organize memory about local coordinate systems of landmarks as the primary means of defining loca-
tions

" account for the nature of visual events, and, in particular, use representations that allow for very poor
range and angular measurements, while making full use of the extractable strong visual cues (e.g.
occlusion) as primary data in visual memory representations

" maintaini memory structures that associate local landmark systems along paths of motion that the

robot executed when it saw the landmarks

a n(lnit inference processes over visual memory that robustly perform navigation and guidance despite
the poor quality of the quantitative data.

Two particular types of terrain recognition and processing have been explored. The first involves
creation of a predicted scene from a prior terrain information. This is then used to direct grouping pro-
Cesses which find predicted structures such as road regions, horizon lines, a terrain patch discontinuities
Lawton et.al. - 871. The second type of processing involves developing an qualitative environmental map

from a freely moving robot without necessarily using any a prior terrain information Levitt - to appear.
This uses a generic terrestrial scene model which includes several constraints on the formation of percep-

tual groups based upon the relative direction of gravity, the horizon line determined by the orientation to
tile immediate ground plane, and the projected egocentric directions from the observer on this plane. The

uinderlying spatial representation and planning imechanisms, referred to as Qualitative Navigation, relates
locally obtained viewer-centered representations of the environment into a perceptually-based map that can
be used for navigation.
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2. PERCEPTUAL ORGANIZATION

t'erceptual organization or grouping concerns how local image structures are combined into globally coherent
ones, generally using criteria such as continuity and completion. Grouping is of critical importance for
knowledge based vision since the predictions generated by object models tend not to appear automatically
in images. Extracted groups can also be used to index into a large database of a prior models. For our
work, grouping has been used to match the predictions from a prior map data, which can be very coarse
and to extract stable perceptual structures which serve as landmarks to incorporate into a map of the world
formed by a freely roaming vehicle. We have developed three different types of groupers: the measure based
grouper. the hierarchical grouper, and the Hopfield grouper.

The measure based grouper is a generalization of the edge linker developed by Martelli and others
Martelli - 72.761. This treats grouping as a search based relational query over a data-base of spatial objects

such as extracted edges and regions. A group is specified by an initial set of seed objects: global constraints
.,n shape and object attributes which can be incorporated into the group; local constraints on neighborhoods
which specify successor objects: and an optimization function which is based upon the type of group.

The hierarchical grouper :Lawton and McConnell - 871 was developed to address limitations of the mea-
sure based grouper. The first was how to extract groups from an image without initially specifying the type
of group or an explicit optimization criteria. To do this group-type specific rules were developed for extract-
ing an initial set of seed objects. The other was how to group objects which were related but separated by
large distances in an image. To achieve this, the database of extracted image objects was partitioned into a
pyramid of overlapping areas. Groups are then combined at different levels of the pyramid corresponding to
increasing amounts of spatial separation in an image.

In the flopfield grouper Gelband and Lawton - 881 the consistencies and constraints which define per-
ceptual grouping criteria are encoded in the coefficients of an energy functional whose state variables are
the perceptual links between image tokens. These links may be either on or off, that is, existent or nonex-
istent. Minimization of the energy functional results in the formation of perceptual groups of image tokens
which are optimal with respect to the grouping constraints. This work is modeled after llopfield's neural
network approach i Hopfield - 84, llopfield and Tank - 851 to solving non-polynomial optimization problems.
.\ preprocessing stage is used to first extract symbolic tokens from an image or time-sequence of images,
and then to reduce these tokens to primitive tokens. A local or lbal energy minimization procedure is
then used to form stable perceptual groups, i.e., linked clusters of toens. A control process freezes stable
croups hv forming permanent links from the variable links: it then allows the minimization grouping process
t,) continue at a higher level to produce larger coherent structures. This re ursive combination of perceptual
groups corresponds to a hierarchy of processing performed by the network.

4. QUALITATIVE NAVIGATION

Qualitative Navigation ILevitt - to appear, Kuipers and Levitt - 88. Levitt and Lawton - 89, Levitt et.al.
s- is a multi-level theory of spatial representation of the environment based upon tle observation and

re-acq(tiisition of distinctive visual events, i.e.. landmarks. The representation provides the theoretical foun-
dations for a visual memory database that includes coordinate free, topological representation of relative
spatial location, yet smoothly integrates available metric knowledge of relative or absolute angles and dis-
tances. We have developed qualitative path planring and execution algorithms that are robust in the face
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of very coarse or absent measurements of range to, and angle between, landmarks. Rules and algorithms
are presented that, under the assumption of correct association of landmarks on re-acquisition (although not
assuming landmarks are necessarily re-acquired) provide a robot with navigation and guidance capability.
The ability to deduce or update a map of the environment, a posteriori, is a by-product of the inference

process. In order to demonstrate our claims, we have built a qualitative navigation simulator, QUALNAV,
that provides a software laboratory for experimenting with spatial relationships in visual memory, simulated I
visual acquisition of landmarks, and their relationship to path planning and execution.

A kev contribution of this work is the realization of true local coordinate systems, and a theory that
makes them computationally useful to a mobile robot. Using local coordinate systems, which we call
viewframes, a robot can navigate about its environment, determining its relative location in the world r
with essentially a constant error. In particular, there is no multiplicative accumulation of error in location

that is the shortfall of all schemes that depend upon a global coordinate system for location.

To accomplish this, the notion of a geographic "place" is defined in terms of data about visible land- "
marks. A place, as a point on the surface of the ground, is defined by the landmarks and spatial relationships
between landmarks that can be observed from a fixed location. More generally we can define a place as a
region in space, in which a fixed set of landmarks can be observed from anywhere in the region, and rela-
tionships between them do not change in some appropriate qualitative sense. Data about places is stored in
structures called vicwframes, boundaries and orientation regions.

Viewframes provide a definition of place in terms of relative angles and angular error between landmarks,
and very coarse estimates of the absolute range of the landmarks from our point of observation. Boundaries
and orientation regions provide a more qualitative definition of place. Both concepts allow us to localize
ourselves in space relative to a set of observed landmarks, without necessarily using a priori map data.

Viewfranes allow us to localize our position in space relative to observable local landmark coordinate
svstenis. In performing a viewframe localization, we can make use of observed or inferred data about our
approxiuate range to landmarks. Errors in ranging and relative angular separation between landmarks are
'1moothlv accounted for. A priori map data can also be incorporated.

If we drop all range information, we can still use the notion of boundaries to determine our qualitative

1,,iti,,n relative to other landmarks. A pair of landmarks creates a virtual division of the ground surface
v the line connecting the two landmarks. The observable relative orientation of the landmarks. i.e , the

left-to-right order of the pair of landmarks, indicates which side of the landmark-pair-boundary (LPB) we
are )n. A set of LPBs with orientations determines a region on the ground called an orientation region.
I.111s can be derived by considering pairs of landmarks from viewfrantes; in this case we speak of the set of
,,rientation regions induced by or associated to the viewframe.

Viewfraimes are extracted by an ongoing, multi-stage process. A panoramic set of images is obtained
since the- localization is aided by multiple landmarks distributed in multiple directions relative to the robot.
lhe hierarchical grouper is used to find a set of restricted perceptual groups including long lines aligned
with gravitv, junctions. repeated patterns of parallel lines. These correspond to potential landmarks. We
assunic that the robot translates from viewframe to viewframe with significant changes in robot direction
bt-ini, a useful criteria for extracting a new viewframe. The translational motion assumption isn't necessary
but it does simplify matching. The extracted groups are then tracked along the determined translational
flowlines. The number of frames over which a landmark is tracked is associated with a landmark to establish
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it's reliability and strength. The disappearance of landmarks due to occlusion is iised to establish when a

new viewfraine should be extracted.

5. IMAGE UNDERSTANDING ENVIRONMENTS

We have done research in developing software environments for image understanding research and applica-

tions iLawton and McConnell - 881, This work was initially motivated by supporting internal developments

and for expediting technical transfer as a part of the autonomous land vehicle effort. In the last year it has

become an area of research and development in it's own right of significance to DARPA. IU environments

upport shared development across multiple researchers and projects. They make possible the rapid pro-

totyping of applications. The programming constructs used in such environments may help in developing

Constructs for machine independent development. The also may supply a common set of tools and standards

:tcross the IU comunnity.

We initially developed the PowerVision environnient Mc('nnell et.al. - 68I on the SYMBOLICS LISP

tiachines using FLAVORS. It was characterized bv a small number of modular components and programming

constructs buii around objects commonly used in image understanding such as images, curves, regions.

junctions. and groups. It consisted of a macro language called I)EFU for writing code and manipulating

defined objects in terms of local neighborhood-level operations. It utilized various types of system databases

;L database query language, a display language, display windows, and several types of browsers to interact with

objects. These components were highly independent aid could be combined in creative ways by programmers.

View [Edelson et.al. - 88i and Shark Dye et.al. - were developed to produce a machine independent

image understanding environment. This was motivated in part by the transfer of work from LISP-based

processors such as SYMBOLICS to less expensive and more general computer workstations such as SUNS.

SHARK is a cominonlisp/CLOS based 1Bobrow et.al. - 871 toolkit for building user interfaces. It is currently

built on top of SUN/NEWS but will be ported to X-windows. Shark supports general display objects such

as imnage-display windows, browsers, menus, tables, and graphs. VIEW is a ('LOS based set of image

understanding constructs which are machine independent. VIEW defines a general inheritance hierarchy

,f image understanding objects which consist, at the highest level, of two general types of objects: spatial

,'bjcts and database objects. It is possible to associate methods with these genteral objects and have

miethod inheritance and combination occur for specialized instances. Thus, convolution, when defined for

,eneral spatial objects specializes to deal with arbitrarily shaped, registered, multi-dimensional objects. The

unifrrmitv provided bv ('LOS allows for access to other C(,OS tools developed at ADS for Bavesian inference

nets and geometric i odeling.

A recent effort is porting the (otituonLisp Based III environment onto the Apple MAC 11 series of

personal computer workstations. This is motivated by several factors. The MAC II is an open architecture

which is extendable by inexpensive co-processors and, increasingly, low cost video cameras, digitizers and

processing boards as desktop video and iniage processing becomes a commercial reality. The MAC II has an

xtensi ,e. reliable, and highly optimized user interface with an enormous mber of conimercially developed

-ft ware products. We have found that the MAC 1 was superior in terms of constructing an interactive

user int,'rface, for linking video co-processors and memory devices into a coordinated environment. Major

diftficulties were found to arise frori the lack of an operating system supporting virtual intorv, multi-tasking.

and interprocess cottr munication. Image based conputations in the current version of Coral Com mon Lisp

wero also much too slow to qup)ort a researcher working on problems of arty realistic scale. Nonetl:eless.
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these tactors are mostly premature and not intrinsic to the MIAC: MACH and A [TU X art- Jow supported
a1nd A pple has bought Coral Com mon Lisp. Important lessons from our work in I U Environments is thle
importance of machine independence in developing an environment. It is also important to utilize, when'f
ever possible, commercially (or commiunity) supported interfaces and programming environment tools.
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KNOWLEDGE-BASED VISION TECHNOLOGY

OVERVIEW FOR OBSTACLE DETECTION AND AVOIDANCEt

K.E. Olin, M.J. Daily, J.G. Harris, F.M. Vilnrotter
Hughes Research Laboratories, Artificial Intelligence Center

3011 Malibu Canyon Rd., Malibu, CA 90265

Introduction. This overview summarizes the progress of vision research at the Hughes Artificial Intelligence

Center in the area of autonomous navigation of outdoor robots.
A set of experiments designed to determine the feasibility of autonomous cross-country terrain navigation were

successfully executed by Hughes with the DARPA/Martin Marietta Autonomous Land Vehicle (ALV) at the Denver test site
(Daily et al., 19871. The highlights of two separate sets of experiments are shown in Figure 1. Significant technological

developments and system contributions were demonstrated by these experiments: the hierarchical perception system allowing
multiple levels of interaction with a planning system, the concepts of virtual sensors and behaviors for local vehicle control,
a formal definition for obstacles using a three dimensional Cartesian Elevation Map and a vehicle model, and multiple
algorithms for obstacle detection including the vehicle trajectory algorithm. The experiments demonstrated the feasibility of
an experimental system operating with conventional computing hardware distributed both on and off-board the vehicle. Such
a configuration reduces the amount of preparation otherwise required by specialized hardware and software facilities.

The experiments also validated our approach of using simulation in our lab to close the loop between sensing, acting

and planning. Our simulation capabilities include terrain modeling, synthetic laser ranging from any position and
orientation, vehicle control simulation, and the ability to mimic the software and hardware configuration (including the
communication network) on-board the ALV. The purpose of the simulation is fourfold. First, it allows us to test the
efficiency, correctness, and usefulness of the current methods. Second, it provides a realistic environment for development of

new capabilities. Third, it exercises the potential interfaces and timing requirements between planning, perception, and
vehicle control, such that problems are identified prior to actual vehicle experiments. Finally, it provides a demonstration of
working concepts and systems. Our successful experiments and efficient vehicle schedules have proven the value of
simulation. The perception software was ported from the lab to the vehicle experiments with no modifications. We

continue to evaluate our system using simulation.
The cross country experiments provided us with valuable hands-on experience and exposure to the problems associated

with outdoor robots. As a result, we have directed our research toward object recognition and information fusion. We have

developed a method for segmentation of color imagery that simultaneously smooths and finds color discontinuities based on
Markov random fields. We have experimented with techniques that fuse sequential frames of laser range data to recover all
six degrees of freedom in vehicle motion. In order to analyze a complete experiment, we have developed a representation

system for combining sequences of sensed data together with prestored data such as map data. This representation supports
temporal integration for improved local obstacle analysis as well as information for complete mission analysis.

t Development of this system has been supported by Defense Advanced Research Projects Agency (DARPA) contract #DACA76-85-0007.
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Experiment Period 2 Weeks 1 Week

Maximum Distance 200 Meters 735 Meters

Fastest Speed 1km/Hr 3.5 Km/Hr

Percepton TecnologyCemn & Vehicle Model SmPercepton TecnologyOn-board ALV (Sun 3) Sm
PlnigTechnology Maps & Behaviors Sub-goal Ellipses

PlnigALV Lab (Symbolics) Improved Displays in Lab

Communication RI Link Rf Link

SytmLmttosSys. Loosely Coupled Terrain Vs
SytmLmttosVehicle Interfaces Sensor Resolution

First Cross Country Demonstration Reliability and Repeatability
Major Accomplishments Map & Sensor Based Navigation Validation of virtual sensors & behaviors

______________ Verification of Simulation Longer runs (30+ minutes)

Figure 1. Results of Hughes Cross Country Experiment On-board the ALV

1. Technical Overview

1.1. Problem
Operating in an unconstrained natural environment poses many problems for the perception and planning components of an

autonomous system. The complexity of the environment makes it impossible to predict every relevant situation, such that
the system must reason with the knowledge available and navigate accordingly. It is crucial that perception recognize critical

features in a timely fashion since the value of these observations rapidly decays and new features arc constantly being
exposed with the vehicle motion. The vehicle planning system must make maximal use of all accessible knowledge, such

as map data and expected landmarks, to help direct perceptual tasks. Thereby, specialized tasks determined by planning can
impose additional constraints which make the recognition of critical features in the environment more likely. This idea of
using a planning system to unify sensing and control goals is inherent in the Hughes system architecture.

Previous demonstrations on the ALV were restricted to road following problems. Navigation in an unstructured

environment such as cross-country terrain presents a significantly different set of problems. In road-following applications,
knowledge and expectations of the traversable surface simplifies the otherwise difficult task of processing video data to detect

roads. Certain assumptions concerning surface smoothness and continuity and fairly well constrained surface properties such

as width, color, and slope are exploited. Natural terrain scenes, on the other hand, are less "predictable" than man-made

scenes. Seasonal changes, weather conditions, or erosion result in a constantly changing environment. The features which

might be used to compose precise models of terrain objects are difficult to capture and represent in current computer vision

systems. We exploited the advantages gained through the use of a range-finding sensor.

Obstacles may be defined in the most simple case for road following as any perturbation of the road surface. Planning
in road following scenarios is then responsible for maintaining a course "on" the road allowing very little variation. By

comparison, in cross-country navigation there is no pre-defined course for traversal; a planning system must both plan a

potential course and monitor local progress along that course as execution requires frequent avoidance of obstacles. The

sensed information therefore is interpreted to locate a much richer variety of objects that help in identifying obstacles and

areas safe for navigation.
Obstacles in cross-country terrain are varied and plentiful. Many ad hoc definitions for obstacles have been suggested;

for these definitions, natureyhas provided many examples and counter-examples. A more formal definition is required.

Hughes has advocated defining obstacles in terms of the vehicle itself; that is, a vehicle model that represents the

traversability constraints. Our current vehicle model defines obstacles in terms of suspension, clearance, and vehicle

tilt/pitch.
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1.2. Summary of Approach
A knowledge-based system which can effectively accumulate, represent, and disseminate diverse knowledge is being

developed. The perception system must actively select and integrate sensory information. The wide variety of capabilities
and applications is focused through requests for information issued by planning. Although planning requests serve as an
attention-focusing mechanism, perception must be capable of satisfying multiple requests simultaneously. Since planning
requests may demand different forms of data with different requirements for assimilation or immediacy of that data, perception
must be capable of fusing data from multiple sensors and multiple "looks" as well as providing specialized processing for
real-time control tasks.

For autonomous navigation, perception must use sensed data to determine local areas of obstacles and free space. In
our approach, obstacles were formally defined as areas violating the vehicle suspension, clearance or slope tolerances, and
areas where there is not enough sensed information to determine a safe path ("unknown" areas). Perception verified the safe
distance along the set of potential vehicle paths requested by the planner; each path termination would be labeled as one of
these obstacles. Perception could also provide a coarse measure of "quality" for each path, such as the average slope or
variation in elevation along a path. Our approach to perception has been closely integrated with the vehicle planning
technology being developed at Hughes [Keirsey et al., 1988]. The planner can use the information provided by perception to
avoid paths terminating with known obstacles and to explore along paths with unknown areas.

Object recognition is achieved by enriching the geometric descriptions for obstacles obtained from laser range data
with color data and map expectations. The objective is to distinguish obstacle from non-obstacle. For example, a common
problem at the Denver test site involves the recognition of tall thistles, which the vehicle may safely traverse, as

distinguished from a thin metal post of similar diameter and height, which is an obstacle. Route determination is also
affected by identification of dominant terrain features. Another example from the Denver test site is the recognition of an

obstacle as a gully that can then be located in the digital terrain map and more efficiently avoided or traversed.

2. Color Image Analysis

In order to effectively locate obstacles such as rocks and bushes, we have investigated the use of color imagery
obtained via a RGB color video camera. Our work has focused on two main areas: analysis of color space and
representations, and color image segmentation and labelling.

We have developed a method of simultaneously smoothing and finding color discontinuities. For our purposes in
dealing with natural outdoor imagery we have investigated methods of calculating color differences and the corresponding
strengths of this difference required for the formation of color discontinuities. Our current segmentation exploits the expected
dependencies of neighboring pixels inherent in Markov random fields (MRF). Briefly, within the MRF framework, we
defined two processes: 1) the line process, which governs the formation of discontinuities (consisting of horizontal and
vertical components), and 2) the color process, which performs smoothing where discontinuities do not exist. By allowing
the binary line processes to vary continuously between 0 and 1, the final (ccontinuities are formed in an iterative fashion.
The energy function minimized using Hopfield nets has four contributing terms: a smoothing term, a data term, a potential

energy term for the line processes, and a gain term. Our research has included studies of the influence and interaction of these
parameters. A full description of this work, including color images showing results, is found in [Daily, 1989] in these
proceedings.

3. Information Fusion

During the past year our research on recognition of natural terrain objects has emphasized fusing information. Such
information may be collected or computed from multiple sensors, available as a sequence of image frames collected over
time, or may be obtained from non-image sources such as digital maps. In this overview, we will describe our techniques

for fusing multiple frames of data obtained from laser range scans, and the development of the Automated Topographic
Terrain Information Collector (ATIC). Computed Cartesian color maps with rectified color data and navigational
preferences in the form of traversability weights will also be introduced.
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3.1. Multiple Frame Fusion Techniques

Since the vertical field of view of the laser range scanner is 30 degrees, the terrain immediately in front of the sensor
is not be visible. For example, the ALV scanner cannot see obstacles directly in front of the vehicle due to the height and tilt
of the laser range scanner. The closest scanned ground is approximately 13 feet in front of the vehicle. One may choose to
ignore that lack of data and assume an obstacle-free flat plane immediately in front of the vehicle. Another way to fill in the
unknown area is to replicate the nearest scanned ground forward until it is underneath the vehicle. This method may project
an obstacle up to the vehicle bumper that is actually 13 feet away and therefore block a viable avoidance route. These are
naive impractical solutions, especially for cross country applications. The best approach is to fill in the unknown area using

data from previous scans.
Fusion of laser range information requires exact knowledge of the vehicle displacement between successive images

with vehicle motion having six degrees of freedom. Orientation sensors on board the ALV record the vehicle's heading, and
the x and y displacement values. Hughes introduced an additional sensor to estimate vehicle pitch and roll. However, there is
no means to measure the change in elevation between image samples. In natural terrain, elevation values may vary
drastically between image samples; for instance, the experiments show elevation changes of two to three feet with an average
sampling rate of eight seconds. A simple estimate of the change in vehicle elevation, z, between two scanning locations
may be calculated by taking the difference of the average z value of a small patch of common ground. However, this method
is severely limited by the accuracy of the local navigation system (LNS). Consequently, we have developed two more
sophisticated methods for motion recovery which do not rely on accurate LNS information and can recover from an image
sequence all six degrees of freedom in vehicle motion. The first algorithm, rigid body motion recovery, obtains all six
degrees of freedom of motion assuming a static environment. The second algorithm, range flow, computes a dense 3D
vector motion field. Our motion analysis algorithms have been done in collaboration with Berthold Horn from the MIT

Artificial Intelligence Lab.
All of our range motion analysis is performed with Cartesian Elevation Maps (CEMs). The CEMs are the same three

dimensional terrain representation used for single frame obstacle detection. We provide a brief description of the CEM for

the reader's convenience.

3. 1. 1. Cartesian Elevation Map Construction
The Cartesian Elevation Map (CEM) is an alternate representation for range information in which data from the

viewer centered coordinate system of a range sensor is transformed into a Cartesian, z(x,y), coordinate system [Daily, Harris,
Reiser, 1988]. This results in a down-looking, map view representation of terrain. The first step in converting from the

corrected, pre-processed laser range data to the CEM is to calculate the (x, y, z) Cartesian values from each range
measurement. Optics in the sensor cause scan rays to diverge as they travel away from the sensor. When a divergent ray
falls on an object at some arbitrary angle, it illuminates an elliptically shaped area often referred to as a laser "footprint".
Distance to the footprint is a reflectance weighted average over the illuminated area. Each of the 3D points in the CEM
denotes the approximate location of the center of a footprint.

Figure 3a shows the actual (x,y ) positions of each one of the scanned points for the image in Figure 2 within a 64
foot by 80 foot region in front of the scanner. Elevation data (z values) are present only at these sparse points; we define
these points as constraint points in later interpolation process. As one would expect, the sparsity of scanned points increases
with distance from the scanner. We approximate the complex laser footprint scanning procedure as a smoothing followed by
a sampling process. Theoretically, if the terrain were sampled well enough (i.e. within the Nyquist rate), then we could
accurately reconstruct the original terrain by interpolating a smooth surface b-tween scanned points. Clearly, there will
always be some unknown regions in which there are not enough scanned points to accurately reconstruct a surface. For
example, any region outside the field of view of the scanner or in the shadows of tall features in the terrain will be unknown.
These areas must be located and excluded from the interpolation process. Figure 3b shows the regions where the density of
scanned points was deemed too low to accurately reconstruct a surface.

An iterative interpolation algorithm was used to fill in a continuous surface in all regions with a sufficiently dense
sampling of points. This algorithm is similar to the standard routines used for interpolating surfaces from sparse stereo
data. Rather than fitting a thin plate to the surface (i.e. minimizing the quadratic variation), we have found that fitting an
elastic membrane is satisfactory. Intuitively, this algorithm is equivalent to fitting a rubber sheet over the set of constraint
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points and finding the resultant minimal energy surface. Figure 3c depicts the final interpolated CEM, where brighter areas

denote higher elevations.

Figure 2. Laser range image. Figure 3. Cartesian Elevation Map;
a) Constraint points, b) Known areas,

c) Interpolated elevation data.

In cross-country navigation, nearly all useful information in a laser range image is contained within the first 64 feet of

the scanner's field of view. With a zero offset setting on the range scanner, this represents the first ambiguity level. While
we developed algorithms to process information in the subsequent ambiguity intervals, the generally poor quality of the data

beyond the first interval does not warrant the investment in processing time. Our current methods do not use any data in the
remainder of a column after an ambiguity jump. Though this approach works well in many scenes, it will fail in those
containing overhanging objects. This is a serious problem since the current technique will entirely ignore obstacles such as

tree branches, allowing the vehicle to collide with them. The CEM also poorly represents features on near vertical surfaces.
If objects such as these ever dominate an environment, it will be wiser to compute motion from the original range images.

The following section discusses how the CEM concept is used to fuse data from multiple scans. The algorithms we

use for motion analysis process the CEM without regard to the original range sensor, such that a stereo depth map could also

be used. The CEM has also been used to aid in the combination of data from more than one sensor.

3.1.2. Rigid Body Motion Recovery
The rigid body motion recovery algorithm obtains all six degrees of freedom for a moving vehicle platform from

sequential pairs of CEMs. The original range images cannot be approximately registered since they are scanned from a

viewer centered coordinate system. CEMs, on the other hand, can be translated and rotated by properly moving constraint

points and re-interpolating the CEM. We have also found that motion analysis is mathematically much simpler when

dealing with CEMs than with the original range images. Making the restrictive assumption of a static environment allows

us to replace a severely underconstrained system with an overconstrained system which has one equation at each pixel and

only six unknowns in the whole system [Horn, Harris, 1989].

The method assumes that the motion between scans is small compared with the feature size of objects in the

environment. For example, if two CEMs are misaligned by just a few feet, narrow obstacles such as gullies may not

overlap in the two CEMs, resulting in inaccurate motion recovery. However, in our experiments and data collection, the
sampling rate between CEM's was typically eight seconds or more. When vehicle motion between successive frames is
large (e.g. 10 feet), two possible approaches are: 1) to use motion estimates obtained from on-board sensors to

approximately align CEMs, and 2) to use a coarse to fine approach. For the first method, on-board sensors give reasonable

estimates for x, y, and heading. Using this information, the rigid body motion recovery algorithm computes all six
parameters between two successive frames fairly accurately. We have found, however, that the roll of the vehicle can vary

dramatically in natural terrain so that there is an unacceptable accumulation of error acquired from the fusion of many frames

(over 100 frame sequences). In the latter method, on a coarser level of resolution, the CEMs will be heavily smoothed so

that only large features such as the rock outcrops and the gradual curvature of the ground remain. The motion computation

at this scale will be very robust to misalignments (because of the large feature sizes) but the precision of the computation
will be low (again because of the large feature sizes). The coarse scale computation of motion should be a good enough

estimate for the next finer level of resolution to compute a more accurate motion, and so on until the desired resolution is

achieved.
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Figure 4 shows a sequence of range images, corresponding CEMs and the resulting fused CEM. The rigid body
motion recovery algorithm works accurately. Given only estimates of three of the six degrees of freedom (x, y and heading),

the algorithm computes all six parameters. We are working on methods of quantifying how well the algorithm works, but

CEMs can now be fused adequately enough to reliably operate the ALV. In fact, in one of the scans, Joe Human walked
through the image and appeared in one of the CEMs. Joe's appearance seemed to have no effect on the fusing process, since

the method robustly averages constraints from the total area of the CEM. We have not yet experimented with coarse to fine
fusion techniques.

Figure 4. Rigid Body Motion Recovery
Left) Sequence of laser range images, Bottom) Corresponding CEM sequence, Center) Fused CEM

3.1.3. Range Flow
Range flow can be understood as a three dimensional extension of traditional two dimensional optical flow. In optical

flow, two dimensional motion in the image plane is computed by assuming that the brightness of objects is independent of

small changes in viewer rotation and translation. In range flow, we know exactly how the range of objects changes with
viewer motion. We use the same motion constraint equation from rigid body motion recovery. Note that in contrast with
2D optical flow, no comparable assumptions about the change of z over time need be made. We still have an ill-posed

problem since we have 3 unknowns (x, y, and z) at each pixel and only one constraint equation. Just as in optical flow, we

assume that the motion fields are smooth to regularize the problem. Minimizing the resultant energy formulation yields an
iterative technique for computing the dense velocity fields. Discontinuities in the velocity fields and fusion with video data

should be natural extensions with use of the powerful MRF ideas developed by Poggio and his colleagues at MIT.
Preliminary results for the range flow algorithm have been obtained. We plan to investigate the range flow algorithm more

fully when we need to deal with dynamic environments and multiple sensor fusion. We do not need its power for the

autoi,,.mous navigation stenarios we ate planning in the hLt term.

3.2. Automatic Topographic Terrain Information Collector
Many types of autonomous vehicle missions will require a collection of data along the perceived route. In particular,

it will be important to keep road, obstacle, and perhaps landmark information available for map verification or for planning a
return trip. Since it may not be feasible to keep a full resolution fused CEM for the entire route lower resolution versions

may be sufficient along with symbolic information gathered about specific scene objects. The scene objects of interest may

be compact, e.g., rocks and trees, or extended, e.g., ravines and steeply sloping terrain. We therefore need a complex

knowledge representation system that is able to integrate information perceived over time and accommodate different kinds of
information, including scalar arrays and symbolic information, stored at a number of different resolutions.

The Automated Topographic Terrain Information Collector (ATIC) is a multi-resolution knowledge representation

system designed to organize information from different sources collected or computed over time. It can also be used to
integrate new information with previously stored information (e.g. maps) to achieve information fusion for perceptual
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understanding. The ATTIC allows the user to select the number of resolutions or levels, the resolution of each level, and the
row (column) dimension in meters for the arrays at each level. A single level within the ATTIC includes local terrain
information and obstacle arrays as well as world location and display information. As information is collected, the ATTIC
multi-resolution arrays are updated using a modular floating origin scheme to optimize the display of large amounts of data
with efficient memory allocation.

3.2.1. Objectives
For autonomous vehicle navigation in complex terrain it is important to have a reliable means of interpreting the

environment. Wherever possible, multiple information sources should be used to reinforce correct interpretations, evaluate
possible anomalies and add to the richness of the scene object descriptions. Our goal in developing the A'ITC is to include
many types of information to support all levels of information fusion. Scene objects extracted from perceived data have
more complete descriptions as more types of symbolic and/or cultural information are made available. We have evaluated the
ATTIC using the CEM data obtained during our 1987 ALV experiments, together with map-based cultural and elevation
information available for the same area. Test data have included sequences of over 300 laser range scans containing complex
vehicle paths that cross over the same area from multiple directions.

3.2.2. Current Functionality
The ATTIC system was designed to: 1) organize information from different sources collected or computed over time,

and 2) integrate newly sensed information with previously stored information such as maps. The sensed information
includes CEM sequences, with each CEM calculated from the laser range data and fused with previous data using the rigid
body motion recovery algorithm. The system has multiple resolution levels defined by the user. Fused elevation data from
CEMs is shown at two resolution levels in Figure 5.

Figure 5. Two levels of elevation data in the ATTIC;
a) Entire experiment at low resolution, b) Path cross over area at high resolution.

Other information computed as an aid in mission analysis includes a history list and a frame count array. The history
list contains information about the respective CEM frames composing the current ATTIC application. The parameters in
the history list consist of the CEM frame sequence number and corresponding time stamp, distance traveled since the last
CEM, vehicle heading in world coordinates, current world location, current vehicle velocity, and change in elevation (delta z)
when one is calculated in the ATTIC. The frame count array resides at the coarsest resolution level of the ATTIC and retains
the number of the most current CEM frame adding information to that pixel's area. The frame count array also doubles as a
'maybe known" array, i.e., an array in which a pixel is greater than zero if at least part of that pixel's area is known, The
value of a pixel in this array can be used to index into the CEM history list. In the event that an important image feature is
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extracted, this index provides valuable time tags over the feature's area.
An important feature of the ATIIC is the ability to relate sensed information to a prestored digital map. Map data and

map manipulation procedures are used to provide information concerning elevation and landcover as weh as landform and
gully locations. We have used corresponding map data for a 320 by 320 meter area representing the ALV experimentation
area. Some of the cultural maps for this area are illustrated in Figure 6. In addition, a map route array was defined to display
the predicted elevation values expected to overlap with the sensed data. Figure 7 shows map elevation data for the sensed
elevation data in Figure 5. Therefore, as the CEMs are calculated, fused and added to the ATTIC sensed elevation arrays, a
corresponding array of map information is available. Comparison of these arrays enables us to measure the relative
correctness of the calculated vehicle location and elevation values. Discrepancies have been experienced in cases with either
an incorrect estimate of initial vehicle roll or roll estimates were not available (or poorly measured) for each range image.

Figure 6. Cultural maps of experimental area.

Figure 7. Predicted elevation data for vehicle path. Figure 8. Map data overlaid with sensed terrain data.
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We have also experimented with the use of the cultural terrain information for obstacle identification. In Figure 8,

cultural features are mapped onto the sensed elevation data in Figure 5. The gullies along the lower diagonal of the image

align well with the lower boundary of the vehicle path. However, in the upper portion of the path loop, it appears that the
vehicle traveled through gullies. Two explanations are possible for this condition. First, map information does not include

the depth of a gully, such that a shallow gully is safely traversed. Secondly, there may be errors in the map data. In this

example, the gullies are displaced in the map; they are physically located just above the path and were successfully avoided
by the vehicle in this experiment.

In order to accommodate obstacles, the slope image and obstacle mask resulting from the Gradient of Gaussian

(GOG) computation [Daily, Harris, Reiser, 1988] were added to each ATTIC level. The GOG obstacle detection method was

developed to calculate an approximate tertiary map of obstacles, unknown areas, and free space. Just as in conventional edge
detection in video images, the CEM is convolved with an appropriately sized Gaussian mask and then the magnitude of the
gradient is thresholded. The threshold value chosen corresponds to the maximum slope that the vehicle model can traverse
(i.e., approximately 18'). In Figure 9 we show the GOG mask for obstacles in both low and high resolution levels of the
ATTIC. The gully area shown at the bottom of the route is clearly distinguished as an obstacle (bright intensity) in the

GOG image.

Figure 9. Obstacle detection using gradient of Gaussian algorithm.

Other information we have found useful for obstacle detection includes the number of times a pixel has been scanned
("known" pixel) and the number of times an obstacle has been detected. This information allows us to filter out obstacles
detected due to spurious returns from the laser range scanner (real range data tends to be noisy). For the vehicle speeds and

sampling rates for the ALV experiments, typical obstacles are seen at least three times. This type of obstacle filtering
scheme tends to lose obstacles at the edges of the path since these pixels appear in fewer scans. An adequate threshold for

this information should be experimentally determined.

3.2.3. Additional Maps to Augment ATTIC

It is intended that other information will be added to the ATTIC. Two fused maps that we have available are the

Cartesian Weight Map (CWM) and the Cartesian Color Map (CCM). Like all of our Cartesian maps, these are downward
looking maps of the local vehicle area.

The CWM was developed to provide an improved understanding of the vehicle's local environment. Each location in

the CWM contains one or more weights signifying the cost of traversing through that area. Weights may be combined from

diverse and independent sources such as color sensors or range scanners, virtual sensors, or processing techniques like the
gradient of Gaussian (GOG) slope algorithm. The weights need not be fixed, but may be a function of terrain type, vehicle

speed, and mission objectives. In this way, the CWM adds structure to potentially conflicting and diverse information about

142



traversability. It also provides a natural way to feed a much richer global description to the local planning unit. For
instance, areas in the CWM that are bumpy are penalized while smooth regions are rewarded. The CWM has been exercised
with a least cost path planning algorithm in our simulation environment. It has successfully kept the vehicle safely away
from obstacles, navigated a narrow corridor between two obstacles, and avoided cul de sacs which are within the field of view.

The CCM is another downward looking map, but in this case we store color information obtained from the color

sensor at each map location. This results in a true rectified view of the color image without using flat ground assumptions.
In our approach, the elevation map (CEM) is back projected to find the color of each pixel. In this way, no interpolation of

color is necessary and as many features as possible from the video image are present in the CCM. We plan to use the CCM
in conjunction with the CWM to locate obstacles that are difficult to find using only geometric information in the CEM.

4. Conclusions
Advances over the past four years in the vision and planning technologies for mobile robots have culminated in an

exciting series of demonstrations. On-road and off-road experiments with both the ALV and Navlab testbeds have shown the
feasibility of the current technology and systems to navigate in real world outdoor environments. The next step, the ability

of a system to understand the sensed scene and to plan the vehicle actions needed to accomplish scenario goals, is beginning
to reach the maturity level necessary to spawn a new series of experiments.

We are proud of our accomplishments in cross-country autonomous navigation and will continue to study issues

related to mobile robots. Finally, we regret that the ALV will no longer be as a testbed for autonomous vehicle technology.
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INTRODUCTION
The basic paradigm of model-driven image understanding continues to be an effective one for a large

number of problems encountered in machine vision. Many of our concerns in modelling have arisen from
considerations of basic questions in model-driven object recognition. We have taken the view that formal
geometric reasoning techniques may provide a way to address the goals of developing new, more powerful rep-
resentations on which to base recognition-oriented models and new approaches to performing the recognition
task.

We have attempted to progress along a dual course which seeks to demonstrate the applicability of our
techniques to concrete problems such as the automated interpretation of military reconnaissance imagery,
while maintaining a predominantly research-oriented focus. This dual course has not proved a hinderance
and, in fact, has been beneficial in identifying specific and general problems in automated recognition.
Application issues such as computational complexity and speed issues led to the vertex-pair approach as

a compact feature for recognition, while the need to address the total problem of reconnaissance imagery
understanding has led us towards the PACE research system described last year [Corby et al]. The results of
application experiments have strongly influenced our work in more formal geometric reasoning methods. For
example, the goal of automated modelling based on a combination of numerical data and algebraic constraint
sets is a direct consequence of application issues, as is our research in symbolic solution methods.

This report will briefly summarize the major elements of our work. A more complete discussion can be
gained by reference to the appropriate paper in this and other volumes.

MODEL-BASED OBJECT RECOGNITION

Our approach has focussed on the identification of 3-D and corresponding 2-D geometric features sufficient
to recover object position and orientation under the conditions of affine projection. The object models that
we use are solid polyhedral models. The 3-D/2-D feature that we have developed is the "vertex-pair"
[Thompson and Mundy 881. We use a transform space "voting" proceedure to exhaustively compare all 2-D
features to a specific 3-D feature, casting a set of votes for each comparison. Sucessive consideration of a
small number of 3-D vertex-pairs results in clusters in transform space, since all 3-D features are taken from
a rigid-body solid model. Recognition is acheived by detecting clusters in transform space and verifying the
appropriateness of detected clusters (hypothesis verification). The transform space approach has allowed us
to progress in spite of the sometimes erratic and fragmented performance of current segmentation algorithms.

Two major areas of interest during the past year have been automated methods to select 3-D matching
features and automated methods to verify match hypotheses. In work reported last year [Mundy et a188].
we described a feature assessment metric and initial work in using the metric to select minimal sets of 3-D
features. We are continuing our efforts in that area. Using polyhedral models for some aircraft, the vertex
selection software considered all possible vertex pairs and selected a mimimal set. The results of using these
selected vertex-pairs agreed very closely to hand selected vertex-pair sets. An equally significant area that
we have devoted our efforts to this year is automated methods for hypothesis verification. Two papers in this
workshop deal with the topic, [Ileller and Stenstrom] and [Thompson]. The first describes our investigation
of methods to automatically determine whether a hypothsized recognition instance is in fact supported
by the underlying image data. In the past our verification techniques have been largely manual and rely
on the operator to establish plausibility. The need to automatically verify correct hypotheses (and reject

Work at GE was supported in part by the DARPA Strategic Computing Vision Program in conjunction with the Army
Engineer Topographic Laboratories under Contract No. DACA76-86-C-0007 and the Air Force Office of Scientific Research
under contract No. F49620-89-C-0033.
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incorrect hypotheses) is important for another reason. Due to errors in segmenting the original image or to
inaccuracies in forming 2-D features or perspective transformation effects, it is often the case that we need
to use fairly loosely specified match detection criteria. We would like to be able to select likely candidates
from this larger, more loosely specified set and then improve the accuracy of recognition. In [Thompson], we
describe iterative procedures to improve or refine transforms. Automated hypothesis verification routines
are required to select likely candidates and to control the iterative processes.

The modeling efforts reported on last year have continued. We have continued to expand the capabilities
of our automated modeller. Two examples that we have created include a model of a Blackjack bomber (with
approximately 50 faces) and a model of a prototype Mars ascent vehicle (with approximately 200 faces).
Both models were created from outline drawings and luminance images in a largely automated fashion.

GEOMETRIC REASONING PROGRESS
Much of our past work in geometric reasoning has been directed towards the problem of automated

methods for model construction. Since our basic approach to object recognition has been largely model-
driven, we have necessarily pursued research into geometric model formation. Work we have described in the
past featured the use of multiple modalities such as luminance and range data as well as luminance methods
that use Boolean intersection techniques to build models.

A second approach to automatically producing models was to use geometric reasoning techniques to
establish a set of constraints for an object that would capture the geometry of the object from projections
(photographs) of thw object. In the process of refining approaches to this goal, much work has been done
on identifying the nature of the constraint equations and in identifying methods that can be applied to the
solution of the resulting constraint equation sets.

A new direction in the application and development of geometric reasoning techniques has been initiated.
Motivated by our work in object re-ognition and scene modeling for photointerpretation [Corby et al], we
have begun work on the synthesis of symbolic and numerical methods for solving systems of geometric
coistraint equations. Object models and the configuration of such objects in the world can be represented
as a set of algebraic equations and inequalities which represent the constraints imposed by object geometry
and by cartographic data. The advantage of representing objects and environments in terms of constraints
is that multiple sources of information can be integrated in a uniform fashion. The central problem is to
develop reliable and efficient m,.thods for solving the constraint equations.

Ve have carried out modeling experiments with a nonlinear programming package available under the
IMSL library. The results are described elsewhere in these proceedings [Mundy and Vrobel]. It is clear
that a purely numerical approach does not provide adequate robustness. Consequently, we have begun the
development of a hybrid approach where symbolic geometric reasoning techniques are used to define the
singularities and poor convergence regions of thp constraint manifold. An algorithm has been developed
for determining the free parameters of a model structure. An algebraic technique has also been developed
for determining the singularities of the jacobian of the constraint equations [Mundy and Vrobel]. The final
goal is to be able to automatically generate robust numerical algorithms from a symbolic specification of the
model and environment geometry.

Our effort in the development of efficient techniques for reasoning about nonlinear inequalities is contin-
uing. The research is directed at the problem of matching parametric object models to image features. The
errors in image segmentation and model definition are represented as tolerance inequalities bounding the
measured foatures. We have completed our study of SUP-INF algorithm and the use of the Groebner basis
to rewrite the terms of the inequalities in conjunction with a system of equations [Final Report].

A new approach is being explored which converts a system of ionlinear inequalities into a linear form
hy abstracting each nonlinear term into a single variable [Cyrluk and Kapur]. The linear system is solved
using the simplex or SUP-INF algorithms. The resulting bounds on the nonlinear term are then propagated
inward to bound individual variables. The initial results are quite encouraging and should be applicable to
other Al applications, such as qualitative reasoning.
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ABSTRACT
The objective of our work in 'nderstanding scene dynamics is to develop robust techniques for target tracking

and recognition from a moving roboti- vehicle. The topics currently under investigation are: decomposition of complex
vehicle motion; qualitative 3-D scene modeling; target motion detection and tracking; map-based target tracking; iner-
tial sensor integrated obstacle detection; adaptive segmentation; 3-D target model acquisition and refinement; landmark
recognition; and terrain interpretation. This paper summarizes the progress made in each of these areas during the
period from February 1988 to March 1989. We also present a brief discussion on scientific experiments, machine
learning for target recognition, and scientific performance evaluation of vision algorithms and systems.

1. INTRODUCTION

This paper provides an overview of the research performed by our group during the past year. Our rcearch in
understanding scene dynamics is directed towards knowledge-based interpretation of scene dynamics and model-based
target recognition. The key accomplishments of our work during the past year are: We have developed qualitative rea-
soning and "3-1/2-D" modeling techniques for detecting and tracking moving targets from a mobile platform in simple
curved road scenes. The concept of fuzzy focus of expansion, which allows a very accurate determination of the
instantaneous direction of a moving vehicle and camera rotations along the two axes (pan and tilt only), has been
demonstrated. We have also demonstrated the "dynamic model matching" concept for landmark recognition, where the
model generation and matching process dynamically changes as a function of range to the landmark and perspective as
viewed by a mobile platform. In addition, we have performed initial experiments in digital map integrated target track-
ing.

We have investigated the following major topics:

(1) Qualitative motion detection and tracking,

(2) Inertial sensor integrated motion analysis,

(3) Machine learning for adaptive segmentation, target model acquisition, and target model refinement,

(4) Dynamic model matching for landmark recognition, and

(5) Hierarchical symbolic grouping for interpret'tion of terrain.

The synopsis of the technical achievements in each of these technical areas is given below. We also present a brief
discussion on scientific experiments, machine learning for target recognition, and scientific performance evaluation of
vision algorithms and systems.

One of the primary objectives of scientific performance evaluation is the establishment of a national research
database of computer vision imagery. This database will be maintained in locations accessible to all members of
DARPA's IU community through a set of uniform access procedures. Another objective is the standardization of ter-
minology, benchmarks, and a characterization of the computer vision research infrastructure. Also, we will define a set
of techniques and models for algorithm/system performance evaluation of selected matured vision algorithms.

2. QUALITATIVE MOTION DETECTION AND TRACKING
We have developed a unique approach called DRIVE (Dynamic Reasoning from Integrated Visual Evidence)

based on qualitative reasoning and modeling for target motion detection and tracking.3. 414,15..,18 The DRIVE system
performs dynamic scene understanding needed to support the application of smart weapons and autonomous navigation
of robotic vehicles. Instead of refining a single quantitative description of the observed environment over time, multi-
ple qualitative interpretations of the scene are maintained simultaneously. This technique offers considerable flexibility
over traditional numerical techniques which are often ill-conditioned and noise-sensitive. With DRIVE, an autonomous
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system can (i) detect and classify moving objects in the scene, (ii) estimate the vehicle's egomotion, and (iii) derive the
3D structure of the stationary environment.

The 3-D motion of targets is obtained from displacement vectors of point features without any knowledge about
the underlying 3-D structure, discovering inconsistencies between the current state of the qualitative 3-D scene model
and the changes actually observed in the scene, and by detecting moving edges and regions., 13

DRIVE uses a new algorithm for computing the region of possible focus-of-expansion (FOE) locations in image
sequences, called the fuzzy FOE.16 17 This computation is accomplished in a unique manner by separating the rota-
tional and translational components of the vehicle's motion and using a robust method for computing the displacement
vector between two images using adaptive windows. 13

The 'fuzzy' FOE algorithm allows the direction of instantaneous heading of an autonomous land vehicle to be
precisely determined within 10 using image information exclusively. The results obtained using ALV imagery taken at
five different sites demonstrate the algorithm's performance capabilities. This result has significant scientific impor-
tance for targeting applications. It allows the determination of self motion of moving imaging devices. Rotation in the
horizontal and vertical directions (pan and tilt only) of ± 5' or larger can be successfully handled by the algorithm. 5

Moreover, it allows the use of passive approaches for surveillance activities that must detect and track moving targets
and must detect and avoid obstacles using passive sensors mounted on a mobile platform.

Experiments have been carried out on 262 frames of ALV data taken at 5 different sites. Figures I and 2 illus-
trate the results.

Figure 1 shows the original image with the interesting points after edge detection and computation of the focus of
expansion. Figure 2 shows the qualitative reasoning and modeling process. There are two cars in the images, one
approaching the vehicle and the other receding from the vehicle. Both of the moving cars have been detected. The
reasoning process is based on the changes in the expansion pattern and uses a camera model.

We have developed preliminary algorithms to integrate the DRIVE system with digital terrain elevation and land
cover data. These algorithms provide information about the map location of the moving targets, the road label on
which the targets are possibly traveling, and neighboring landmarks. Such information is desired for military applica-
tions and we have performed initial experiments to establish its usefulness in detecting moving targets in both high
clutter and 'ow contrast situations. Figure 3 shows an example of target detection under low contrast and high clutter
situation. Target map location, the road segment on which the car is traveling, and nearby landmarks have also been
detected by the algorithms which integrate map data with the motion algorithm suite.

The paper by Bhanu et. al. 13 provides details of the interest point selection, disparity analysis, fuzzy FOE, quali-
tative scene model, map-based tracking, and edge/region based approaches.

3. INERTIAL SENSOR INTEGRATED MOTION ANALYSIS
Land navigation requires a vehicle to steer clear of trees, rocks, and man-made obstacles in the vehicle's path

while vehicles in flight, such as rotorcraft, must avoid antennas, towers, poles, fences, tree branches, and wires strung
across the flight path. Au'omatic detection of these obstacles by passive sensors and the necessary guidance and con-
trol actions triggered by such detection would facilitate autonomous vehicle navigation.

Many types of existing vehicles contain inertial navigation systems (INS) which can be utilized to greatly
improve the performance of several computer vision applications such as obstacle detection, target motion detection,
target tracking, stereo, etc. and make them useful for practical military and civilian applications. As an example,
motion analysis techniques can effectively use the output of an INS to improve interest point selection, matching of the
interest points, and the subsequent motion detection, tracking, and obstacle detection.

We are using INS measurements to enhance the quality and robustness of motion analysis techniques for obstacle
detection and thereby providing vehicles with new functionality and capabilities. Details of the INS integrated motion
anplysis for obstacle detection are given in the paper and reports by Bhanu, Roberts, and Ming. 9, 10

4. MACHINE LEARNING FOR ADAPTIVE SEGMENTATION AND
TARGET MODEL ACQUISITION/REFINEMENT

4.1 Adaptive Segmentation Using Genetic Algorithms

Image segmentatioh is typically the first, and most difficult, task of any automated image understanding process.
All subsequent interpretation tasks, including feature extraction, object detection, and object recognition, rely heavily on
the quality of the segmentation process. Despite the large number of segmentation techniques presently available, , 19
no general methods have been found which perform adequately across a diverse set of imagery. Only after numerous
modifications to an algorithm's control parameter set can any current method be used to process the wide diversity of
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images encountered in dynamic outdoor applications such as the operation of an autonomous robotic land/air vehicle,
automatic target recognizer, or a photointerpretation task.

The image segmentation problem can be characterized by several factors which make parameter selection process
very difficult. These factors include numerous control parameters, lack of segmentation model, and problems associ-
ated with the evaluation of segmentation.

We are using a machine learning technique known as a genetic algorithm, to perform adaptive segmentation in a
closed loop feedback system. Genetic algorithms allow the segmentation process to adapt to changes in image charac-
teristics caused by variable environmental conditions such as time of day, time of year, clouds, rain, etc. The genetic
algorithm efficiently searches the enormous hyperspace of segmentation parameter combinations using a collection of
search points known as a population. By combining high performance members of the current population to produce
better parameter combinations, the genetic algorithm is able to locate the parameter set which maximizes the segmenta-
tion quality criteria. The paper by Bhanu, Lee, and Ming7 provides details of the adaptive image segmentation process.

4.2 Target Model Acquisition and Refinement

A major technology gap in state-of-the-art model-based object recognition for outdoor scenes is the process of
model (natural or man made) acquisition. Generally man made object models are fixed and they do not have any
learning capability; therefore, they are not adequate by themselves for object recognition in dynamic environments.

Due to recent advances in machine learning technology, some of the problems encountered in the target recogni-
tion domain seem to be resolvable. Learning allows an intelligent recognition system to use situation context in order
to understand images. This context, as defined in a machine learning scenario, consists of a collected body of back-
ground knowledge as well as environmental observations which may impact the processing of the scene.

Machine learning facilitates two main breakthroughs in the target recognition domain: automatic knowledge base
acquisition and continuous knowledge base refinement. The use of learning in the knowledge base construction will
save the user from spending the enormous amount of time necessary to derive target models and databases. Knowledge
base refinement can then be incorporated to make any necessary changes to improve the performance of the recognition
system. These two modifications alone will serve to significantly advance the present abilities of most target recogni-
tion applications.

We are developing a TRIPLE: Target Recognition Incorporating Positive Learning Expertise system for
automated model acquisition and refinement. The system uses a multi-strategy technique; two powerful learning
methodologies are combined with a knowledge-based matching technique to provide robust target recognition. Using
dynamic models, TRIPLE can recognize targets present in the database. If necessary, the models can be refined if
errors are found in the representation. Additionally, TRIPLE can automatically store a new target model and recall it
when that target is encountered again. Finally, since TRIPLE uses qualitative data structures to represent targets, it can
overcome problems such as image noise and occlusion.

The two main learning components of the TRIPLE system are Explanation-Based Learning (EBL) and Structured
Conceptual Clustering (SCC). Explanation-based learning provides the ability to build a generalized description of a
target class using only one example of that class. Structured conceptual clustering allows the recognition system to
ciassify a target based on simple, conceptual descriptions rather than using a predetermined, numerical measure of simi-
larity. While neither method, used separately, would provide substantial benefits to a target recognition system, they
can be combined to offer a consolidated technique which employs the best features of each method and is very robust.
The paper by Bhanu and Ming8 provides more details of the TRIPLE system for target model acquisition and
refinement.

5. DYNAMIC MODEL MATCHING FOR LANDMARK RECOGNITION
We have developed a technique called PREACTE (Perception REAsoning ACTion and Expectation) based on

dynamic model matching for landmark recognition from a mobile platform. 20 2 1 The technique can recognize landmarks
and other objects from partial and complete views in dynamic scenarios. It relies on the generation of multiple land-
mark descriptions from 3D models based on different estimated ranges and aspect angles. These descriptions are a
result of feature, spatial, and geometric models of a single landmark. Expectations about the landmarks (appearances)
vary dynamically as the autonomous robot approaches the landmark. Dynamic Model Matching also includes the gen-
eration of specific landmark recognition planning strategies whereby different features of different landmarks are
emphasized at varying ranges. It is an expectation driven, knowledge-based approach and uses limited map information
for updating the ALV's location in the map.

Figure 4 illustrates an example of dynamic model matching for landmark recognition from a mobile platform.
Note that landmark recognition allows the determination of the ALV's position within 3 feet compared to an inertial
position error of 105 feet over a distance of one mile. Figures 5 and 6 provide three examples of landmark recognition
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(a yellow gate and two wooden gates) taken at two different times at the Martin Marietta test site. It is to be noted
that segmentation results affect the recognition results. Being very close to a landmark does not necessarily mean that
its segmentation will be better than the segmentation of the image acquired at a greater range.

6. HIERARCHICAL SYMBOLIC GROUPING FOR INTERPRETATION OF TERRAIN
An autonomous robotic vehicle must be able to navigate not only on the roads, but also through terrain in order

to execute its missions of surveillance, search and rescue, and munitions deployment. To do this the vehicle must
categorize the terrain regions it encounters as to the trafficability of the regions, the land cover of the regions, and
region-to-map correspondence. Our approach for terrain interpretation employs a robust texture-based algorithm and a
hierarchical region labeling scheme for ERIM 12 channel Multi-Spectral Scanner data. The technique, called HSGM
(Hierarchical Symbolic Grouping for Multi-spectral data), is specifically designed for multi-spectral imagery, but is
appropriate for other categories of imagery as well. For this approach, features used for segmentation vary from
macro-scale features at the first level of the hierarchy to micro-scale features at the lowest level. Examples of labels at
the macro-level are sky, forest, field, mountain, road, etc. Figure 7 shows texture gradient images, and the final region
boundaries for large regions. These regions are labeled using a knowledge-based classifier.

For each succeeding level of the hierarchy, the identified regions from the previous stage are further subdivided,
if appropriate, and each region's labeling is made more precise. The process continues until the last stage is reached
and no further subdivision of regions from the preceding stage appears to be necessary. Examples of region labels for
this level of the hierarchy are gravel road, snowberry shrub, gambel oak tree, rocky ledge, etc. Further development of
the technique will employ multiple sources of a priori information such as land cover, terrain elevation map informa-
tion, range data, seasonal information, and time of day.

Details of the HSGM technique with results and examples from real imagery are given in papers by Bhanu and
Symosek. 

1 . 12

7. VISION-BASED TARGETING EXPERIMENTS
As discussed earlier, we have developed two key algorithm suites, called DRIVE (Dynamic Reasoning from

Integrated Visual Evidence) and PREACTE (Perception, REAsoning, ACTion and Expectation). DRIVE accomplishes
target motion detection and tracking while PREACTE performs landmark recognition. We plan to advance this
research by performing a set of scientific experiments directed towards a practical mobility and targeting application of
a robotic combat vchicle.

We plan to conduct scientific experiments in two areas: landmark recognition for path traversal and target motion
detection and tracking. Two series of experiments are planned, one in each of these areas. Each experimental series
begins with data collection and proceeds through progressively more difficult scenarios. The final experiments in the
series will be characteristic of practical mobility scenarios for a robotic combat vehicle. For both series of experi-
ments, the vehicle will be in continuous motion.

Landmark recognition experiments include laboratory landmark recognition tests using off road data; non-real
time landmark recognition in off road traversal by the ALV; real time dynamic landmark recognition in off road traver-
sal by the ALV; and dynamic landmark model learning with return path traversal. Motion detection and tracking
experiments involve verifying motion results against land navigation data; non-real time detection of multiple moving
objects while maintaining reasonable rotation components of the vehicle; real time detection of multiple moving
objects; integrating ETL map data with target motion detection and tracking; and advanced experiments carried out
under more difficult visual scenes involving low contrast and high clutter.

We also plan to develop a flexible software architecture and the associated software for "real time" instrumenta-
tion and evaluation of the landmark recognition and the motion detection and tracking algorithms. Some of the impor-
tant aspects of this work involve defining the criteria for evaluation and acquiring, retrieving, and presening the desired
information in meaningful ways so as to provide insight into the associated vision algorithms.

8. MACHINE LEARNING FOR TARGET RECOGNITION
Present target recognition systems are unable to adapt to changes in environmental conditions, target variations,

and the unexpected appearance of new targets. Each of these situations affects the appearance of the targets in the
image, which in turn, degrades the overall performance of current generation recognition system.

One of the key challenges to automating the target recognition process is that of automatically responding to
changes occurring in the targets seen in an image. We address this problem at every stage of the multi-level vision
problem by a unique multi-strategy machine learning approach not available in any current model-based recognition
system. We want to show that significant benefits can accrue through applying machine learning technology to
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automatically acquire new target models and update their descriptions; to learn new target features based on perceptual
cues, and to adapt segmentation parameters using genetic algorithms. 7

Through an in-depth analysis, performed by Honeywell 2 on the applicability of state-of-the-art machine learning
technology to model-based vision, we have developed the concepts for a novel machine learning system, called ORA-
CLE (Object Recognition Accomplished through Consolidated Learning Expertise). The ORACLE system incorporates
explanation-based learning, structured conceptual clustering, genetic algorithms, and learning by examples into a

multi-strategy learning approach for automated target recognition. At the high level of computer vision, ORACLE util-
izes the characterization and aggregation capabilities of explanation-based learning, structured conceptual clustering,
and similarity-based learning in the target recognition and learning process. By combining these three learning systems,
ORACLE overcomes the inherent limitations of the individual techniques and provides solutions to practical problems
in model-based vision technology such as the need for automated model acquisition and refinement. During the inter-
mediate level vision processing, ORACLE uses explanation-based learning with a perceptual cue database to acquire
new target features. Finally, at the low level of vision, ORACLE uses genetic algorithms for parameter adaptation
capability. Thus, the ORACLE system provides a learning capability at all the three levels of vision: low, intermediate
and high.

9. SCIENTIFIC PERFORMANCE EVALUATION OF VISION ALGORITHMS AND SYSTEM

At present, very little work has been performed in the area of evaluation for image understanding algorithms and
systems. In the DARPA-sponsored image understanding research, a wide variety of algorithms and systems are being
developed for photointerpretation, navigation, manufacturing, cartography, and targeting applications. Scientific (both
quantitative and qualitative) performance evaluation of diverse vision algorithms and systems will help in advancing the

computer vision field at a faster pace, which in turn will lead to the most rapid fielding of computer vision technology.
EffeLLive performance evaluation will allow the measurement of not only the qualitative advancements in the computer
vision field, but will also help to quantify the progress in the field. Most importantly, scientific performance evaluation
will provide more rapid technology transfer (see Figure 8) to DoD applications by reducing the time needed to develop

and validate robust vision algorithms. Figure 9 and 10 show algorithm evolution cycle and the evolution of algorithms.
The four phases of the evolution cycle are conceptualization, generation, evaluation and adaptation. Once the algo-
rithms have shown their potential value, they can be subjected to automatic evaluation.

Life cycle of any technology consists of four phases as shown in Figure 11. The maturity of any area (applica-
tion areas or low, intermediate or high levels) of image understanding is related to the degree to which agreement on

benchmarks can be reached and performance evaluation can be conducted.

Objective of performance evaluation is not to find out "the best" algorithm, but quantitative/qualitative under-

standing of capabilities of algorithms and systems. Evaluation works best when it is not tailored for a particular imple-

mentation; time to run the test is short; no new systems are designed; it has extreme cases especially those that cause

known algorithms to fail; it has as extensive set of test images; anyone can submit results; and researchers perform the
test on their own system.

It is extremely important to develop quantitative performance criteria for image understanding algorithms for
s,.veral reasons:

(1) To compare various "matured" algorithms and systems and to predict their performance in a given
scenario and/or for a specific application,

(2) To study the behavior of an application system and its components under different conditions and param-
eter settings, so as to be able to find the optimum performance achievable and the performance bounds
of its components,

(3) To understand the characteristics of the imagery that affect the performance of the algorithms,

(4) To find common functional elements for an application among the algorithms currently in use,

(5) To help the algorithm developer choose the appropriate algorithms for his/her application and research,
and

(6) To provide an objective and complete evaluation methodology for standardization purposes.

Performance evaluation allows performance analysis (strengths/weaknesses), sensitivity analysis, performance
models. All these lead to prediction of algorithms and prediction is an important element of science.

The critical ingredients for scientific performance evaluation are:

(a) Image database groundtruth,
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(b) Techniques for performance evaluation,

(c) Common system environments (KBVision and others).

Some of the problems with performance evaluation are:

1. Lack of appropriate database,

2. Slightly different problem statements and assumptions nzed different data seL,

3. Difficulty to quantify algorithm performance, many facets of the problem,

4. Interpretation of evaluation results (who?)

There are two solutions: natural evolution or concrete action to promote the maturation of lU tech base. We con-

centrate on the second solution.

We firmly believe that the effective characterization and prediction of algorithm performance is an essential step
in transforming computer vision from an art to a science. The ability to successfully predict performance depends on a
clear understanding of the complex relationship among the input data, algorithm operations, and produced results.

Through active interaction with the DARPA IU/SC community, the following objectives are pursued for scientific
performance evaluation.

(1) National research database of computer vision imagery,

(2) Characterization (taxonomy) of vision research,

(3) Benchmarks for performance measurement of algorithms/systems (what to measure?),

(4) Techniques and models for "matured" algorithms and systems for performance evaluation (how to meas-
ure?),

(5) Workshop of DARPA IU community on performance evaluation.

The details of the above objectives are now discussed.

9.1 NATIONAL RESEARCH DATABASE OF COMPUTER VISION IMAGERY

The objective of establishing a national research image database is to promote the orderly development and dis-
semination of image information to serve the needs of DARPA lU algorithms/systems developers. This encompasses
the standards for data interchange and activities for data collection, data organization, and data distribution.

The important considerations for these databases are: ground truth data requirements (site, sensor characterization,
sensor platform, objects of interest, meteorological conditions), ground truth recording procedures, and database
quantity/quality/variety requirements. The ground truth information is very critical and many tim's is not ava,,able or
is too expensive to capture. Whenever the ground truth information is available, imagery should be partitioned into
two categories: For some imagery, the ground truth is supplied to the researcher so that he/she can use ihem in the
development of vision algorithms; the other category should be the imagery for which ground truth is sequestered and
used to evaluate the robustness of the algorithms after development.

One potential use of an accepted imagery database would be for evaluating various "matured" algorithms that
perform the same function (e.g., stereo, segmentation, motion detection, object recognition in range images, etc). Each
year, the results of this evaluation, which have a well defined objective and scientific experiment, can be publicized at
the Image Understanding Workshop and there would be recognition for researchers "ho demonstrate the best results
using 'he "matured" algorithms for a given set of images (for a given application). More importantly, the overall pro-
gress made by the LU community would be made apparent.

Our short-term objective i,, to define and make available a standard s-t of images to be used by the DARPA IU
community for algorithm development and evaluation. Some of the common functions are: stereo, motion algorithms,
object recognition in outdoOr/indoor scenes using TV and range im)ges, etc.

Some of the currently available databases that may meet our needs arc:

Martin's Collage I and Collage 2 ALV Databave: Contains a large number of color TV, multispectral, and range
images. Ground troth information is limited.

USC Database: Contains a large number of texture, aerial, and color images. Ground truth is limited.
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Figure 12: Interaction of algoiithms and database.

CMU: NavLab, Calibrated Imaging Lab

Martin Marietta: ALV database

Utah Range Database: Contains four sets of 33 images (5.108 Megabytes). Data is available in Unix TAR for-
mat, 1600 BPI tape. This data includes:

University of Utah Images: The set is encoded in White Scanner format. Consists of images of bottles,
cylinders, polygons, and various parts including the Renault auto part from INRIA. The parameters and
details of the scanning systems are known for the set of images scanned at Utah.

SRI Images: Grapes and space shuttle images.

North Carolina State University: PC board, the image of Victor Hugo, and others.

ENS I'Paris: Victor Hugo image obtained in one degree aspect increments.
The sample image sets can be separated by class as well. In the case of stereo imagery, the photogrammetry

community has distributed a very good stereo database (not epi-polar constrained) with known ground truth. Imagery
acceptable for motion research is available from SRI, which has some image sequences that have good imaging infor-
mation and some partial depth ground truth.

Note that database is closely tied up with evaluation (see Figure 12) Database should also be viewed as extensi-
ble, not the finished product. In summary some of the issu, ; related with database are:

(1) Models for evaluation,

(2) Requirements of database

(3) Collection of database,

(4) Organization of database,

(5) Maintenance of database,

(6) Access and usage expectations,

(7) Groundtruth information - sensor, map, other ancillary information,

(8) Standards for imagery and non-imagery information,

(9) Types of data,

(10) Specific IU algorithms, systems and applications.
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We are working on a detailed plan for data acquisition and accessibility. We are identifying core data set and
plan to expand it in a systematic way.

9.2 Characterization of Vision Research Infrastructure or Taxonomies of Vision Research

A current detailed taxonomy of vision research is desired which is based on diverse criteria such as:

* Applications (navigation, terminal homing, remote sensing, etc.),

6 Class of sensors (TV, FLIR, Range, SAR, etc.),

* Use of multisensors (TV & range, FLIR & Range, etc.),

• Functionalities (segmentation, feature extraction, texture analysis/synthesis, etc.),

* Principles (top down, bottom up, etc.),

* Reasoning processes (qualitative, perceptual, etc.),

0 Hardware architectures (systolic, array, cellular, etc.),

0 Implementation techniques (VHSIC, VLSI, discrete, etc.), and

0 Use of auxiliary information (digital elevation map data, land cover data, etc.).

The rationale for characterization is to help in the organization and development of image database, definition of
benchmarks and methodologies for evaluation. This characterization will provide a common framework of terminology
and description to promote improved communication among the members of the vision community and between tech-
nology developers and appliers. Since the computer vision field is still quite young and undergoing rapid evolution, the
proposed taxonomy should be viewed as a "snapshot" of the field today and will likely need to undergo significant
modifications and extensions as the field progresses. After the development of the proposed taxonomy, the develop-
ment of the other three related goals will be pursued: a common image database, general vision system benchmarks,
and an effective methodology for performance evaluation. One can think of a very deep tree whose leaf nodes are very
specific (for example, the segmentation of tank targets at "close" distances in range images for terminal homing appli-
cations). We associate he specific database, benchmarks, and methodology with these leaf nodes for performance
evaluation.

9.3 Terminology and Benchmarks for Performance Evaluation

It is important to have common terminology and benchmarks for performance evaluation. Subtle differences in
meaning can be very important for evaluation. Even terms such as "ground truth" mean different things to different
people. A lexicon that establishes standard terminology and standard benchmarks will provide uniformity in carrying
out scientific experiments for performance evaluation.

9.4 Scientific Methodology and Models for Performance Evaluation

Since one of the goals of computer vision is to build machines that can solve real world problems, we need to
define the systematic methods and models for performance evaluation of individual vision algorithms (segmentation,
feature computation, texture measurement, etc.) and systems (object recognition, vision-based navigation, etc.) for a
p-rticular application (terminal homing, surveillance, etc.). We need to thoroughly understand the practical experimen-
t. 'esigns and the errors of observation and their treatment. As an example, the results of segmentation are still
evaluated qualitatively. They need to be evaluated, in part, on the basis of how well the implicit or explicit model in
the technique is able to predict performance. In other words, the quality of an algorithm should depend not only on
certain test performance results, but on the accuracy of the model that predicts algorithm performance over a diverse
database of imagery. If an algorithm performs well over a narrow database (a few images), but a resulting performance
prediction model proves to be inaccurate over va larger database, the proer conclusion is that the overall algorithm
performance is deficient. In this framework, evaluation of an algorithm consists of two components: an algorithm and
the associated performance prediction model. We can refer to the combination of these two components as a general-
ized algorithm. Simple quantitative measures (which may or may not have intuitive physical significance), such as the
number of pixels misclassified with respect to the true object, the correlation coefficient between the true and extracted
object, mean square error between the true and extracted object, object-to-background contrast, and the metric based on
these criteria, can be effectively used for segmentation evaluation.

Carrying this evaluation process a step further, we need an evaluation methodology for the evaluation of com-
plete systems such as an object recognition system. The system performance should be evaluated on the basis of the
task it is able to perform in a given environment considering such factors as sensor type, resolution of data, type of
objects, and complexity and information content of the scene. It is logi:al to assume that to obtain the optimum
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performance of the system, it is essential to achieve the maximum attainable performance of each of its components.
However, it may or may not satisfy the goals of the system performance, since most of the image understanding com-
ponents are nonlinear. Here a top-down approach for evaluation may be more meaningful than a bottom-up approach.

In summary, the emphasis of performance evaluation is on computer vision problems, scientific experimental
design and interfaces between vision components and functions. We need to define a performance metric for each of
the image understanding algorithms as well as a performance metric for the system as a whole. This can be done for
the specific matured algorithms/systems being pursued by the Image Understanding community.
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Abstract

This paper describes the second in a series of DARPA-sponsored efforts to evaluate the merits of
various parallel architectures as applied to the problem of knowledge-based machine vision. The first
DARPA benchmark considered only the execution times for a set of isolated vision-related tasks.
However, the overall performance of an image interpretation system depends upon more than the
execution times of a few key tasks. In particular, the costs of interactions between tasks, input and
output, and system overhead must be taken into consideration. Thus, this new benchmark addresses the
issue of system performance on an integrated set of tasks, where the task interactions are typical of
those found in complex vision applications. Also, unlike the majority of benchmarks, which are
numerically oriented and whose components are small, stand-alone programs, this benchmark tests
system performance on many types of processing and in the context of a larger program. As a result,
the benchmark can be used to gain insight into a greater variety of processor capabilities and foibles,
and may thus help to guide the development of the next generation of parallel vision architectures.

Introduction

Knowledge-based image understanding presents an immense computational challenge that has yet to be
satisfied by any parallel architecture. The challenge is not merely to provide a greater quantity of
operations per second, but also to supply the necessary varieties of operations in the required amounts.
Consider that a sequence of images at medium resolution (512 x 512 pixels) and standard frame rate
(30 frames per second) in color (24 bits per pixel) represents a data input rate of about 23.6 million
bytes per second and, in a typical interpretation scenario, many thousands of operations may be applied
to each input pixel in order to enhance, and segment an image and to extract various features from it.
But in addition to these I/0 and pixel processing requirements, a vision system must be able to do much
more. For example, it must organize extracted image features via perceptual grouping mechanisms,
locate relevant models in a potentially vast store of knowledge and compare them to partial models
derived from the input data, generate hypotheses concerning the environment of the sensor, resolve
conflicting hypotheses to arrive at a consistent interpretation of the environment, manage and update
stored knowledge, and so on.

While traditional supercomputing benchmarks may be useful in estimating the performance of an
architecture on some types of image processing tasks, those berchmarks have little relevance to the
majority of the processing that takes place in a vision system [Duff, 1986]. Nor has there been much
effort to define a vision benchmark for supercomputers, since those machines in their traditional form
have usually been viewed as inappropriate vehicles for knowledge-based vision research. However,
now that parallel processors are becoming readily available, and because they are viewed as being
better suited to vision processing, researchers in both machine vision and parallel architecture are

" This work was supported in part by the Defense Advrnced Research Projects Agency under contract

number DACA76-86-C-0015, monitored by the U.S. Army Engineer Topographic Laboratories.
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taking an interest in performance issues with respect to vision. The next section summarizes the work

that has been done in the area of vision benchmarks to date.

Review of Previous Vision Benchmark Efforts

One of the first parallel processor benchmarks to address vision-related processing was the Abingdon
Cross benchmark, defined at the 1982 Multicomputer Workshop in Abingdon, England [Preston,
,986]. In that benchmark, an input image was specified that consisted of a dark background with a
pair of brighter rectangular bars, equal in size, that cross at their midpoints and are centered in the
image, and with Gaussian noise added to the entire image. The goal of the exercise was to determine and
draw the medial axis of the cross formed by the two bars. The results obtained from solving the
benchmark problem on various machines were presented at the 1984 Multicomputer Workshop in
Tanque Verde, Arizona, and many of the participants spent a fairly lengthy session discussing problems
with the benchmark and designing a new benchmark that it was hoped would solve those problems.

It was the perception of the Tanque Verde group that the major drawback of the Abingdon Cross was its
lack of breadth. The problem required a reasonably small repertoire of image processing operations to
construct a solution. The second concern of the group was that the specification did not constrain the
a priori information that could be used to solve the problem. In theory, a valid solution would have
been to simply draw the medial lines since their true positions were known. Although this was never
done, there was argument over whether it was acceptable for a solution to make use of the fact that the
bars were oriented horizontally and vertically in the image. A final concern was that no method was
prescribed for solving the problem, with the result that every solution was based on a different method.
When a benchmark can be solved in different ways, the performance measurements become more
difficult to compare because they include an element of programmer cleverness. Also, the use of a
consistent method would permit some comparison of the basic operations that make up a complete
solution.

The Tanque Verde group specified a new benchmark, called the Tanque Verde Suite, that consisted of a
large collection of individual vision-related problems. Table 1 contains the list of problems that was
developed. Each of the problems was to be further defined by a member of the group, who would also
generate test data for their assigned problem. Unfortunately, only a few of the problems were ever
developed, and none of them were widely tested on different architectures. Thus, while the simplicity
of the Abingdon Cross may have been criticized, it was the respondent complexity of the Tanque Verde
Suite that inhibited the latter's use.

Standard Utilities High Level Tasks
3x3 Separable Convolution Edge Finding
3x3 General Convolution Line Finding
15x15 Separable Convolution Corner Finding
15x15 General Convolution Noise Removal
Affine Transform Generalized Abingdon Cross
Discrete Fourier Transform Segmentation
3x3 Median Filter Line Parameter Extraction
256 Bin Histogram Doblurring
Subtract Two Images Classification
Arctangent(Imagel /Image2) Printed Circuit Inspection
Hough Transform Stereo Image Matching
Euclidean Distance Transform Camera Motion Estimation

Shape Identification

Table 1: Tanque Verde Benchmark Suite

In 1986, a new benchmark was developed at the request of the Defense Advanced Research Projects
Agency (DARPA). Like the Tanque Verde Suite, it was a collection of vision-related problems, but the
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set of problems that made up the new benchmark was much smaller and easier to implement. Table 2
lists the problems that comprised the first DARPA Image Understanding Benchmark. A workshop was
held in Washington, D.C., in November of 1986 to present the results of testing the benchmark on
several machines, with those results summarized in [Rosenfeld, 1987]. The consensus of the
workshop participants was that the results cannot be compared directly for several reasons. First, as
with the Abingdon Cross, no method was specified for solving any of the problems. Thus, in many cases,
the timings were more indicative of the knowledge or cleverness of the programmer, than of a
machine's true capabilities. Second, no input data was provided and the specifications allowed a wide
range of possible inputs. Thus, some participants chose to test a worst-case input, while others chose
average" input values that varied considerably in difficulty.

1lxl 2 Gaussian Convolution of a 512x512 8-bit Image
Detection of Zero Crossings in a Difference of Gaussians Image
Construct and Output Border Pixel List
Label Connected Components in a Binary Image
Hough Transform of a Binary Image

Convex Hull of 1000 Points in 2- Real Space
Voronoi Diagram of 1000 Points in 2-D Real Space
Minimal Spanning Tree Across 1000 Points in 2-D Real Space
Visibility of Vertices for 1000 Triangles in 3-D Real Space
Minimum Cost Path Through a Weighted Graph of 1000 Nodes of Order 100
Find all Isomorphisms of a 100 Node Graph in a 1000 Node Graph

Table 2: Tasks from the First DARPA Image Understanding Benchmark

The workshop participants pointed out other shortcomings of the benchmark. Chief among these was
that because it consisted of isolated tasks, the benchmark did not measure performance relatedo tohe
interactions between the components of a vision system. For example, there might be a particularly
fast solution to a problem on a given architecture if the input data is arranged in a special manner.However, this apparent advantage might be inconsequential if a vision system does not normally use the

data in such an arrangement, and the cost of rearranging the data is high. Another shortcoming was thatthe problems had not been solved before they were distributed. Thus, there was no canonical solution

on which the participants could rely for a definition of correctness, and there was even one problem for
which it turned out there was no practical solution. The issue of having a ground truth, or known
correct solution was considered very important, since it is difficult to compare the performance of two
architectures when they produce different results. For example, is an architecture that performs a
task in half the time of another really twice as powerful if the first machine's programmer used
integer arithmetic while the second machine was programmed to use floating point, and they thus
obtained significant ere t results? Since problems in vision are often ill-defined, it is possible
to argue for the correctness of many different solutions. In a benchmark, however, the goal is not tosolve a vision problem but to test the performance of different machines doing comparable work.

The conclusions from the first DARPA benchmark exercise were that the results should not be directly
compared, and that a new benchmark should be developed that addresses the shortcomings of the
preceding benchmarks. Specifically, the new benchmark should test system performance on a task that
approximates an integrated solution to a machine vision problem. A complete solution with test data
sets should be constructed and distributed with the benchmark specification. And, every effort shouldbe made to specify the the benchmark in such a way as to minimize the opportunities for taking
shortcuts in solving the problem. The task of constructing the new benchmark, to be called the
Integrated Image Understanding Benchmark, was assigned to the vision research groups at the
University of Massachusetts at Amherst, and the University of Maryland.

Following the 1986 meeting, a preliminary benchmark specification was drawn up and circulated
among the DARPA image understanding community for comment. The benchmark specification was then
revised, and a solution was programmed on a standard sequential machine. In creating the solution,
several problems were discovered and the bencimark specification was modified to correct those
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problems. The programming of the solution was done by the group at the University of Massachusetts
and the code was then sent to the group at the University of Maryland to verify its validity, portability,
and quality. The group at Maryland also reviewed the solution to verify that it was general in nature
and neutral with respect to any underlying architectural assumptions. The Massachusetts group
developed a set of five test cases, and a sample parallel solution for a commercial multiprocessor.

In March of 1988, the benchmark was released, and made available from Maryland via network access,
or by sending a blank tape to the group in Massachusetts. The benchmark release consisted of the
sequential and parallel solutions, the five test cases, and software for generating additional test data.
The benchmark specification was presented at the DARPA Image Understanding Workshop, the
International Supercomputing Conference, and the Computer Vision and Pattern Recognition conference
[Weems, 1988]. Over 25 academic and industrial groups, listed in Table 3, obtained copies of the
benchmark release. Nine of those groups developed either complete or partial versions of the solution
for an architecture. A workshop was held in October of 1988, in Avon Old Farms, Connecticut, to
present those results to members of the DARPA research community. As with the previous workshops,
the participants spent a session developing a critique of the benchmark and making recommendations
for the design of the next version.

International Parallel Machines Hughes Al Center
Mercury Computer Systems University of Wisconsin
Stellar Computer George Washington University
Myrias Computer University of Massachusetts*
Active Memory Technology SAIC
Thinking Machines* Eastman Kodak
Aspex Ltd.* University College London
Texas Instruments Encore Computer
IBM MIT
Carnegie-Mellon University* University of Rochester
Intel Scientific Computers* University of Illinois*
Cray Research University of Texas at Austin*
Sequent Computer Systems* Alliant Computer*

Table 3: Distribution List for the Second DARPA Benchmark
* Indicates Results Presented at the Avon Workshop

The remainder of this paper summarizes those results and recommendations, following a brief review

of the benchmark task and the rationale behind its design.

Benchmark Task Overview

The overall task that is to be performed by this benchmark is the recognition of an approximately
specified 2 1/2 dimensional "mobile" sculpture in a cluttered environment, given images from
intensity and range sensors. The intention of the benchmark designers is that neither of the input
images, by itself, is sufficient to complete the task.

The sculpture to be recognized is a collection of two-dimensional rectangles of various sizes,
b-ightnesses, two-dimensional orientations, and depths. Each rectangle is oriented normal to the Z axis
(the viewing axis), with constant depth across its surface, and the images are constructed under
orthographic projection. Thus an individual rectangle has no intrinsic depth component, but depth is a
factor in the spatial relationships between rectangles. Hence the notion that the sculpture is 2 1/2
dimensional.

The clutter in the scene consists of additional rectangles, with sizes, brightnesses, two-dimensional
orientations, and depths that are similar to those of the sculpture. Rectangles may partially or
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completely occlude other rectangles. It is also possible for a rectangle to disappear when another
rectangle of the same brightness or slightly greater depth is located directly behind it.

A set of models is provided that represent a collection of similar sculptures, and the recognition task
involves identifying the model which best matches the object present in the scene. The models are only
approximate representations of sculptures in that they allow for slight variations in component
rectangle's sizes, orientations, depths, and the spatial relationships between them. A model is
constructed as a tree structure where the links in the tree represent the invisible links in the
sculpture. Each node of the tree contains depth, size, orientation, and intensity information for a single
rectangle. The child links of a node in the tree describe the spatial relationships between that node and
certain other nodes below it.

The scenario that the designers imagined in constructing the problem was a semi-rigid "mobile", with
invisible links, viewed from above, with bits and pieces of other mobiles blowing through the scene.
The state of the system is that previous processing has nai'rowed the range of potential matches to a few
similar sculptures, and has oriented them to correspond with information extracted from a previous
image. However, the objects in the scene have since moved, and a new set of images has been taken
prior to completing the matching process. The system must make its final choice for a best match, and
update the corresponding model with the positional information extracted from the latest images.

The intensity and depth sensors are precisely registered with each other and both have a resolution of
512 x 512 pixels. There is no averaging or aliasing in either of the sensors. A pixel in the intensity
image is an 8-bit integer grey value. In the depth image a pixel is a 32-bit floating-point range value.
The intensity image is noise free, while the depth image has added Gaussian noise.

A set of test images is created by first selecting one of the models in a set. The model is then rotated and
translated as a whole, and its individual elements are then perturbed slightly. Next, a collection of
spurious rectangles is created with properties that are similar to those in the chosen model. All of the
rectangles (both model and spurious) are then ordered by depth and drawn in the two image arrays.
Lastly, an array of Gaussian-distribution noise is added to the depth image array.

Figure 1 shows an intensity image of a sculpture alone, and Figure 2 shows the sculpture with added
clutter.

Figure 1: Intensity Image of Model Alone Figure 2: image of Model with Clutter
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Processing in the benchmark begins with some low-level operations on the intensity and depth images,
followed by some grouping operations on the intensity data that result in the extraction of candidate
rectangles. The candidate rectangles are used to form partial matches with the stored models. For each
model, it is possible that multiple hypothetical poses will be established. The benchmark then proceeds
through the model poses, using the stored information to probe the depth and intensity images in a top-
dowvn manner. Each probe can be thought of as testing an hypothesis for the existence of a rectangle in a
given location in the images. Rejection of an hypothesis, which only occurs when there is strong
evidence that a rectangle is actually absent, results in elimination of the corresponding model pose.
Confirmation of the hypothesis results in the computation of a match strength for the rectangle at the
hypothetical location, and an update of its representation in the model with new size, orientation, and
position information. It is possible for the match strength to be as low as zero when there is no
supporting evidence for the match and a lack of strong evidence that the rectangle is absent, as in the
case of a rectangle that is entirely occluded by another. After a probe has been performed for every
unmatched rectangle in the list of model poses, an average match strength is computed for each pose that
has not been eliminated. The model pose with the highest average match strength is selected as the best
match, and an image is generated that highlights the model in the intensity image. Table 4 lists all of
the steps that make up the complete benchmark task.

The benchmark specification requires that this set of steps be applied in implementing a solution.
Furthermore, for each step, a recommended method is described that should be followed whenever
possible. However, in recognition of the fact that some methods simply may not work, or will be
extremely inefficient for a given architecture, implementors are permitted to substitute other methods
for individual steps. When it is necessary for an implementation to differ from the specification, the
implementor is expected to supply a justification for the change. It is also urged that, if possible, a
version of the implementation be written and tested with the recommended method so that the difference
in performance can be determined.

Benchmark Philosophy and Rationale

In writing an integrated image understanding benchmark, the goal is to create an interpretation
scenario that is an approximation of an actual image interpretation task. One must remember,
however, that the benchmark problem is not an end in itself, but is a framework for testing machine
performance on a wide variety of common vision operations and algorithms, both individually and in an
integrated form that requires communication and control across algorithms and representations. This
benchmark is not intended to be a challenging vision research exercise, and the designers feel that it
should not be. Instead, it should be a balance between sirr ,city for the sake of implementation by
participants, and the complexity that is representative of aL. vision processing. At the same time, it
must test machine performance in as many ways as possible. A further constraint on the design was the
requirement that it make use of as many of the tasks from the first DARPA benchmark as possible, in
order to take advantage of the previous programming effort.

The job of the designers was thus to balance these conflicting goals and constraints in developing the
benchmark scenario. One result is that the benchmark solution is neither the most direct, nor the most
efficient method of solving the problem. However, making the solution more direct would have
eliminated several of the algorithms that are important in testing certain aspects of machine
performance. One the other hand, increasing the complexity of the problem to necessitate the use of
those algorithms would have required significant additional processing that is redundant in terms of
performance evaluation. Thus, while the benchmark solution is not a good example of how to build an
efficient vision system, it is an effective test of machine perforr.,ance both on a wide variety of
individual operations and on an integrated task. Moreover, having taken a lesson from the Tanque Verde
Suite, the benchmark design attempts to minimize the effort required of the participants, while
maximizing the information obtained.
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Low-Level, Bottom-Up Processing
Intensity Image Depth Image
Label Connected Components 3x3 Median Filter

. Compute K-Curvature 3x3 Sobel and Gradient Magnitude
Extract Corners Threshold

Intermediate Level Processing
Select Components with 3 or More Corners
Convex Hull of Corners for Each Component
Compute Angles Between Successive Corners on Convex Hulls
Select Corners with K-Curvature and Computed Angles Indicating a Right Angle
Label Components with 3 Contiguous Right Angles as Candidate Rectangles
Compute Size, Orientation, Position, and Intensity for Each Candidate Rectangle

Model-Based, Top-Down ProcessingDetermine all Single Node Isomorphisms of Candidate Rectangles in Stored Models

Create a List of all Potential Model Poses
Perform a Match Strength Probe for all Single Node Isomorphisms (see below)
Link Together all Single Node Isomorphisms
Create a List of all Probes Required to Extend Each Partial Match
Order the Probe List According to the Match Strength of the Partial Match Being Extended
Perform a Probe of the Depth Data for Each Probe on the List (see below)
Perform a Match Strength Probb for Each Confirming Depth Probe (see below)

S Update Rectangle Parameters in the Stored Model for Each Confirming Probe
Propagate the Veto frow,, a Rejecting Depth Probe Throughout the Corresponding Partial Match

When No Probes Remain, Compute Average Match Strength for Each Remaining Model Pose
Select Model with Highest Average Match Strength as the Best Match
Create the Output Intensity Image, Showing the Matching Model

Depth Probe
Select an X-Y Oriented Window in the Depth Data that will Contain the Rectangle
Perform a Hough Transform Within the Window
Search the Hough Array for Strong Edges with the Approximate Expected Orientations
If Fewer than 3 Edges are Found, Return the Original Model Data with a No-Match Flag
If 3 Edges are Found, Infer the Fourth from the Model Data
Compute New Size, Position, and Orientation Values for the Rectangle

Match-Strength Probe
Select an Oriented Window in the Depth Dtegrat is Slightly Larger than the Rectangle
Classify Depth Pixels as Too Close, Too Far, or In Range
If the Number of Too Far Pixels Exceeds a Threshold, Return a Veto
Otherwise, Select a Corresponding Window in the Intensity Image
Select Intensity Pixels with the Correct Value
Compute a Match Strength Based on the Number of Correct vs. Incorrect Pixels in the Images

Table 4: Steps that Compose the Integrated Image Understanding Benchmark

The great variety of architectures to be tested is itself a complicating factor in the design of a
benchmark. It was recognized that each architecture may have its own most efficient method for
computing a given function. However, ihe purpose of the benchmark requires that the benchmark tasks
and methods be well defined so that the results from different machines will be comparable. Otherwise
the results will include a significant factor that depends on the cleverness of the programmer. Thus the
benchmark specification requests that participants do not take shortcuts in the solution, and that they
use the recommended methods whenever possible. It should be noted that the recommended methods are
not always the most efficient techniques because they were chosen to be as widely implementable as
possible. Thus, while the processing time for a given step or for the entire task may not be the best
performance that a machine can muster, it will be comparable to the results from others. Participants
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were also encouraged to develop timings for more optimal solutions, in addition to the standard solution,
if they so desired.

The designers also recognize the tendency for any benchmark to turn into a horse race. However, that
is not the goal of this exercise, which is to increase the scientific insight of architects and vision
researchers into the architectural requirements for knowledge-based image interpretation. To this
end, the benchmark requires a much more extensive set of instrumentation than simple execution
times. Participants are required to report execution time for individual tasks, for the entire task, for
system overhead, input and output, system initialization and loading any precomputed data, and for
different processor configurations if possible. Implementation factors that are to be reported include
an estimate of the time spent implementing the benchmark, the number of lines of source code, the
programming language used, and the size of the object code. Machine configuration and technology
factors that are requested include the number of processors, memory capacity, data path widths,
integration technology, clock and instruction rates, power consumption, physical size and weight, cost,
and any limits to scaling-up the architecture. Lastly, participants are asked to comment on any
changes to the architecture that they feel would contribute to an improvement in performance on the
benchmark.

Results and Analysis

Due to limitations of time and resources, only a few of the participants were able to complete the entire
benchmark exercise and test it on ill five of the data sets. In almost every case, there was some
disclaimer to the effect that a particular architecture could have shown better performance given more
implementation time or resources. It was common for participants to underestimate the effort
required to implement the benchmark, and several who had said they would provide timings were
unable to complete even a portion of the task prior to the workshop. Despite requests to groups that did
not attend the workshop that they submit belated results to be included in this report, not one new
benchmark report has been received. Thus, the results presented here are those that were provided by
the workshop participants. In a few cases, the results have been updated, corrected, or amended since
they were originally presented.

Care must be taken in comparing these results. For example, no direct comparison should be made
between results obtained from actual execution and those that were derived from simulation
[Carpenter, 1987]. No matter how carefully a simulation is carried out, it is never as accurate as
direct execution. Likewise, no comparison should be made between results from a partial
implementation and a complete one. The complete implementation must account for overhead involved
in the interactions between subtasks, and even for the fact that the program is significantly larger than
for a partial implementation. Consider that a set of subtasks might appear to be much faster than their
counterparts in a complete implementation simply because less paging is required to keep the code in
memory. It is also unwise to directly compare the raw timings, even for similar architectures,
without considering the differences in technology between systems. For example, a system that
executes a portion of the benchmark in half the time of another is not necessarily architecturally
superior if it also has a clock rate that is twice as high or if it has twice as many processors.

In addition to the technical problems involved in making direct comparisons, there are other
considerations that must be kept in mind. For example, every participant expressed the view that
given more time to tune their implementation, the results for their architecture would improve
considerably. What is impressive in many cases is not the raw speed increase obtained, but the
increase with respect to the amount of effort required to obtain it. While this has more to do with the
tools available for developing software for an architecture than with the architecture itself, it is still
important in evaluating the overall usefulness of the system. Another major consideration is the ratio
of cost to performance, since many applications can afford to sacrifice a small amount of performance
in order to reduce the cost of the implementation. In other applications, the size or weight or power
consumption of a system may be of greater importance than all-out speed. One of the purposes of this
exercise has been merely to assemble as much of this data as possible so that the performance results
can be evaluated with respect to the requirements of each potential application of an architecture.
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Thus, in what follows, there is no single best architecture and there are no winners or losers. Each has
its own unique merits and drawbacks, of which none are absolute. To play down the direct comparison
of raw timings, the results for each architecture will be presented separately. The order of
presentation is random, except that the sequential solution is presented first to provide a performance
baseline, and then complete parallel implementations are presented, followed by partial
implementations. Results that were based on theoretical estimations are not included in this report.
The timings in all of the tables are in seconds, for the sake of consistency. Where a timing is zero, it
indicates that the processing time was less than the resolution of the timing mechanism employed.
Blanks in the tables indicate values that were omitted from the reports that were supplied by the
implementors.

Sequential Solution

The sequential solution to the benchmark was developed in C on a Sun-3/160 workstation. The solution
contains roughly 4600 lines of code, including comments. The implementation was designed for
maximum portability and has been successfully recompiled on several different systems. The only
portion that is system dependent is the actual result presentation step, which uses the graphics
primitives provided for drawing on the workstation's screen. The implementation differs from the
recommended method on the Connected Component Labelling step by using a standard sequential method
for computing this well-defined function. The sequential method is designed to minimize array accesses
and their corresponding index calculations, which is not a problem for array processors, but incurs a
significant time penalty on a sequential machine.

Timings have been produced for the sequential code running on all five data sets, and on three different
machine configurations. The configurations are a Sun-3/160 (a 16 MHz 68020 processor) with 8MB
of RAM, a Sun-3/260 (a 25 MHz 68020) with 16MB of RAM, and a Sun-4/260 (a 16MHz SPARC
processor) with 16MB of RAM. The extra RAM on the latter two machines did not affect performance,
since the benchmark was able to run in 8MB without paging. The 3/260 was equipped with a Weitek
floating-point co-processor, while the 3/160 used only the standard 68881 co-processor. These
results have been corrected since the workshop, where some questions arose as to their validity due to a
difference in the number of connected components extracted. It was determined that the original results
were obtained with a faulty copy of the data set, and the problems vanished when the proper data was
used. Table 5 shows the results for the Sun-3/160, Table 6 shows the Sun-3/260 results, and Table
7 gives the execution times for the Sun-4/260. The timings were obtained with the standard system
clock utility which has a resolution of 20 milliseconds on the Sun-3 systems, and 10 milliseconds on
the Sun-4.

Data Set Sample Test Test2 Test3 Test4
User System User System User System User System User System

Total 794.94 2.94 335.96 2.10 326.84 2.40 549.3 2.52 550.26 2.90
Overhead 4.02 1.06 4.06 0.88 4.50 1.14 4.60 1.04 4.58 0.94
Miscellaneous 2.24 0.04 2.18 0.04 2.16 0.06 2.12 0.02 2.10 0.02
Startup 0.02 0.00 0.04 0.00 0.02 0.04 0.00 0.02 0.02 0.00
Image input 0.60 0.68 0.58 0.54 1.32 0.78 1.50 0.74 1.42 0.66
Image output 0.24 0.30 0.30 0.28 0.06 0.24 0.06 0.24 0.08 0.26
Model input 0.92 0.04 0.96 0.02 0.94 0.02 0.92 0.02 0.96 0.00

Label connected components 27.40 0.38 27.46 0.36 28.12 0.28 27.86 0.36 27.88 0.36
Rectangles from intensity 6.42 0.08 4.00 0.14 4.34 0.04 5.36 0.08 5.10 0.24
Miscellaneous 2.06 0.06 1.84 0.02 1.94 0.02 1.94 0.02 1.92 0.06
Trace region boundary 0.52 0.02 0.28 0.02 0.38 0.00 0.42 0.00 0.38 0.06
K-curvature 1.62 0.00 0.80 0.00 0.82 0.00 1.22 0.00 1.10 0.00
K-curvature smoothing 1.26 0.00 0.62 0.00 0.70 0.00 0.96 0.00 1.02 0.02
First derivative 0.46 0.00 0.22 0.02 0.24 0.00 0.28 0.02 0.22 0.02
Zero-crossing detection 0.26 0.00 0.06 0.00 0.04 0.00 0.18 0.00 0.24 0.02
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Final corner detection 0.20 0.00 0.16 0.02 0.18 0.02 0.28 0.02 0.16 0.04
Count corners 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.02 0.00 0.00
Convex hull 0.02 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.04 0.00
Test for right angles 0.00 0.00 0.02 0.02 0.00 0.00 0.04 0.00 0.00 0.00
Final rectangle hypothesis 0.02 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.02 0.02

Median filter 246.06 0.60 118.62 0.26 92.58 0.28 90.70 0.22 90.66 0.24
Sobel 135.3 0.18 133.14 0.16 135.92 0.18 135.12 0.16 135.14 0.28
Initial graph match 24.4 0.06 24.94 0.06 26.02 0.02 68.30 0.14 67.48 0.14
Match data rectangles 0.14 0.00 0.10 0.02 0.08 0.02 0.26 0.04 0.24 0.00
Match links 0.22 0.00 0.06 0.00 0.08 0.00 0.74 0.00 0.58 0.02
Create probe list 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00
Partial match 24.04 0.06 24.78 0.04 25.86 0.00 67.28 0.10 66.64 0.12

Match strength probes 24.02 0.06 24.74 0.02 25.82 0.00 66.64 0.10 65,82 0.12
Window selection 0.02 0.00 0.02 0.00 0.00 0.00 0.12 0.02 0.10 0.02
Classification and count 24.0 0.06 24.72 0.02 25.82 0.00 66.50 0.06 65.70 0.08

Match extension 326.54 0.50 11.46 0.12 18.72 0.20 202.58 0.32 204.68 0.44
Match strength probes 72.88 0.10 3.28 0.00 5.80 0.06 47.82 0.06 42.00 0.06
Window selection 0.08 0.00 0.00 0.00 0.00 0.00 0.08 0.02 0.10 0.00
Classification and count 72.80 0.10 3.28 0.00 5.80 0.06 47.72 0.02 41.88 0.06

Hough probes 253.32 0.38 8.16 0.12 12.84 0.12 153.76 0.22 161.98 0.36
Window selection 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.02 0.02 0.02
Hough transform 252.20 0.36 8.10 0.12 12.78 0.12 151.86 0.16 160.34 0.28
Edge peak detection 1.08 0.02 0.06 0.00 0.06 0.00 1.76 0.00 1.54 0.02
Rectangle parameter update 0.04 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.04 0.00

Result presentation 24.80 0.00 12.28 0.04 16.64 0.02 14.78 0.00 14.74 0.02
Best match selection 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
Image generation 24.80 0.00 12.28 0.04 16.64 0.02 14.76 0.00 14.74 0.02

Statistics
Connected components 134 35 34 114 1 00
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 16 42 39
Depth pixels > threshold 21256 14542 12898 18584 18825
Elements on initial probe list 381 1 9 27 400 249

Hough probes 55 3 5 97 93
Initial match strength probes 28 20 1 5 1 42 142
Extension mat. str. probes 60 3 5 110 97
Models remaining 2 1 1 2 1
Model selected 1 0 1 5 7 8
Average match strength 0.64 0.96 0.94 0.84 0.88
Translated to 151,240 256,256 257,255 257,255 257.255
Rotated by (degrees) 85 359 114 22 22

Table 5: Sun-3/160 Results

Data Set Sample Test Test2 Test3 Test4

User System User System User System User System User System
ITotal 293.42 5.96 130.48 2.06 116.96 2.56 191.38 3.38 192.38 3.20

Overhead 2.26 0.66 2.46 0.58 2.76 0.68 2.50 0.94 2.72 0.72
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Miscellaneous 1.28 0.00 1.24 0.00 1.24 0.02 1.22 0.02 1.22 0.00
Startup 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.04 0.02 0.00
Image input 0.30 0.50 0.50 0.50 1.00 0.48 0.76 0.72 0.92 0.54
Image output 0.18 0.14 0.26 0.08 0.06 0.16 0.06 0.14 0.08 0.18
Model input 0.48 0.02 0.46 0.00 0.46 0.00 0.46 0.02 0.48 0.00

Label connected components 14.14 0.38 14.20 0.26 14.10 0.36 14.46 0.12 14.40 0.26
Rectangles from intensity 3.60 0.14 2.36 0.02 2.44 0.04 3.12 0.04 2.90 0.08
Miscellaneous 1.28 0.02 1.12 0.00 1.22 0.02 1.26 0.00 1.08 0.00
Trace region boundary 0.28 0.02 0.20 0.00 0.18 0.00 0.14 0.02 0.26 0.04
K-curvature 0.82 0.02 0.44 0.02 0.42 0.00 0.68 0.00 0.48 0.02
K-curvature smoothing 0.78 0.02 0.26 0.00 0.42 0.02 0.50 0.00 0.56 0.00
First derivative 0.20 0.02 0.16 0.00 0.10 0.00 0.18 0.00 0.26 0.00
Zero-crossing detection 0.02 0.02 0.04 0.00 0.06 0.00 0.18 0.00 0.14 0.00
Final corner detection 0.20 0.00 0.12 0.00 0.04 0.00 0.18 0.00 0.04 0.00
Count corners 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Convex hull 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.04 0.00
Test for right angles 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.04 0.00
Final rectangle hypothesis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

Median filter 112.50 1.20 59.86 0.42 42.64 0.46 42.64 0.34 42.72 0.54
Sobel 38.96 2.04 38.12 0.38 37.90 0.44 38.02 0.74 38.14 0.42
Initial graph match 6.10 0.06 6.06 0.02 6.38 0.20 17.02 0.30 16.80 0.14
Match data rectangles 0.08 0,00 0.06 0.00 0.04 0.00 0.14 0.02 0.12 0.00

Match links 0.10 0.00 0.04 0.00 0.04 0.00 0.30 0.00 0.26 0.00
Create probe list 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Partial match 5.92 0.06 5.96 0.02 6.30 0.20 16.58 0.28 16.42 0.14

Match strength probes 5.90 0.06 5.94 0.02 6.30 0.20 16.34 0.22 16.04 0.14
Window selection 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.02 0.02 0.00
Classification and count 5.90 0.06 5.94 0.02 6.30 0.18 16.24 0.18 16.02 0.10

Match extension 109.18 1.28 3.78 0.14 6.02 0.22 69.32 0.76 70.42 0.74
Match strength probes 17.54 0.02 0.78 0.00 1.40 0.00 11.60 0.06 10.20 0.10
Window selection 0.04 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.00
Classification and count 17.50 0.02 0.78 0.00 1.40 0.00 11.56 0.06 10.16 0.08

Hough probes 91.44 1.26 3.00 0.12 4.62 0.20 57.30 0.66 59.80 0.64
Window selection 0.04 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.02 0.00
Hough transform 90.64 1.24 2.98 0.12 4.60 0.20 56.40 0.64 59.00 0.62

Edge peak detection 0.76 0.02 0.02 0.00 0.02 0.00 0.82 0.00 0.78 0.02
Rectangle parameter update 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00

Result presentation 6.68 0.00 3.64 0.00 4.72 0.00 4.30 0.20 4.28 0.02
Best match selection 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Image generation 6.68 0.00 3.64 0.00 4.72 0.00 4.30 0.02 4.28 0.02

Statistics
Connected components 134 35 34 114 1 00
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 1 6 42 39
Depth pixels > threshold 21256 14542 12898 18584 18825

Elements on initial probe list 381 19 27 400 249
Hough probes 55 3 5 97 93
Initial match strength probes 28 20 1 5 142 142
Extension mnat. str. probes 60 3 5 110 97

-Mdels remaining 2 1 1 2 1

-Model selected 1 0 1 5 7 8
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F Average match strength 0.64 0.96 0.94 0.84 0.88
Translated to 151,240 256,256 257,255 257,255 257,255
Rotated by (degrees) 85 359 114 22 22

Table 6: Sun-3/260 Results

Data Set Sample Test Test2 Test3 Test4
User System User System User System User System User System

Total 117.21 3.80 40.19 2.45 38.88 2.06 78.41 2.64 80.15 2.69
Overhead 2.49 1.85 2.34 1.58 2.43 1,36 2.62 1.46 2.66 1.45
Miscellaneous 1.23 1.20 1.17 0.81 1.24 0.70 1.45 0.77 1.43 0.74
Startup 0.02 0.03 0.00 0.05 0.03 0.02 0.01 0.05 0.01 0.06
Image input 0.33 0.48 0.27 0.58 0.33 0.47 0.35 0.46 0.38 0.47
Image output 0.10 0.11 0.12 0.10 0.05 1.11 0.05 0.10 0.09 0.09
Model input 0.52 0.02 0.50 0.02 0,50 0.04 0 50 0 04 0.49 0.04

Label connected components 4.39 0.35 4.29 0.27 4.31 0.23 4.36 0.26 4.33 0.28
Rectangles from intensity 1.01 0.09 0.68 0.00 0.67 0.04 0.86 0.10 0.87 0.04
Miscellaneous 0.31 0.05 0.32 0.00 0.27 0.02 0.33 0.05 0.32 0.02
Trace region boundary 0.06 0.01 0.04 0.00 0.04 0.01 0.04 0.00 0.03 0 00
K-curvature 0.21 0.00 0.05 0.00 0.11 0.00 0.08 0.00 0.08 0.00
K-curvature smoothing 0.22 0.00 0.16 0.00 0.15 0.00 0.21 0.01 0.22 0.00
First derivative 0.12 0.00 0.09 0.00 0.06 0.00 0.14 0.00 0.08 0.00
Zero-crossing detection 0.04 0.01 0.01 0.00 0.00 0.01 0.02 0.00 0.04 0.00
Final corner detection 0.04 0.01 0.01 0.00 0.03 0.00 0.02 0.02 0.06 0.00
Count corners 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Convex hull 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
Test for right angles 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00
Final rectangle hypothesis 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00

Median filter 30.33 0.20 14.47 0.17 11.14 0.16 11.16 0.14 11.15 0.19
Sobel 11.21 0.95 11.26 0.17 11.17 0.10 11.11 0.30 11.15 0.30
Initial graph match 3.41 0.01 3.36 0.10 3.53 0.01 10.01 0.09 9.83 0.11
Match data rectangles 0.03 0.00 0.00 0.03 0.02 0.00 0.05 0.01 0.04 0.02
Match links 0.07 0.00 0.01 0.01 0.02 0.00 0.22 0.01 0.18 0.00
Create probe list 0.03 0.00 0.02 0.00 1 , 0.00 0.12 0.00 0.12 0.01
Partial match 3.28 0.01 3.33 0.06 s48 ,0.01 9.62 0.07 9.49 0.08

Match strength probes 3.27 0.10 3.33 0.60 3. J.01 9.44 0.07 9.30 0.08
Window selection 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.04 0.01
Classification and count 3.15 0.00 3.23 0.06 3.38 0.01 8.85 0.05 8.65 0.02

Match extension 60.98 0.26 2.06 0.12 3.35 0.08 36.18 0.23 38.10 0.26
Match strength probes 9.89 0.02 0.45 0.00 0.79 0.00 6.63 0.02 6.06 0.02
Window selection 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.01 0.00
Classification and count 9.60 0.00 0.44 0.00 0.78 0.00 6.12 0.00 5.56 0.02

Hough probes 50.99 0.21 1.61 0.12 2.56 0.08 29.32 0.20 31.77 0.22
Window selection 0.03 0.00 0.00 0.00 0.01 0.00 0.09 0.01 0.07 0.00
Hough transform 50.65 0.12 1.60 0.11 2.54 0.07 28.86 0.08 31.32 0.12
Edge peak detection 0.15 0.00 0.01 0.00 0.01 0.00 0.24 0.02 0.21 0.00
Rectangle parameter update 0.03 0.01 0.00 0.00 0.00 0.00 0.03 0.01 0.06 0.00

Result presentation 3.37 0.01 1.67 0.00 2.24 0.00 2.07 0.00 2.02 0.00
Best match selection 0.06 0.00 0.02 0.00 0.02 0.00 0.10 0.00 0.04 0.00
Image generation 3.31 0.01 1.65 0.00 2.22 0.00 1.97 0.00 1.98 0.00

Statistics
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Connected components 134 35 34 114 100

Right angles extracted 126 99 92 210 197

Rectangles deeted 25 21 16 42 39
Depth pixels > threshold 21254 14531 12892 18579 18822
Elements on initial probe list 381 19 27 389 248

Hough probes 55 3 5 93 92

Initial match strength probes 28 20 1 5 142 142

Extension mat. sir. probes 60 3 5 1 05 97
Models remaining 2 1 1 2 1

-Model selected 1 0 1 5 7 8

Average match strength 0.64 0.96 0.94 0.84 0.88
Translated to 151,240 256,256 257,255 257,255 257,255
Rotated by (degrees) 85 359 114 22 22

Table 7: Sun-4/260 Results

Alliant FX-80 Solution

The Alliant FX-80 consists of up to eight computational elements and up to twelve I/O processors that
share a physical memory through a sophisticated combination of caches, busses and an interconnection
network. The computational elements communicate with the shared memory via the interconnection
network which links them to a pair of special purpose caches that in turn access the memory over a bus
that is shared with the I/O processor caches. The FX-80 differs from the older FX-8 primarily in that
the computational elements are significantly faster.

Alliant was able to implement the benchmark on the FX-80 in roughly one programmer-week. The
programmer who built the implementation had no experience in vision and, in many cases, did not even
bother to learn how the benchmark code works. The implementation was done by rewriting the system
dependent section to use the available graphics hardware, compiling the code with Alliant's vectorizing
and globally optimizing C compiler, using a profiling tool to determine the portions of the code that
used the greatest percentage of CPU time, inserting compiler directives in the form of comments to
break implicit dependencies in four sections of the benchmark, and recompiling the new version of the
code. Alliant provided results for five configurations of the FX-80, with 1, 2, 4, 6, and 8
computational elements. In order to save space, only two of the configurations are represented here.
Table 8 shows the execution times for a single FX-80 computational element, and Table 9 shows the
results for an FX-80 with eight elements. Another point that was noted by Alliant is that the C
compiler is a new product and does not yet provide as great a degree of optimization as their FORTRAN
compiler (a difference of up to 50% in some cases). They expect to see significantly better
performance with later releases of the product.

Data Set Sample Test Test2 Test3 Test4
User System User System User System User System User System

Total 204.858 2.531 102.700 1.861 93.311 1.828136.759 3.049139.130 3.032
Overhead 7.968 0.776 7.925 0.777 7.897 0.775 7.900 0.764 7.895 0.763
Miscellaneous 0.627 0.030 0.585 0.033 0.559 0.033 0.554 0.030 0.554 0.031
Startup 0.030 0.031 0.029 0.033 0.029 0.031 0.029 0.032 0.029 0.029
Image input 5.692 0.515 5.691 0.051 5.691 0.505 5.697 0.509 5.690 0.504
Image output 1.039 0.175 1.039 0.179 1.038 0.183 1.039 0.171 1.040 0.177
Model input 0.580 0.021 0.058 0.017 0.580 0.018 0.580 0.017 0.580 0.019

Label connected components 16.917 0.268 16.830 0.258 16.800 0.253 16.948 0.247 16 930 0.259
Rectangles from intensity 2.760 0.590 1.791 0.267 1.874 0.252 2.312 0.681 2.286 0.643
Miscellaneous 1.005 0.231 0.928 0.097 0.931 0.094 0.986 0.255 0.983 0.239
Trace region boundary 0.312 0.078 0.172 0.021 0.183 0.019 0.255 0.062 0.221 0.054
K-curvature 0.592 0.037 0.287 0.017 0.308 0.017 0.438 0.045 0.432 0.045
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K-curvature smoothing 0.362 0.037 0.176 0.018 0.188 0.017 0.269 0.045 0.264 0.044

First derivative 0.158 0.037 0.077 0.017 0.082 0.016 0.119 0.045 0.117 0.043

Zero-crossin detection 0.170 0.17 04.6 0.1603.88 0.1 3.19 0.15 0.133 0.043

Final corner detection 0.135 0.042 0.060 0.022 0.069 0.022 0.103 0.051 0.101 0.049

Count corners 0.006 0.037 0.003 0.017 0 002 0.017 0.007 0.044 0.006 0.042

Convex hul; 0.013 0.026 0.006 0.017 0.006 0.017 0.015 0.042 0.015 0.040

Test for right angles 0.006 0.013 0.005 0.011 0.004 0.009 0.009 0.022 0.008 0.021

Final rectangle hypothesis 0.003 0.013 0.003 0.011 0.002 0.009 0.006 0.022 0.005 0.021

Median filter 77.294 0.170 43.652 0.160 31.886 0.163 31.919 0.154 31.880 0.166

MSobel 26.147 0.001 26.079 0.001 26.063 0.001 26.128 0.001 26.129 0.001

Initial graph match 2.458 0.088 2.397 0.063 2.569 0.055 7.117 0.368 7.011 0.373

Match data rectangles 0.067 0.023 0.051 0.012 0.046 0.014 0.129 0.047 0.111 0.041

Match links 0.067 0.002 0.024 0.004 0.022 0.004 0.262 0.013 0.214 0.023
Create probe list 0.002 0.001 0.002 0.001 0.002 0.001 0.005 0.001 0.006 0.003
Partial match 2.321 0.062 2.320 0.046 2.499 0.036 6.722 0.307 6.680 0.307

Match re probes 2.305 0.045 2.303 0.032 2.486 0.024 6.502 0.228 6.429 0.229

Window selection 0.009 0.032 0.003 0.011 0.002 0.008 0.020 0.07 0.020 0.077
Classification and count 2.299 0.015 2.298 0.011 2.482 0.008 6.471 0.076 6.397 0.076

Match extension 68.025 0.385 2.149 0.083 3.817 0.091 42.243 0.600 44.806 0.584
Match strergth probes 7.139 0.096 0.311 0.005 0.568 0.008 4.600 0.168 4.216 0.155
Windowseection 0.009 0.032 0.000 0.002 0.001 0.003 0.15 0.056 0.014 0.052
Classification and count 7.125 0.032 0.310 0.002 0.566 0.003 4.576 0.056 4.193 0.052

Hough probes 60.754 0.202 1.833 0.068 3.241 0.071 37.330 0.301 40.320 0.312

Window selection 0.008 0.030 0.001 0.002 0.001 0.003 0.014 0.051 0.014 0.051
Houcgh transform 60.259 0.082 1.806 0.061 3.210 0.061 36.650 0.097 39.604 0.110
Edge peak detection 0.474 0.031 0.026 0.002 0.030 0.003 0.642 0.050 0.681 0.050
Rectangle parameter update 0.008 0.030 0.000 0.002 0.001 0,003 0.015 0.051 0.014 0.051

-Result presentation 3.269 0.002 1.860 0.002 2.388 0.002 2.177 0.002 2.174 0.002

Best match selection 0.003 0.001 0.001 0.001 0.001 0.001 0.004 0.001 0.002 0.001

Image generation 3.266 0.001 1.859 0.001 2.387 0.001 2.174 0.001 2.172 0.001

Statistics
Connected components 134 35 34 114 1 00
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 16 42 39
Depth pixels > threshold 21266 14542 12888 18572 18813
Elements on initial probe list 374 1 9 27 389 248
Hough probes 55 3 5 93 92
Initial match strength probes 28 20 1 5 142 142
Extension mat. str. probes 60 3 5 105 97
Models remaining 2 1 1 2 1
Model selected 1 0 1 5 7 8
Average match strength 0.65 0.96 0.94 0.84 0.88
Translated to 151,240 256,256 257,255 257,255 257,255
Rotated by 85 359 114 22 22

Table 8: Alliant FX-80 Single Processor Results
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Data Set Sample Test Test2 Test3 Test4
User System User System User System User System User System

Total 57.177 2.935 31.056 2.082 30.872 2.043 50.357 3.577 50.153 3.467
Overhead 7.940 0.847 7.903 0.825 7.897 0.813 7.891 0.820 7.899 0.822
Miscellaneous 0.601 0.042 0.558 0.039 0.558 0.039 0.553 0.041 0.560 0.058
Startup 0.030 0.056 0.029 0.047 0.029 0.042 0.029 0.043 0.029 0.033

-Image input S. 69 0 0.549 5.695 0.541 5.691 0.532 5.690 0.542 5.690 0.536

Image output 1.039 0.173 1.040 0.172 1.038 0.177 1.039 0.173 1.039 0.173

Model input 0.580 0.023 0.580 0.021 0.580 0.017 0.580 0.017 0.580 0.017

Label connected components 6.930 0.295 6.864 0.272 6.849 0.270 6.979 0.273 6.992 0.272

Rectangles from intensity 2.776 0.686 1.799 0.314 1.882 0.295 2.329 0.785 2.309 0.751
Miscellaneous 1.010 0.277 0.931 0.120 0.934 0.113 0.994 0.303 0.990 0.290
Trace region boundary 0.312 0.084 0.172 0.023 0.183 0.022 0,227 0.071 0.224 0.063
K-curvature 0.594 0.042 0.287 0.020 0.308 0.019 0.438 0.051 0.433 0.049
K-curvature smoothing 0.364 0.04? 0.176 0.019 0.189 0.019 0.270 0.052 0.267 0.050
First derivative 0,159 0.042 0.077 0.019 0.083 0.019 0.120 0.051 0.120 0.050
Zero-crossing detection 0.171 0.049 0.077 0.020 0.100 0.019 0.136 0.051 0.135 0.050
Final corner detection 0.136 0.048 0.060 0.028 0.070 0.025 0.103 0.057 0.130 0.055
Count cuiners 0.007 0.041 0.003 0.019 0.003 0.019 0.008 0.050 0.007 0.052
Convex hull 0.014 0.030 0.007 0.019 0.007 0.019 0.016 0.047 0.016 0.045
Test for right angles 0.006 0.016 0.005 0.013 0.004 0.010 0.010 0.025 0.009 0.023
Final rectangle hypothesis 0.004 0.015 0.003 0.013 0.002 0.010 0.007 0.026 0.005 0.023

Median filter 9.890 0.223 5.637 0.220 4.111 0.212 4.110 0.214 4.109 0.209
Sobel 3.798 0.001 3.789 0.001 3.787 0.001 3.795 0.001 3.795 0.001
Initial graph match 2.455 0.123 2.399 0.094 2.569 0.086 7.130 0.485 7.014 0.459
Match data rectangles 0.068 0.048 0.052 0.028 0.046 0.033 0.131 0.102 0.112 0.083
Match links 0.068 0.004 0.024 0.009 0.022 0.009 0.263 0.030 0.213 0.020
Create probe list 0.002 0.001 0.002 0.001 0.002 0.001 0.005 0.001 0.006 0.004
Partial match 2.317 0.070 2.322 0.055 2.499 0.043 6.732 0.351 6.682 0.351

Match strength probes 2.301 0.050 2.304 0.037 2.485 0.027 6.509 0.259 6.429 0.263
Window selection 0.004 0.017 0.004 0.012 0.002 0.009 0.023 0.087 0.025 0.087
Classification and coun( 2.294 0.017 2.298 0.012 2.482 0.009 6.473 0.085 6.390 0.087

Match extension 20.105 0.455 0.786 0.107 1.376 0.122 15.926 0.739 15.845 0.702
Match strength probes 7.121 0.111 0.311 0.006 0.567 0.009 4.609 0.195 4.219 0.185
Window selection 0.010 0.037 0.001 0.002 0.001 0.003 0.019 0.065 0.016 0.065
Classification and count 7.105 0.037 0.310 0.002 0.565 0.003 4,580 0.066 4.193 0.060

Hough probes 12.847 0.243 0.468 0.086 0.799 0.099 10.996 0.378 11.350 0.366
Window selection 0.008 0.033 0.001 0.002 0.001 0.003 0.014 0.057 0.014 0.057
Hough transform 12.353 0.110 0.441 0.078 0.767 0.086 10.315 0.151 10.629 0.140
Edge peak detection 0.472 0.034 0.026 0.002 0.030 0.003 0.645 0.057 0.682 0.057
Rectangle parameter update 0.009 0.033 0.000 0.002 0.001 0.003 0.013 0.056 0.014 0.057

Result presentation 3.265 0.002 1.859 0.002 2.382 0.002 2.178 0.002 2.173 0.002
Best match selection 0.003 0.001 0.001 0.001 0.001 0.001 0.004 0.001 0.002 0.00
Image generation 3.262 0.001 1.858 0.001 2.381 0.001 2.174 0.001 2.171 0.001

Statistics
Connected components 134 35 34 114 100
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 1 6 42 39
Depth pixels > threshold 21266 14542 12888 18572 18813
Elements on initial probe list 374 1 9 27 389 248
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Hough probes 55 3 5 93 92
Initial match strength probes 28 20 1 5 142 142
Extension mat. str. probes 60 3 5 105 97
Models remaining 2 1 1 2 1
Model selected 1 0 1 5 7 8
Average match strength 0.65 0.96 0.94 0.84 0.88
Translated to 151,240 256,256 257,255 257,255 257,255
Rotated by 85 359 114 22 22

Table 9: Alliant FX-80 Results with Eight Processors

Image Understanding Architecture

The Image Understanding Architecture (IUA) is being built by the University of Massachusetts and
Hughes Research Laboratories specifically to address the problem of supporting real-time, knowledge-
based vision. The architecture consists of three different parallel processors that are arranged in a
hierarchy that is tightly coupled by layers of dual-ported memory between the processors. The low-
level processor in the hierarchy is a bit-serial, processor-per-pixel, SIMD, associative array. The
intermediate-level processor is an MIMD array of 4096 16-bit digital signal processors that can
communicate via an interconnection network. Each intermediate-!evel processor shares a dual-ported
memory segment with 64 low-level processors. The high level is a multiprocessor that is designed to
support Al processing and a blackboard model of communication through a global shared memory, which
is dual-ported with a segment of the intermediate-level processor's memory. A detailed description of
the architecture can be found in [Weems, 1989].

Because the architecture is still under construction, an instruction-level simulator was used to
develop the benchmark implementation. The simulator is programmed in a combination of Forth and an
assembly language which has a syntax that is similar to Ada or Pascal. The benchmark was developed
over a period of about six months, but much of that time was spent in building basic library routines
and additional tools that were generally required for any large programming task. A 1/64th scale
version of the simulator (4096 low-level, 64 intermediate-level, and one high-level processor) runs
on a Sun workstation, and was used to develop the initial benchmark implementation. The
implementation was then transported to a full-scale IUA simulator running on a Sequent Symmetry
multiprocessor. At the time of ihe Avon workshop, several errors remained in the full-scale
implementation, but these have since been corrected. Table 10 presents the results from the IUA
simulations with a resolution of one instruction time (0.1 microsecond). There are several points to
note about these results. Because the processing of different steps can be overlapped in the different
processing levels, the sum of the individual step timings does not always equal the total time for a
segment of the benchmark. Some of the individual timings represent average execution times, since the
intermediate level processing takes place asynchronously and individual processes can vary in their
execution time. For example, the time for all of the match-strength probes is difficult to estimate
since probes are created asynchronously and their processing is overlapped. However, the time for a
step such as match extension takes into account the span of time required to complete all of the
subsidiary match-strength probes. Lastly, it should be mentioned that the intermediate-level
processor was greatly underutilized by the benchmark (only 0.2% of its processors were activated),
and the high-level processor was not used at all. The low-level processor was also idle roughly 50% of
the time while awaiting requests for top-down probes from the intermediate level.
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Data Set Sample Test Test2 Test3 Test4

Total 0.0844445 0.0455559 0.0455088 0.4180890 0.3978859
Overhead 0.0139435 0.0139435 0.0139435 0.0139435 0.0139435
Miscellaneous 0.0092279 0.0092279 0.0092279 0.0092279 0.0092279
Startup 0.0038682 0.0038682 0.0038682 0.0038682 0.0038682
Image input 0.0000020 0.0000020 0.0000020 0.0000020 0.0000020
Image output 0.0000020 0.0000020 0.0000020 0.0000020 0.0000020
Model input 0.0008302 0.0008302 0.0008302 0.0008302 0.0008302

Label connected components 0.0000596 0.0000596 0.0000596 0.0000596 0.0000596
Rectangles from intensity 0.0161694 0.0125489 0.0134704 0.0131378 0.0129635
Miscellaneous 0.0003227 0.0002421 0.0002010 0.0006216 0.0002421
Trace region boundary 0.0033792 0.0015472 0.0018672 0.0010912 0.0012832
K-curvature 0.0038256 0.0019936 0.0023136 0.0015376 0.0017296
K-curvature smoothing 0.0005525 0.0005525 0.0005525 0.0005525 0.0005525
First derivative 0.0003777 0.0003777 0.0003777 0.0003777 0.0003777

Zero-crossing detection 0.0000108 0.0000108 0.0000108 0.0000108 0.0000108
Final corner detection 0.0000118 0.0000118 0.0000118 0.0000118 0.0000118
Count corners 0.0000020 0.0000020 0.0000020 0.0000020 0.0000020
Convex hull 0.0036694 0.0019109 0.0015290 0.0025947 0.0026463
Test for right angles 0.0006122 0.0006009 0.0005906 0.0006421 0.0006421
Final rectangle hypothesis 0.0067877 0.0067877 0.0078821 0.0067877 0.0064229

Median filter 0.0005625 0.0005625 0.0005625 0.0005625 0.0005625
Sobel 0.0026919 0.0026919 0.0026919 0.0026919 0.0026919
Initial graph match 0.0121876 0.0076429 0.0066834 0.1124236 0.0822296
Match data rectangles 0.0029096 0.0015672 0.0013264 0,0134885 0.0106136
Match links 0.0088872 0.0056950 0.0049762 0,0985542 0.0712324
Create probe list 0.0000968 0.0001299 0.0001130 0.0009252 0.0008618
Partial match 0.0033786 0.0077033 0.0068704 0.1828976 0.1534418

Match strength probes 0.0009275 0.0011460 0.0012285 0.0025175 0.0212640
Window selection 0.0002100 0.0003000 0.0002700 0.00057U0 0.0004800
Classification and count 0.0001043 0.0001490 0.000341 0.0002831 0.0002384

Match extension 0.0300650 0.0017674 0.0024856 0.0899214 0.1277396
Match strength probes 0.0026500 0.0001146 0.0004095 0.0543250 0.0071766
Window selection 0.0006000 0.0000300 0.0000900 0.0012300 0.0016200
Classification and count 0.0002980 0.0000149 0.0000447 0.0006109 0.0008046

Hough probes 0.006CA30 0.0003251 0.0005092 0.0084591 0.0109868
Window selection 0.0000675 0.0000045 0.0000090 0.0001755 0.0002385
Hough transform 0.0053010 0.0002223 0.0003036 0.0044499 0.0053477
Edge peak detection 0.0011745 0.0000783 0.0001566 0,0030537 0.0041499
Rectangle parameter update 0.0003000 0.0000200 0.0000400 0.0007800 0.0010600

Result presentation 0.0022826 0.0009452 0.0011944 0.0029768 0.0029766
Best match selection 0.0000404 0.0000403 0.0000405 0.0000406 0.0000397
Image generation 0.0022352 0.0009185 0.0011396 0.0029464 0.0029464

Statistics
Connected components 134 35 34 114 100
Right angles extracted
Rectangles detected 31 23 1 9 6 0 55
Depth pixels > threshold
Elements on initial probe list
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Hough probes 44 5 8 84 100
Initial match strorgth probes 24 20 15 81 80
Extension mat. str. probes 20 1 3 41 54
Models remaining 3 1 1 2 1
Model selected 1 0 1 5 7 8
Average match strength 0.45 0.86 0.84 0.81 0.84
Translated to 151.240 256,256 257,255 257,255 257,255
Rotated by 85 359 113 23 23

Table 10: Image Understanding Architecture Results

Aspex ASP

The Associative String Processor (ASP) is being built by the University of Brunel and Aspex Ltd. in
England [Lea, 1988]. It is designed as a general purpose processing array for implementation in
wafer-scale technology. The processor consists of 262,144 processors arranged as 512 strings of
512 processors each. Each processor contains a 96-bit data register and a 5-bit activity register. A
string consists of 512 processors linked by a communication network that is also tied to a data
exchanger and a vector data buffer. The vector data buffers of the strings are linked through another
data exchanger and data buffer to another communication network. One of the advantages of this
arrangement is a high degree of fault tolerance. The system can be built with 1024 VLSI devices, or
128 ULSI devices, or 32 WSI devices. Estimated power consumption is 650 watts. The processor clock
and instruction rate is 20 MHz. Architectural changes that would improve the benchmark performance
include increasing the number of processors (improves performance on K-curvature, median filter,
and Sobel), increasing the speed of the processors and communication links (linear speedup on all
tasks), and adding a separate controller to each ASP substring (gives approximately an 18% increase
overall).

Because the system is still under construction, a software simulator was used to implement and execute
the benchmark. The benchmark was programmed in an extended version of Modula-2 over a period
three months by two programmers, following a three monih period of initial study of the requirements
and development of a solution strategy. A Jarvis' March algorithm was substituted for the recommended
Graham Scan method on the convex hull. Table 11 lists the benchmark results for the ASP. Timings
were not provided for several of the steps in the model matching portion of the benchmark, possibly
because a different method was used. Startup and model input times were not listed separately, perhaps
because those operations are done outside of the simulation. The miscellaneous time under overhead
accuuns for the input and output of several intermediate images. The miscellaneous time under the
section that extracts rectangles from the intensity image accounts for the output and subsequent input
of data records for corners and rectangles. No indication was given of whether any data rearrangement
took place as part of these I/O operations.

Data Set Sample Test Test2 Test3 Test4

Total 0.1307200 0.0359600 0.0398100 0.1130700 0.1188200
Overhead 0.0008200 0.0008200 0.0008000 0.0008000 0.0008000
Miscellaneous 0.0002560 0.0002560 0.0002560 0.0002560 0.0002560
Startup

Image input 0.0000512 0.0000512 0.0000512 0.0000512 0.0000512
-Imagje output 0.0000512 0.0000512 0.0000512 0.0000512 0.0000512

Model input
Label connected components 0.0392000 0.0228000 0.0228000 0.0348000 0.0313000
Rectangles from intensity 0.0033100 0.0029200 0.0028800 0.0031900 0.0033500
miscellaneous 0.0000761 0.0000860 0.0000842 0.0000795 0.0000734

182



Trace region boundary 0.0000047 0.0000047 0.0000047 0.0000047 0.0000047
K-curvature 0.0007800 0.0007800 0.0007800 0.0007800 0.0007800
K-curvature smoothinr 0.0004500 0.0004500 0.0004500 0.0004500 0.0004500
First derivative 0.0000320 0.0000320 0.0000320 0.0000320 0.0000320
Zero-crossing c- ;ction 0.0000045 0.0000045 0.0000045 0.0000045 0.0000045
Final corner detection 0.0000018 0.0000018 0.0000018 0.0000018 0.0000018
Count ',orners 0.0000400 0.0000380 0.0000380 0.0000530 0.0000380
Convex hull 0.0003300 0.0002820 0.0002820 0.0003300 0.0003300
iest for right angles 0.0008800 0.0008400 0.0008400 0.0009500 0.0009200

Final rectangle hypothesis 0.0004500 0.0003800 0.0002900 0.0007600 0.0007000
Median filter 0.0007200 0.0007200 0.0005100 0.0006100 0.0005100
Sobel 0.0006240 0.0006240 0.0006240 0.0006800 0.0006240
Initial graph match 0.0000090 0.0000090 0.0000090 0.0000090 0.0000080
Match data rectangles

Match links
Create probe list

Partial match

Match strength probes
Window selection 0.0001200 0.0001320 0.0001080 0.0005500 0.0006400
Classification and count 0.0009500 0.0008850 0.0008650 0.0015400 0.0016000

Motch extension 0.0835200 0.0001470 0.0001400 0.0002650 0.0002590

Match strength probes

Window selection 0.0003000 0.0000240 0.0000360 0.0009200 0.0009800
Classification and count 0.0030000 0.0004050 0.0003520 0.0047200 0.0054500

Hough probes

Window selection 0.0002880 0.0000240 0.0000360 0.0005800 0.0007300

Hough transform 0.0790000 0.0054000 0.01 04000 0.0610000 0.0690000
Edge peak detection 0.0007700 0.0000640 0.0000990 0.0015400 0.0017600
Rectangle parameter update 0.0002160 0.0000090 0.0000100 0.0002340 0.0002360

Result presentation 0.0008500 0.0004400 0.0004700 0.0004700 0.0010300

Best match selection 0,0000250 0.0000150 0.0000150 0.0000280 0.0000150
Image generation 0.0007200 0.0003200 0.0003500 0.0008400 0.0009100

Statistics
Connected components 34 33 113 99
Right angles extracted 99 92 210 197
Rectangles detected 21 1 6 42 3 9
Depth pixels > threshold 14533 12891 18582 18817
Elements on initial probe list
Hough probes 3 5 97 93
Initial match strength probes 20 1 5 142 1 42
Extension mat. str. probes 3 5 11 0 97
Models remaining 1 1 2 1
Model selected 1 5 7 8
Average match strength 0.96 0.93 0.84 0.87
Translated to 256,256 257,255 257,255 257,255
Rotated by 359 114 22 22

Table 11: Aspex ASP Results
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Sequent Symmetr, 81

The Sequent Computer Systems Symmetry 81 multiprocessor consists of multiple Intel 80386
microprocessors, running at 16.5 MHz, connected via a shared bus to a large shared memory. The
particular configuration used to obtain these results included 12 processors (one of which is reserved
by the system), each with an 80387 math coprocessor, and 96 MB of shared memory. The test system
also contained the older A-model caches, which induce a considerably greater level of traffic on the
shared bus than the newer B-model caches. An improvement of 30 to 50 percent in the overall
performance is possible with the new caching system. Sequent was to have provided timings for a
system with the improved cache, but they have not yet done so. The timings presented in Table 12 were
obtained by the benchmark developers at UMass as part of their effort to ensure the portability of the
benchmark to different systems.

About a month was spent developing the parallel implementation for the Sequent. The programmer who
did the work was familiar with the benchmark, but had no previous experience with the Sequent
system. Part of the development period was spent back-porting modifications to the sequential version
of the nenchmark in order to enhance its portability. The low-level tasks were directly converted to a
parallel implementation by dividing the data sets among the processors in a manner that completely
avoided write-contention. About half of the development time was spent adding the appropriate data
locking mechanisms to the model-matching portion of the benchmark, and resolving problems with
timing and race conditions. It was only possible to obtain timings for the major steps in the
benchmark, because the Sequent operating system does not provide facilities for accurately timing
individual child processes. The benchmark was run on configurations of from one to eleven processors,
with the optimum time being obtained with eight or nine processors. Additional processors resulted in
an overall reduction in performance, which was due to a combination of factors. As the data sets were
divided among more processors, the ratio of processing time to task creation overhead decreased so that
the latter came to dominate the time on some tasks. We also believe that some of the tasks reached the
saturation point of the shared bus at about eight or nine processors since one run that was observed on a
B-model cache system showed performance to improve with more processors. The table shows the
performance obtained for a single processor running the sequential version of the benchmark, to
provide a Comparison baseline, and the performance on the optimum number of processors for each data
set.

Data Set Sample Test Test2 Test3 Test4
Single Eight Single Eight Single Nine Single Eight Singie Nine

Total 889.66 251.33 300.34 73.88 282.71 77.87 562.15 174.96 578.14 139.72
Overhead 5.84 6.00 5.57 5.93 5.62 5.87 5.75 5.86 5.65 5.90
System time 3.60 9.40 2.00 5.40 2.10 6.40 2.80 7.60 2.90 8.80

Label conn. components 19.27 12.68 19.34 15.83 19.29 16.01 19.60 16.84 19.58 16.89
Rectangles from intensity 4.18 1.45 2.62 0.92 2.74 1.92 3.42 1.42 3.38 1.89
Median filter 239.24 31.00 114.12 15.25 85.81 11.08 85.83 11.45 85.79 11.11
Sobel 110.89 15.00 113.21 15.46 110.80 14.83 1 10.84 15.20 110.81 14.73
Initial graph match 18.52 3.08 18.53 3.76 19.90 4.35 52.53 7.21 51.63 7.17
Match data rectangles 0.17 0.04 0.11 0.03 0.09 0.03 0.26 0.13 0.22 0.06
Match links 0.19 0.24 0.06 0.20 0.06 0.65 0.74 0.29 0.59 0.78

Create probe list 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Partial match 18.15 2.80 18.35 3.52 19.74 3.66 51.52 6.78 50.81 6.32

Match extension 470.90 161.34 16.16 9.97 24.08 9.38 271.07 103.99 288.21 69.10
Result presentation 2n 82 20.78 10.80 10.76 14.47 14.43 13.11 12.99 13.09 12.93

Table 12: Sequent Symmetry 81 Results
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Warp

The CMU Warp is a systolic array consisting of ten high speed floating point units in a linear
configuration [Kung, 19841. Processing in the Warp is directed by a host processor, such as the
Sun-3/60 workstation that was used in executing the benchmark. The benchmark implementation was
programmed by one person in two weeks, using a combination of the original C implementation and
subroutines written in Apply and W2. The objective of the implementation was to obtain the best
overall time, rather than the best time for each task. While it would seem that the latter guarantees
the former, consider that the Warp and its host can work in parallel on different portions of a problem.
Thus, even though the Warp could perform a step in one second that requires four seconds on the host, it
is better to let the host do the processing if it would otherwise sit idle while the Warp is computing.
Thus the Warp implementation of the benchmark exploits both the tightly-coupled parallelism of the
Warp array, and the loosely-coupled task-level parallelism present in the benchmark.

Table 13 lists the results for the Warp. Timings were not provided for a few of the steps, but the totals
include all of the processing time. The Miscellaneous category under Overhead is the time required for
downloading code to the Warp array at various stages of the processing. A figure for ihe total system
time was provided, rather than a breakdown of system time by task. The overall Total includes the
system time, which is listed on the line below the Total. Note that sums of the times for the individjal
steps will not equal the Total time because of the task-level parallelism that was used.

Data Set Sample Test Test2 Test3 Test4

Total 43.60 20.30 22.30 58.10 55.30
System 3.00 2.30 2.50 4.30 4.90
Overhead
Miscellaneous 3.56 2.24 2.30 5.52 7.30
Startup 5.76 6.04 5.96 5.88 6.00
Image input 3.52 3.72 5.40 5.34 5.34
Image output
Model input 1.30 1.18 1.02 1.08 1.06

Label connected components 3.98 4.04 4.60 4.54 4.56
Rectangles from intensity
Miscellaneous
Trace region boundary
K-curvature 3.14 2.24 2.20 2.272 2.54
K-curvature smoothing 1.38 0.64 0.78 0.98 0.90
First derivative 0.42 0.24 0.28 0.34 0.40
Zero-crossing detection 0.32 0.06 0.12 0.14 0.22
Final corner detection 0.16 0.10 0.12 0.22 0.20
Count corners 0.02 0.02 0.04 0.06 0.06
Convex hull 0.02 0.00 0.02 0.08 0.06
Test for right angles 0.00 0.00 0.02 0.02 0.02
Final rectangle hypotl- sis 0.04 0.00 0.02 0.02 0.04

Median filter 10.70 8.70 1.38 1.40 2.00
Sobel 0.48 0.48 0.72 0.94 0.92
Initial graph match 0.42 0.24 0.22 1.22 1.38
Match data rectangles 0.20 0.16 0.16 0.40 0.68
Match links 0.22 0.08 0.06 0.82 0.70
Create probe list
Partial match

Match strength probes
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Window selection
Classification and count

Match extension 24.80 3.64 4.58 38.60 41.20
Match strength probes 9.10 2.64 2.86 13.60 13.50
Window selection 0.02 0.02 0.02 0.24 0.18
Classification and count 9.00 2.56 2.82 13.20 13.10

-Hough probes 15.30 0.96 1.68 23.30 25.80

Window selection 0.02 0.00 0.02 012 0.06
Hough transform 12.80 0.88 1.44 19.30 20.00

Edgje peak detection 2.38 0.08 0.22 3.80 5.58
Rectangle parameter update 0.02 0.00 0.00 0.00 0.08

Result presentation 2.60 2.26 2.52 2.24 2.26
Best match selection 0.02 0. 00 0.00 0.02 0.02

Image generation 2.54 2.20 2.46 2.16 2.18

Statistics
Total match strength probes 91 23 20 247 239
Hough probes 58 3 5 97 95

Table 13: Results for the Warp

Connection Machine

The Thinking Machines Connection Machine model CM-2 is a data-parallel array of bit-serial
processors that are linked by an N-dimensional hypercube router network [Hillis, 1986]. In addition,
for every 32 of the bit-serial processors, a 32-bit floating-point coprocessor is provided. Connectior
Machines are available in configurations of 8192, 16384, 32768, and 65536 processing elements.
Results were provided for direct execution on the three smaller configurations, and extrapolated to the
Iargest configuration. The development team at Thinking Machines spent about three programmer
months converting the low-level portion of the benchmark into 2600 lines of *LISP, which is a data-
parallel extension to Common LISP. There was not enough time to implement the intermediate and top-
down processing portions of the benchmark before the workshop, and other projects have taken
priority over completing the benchmark since then. However, there was also some concern as to
whether the Connection Machine would be the best vehicle for implementing the other portions, since
they are more concerned with task parallelism than data parallelism. It was suggested that if the model
data base included several thousand models to be matched, then an appropriate method might be found to
take advantage of the Connection Machine's capabilities.

Table 14 summarizes the results for the Connection Machine on the low-level portion of the
benchmark, with times rounded to two significant digits (as provided by Thinking Machines). A 32K-
processor CM-2 with a Data Vault disk system and a Sun-4 host processor was used to obtain the
results. The results that were supplied were for only one data set, and did not indicate which one was
used. It is interesting to note that several of the tasks saw little speedup with the larger configurations
of the Connection Machine. Those tasks involved a collection of contour values that had been mapped into
16K virtual processors, which are enough to operate on all of the contour points in parallel, and so
there was no advantage in using more physical processors than virtual processors. It was suggested
that the Connection Machine might thus be used to process the contours for several images at once in
order to make use of the larger number of processors. On the other hand, for those tasks that are pixel
oriented, 256K virtual processors were used and therefore a proportional speedup can be observed as
the number of processors increases.
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Configuration 8K 16K 32K 64K

Total (low level tasks only) 1.26 0.91 0.71 0.63
Overhead
Miscellaneous
Startup 0.10 0.10 0.10 0.10
Image input 0.155 0.155 0.155 0.155
Imagje output

Model input

Label connected components ..34 0.21 0.14 0.10
Rectangles from intensity
Miscellaneous-

Trace region boundary 0.44 0.30 0.23 0.17

K-curvature 0.019 0.019 0.018 0.018
K-curvature smoothing 0.0056 0.0055 0.0062 0.0055
First derivative 0.00038 0.00037 0.00037 0.00037
Zero-crossing detection 0.00021 0.00020 0.00019 0.0001 g

Final corner detection 0.0058 0.0053 0.0053 0.0053
Count corners 0.018 0.01 6 0.016 0.01 6
Convex hull 0.041 0.038 0.039 0.038
Test for right angles

Final rectangle hypothesis
Median filter 0.082 0.041 0.025 0.015

[Sobel 0.052 0.026 0.014 0.008

Table 14: Results for the Connection Machine on the Low-Level Portion

Intel iPSC-2

The Intel Scientific Computers iPSC-2 is a distributed memory multiprocessor that consists of up to
128 Intel 80386 microprocessors that are linked by a virtual cut-through routing network which
simulates point-to-point communications. Each of the microprocessors can have up to 8 MB of local
memory, and an 80387 arithmetic coprocessor. The benchmark implementation for the iPSC-2 was
developed by the University of Illinois at Urbana-Champaign using C with a library that supports
multiprnc.essing. The group had only enough time to implement the median filter and Sobel steps of the
low-level depth image processing. However, they did run those portions on five different machine
configurations, with 1, 2, 4, 8, and 16 processors, and on four of the five data sets. Table 15 presents
their results, which are divided into user time and system time (including data and program load time,
and output time).

Configuration 1 2 4 8 16
User System User System User System User System User System

Median Filter
Sample 176.47 0.00 87.93 11.52 43.46 11.23 22.27 3.1 11.14 3.82
Test 75.45 0.00 37.72 10.88 18.99 10.84 9.66 3.15 4.84 3.87
Test2 60.84 0.00 30.36 11.48 15.25 11.45 7.63 3.73 3.81 4.19
Test3 60.83 0.00 30.36 11.12 15.25 11.23 7.63 3.49 3.82 4.03
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Sobel
Sample 78.63 0.00 39.32 3.53 19.68 3.00 9.84 2.37 4.92 2.91
Test 80.82 0.00 40.42 3.47 20.25 2.89 10.15 2.43 5.10 2.82
Test2 80.82 0.00 40.42 1.46 20.25 1.99 10.15 1.87 5.10 2.50
Test3 78.63 0.00 39.31 2.62 19.68 2.51 9.84 2.17 4.92 2.69

Table 15: iPSC-2 Results for Median Filter and Sobel Steps

Comparative Performance Summary

As mentioned above, the direct comparison of raw timings is not especially useful. We have attempted
to provide as much information about each benchmark implementation as is necessary for others to
make informed and intelligent comparisons of the results. For example, a valid comparison of
architectural features should take into account the technology, instruction rate, and scalability of the
processors that were actually used to obtain the results. On the other hand, a comparison that seeks to
establish the currently available machine with the best cost to performance ratio should look at the
timings with respect to both the programming effort required and the price of the hardware. The
authors hope to develop and publish some direct comparisons of architectural features, once a few more
implementations are added to the sample and a reasonably broad set of scaling functions is established.

In the meantime, one interesting comparison that can be immediately drawn from the data, which
requires no scaling for technology, is the relative amount of processing time that each architecture
expends on each portion of the benchmark. This function, which is just the percentage of the total time
taken for each step, provides an indication of those tasks that each architecture excels at and those that
it struggles with. Tables 16 through 20 compare the efforts for the different architectures on each of
the major benchmark steps, for the five data sets. It should be noted that the data sets Test and Test2
require very little model matching effort since they involve very simple models. The other three data
sets involve more complex models, which is easily seen in Tables 16, 19, and 20. Only the complete
implementations are listed, since a total time for the benchmark is required to compute the values in
the tables. Blanks in the tables represent information that was missing from the reports by the
different groups.

Architecture Sun-3 Alliant IUA ASP Sequent Warp

Overhead 0.6 14.6 16.5 0.6 2.3
Label connected components 3.5 12.0 0.1 30.0 4.9 9.1
Rectangles from intensity 0.8 5.8 19.1 2.5 0.6
Median filter 30.9 16.8 0.7 0.6 11.9 24.5
Sobel 17.0 6.3 3.2 0.5 5.8 1.1
Initial graph match 3.1 4.3 14.4 0.0 1.2 1.0
Match data rectangles 0.0 0.2 3.5 0.0 0.5
Match links 0.0 0.1 10.5 0.1 0.5
Create probe list 0.0 0.0 0.1 0.0
Partial match 3.0 4.0 4.0 1.1

Match extension 40.9 34.2 35.6 63.9 61.9 56.9
Result presentation 3.1 5.4 2.7 0.7 8.0 6.0

Table 16: Distribution of Processing Time for Data Set Sample
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Architecture Sun-3 Alliant IUA ASP Sequent Warp

Overhead 1.5 26.4 30.9 2.3 3.1
Label connected components 8.2 28.9 0.1 63.4 9.4 19.9
Rectangles from intensity 1.2 6.4 27.5 8.1 0.9
Median filter 35.2 17.7 1.2 0.2 34.6 42.9
Sobel 39.4 11.4 5.9 1.7 34.4 2.4
Initial graph match 7.4 7.5 16.8 0.0 6.0 1.2
Match data rectangles 0.0 0.2 3.4 0.0 0.8
Match links 0.0 0.1 12.5 0.1 0.4
Create probe list 0.0 0.0 0.3 0.0
Partial match 7.3 7.2 16.9 5.8

Match extension 3.4 2.7 3.9 0.4 5.9 17.9
Result presentation 3.6 5.6 2.1 1.2 5.8 11.1

Table 17: Distribution of Processing Time for Data Set Te-d

Architecture Sun-3 Alliant IUA ASP Sequent Warp

Overhead 1.7 26.5 30.6 2.0 3.2
Label connected components 8.6 21.6 0.1 57.3 9.8 20.6
Rectangles from intensity 1.3 6.6 29.6 7.2 1.3
Median filter 28.2 13.1 1.2 1.3 26.9 6.2
Sobel 41.3 11.5 5.9 1.6 348 3.2 -

Initial graph match 7.9 8.1 14.7 0.0 67 1.0Match data rectangqles 0.0 0.2 2.9 0.0 0.7
Match links 0.0 0.1 10.9 0.3 3.7
-Create probe list 0.0 0.0 0.2 0.0
-Partial match 7.9 7.7 15.1 6.4
Match extension 5.7 4.6 5.5 0.4 9.2 20.5

Result presentation 5.1 7.2 2.6 1.1 7.9 11.3

Table 18: Distribution of Processing Time for Data Set Test2

Architecture Sun-3 Alliant IUA ASP Sequent Warp

Overhead 1.0 16.2 3.3 0.7 1.6
Label connected components 5.1 13.4 0.0 30.8 4.9 7.8
Rectangles from intensity 1.0 5.8 3.1 2.8 0.7
Median filter 16.5 8.0 0.1 0.5 13.2 2.4
Sobel 24.5 7.0 0.6 0.6 17.1 1.6
Initial graph match 12.4 14.1 26.9 0.0 8.1 2.1
Match data rectangles 0.1 0.4 3.2 0.1 0.7
Match links 0.1 0.5 23.6 0.1 1.4
Create probe list 0.0 0.0 0.2 0.0
Partial match 12.2 13.1 43.7 58.3

Match extension 36.8 30.9 21.5 0.2 50.9 66.4
Result presentation 2.7 4.0 0.7 0.4 3.5 3.9

Table 19: Distribution of Processing Time for Data Set Test3

189



Architecture Sun-3 Alliant IUA ASP Sequent Warp

Overhead 1.0 16.3 3.5 0.7 1.6
Label connected components 5.1 13.5 0.0 26.3 5.1 8.2
Rectangles from intensity 1.0 5.7 3.3 2.8 0.7
Median filter 16.4 8.1 0.1 0.4 13.5 3.6
Sobel 24.5 7,1 0.7 0.5 17.5 1.7
Initial graph match 12.2 13.9 20.7 0.0 8.2 2.5
Match data rectangles 0.0 0.4 2.7 0.0 1.2
Match links 0.1 0.4 17.9 0.2 1.3
-Create probe list 0.0 0.0 0.2 0.0

Partial match 12.1 13.1 38.6 8.0

Match extension 37.1 30.9 32.1 0.2 49.8 74.5
Result presentation 2.7 4.1 0.7 0.9 3.6 4.1

Table 20: Distribution of Processing Time for Data Set Test4

Recommendations for Future Benchmarks

At the conclusion of the Avon workshop, a panel session was held to discuss the benchmark, ways it
could be improved, and future benchmark efforts. The general conclusion of the participants was that
the benchmark is a significant improvement over past efforts, but that there is still work to be done.

One of the major complaints was the sheer size and complexity of the benchmark solution. The sample
solutions are a considerable help in this regard, but a great deal of work is still required to transport
them to parallel architectures. Several people expressed the opinion that a FORTRAN version should be
made available so that the benchmark would be taken up by the traditional supercomputing community.
It was pointed out that most groups don't have the time or resources to implement such a complex
benchmark, and that it would be almost impossible to tune it for optimum performance as is done with
smaller benchmarks. A counter-argument was voiced that most vision applications are not highly
tuned, and that the benchmark might therefore give a more realistic indication of the performance that
could be expected. Suggestions for reducing the size of the benchmark included removing one of the top-
down probes (although there was no consensus on which one should be removed), and simplification of
the graph matching code through increased generality.

On the other hand, several people complained that the benchmark task was too small. The groups that
had benchmarked data-parallel systems all indicated that they would like to see data sets involving
thousands of models so that they could exploit more data parallelism, rather than being forced into a
task parallel model. Of course, those who had benchmarked multi-tasking systems took the opposite
view. It was then suggested that an interesting variation on the benchmark would be to provide a range
of data sets with model-bases ranging through several orders of magnitude. Such data sets would
provide another dimension to the performance analysis, and thus some insight into the range of
applications for which an architecture is appropriate. Beyond simply increasing the size of the
model-base, several of the vision researchers expressed a desire to see a broader range of vision tasks
in the benchmark. For example, motion analysis over a succession of frames would test an
architecture's ability to deal with real-time image input and would help to identify those with a special
ability to pipeline the stages of an interpretation. However, there was an immediate outcry from the
implementors that the benchmark is already too complex. It was then suggested that an optional second
level of the benchmark could be specified that would be based on the basic task, but extended to include
image sequences and motion processing.
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An important observation was made that the complexity of the benchmark was not the issue, but the cost
of implementation. It was suggested that the benchmark might be more palatable if it was reorganized
to be built out of a standard set of general purpose vision subroutines. Even though a group might still
have to implement all of those routines, they would then at least have a library that could be used for
other applications, over which they could amortize the cost. The benchmark specification would then be
a framework for applying the library to solve a problem, and could involve separate tests for
evaluating the performance and accuracy of the individual subroutines.

Part of the discussion focussed on the fact that the benchmark does not truly address high-level
processing. However, as the benchmark designers were quick to point out, there is no consensus among
the vision research community as to what constitutes high-level processing. Until agreement can be
reached on what types of processing are essential at that level, it will be pointless to try to design a
benchmark that includes the high level. It was also noted that the current top-down direction of low-
level processing by the benchmark has some of the flavor of the high-level control of intermediate- and
low-level processing which many people feel is necessary. In the end, it was decided that the
community is not yet ready to define high-level processing to the degree necessary to build a
benchmark around it.

Another point was that a standard reporting form should be developed, and that the sequential solution
should output its results to match that form. Although the benchmark specification included a section
on reporting requirements, the sequential solution did not precisely conform to it (partly because
many of the reporting requirements were for aspects of the implementation that went beyond the
timings and statistics that were to be output). In fact, most of the groups followed the example of the
reporting format for the sequential solution, rather than what was requested in the specification. It
was also noted that because the benchmark allows alternate methods to be used whenever dictated by
architectural considerations, the reporting format can not be made completely rigid.

The conclusion of the panel session was to let the benchmark stand as specified for some period of time,
in order to allow more groups to complete their implementations. Then a new version of the benchmark
should be developed with the following features: It should be a reorganization of the current problem
into a library of useful subroutines and an application framework. A set of individual problems should
be developed to test each of the subroutines. A broader range of data sets should be provided, with the
size of the model-base scaling over several orders of magnitude, and perhaps a set of images of different
sizes. The graph matching code should be simplified and made more general purpose. A standard
reporting format should be provided, with the sample solutions generating as much of the information
as possible. Lastly a second level of the benchmark might be specified that extends the current problem
to a sequence of images with motion analysis. The second level would be an optional exercise that could
be built on top of the current problem to demonstrate specific real-time capabilities of certain
architectures.

Conclusions

The DARPA Integrated Image Understanding Benchmark is another step in the direction of providing a
standard exercise for testing and demonstrating the performance of parallel architectures on a
vision-like task. While not perfect, it is a significant improvement over previous efforts in that it
tests performance on a wide variety of operations within the unifying framework of an overall task.
The benchmark also goes a long way toward eliminating programmer knowledge and cleverness as a
factor in the performance results, while providing sufficient flexibility to allow implementors to take
advantage of special architectural features.

Complete implementations have only been developed for a handful of architectures to date, but it is
hoped that others will be added to the sample. In the meantime, it is possible to draw a few general
conclusions from the data that has been gathered. It is clear that a tremendous speedup is possible for
the data parallel portions of the interpretation task. However, every one of the architectures in this
sample devoted the greatest percentage of its overall time to the model matching portion of the
benchmark on those data sets that involved complex models. One conclusion might be that this portion
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of the task simply doesn't permit the exploitation of much parallelism. However, when the model
matching step is viewed at an abstract level, it appears to be quite rich with potential parallelism, but
in the form of task parallel direction of limited data parallel processing. While this style of processing
can be sidestepped by increasing the size of the model-base so that the entire task becomes data parallel
in nature, the inclusion of true high-level processing will force us back to dealing with this processing
model. Thus, one potential area for research that the benchmark points out is the development of
architectures, hardware and programming models to support task parallelism which can direct data
parallel processing in a tightly coupled manner.
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Abstract
Efficient, real time execution of computer vision algorithms usually requires special
purpose hardware. We present two types of processor architectures for performing
localized operations on a single image and for performing shift and correlate type
operations on multiple images. Efficient architecture designs should consider issues such
as 1/O bandwidth and practical VLSI limitations. CCD (charge-coupled device) technology
has many desirable characteristics for computer vision processors. In particular,
proposed CCD implementations of an edge detector, a reconstruction processor and a shift
and correlate type processor will also be presented.

i. Introduction

Typical image processing tasks are very demanding for general purpose computers. Therefore, there is a
need for special purpose processors especially for real time vision applications. The design of efficient
image signal processors requires careful consideration of both the computational and I/O communication
requirements. The goal of this paper is to present practical VLSI processor architectures that have
particularly efficient CCD (charge-coupled device) implementations. This paper is organized as follows:
First the processor architectures are presented. A review of CCD technology is followed by a
presentation of the proposed CCD structures that implements an edge detector, a reconstruction
processor, and a shift and correlate type processor.

2. VLSI Processor Architectures

Many vision algorithms consist of calculations or operations performed on spatially localized
neighborhoods. Furthermore, most of the execution time is spent accessing pixel data values and not
performing actual computations. Special purpose processors exploit the parallelism and regularity of the
algorithm to achieve real time performance.

Parallel. Pipelined Architecture
In the design of a VLSI processor architecture, it is important to consider the degree of parallelism in
processors and I/O connectivity, so that the computation speed and I/O capability are comparable. With
an integrated n x n CCD imager, it is possible to provide n x n parallel processing elements, n parallel
processing elements, or a single, serial processing element. While a fully parallel, n x n processor
architecture potentially has the highest computational speed, it is typically I/O bandwidth limited since
present VLSI technology cannot provide n x n parallel I/O paths. A single, serial processor is the
simplest to implement. However, it typically requires large internal data storage capabilities and must
operate at very high internal clock frequencies. A VLSI architecture using n parallel processing element
with n parallel I/O paths provides a balance between computation speed and I/O bandwidth (see figure
1). By pipelining several stages of n parallel processing elements, a large variety of computations can be
performed on a single image. As each column of pixels is serially shifted together, local interactions
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between neighboring column elements can be directly performed in parallel with each shift. Local
interactions between neighboring row elements can be similarly performed by using time delay elements.
Algorithms '-at can be decomposed into simple. localized operations can be efficiently realized in a
parallel, pipelined architecture. This type of architecture is also particularly well suited for charge
domain computations with CCDs. Furthermore, with an integrated CCD imager the n parallel processors
can be placed outside of the imaging area so that the fill factor (amount of area devoted to photon
collection) is not sacrificed.

Parallel. Pipelined Architecture

• I I

I I

-- - -- - -- -- -- - - - - - -- - - - - -

• • II •

NI I

It I

COLUMN PROCESSORS ROW PROCESSORS

Figure 1. A schematic of the parallel, pipelmned processor as shown. Rectangles represent pixel
data values. Data is input and output in parallel as successive columns and is pipelined through
the processor. The first block of local processing elements (PE) computes the interactions
between neighboring column elements. The second block of local processing elements (PE)
computes the interactions between neighboring row elements U.y using delays.

Parallel. Shifted Architecture
A different type of processor architecture is required for algorithms that require multiple images. In
particular, we consider motion and stereo algorithms that use local patchwise, shift and correlate
operations. For motion analysis, the patchwise correlation of sequential images for a 2-D range of shifts
is computed. For stereo, the patchwise correlation of left and right images is computed for only a l-D
range of shifts. Motion is seen to be the 2-D generalization of stereo. Data [/0 is one of the most
important constraints for processor architecture. If the image data are input as serial scan lines and the
algorithm is to compute the correlation of s possible shifts, a processor architecture that utilizes s
parallel processing elements as shown in figure 2 is able to efficiently manage data flow. Data in the
processor flows smoothly to each processing element and does not need to by recycled after passing
through the entire processor.
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Parallel. Shifted Architecture

...
b 2 

, ha 
baO

PE E PE

Figure 2. A schematic of the parallel, shifted architecture for shift and correlate type
computations is shown. Two images a and b are input as serial scan lines. Pixel values of image
a are directly input to each processing element (PE). Pixel values of image b are input through a
shift register so that each PE has a different pixel value of image b. The s PEs (each
corresponding to one of the range of s possible shifts) compute in parallel the correlation of a
pair of pixels form image a and b. As the next pixel of image b enters the shift register, the
next pixel of image a is also input. Notice that each of the s PEs corresponds to a constant shift
value. The computed correlations are passed into a SIPO (serial-in parallel-out) register. The
SIPO register passes the computed correlations into a processor such as the binomial convolver
that computes the average correlation over a neighborhood. The patchwise correlation of a pixel
for a given shift is serially output by a PISO (parallel-in serial-out) register. The correlations
are compared by a non-maximum suppression (WTA) operation and the shift value (motion vector
or tereo depth) of maximum correlation is output at the same pixel serial input rate.

3. CCDs

CCDs operate as shift registers that store information as an analog value of charge. A CCD shift register
is essentially an analog, sampled data memory. Charge can be stored for -30 milliseconds and clocked at
-100 MHz for typical silicon CCDs. The actual bit accuracy or dynamic range is determined by the
maximum and minimum charge values which are a function of the actual size of the device, physical noise,
and sensitivity of the output charge-to-voltage converter. Using typical process parameters for silicon
CCDs, 8-bit accuracy is readily achievable. A single CCD is capable of serving as memory by storing an
analog charge value as well as performing simple operations such as addition, subtraction, multiplication
by a constant, division by a constant, delay, and data I/O. CCDs are particularly well suited for
pipelined or parallel architectures since they are analog shift registers and are easy to configure and
clock in parallel. In addition, CCDs are used extensively as imaging ,evices. Image signal processing
and computer vision are ideal applications for CCD technology since the CCD signal processors and CCD
imager can be integrated together which potentially increases the I/O bandwidth be:ween the imager and
signal processors. In the past, CCDs have been effectively used for high performance signal processing
[1 as well as combined imaging and signal processing [2].
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4. CCD Implementations

At present there are many successful algorithms implemented on general purpose computers that can
perform early vision tasks, but there are few that are capable of real time performance. Possible
implementations of early vision tasks using the parallel, pipelined architecture and the parallel, shifted
architecture are presented below. By matching the algorithms with the capabilities of a CCD image
processor, the proposed implementations of the parallel, pipelined and parallel, shifted architecture are
capable of operating in real time and at the image frame rate.

Edge Detector
Edge detection is one of the most important early vision task. Edge positions contains much of the
essential cognitive information of the scene. While there are many edge detection algorithms (i.e. Sobel
operators, Canny edge detector, difference of Gaussians, etc.), the LoG (Laplacian of Gaussian) level-
crossings was chosen for its ease of implementation. The CCD implementation of this edge detection
algorithm is separated into two components, the 2-D Gaussian filter and the Laplacian operator. Once the
LoG of the image intensity has been computed, a simple comparator with an adjustable threshold can be
used to identify the level-crossings which correspond to edges in the image.

The CCD implementation of a 2-D Gaussian filter utilizes the fact that a 2-D Gaussian filter is
decomposable into a 1-D Gaussian filter in columns and a I-D Gaussian filter in rows. Furthermore, the
CCD structure actually implements a binomial distribution which is a good approximation to a Gaussian.
(The precise shape of the low pass filter is not critical since it is used primarily to improve the
robustness of the algorithm to noise.) By combining CCD structures that perform the charge domain
operations of division by 2 and addition, a simple first order I-D binomial convolution within column
elements is implemented in the charge domain by the CCD structure shown in figure 3a. The full 2-D
Gaussian could be accomplished by transposing the image and using the same processors to compute the
I-D binomial convolution within row elements. However, transposing an image in the charge domain
requires a full frame delay and complex hardware. A faoter. more direct method of achieving a first
order, I-D binomial convolution within row elements is to use the same division by 2 and addition
operators in conjunction with a delay element as in figure 3b. The order of the binomial distribution
which determines size and extent of the approximated Gaussian filter is increased by successive
applications of the first order binomial convolutions.

Basic CCD Structure for 1-D Binomial Convolution within Columns and within Rows

(division by 2)

direction of (division by 2)
charge shifts

a

a+ ... b,a... ... , a +b

2

b (addition) (addition)

(a) (b)

Figure 3 Basic CCD structure for computing binomial convolution. Repeated operations increase
the order of the binomial and extent of weighted average. (a) As a column of pixel values is passed
in parallel through the CCD structure, the signal charge is divided by 2 and summed to form tie
average of neighboring column elements. (b) As a row of data values is pipelined through the CCD
structure, the signil charge is divided by 2, delayed, and summed to form the average of
neighboring row elements.
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The implementation of the Laplacian operator is simply a slight variation of the 2-D Gaussian filter. The
Laplacian operator is implemented by a convolution with a 1/8 [0 1 0] , [ 1 -4 11, [0 1 0] mask.
The CCD implementation computes the convolution of the positive values separately and subsequently
subtracts the negative value to realize the Laplacian operator. The basic CCD structure that performs
this operation is realized by combining the same simple charge domain operations of addition, division
by 4. and delay with a subtraction operation and is schematically described in figure 4.

CCD Structure for Laplacian Computation

... a3,a2,al ...

... b3,b2.bl ... a2+bl+b3+c2-4b2
8

... c3.c2,c 1...

Figure 4. A CCD structure that computes the Laplacian is shown. As columns of data values are
pipelined through, the charge is divided in 4, delayed, summed, divided by 2. and finally
subtracted in order to implement a convolution with a
1/8 [0 1 01, [1 -4 11, [0 1 01 mask.

Reconstruction/Inte &ration Processor
Gaussian convolution and other low pass filters are used to suppress high frequency components.
However, linear low pass filters also reduce the high frequency components of real information in the
image typically resulting in blurry object edges. Various nonlinear operations such as median filtering
have been used to try to reconstruct or enhance images. In particular, a variation of a surface
reconstruction algorithm used by Blake and Zisserman [3] is well suited for the parallel, pipelined
architecture. The algorithm is essentially a conditional convolution that preserves large differences and
filters small differences. In other words, a region is low pass filtered if the differences in intensity
between neighboring pixels are below some threshold. This algorithm has been analyzed as a
determ~nistic approximaion of Markov random fields by Geiger and Girosi [4]. By combining a
thresholding element that measures local differences with the binomial convolver. the reconstruction
processor is implemented as shown in figure 5. Implementation of an independently adjustable
thresholding element introduces the ability to integrate information from different image fields such as
intensity, color, depth, motion, etc. In a real image, different fields are highly correlated (depth
discontinuities tend to occur in conjunction with intensity edges) and should influence the
reconstruction of other image fields. This reconstruction/integration processor is potentially a powerful
application for CCD image processors.
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Basic CCD Structure for Reconstruction Computation

a

b ,

4

b 3b+c o r
4

a+2b+c
4

Figure 5. A CCD structure that implements a surface reconstruction algorithm is shown. The
circle and dashed lines represent a thresholding element that will prevent charge from being
summed if the difference in data values exceeds a given threshold. As a column of data values is
passed in parallel through the processor, the charge is split and is conditionally summed. The
resulting output is some weighted average of neighboring column elements dependent on local
differences. An integration processor is implemented by using an independently adjustable
thresholding element.

Stereo/Motion Processor
CCD implementation of a shift and correlate type of operation for stereo or motion utilizes the parallel,
shifted architecture. The processing elements need to compute the norm of the two input pixel values.
An absolute difference operator is usually an acceptable norm for shift and correlate algorithms.
Standard CCD input structures implement a subtraction operation when the first operand is less than the
second operand and give a zero result when the first operand is less than the second. The absolute
difference operator is implemented by summing the values from a standard CCD input structure and an
identical CCD input structure except with the first and second inputs reversed.

5. Conclusion

A parallel, pipelined architecture and a parallel, shifted architecture for VLSI hardware implementation
of vision algorithms was presented. The parallel, pipelined architecture is particularly well suited to
image processing algorithms that can be decomposed into simple, localized operations. Possible CCD
implementations of an edge detector and reconstruction/integration processor were described. The
parallel, shifted architecture is well suited to shift and correlate type algorithms such as those for
stereo and motion. A CCD implementation of the correlation operator as an absolute differencing
processor was proposed. Data I/O is one of the most important constraints on a VLSI processor
architecture. The ability of CCDs to serve as memory, I/O data path, and processor makes it a very
promising technology for image processing and computer vision applications.
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ABSTRACT

Five control systems loosely corresponding to primate saccadic. vergence, pursuit, vestibulo-ocular, and head
control operate on a simulated two-eyed robot head maneuvered by a robot arm. The goal is to get some
qualitative understanding of the interaction of such reflexes under various assumptions. The simulation
is meant to be relevant to U. Rochester's robot. Thus it incorporates kinematics of the robot head but
assumes a "tool-coordinate" system available to robot arm commands, so that arm kinematic calculations
are unnecessary. Dynamics are not modeled, since they are handled by the commercial controllers currently
used in the Rochester robot. Even small delays render the effect of delay-free controllers unstable, but
multi-delay version of a Smith predictor can to cope with delays. If each controller acts on the predicted
system and ignores other controllers, the situation is improved but still potentially unstable if controllers with
different delays act on the same control output. The system's performance is much improved if controllers
consider the effect of other controllers, and the resulting system is stable in the presence of a certain amount
of stochastic disturbance of control delays and inputs, and also in the presence of systematic error arising
from inaccurate plant and world models.

INTRODUCTION

Behaving, actively intelligent (mechanical or biological) systems must manage their computational and phys-
ical resources in appropriate ways in order to survive and to accomplish tasks. At Rochester we are building
an integrated actively intelligent system that incorporates abstract reasoning (planning), sensing, and acting
[Bro88]. The active intelligence paradigm we shall exploit incorporates the following ideas.

1. A hierarchy of control, so that the highest cognitive levels can reason in terms of what they want done
rather than how to do it in detail. This hierarchy should extend throughout the system.

2. At the lower levels, the control hierarchy ends with visual and motor skills or reflexes. These capabilities
are cooperative but to some extent independently controllable. Some are always running, and they
form the building blocks on which more complex behavior is built. Examples are tracking targets to
minimize motion blur or redirecting gaze as a result of attentional shifts.

3. Part of the job of low-level visual capabilities is to present perceptual data, such as flow fields or
depth maps, to higher-level visual processes. Low-level processes can often benefit from knowledge of
self-initiated motion on the part of the sensing entity. They can often be built on the low-level control
capabilities.

We currently have a nine degree of freedom robot body-head combination controlled by a Sun computer
interfaced over a serial line to a VAL-I robot control system, and over a VME bus to the three eye motor
controllers. The visual input is processed by a pipelined image processing system. The system has been
used in several promising demonstrations of considerable complexity in depth-map creation and vergence
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([BO88,OP89]). It has also been used for some simple but effective real-time applications in tracking and
fixation.

What has been missing so far has been the cooperation of several modes of control, or the operation of
several at once. In the work reported below, a simulation of the robot head and eyes is used to examine the
effects of different styles of interaction between certain control capabilities that we have implemented (such
as tracking) or anticipate using (such as using eye movements to compensate for head movements).

The simulation software is based on the actual robot head kinematics, and has provided a flexible tool for
investigating the interaction of different control methods and different types of control interaction.

THE MODEL OF HEAD AND IMAGING

The simulator geometry can capture all the essentials of the Rochester robot [Bro88.BR88] (including the
annoying "non-spherical" geometry of the camera pans and tilts). It allows geometric parameters to be
changed to explore the effects on error and the possibility of adaptative control. The robot arm is not
modeled: rather the model abstracts it to a single eye-support platform that can be postioned arbitrarily in
space with six degrees of freedom: three in position, three in orientation. On the model head is a modelled
tilt capability that affects both cameras, and each camera has a modelled pan capability. The geometry
of the offsets of the various axes in these links are variable, and incorporate the geometrical complexity of
the real system. The simulated mechanism is massless; this reflects the effective behavior of our current
hardware system when viewed from its high-level control operations. The independent control of the camera
pans allows us to model modern theories of saccadic and vergence systems: heads with mechanical vergence
capability need one fewer motor but must use older models of these systems.

The camera models incorporate point projection with fixed focal length, as well as a "foveal-peripheral"
distinction by which the location of imaged points is less certain, outside a small foveal region, depending
on the off-axis angle of the target being imaged. The target itself is a single point in 3-D space, moving
under dynamical laws. The experiments below were often carried out with the target point in orbit about an
invisible "black hole" - thus the target followed an elliptical path. In other experiments the target moved in
a straight line. In some of the experiments involving delays the target was stationary but the robot moved
in X, Y, and Z, thus creating a perceived target motion, but one due to factors under robot control.

It is assumed that the imaging system knows the distance to the target (in real life, this distance may be
derived from binocular stereo, apriori knowledge, any of a number of monocular distance cues, kinetic depth
calculations, etc.). It is assumed that, for each eye, the instantaneous retinal velocity of the target is known
(i.e. the vector difference between its position in the current image and its position in the last image). Other
than that, the system only knows the left and right image (xy) location of the target's image. Of course the
target's image position and hence image velocity is perturbed by uncertainties arising from the blurriness
of peripheral vision, should the target not be foveated. There is a further provision to add uniform noise to
the target's imaged position - this can model quantization noise, or be used to approximate process noise in
the target's motion.

THE MODEL OF CONTROL

ZERO DELAY CONTROL

The input to the control systems is usually based on quantities that can be inferred from vision (e.g. the (x,y)
position of the target, which should be driven to (0,0), or target disparity between the two eyes which should
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be driven to 0). Some control inputs arise from the robot's "proprioception" (e.g. the amount the cameras

are panned or tilted from their null position), and some is from other control signals (when one control is to
null out the effects of another). The simulation has controllable output parameters corresponding to one set

of VAL-I robot control parameters (the VAL-II "tool coordinate system") for the head: its X,Y,Z position

and A,B,C orientation. Also there is direct control over the pans (independent for left and right) and tilt

(common) of the two cameras. In every case the outputs of controls are velocity commands to the nine
degrees of freedom in the system, reflecting one simple form of our current interface to the motor controllers.

The basic control loops that manage the system are loosely inspired by the primate 'isual system. However,
most assumptions and technical decisions have been made either for the sake of simplicity or to mimic our
robot rather than for the sake of faithfully modelling known biological systems or optimal mechanical systems

(see the Discussion section below). Still, one of the major design goals is that the system can support more
detailed control models. Most of the loops have several parameters, such as the proportional, integral, and
derivative (PID) constants of their controllers, and their delays and latencies. Delay means the amount of
time after a commanded motion before it commences - this is often called latency in the literature. Latency
is how long it takes the command to complete: it is another time constant that indicates both how soon

another command can be accepted, or how long the command will be affecting the controlled (velocity)
variables. In all the work so far, only saccades have latency greater than unity. In the robot system the

delay correponds to how long it takes the mechanical system to respond to a motion ordered from a high
software level, and the latency reflects how long it takes to complete a command. The assumption is of
control delay, not sensor delay: that is, we assume that "sensors" (visual or robot- and eye-control motor
states read from their controllers) are available to the system immediately, without delay, and thus reflect
the true state of the world. (Our analysis and the algorithms extend to the case that the sum of control and
sensor delays is constant for any controller.)

There are five separate control systems.

1. Saccade: fast slewing of cameras to point in commanded direction. Saccades are modelled as open
loop, though in primates there are "secondary" saccades that correct errors in initial saccades. The

saccadic system tries to foveate the target and to match eye rotations to the target velocity so as to be
tracking the target as soon as the saccade is completed. Current opinion is that the saccadic system

is aware of the 3-D location of the target, not just the location of its retinal image. However, in the
implementation used for the experiments below, saccades operate with retinal locations and velocities,
not 3-D locations or distance. The left eye is dominant in the system. The saccade aims to center
the target image on the fovea of the left eye; the right eye is panned by the same amount (and of
course tilted by the same amount for mechanical reasons). Thus the saccade maintains the current
vergence angle. It is implemented as a constant-speed slewing of all three pan and tilt axes, with one
of them attaining a system constant maximum velocity. The slewing continues until the target should
be foveated (it my not be due to peripheral blurring or other noise), at which time the system is left
with eye velocities that match the perceived target motion before the saccade. The saccadic system is

characterized by its maximum velocity and its delay.

2. Smooth Pursuit: tracking a moving target. This is a "continuous" activity as opposed to the discon-
tinuous saccadic control activity. The error here is target position in the left eye, (which should be
(0,0)), and the commands are pan and tilt velocities to the left eye. The pursuit system has delay,
latency, and PID control. In both the saccadic and smooth pursuit systems modeled here, there is

strict (exclusive) left-eye dominance.

3. Vergence: the vergence system measures horizontal disparity between the target position in the left
and right eyes, and pans the right eye to reduce it. The vergence system has delay, latency, and PID
control.

4. Vestibulo-Ocular System: the VOR system is open loop in the sense that its inputs come from the

head positioning system and its outputs go to the eye positioning system. Its purpose is to stabilize
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eyes against head motion, and its inputs are the control signals for head position (XYZ velocities, ABC
angular velocities). It also uses the distance of the target, since that affects the appropriate response.
The VOR should ideally be implemented by inverse kinematics, to which the current implementation
(and presumably the neural one) is an approximation. Its output is commands to the pans and tilt
controls to null out the apparent target motion caused by head motion. It is characterized by delay,
latency, and open loop proportional gain.

5. Platform Compensation: This system is a head-control, not gaze-control system. These systems are
known to interact in subtle and complex ways, but this particular reflex simply attempts to keep the
eyes "centered in the head", so that the camera pans or tilts are kept within "comfortable" mechanical
ranges. The "comfort function" is a nonlinear one x/((x - xmax) 2 ), where z is the average pan angle
(to control head "yaw" movements) or the tilt angle (to control head "pitch" movements). In either
case zmaz is the mechanically imposed limit of the system. This reflex is open loop (eye position
affects head position), with delay, latency, and open loop proportional gain.

The system has the capability of operating in two modes: smooth pursuit and saccade. In smooth pursuit
mode, the VOR, platform compensation, pursuit, and vergence systems are left running. In saccade mode,
other controls may be diabled. This allows modelling the effects of turning off vergence, head compensation,
tracking, etc. during saccades. Ultimately it seemed best only to turn off tracking during saccades, but
other combinations are demonstrated below.

The delays and latencies are implemented with a command pipeline, in which the commanded changes in
velocities are entered opposite the time in the future they are to take effect. Time is discretized to some level,
called a tick henceforth. A larger delay results in entry of the corresponding command further in the future.
Latencies are implemented by dividing the commanded change between as many discrete time periods as
necessary to spread the effect over the latency. The pipeline thus is indexed by (future) time instant, and it
has entries that hold the commanded velocities for the six head degrees of freedom and three camera degrees
of freedom. Each instant also has an entry corresponding to its mode (saccadic or pursuit). The pipeline is
implemented as a ring buffer.

For the delay-free case, the control architecture is strictly independent. That is, controllers are ignorant
of each other's effects, and the combination of control effects is modeled by all controllers incrementing
or decrementing a common control register (indicating some motor velocity setting). All increments and
decrements are made to the current value that is there already, which perhaps is nonzero because of input
from another reflex. Thus the control commands are summed in the simplest possible way, as if each control
system's output were a D.C. voltage and all the outputs were soldered together at the effector motor's input.

The saccadic system shuts down the pursuit system in the sense that for the duration of the saccade (which
is computed from the image distance it must move the fovea and the maximum velocity it can move), all
other commands in the pipeline are overwritten, and the mode is changed to "saccade". Further commands
trying to affect these instants may be ignored, depending on the (compile-time) policy desired.

NON-ZERO DELAY CONTROL

Slight amounts of delay destabilized the simulated system, as expected (see the Experiments section below).
Control with delays can be stabilized by turning down gains and slowing the response of the system, but its
performance then suffers. Successful control with delays incorporates some form of prediction [Mar79). The
controller implemented in the simulation is a version of a Smith predictor [Smi57,Smi5S), which is the basic
idea behind most modern methods.

Smith's Principle is that the desired output from a controlled system with delay p is the same as that desired
from the delay-free system, only delayed by the delay p. Let the delay be z- P, the delay-free series controller
be C(z), the desired delay controller be C'(z) and the plant be A(z). The delay-free system transfer function
will be
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CA
1 +CA"

The delay system with its desired controller has transfer function

C Az-P

1 + CAz-P

But Smith's Principle is

CAz-P CAz-P

+ CAz-P 1 + CA'

This quickly leads to the specification for the controller C in terms of C, A, and z-P:

C
1 + CA(1 - z-P)

This simple principle has spawned a number of related controllers, often arising from each other by simple
block-diagram manipulation. Figure 1 is one block diagram of a Smith prediction controller, and it describes
the implemented system in the simulator.

If the maximum delay of a controller in the system is T, The plant model is a pipeline of enough future

robot states to reach time T into the future, updated and extended once a tick. Ideally the robot's state is
predictable, since only the control commands act on it. Practically there may be some plant noise. In the
work so far, the world prediction is simplified by assuming the world is static and that the robot does all the

moving (navigation in a static environment). As part of the experiments, target motion was added to test
the system's response to a false target model.

EXPERIMENTS

DELAY-FREE CONTROL

In all the simulations, the goal of the system is to put one or both of its eyes squarely on the target (at

retinal position (0,0)) and keep them there. The head is always in an upright position, so pans rotate the
cameras about a vertical world axis, tilts rotate the cameras about a horizontal axis. With a static head,
pans induce image x motion upon a static, foveated target and tilts induce image y motion. In all the graphs

of this section, the horizontal axis is time, and the vertical axis is pan and tilt error, or equivalently the
image z and y position of the target. Each graph shows both left and right eye z and y errors, but often
the y errors are superimposed since the tilt platform is common to both cameras. In every case there is
"peripheral blur", which is modelled by adding, outside a small "fovea", uniform noise to the target (x,y)

location, with standard deviation proportional to 1/d, where d is the euclidean distance of (z, y) from the

(0, 0) point. The simulation does not use realistic time-constants and speeds, which instead are scaled so
that interesting effects happen within a few ticks.

Figs. 2 and 3 illustrate the cumulative effect of simply superimposing control capabilities: each operates

independently and their outputs are simply summed at the effectors. Delays are zero, latencies (except for
saccades) unity. In these two figures tracking is by position error signal.
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NOISE
COS 0 NTROL DELAY PL~ANT NOISE

Figure 1: The implemented Smith predictor control. The block diagram is easily derived from the Smith predictor
equation, with the MODEL PLANT, MODEL WORLD, and MODEL SENSOR blocks corresponding to A. C is

represented by the block labelled CONTROL and everything below the dashed line. The CONTROL block represents

all five control systems, and the DELAY block represents a vector of their five independent delays. The PLANT,
WORLD, and SENSOR blocks represent the robot simulation. Delayed control is implemented with a pipeline of

controls to take place in the future, and the plant model is a similar pipeline of predicted robot states derived from
the control.
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Figure 2: Increasingly effective delay-free control results from superposition of noninteracting controllers. (a) Track-
ing only: The left (dominant) eye pans and tilts, inducing tilt in the right eye. The tracker uses a position error
signal. The right eye gets no pan signal, and its horizontal error accrues from target motion. The left eye tracks
successfully until it hits mechanical stop at tick 14. (b) Add vergence: Both eyes hit stops at about tick 15. (c)
Add head compensation: This control is to keep eyes from hitting mechanical stops by turning the head in the same
direction as the tracking motion. A less-desirable effect is to amplify the tracking signal, overcompensating and
destabilizrrithe tracking. (d) Add VOR, which effectively compensates the head rotation with eye rotations.
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Figure 3: (a) Continuing the previous figure with tracking driven by position error, add saccades in which vergence,
VOR, and head compensation are turned off during saccade. The saccade drives the left eye error more or less to
zero (it is affected by the peripheral blurring effect which makes the initial location of the target image uncertain).
It stews the right eye off target. When VOR, head compensation and vergence are turned on after the saccade the
first two reflexes have a transient effect. (b) Here let vergence run during the saccade but inhibit VOR and head
compensation until after saccade completes.

Fig. 4 shows the effects of tracking with a velocity error signal. Here saccades are initiated if the target falls
outside a fixed distance (here .1) from the fovea.

Finally, Fig. 5 shows the effects of control delay on the system. The smallest delays, applied uniformly or
to just one control, destabilize the system seriously.

DELAY CONTROLS

As derived, the Smith predictor is appropriate for a single system control (or sensing) delay. In our system
there will be differing delays reflecting different software actions (serial line plus VAL-I1 software versus
VME-bus connection to the eye motor controllers, for instance). The idea of the Smith predictor is easily
extended, however.

Independent Delay Control

Two types of control were implemented using the Smith controller of Fig. 1. In the first, the controllers
are ignorant of the delays of other controllers, and also ignorant of the sharing of output variables between
controllers. Each controller knows its own delay T, and uses the following algorithm. Look ahead time T and
retrieve the predicted robot and control states for that time. Apply the control appropriate for these future
states now.

Fig 6 shows some sample effects of this independent delay-control strategy. The system is stable for certain
combinations of delays, but is unstable unless all the non-vergence delays are the same.

Interacting Delay Control and Noise

The independent delay control algorithm is not as smart as it could be. The short-delay controls do not look
into the future as far as the long-delay controls, and therefore they do not anticipate the effects of slower
controls. This effect shows up when long-delay and short-delay controls affect each other's output, either
directly or through the kinematic chain. The reason the verge reflex can run with different delay and not
destabilize the independent delay control system is that no other control (barring saccade) affects the right
camera's pan velocity, and panning is at the end of the kinematic chain. Assume each controller knows its
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Figure 4: (a) No vergence, velocity-error tracking with saccades for position control. Tracking is subject to
steady-state position error. (b) Add vergence, and also change head kinematics (unknown to any controllers) from a
,spherical" geometry to the Rochester robot's configuration of pan, tilt, and optic axes. The changed geometry has
little effect.
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Figure 5: (a) The no-delay controller applied to the system with a constant delay of one tick in all controls. Ideally
this graph should be a delayed version of Fig. 2(d). (b) The no-delay controller applied with zero delay in all controls
except tracking, which has a delay of one tick.
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Figure 6: (a) To be compared with Fig. 2(d) and Fig. 5(a). The Smith predictor with independent control is

stable with uniform controller delays. (b) Independent control also is stable with vergence control delay different. (c)
Saccades induce transients but the system is still stable even if vergence delay different. (d) System is unstable if a

non-vergence control, here VOR, has different delay from other non-vergence controls.
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own delay T, and the delays of all the other controllers in the set {S} that share an output with it. Then
each controller can use the following (interacting controls) algorithm. Look ahead the mazimum delay M

of any controller in {S} and retrieve the predicted robot and control stat 6 for that time. Apply the control
appropriate for these future states at (possibly future) time M-T. This algorithm successfully copes with a
different delay for each control (Fig. 7a).

An easy implementation of this algorithm that loses some flexibility is simply to increase the delay of all
controls that share an output to be the maximum delay of any of their number and apply the independent
delay control algorithm. Then all controls in the set look ahead as far as their slowest member, and act at
the current moment. The resultant slowing of fast controls is of course suboptimal when they do not have
to act in concert with slow controls.

Figures 7 and 8 show some experiments with interacting delay control, and introduce stochastic disturbances
in the inputs and delays. The system is robust against sensor noise, or varying uncertainty in target location.
The preliminary conclusion is that the system destabilizes with unpredictable delays when the outputs are
changing relatively fast, but (of course) is less susceptible to unpredictable delays if the control outputs are
only changing slowly.

DISCUSSION AND FUTURE WORK

SIMULATION AND REALITY

The goals for the simulator were to provide a kinematic and imaging model fairly close to that of the
Rochester robot. The model has no dynamics, but neither does the robot from the point of view of the
applications programmer; the current robot and motor control software hides this level. The simulator does
seem adequate to illustrate the characteristics of different styles of control and to demonstrate the qualitative
behavior resulting from control interaction, delays, and various forms of uncertainty. As the sophistication
of the control technology at Rochester increases, a useful simulator would have to incorporate increasingly
sophisticated models.

Likewise the simulator's exterior world and image-processing model is simple, consisting of a single point
whose image is instantaneously and reliably (if noisily) found. To some extent this is also realistic, since it re-
flects the capability of frame-rate feature detection (Bro88], but it ignores the existence of more sophisticated
operations or those with longer time-constants.

Simulation is likely to remain a basic tool in a real-time robotics laboratory, but as the control and visual
environment gets sophisticated the simulations become slow and costly. The advent of cheap real-time
hardware makes it increasingly practical to replace simulations with real-world experiments, which are more
likely to yield relevant results.

COMPARISON WITH PRIMATE GAZE CONTROL MODELS

Because of its experimental accessibility, the simplicity of the plant involved, and the diverse collateral
knowledge about the visual system, the gaze control system is the best-studied biological sensorimotor
control system. The animal model most relevant to our robotic work is the primate, because of the close
relationship of visual attention with fixation that arises with foveal (i.e. narrow-angle, high-resolution) vision.
Gaze control in the cat and rabbit (and frog) is significantly different.

Knowledge of the primate gaze-control system might help provide insight to robot designers, and if the right
hardware were available robotic equipment might be used to implement computational models of gaze control,
thus providing an experimental facility complementary to the usual psychophysical and neuroscientific ones.
The work described here is not yet dedicated to modeling biological systems, but nonetheless comparisions
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Figure 7: (a) The interacting control algorithm dealing successfully with a mixed set of delays. Here the longest
non-v-rgence delay is three ticks, and the resultant behavior is that of a system whose non-vergence controls have a
uniform delay of that amount. (b) Sensor noise (uniformly distributed disturbance of the target (x,y) location in each
eye with c, = 0.02 in each dimension) does not affect stability, but causes excursions larger than its a through the
interaction of tracking and verging. (c) Here with probability .1 a control signal is delivered one tick early, and with
probability .25 it is delivered one tick late. The system is on the verge of instability. (d) With same probabilities as
in (c), more disturbances happen to occur early in the sequence when outputs are changing rapidly, destabilizing the
system.
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Figure 8: (a) Continuing from the previous figure, the previous sensor noise is added to the system along with the
previous stochastic delays: the system is stable. (b) Here there is no noise (other than peripheral blurring), but the
target model is wrong. The target is moving approximately perpendicular to the robot's motion instead of remaining
static. The error periodicity of 10 ticks is interesting. (c) Here the situation is as in (b), but the target is moving
faster, and toward the robot. As it gets close the controls cann~ot respond fast enough and the system destabilizes.
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are inevitable, amusing, and possibly useful. This section is a very brief and admittedly selective sampling

from the immense and rich (i.e. confusing and contradictory) literature on gaze and head control in biological
systems. It seems fair to say that most of these systems interact, and that it is very difficult to lay down

hard and fast rules about what individual systems can and cannot achieve.

Pursuit and Opto-Kinetic Reflex

The Opto-Kinetic Reflex (OKR) causes the eyes to follow a motion of the "u visual field, and is driven
(to first order) by "retinal slip", or optic flow. In primates the OKR comes in two stages, a faster (direct)
and a slower (indirect), with the direct being more dominant in man. The smooth pursuit mechanism is to
track small targets, and is often described as being driven by foveal retinal slip. Thus these two facilities
are similar, and there is some thought that the direct part of the OKR response is just the smooth pursuit
system [Co1851.

The situation with smooth pursuit is anything but simple, however. It seems to be possible to pursue extra-
foveal targets smoothly. Smooth eye movements cannot normally be induced without a smoothly-moving
stimulus, but they persist after a target disappears, thus arguing that some form of prediction can excite
the response [Eck83]. Smooth pursuit gain drops with stimulus velocity. Last, smooth pursuit in monkeys
seems to be driven (in a large fraction of individuals) not just by velocity error but also by position and
acceleration errors. Thus a model such as Young's (see below) that suggests a reconstructed target velocity
is the control input (rather than a sensed optical flow) could be augmented with a broader range of error
signals [LMT85].

The simulator has implemented both velocity control and position control with predictable results (compare
Fig. 3(b) with Fig. 4(b)). Without position feedback, the system matches velocity and relies on saccades,
which take place when position error goes over a threshold, for position control. There seems no advantage
to this implementation unless optic flow velocity can be sensed directly, as opposed to position. For instance,
if motion blur could be directly sensed, it would make a direct optic-flow velocity signal. Of course analysis
of a particular motion-blur track could yield its centroid or endpoints, bringing us back to position control.

Vergence and Saccades

The primate vergence system is rather slow, and coupled to the focussing (accommodaL*ve) systems and the
saccadic system. Vergence and accomodation are coupled pairwise, and the "near triad" is a reflex made up
of these three systems, in which focus and vergence are both driven in the proper direction and faster than
normal when a saccade from close to distant target (or the reverse) is made [Mil85].

Work with the Rochester robot has concentrated on "gross vergence", mediated through disparity ccmputed
between full-field images with variants of the cepstral filter [OP89I. The simulator described here is driven
by horizontal disparity between the left and right target images. In the simulator, (which does not include
focus) the cooperation of vergence and saccades is achieved simply, by the device of letting imaging, disparity
calculation, and vergence reflex run during saccades. This method may or may not be nonbiological (as usual
there is some dispute about the amount of visual processing that goes on during saccades). Its practical
disadvantage is that it is inefficient: It is just as easy to have the saccade control both eyes. The only reason
the current simulator does not run this way is that it is less interesting.

The saccadic system has a longer delay than smooth pursuit (120ms as opposed to 50 ms), reflecting its
higher-level control origins. It can move the eye at 300 to 400 degrees/second. It is often modeled as a
sampled-data system, kept stable by a latency and trigger mechanism that inhibits its firing again before the
system has settled. In our robot system, saccades should not be needed for position control during tracking,
and thus will be associated with shifts of attention, or at least of visual resource commitment.

In the experiments shown, the maximum saccade speed was limited but the maximum speeds for other
reflexes were not (compare the .1 rad/tick saccade rate in Fig. 3(a) with the .3 rad/tick speed of the
tracking and vergence in Fig. 2(d). Clearly the control should not be allowed to command unrealistic
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speeds, and the relative strengths of the outputs must be adjusted. In our simulation, the strictly "left
eye dominant" inplementation of saccades and of tracking is almost certainly an exaggeration of the ocular
dominance effects in primates. Still, from a practical point of view it means that the necessary low-level
vision computations do not need to be carried out in both eyes simultaneously.

The Vestibulo-Ocular Reflex

The Vestibulo-Ocular Reflex (VOR) stabilizes gaze by counteracting commanded head movements with eye
movements. It is the fastest visual reflex, with a delay of only approximately 16 milliseconds. It is an
open-loop control, in the sense that vestibular sensor output is converted to eye muscle input and delivered
through a path of approximately three synapses. It can be a high gain control (gain approximately 1): it
can often exactly cancel out head motion effects. The VOR being open loop, there is a general problem of
how it internally models the system it is controlling.

Research on the VOR has addressed the geometrical aspect of its modelling: the conversion of sensor
signals in the coordinate systems of the semicircular canals to effector signals for the variously-placed eye
muscles. Robinson [Rob85] models the geometrical transformations as 3x3 matrices operating on 3-vectors.
Changing matrix components can accomplish adaptation, and the adaptation can be driven by stimuli
such as retinal slip (indicating a failure of the reflex) without explicitly modelling the sensorimotor system.
Pellionisz (Pel85,PP88] uses tensors to model the differing transformation properties of the sensory and motor
vectors and transformations, and addresses the problem of underdetermined control of the many muscles
that accomplish eye and head movements by the relatively small number of sensor dimensions.

The VOR's input originates in the linear and angular accelerometers of the otolith organs and semicircular
canals. They have very short time constants, but the VOR operates correctly for slow velocities. This leads
to the postulation of a "velocity storage mechanism" that integrates the output of the accelerometers and
makes the resulting velocity signal available for control (e.g. [RC85]).

Other VOR work addresses its time-dependent behavior: its gain and phase-lag characteristics under different
conditions (e.g. several papers in [BJ85]). Much of the VOR's behavior can be explained as parameter
variation among its gain, bias, and time constants. Miles et aL. [MOL85] develop a multi-channel model
to explain VOR's ability to cope with the frequency-dependent output characteristics of the sensors, with
frequency-selective adaptation properties of the VOR itself, and with other adaptive properties of the VOR.
This work presents explicit transfer functions for the semicircular canals, the oculomotor plant, the velocity
storage mechanism, and the neural channels that convert head velocity estimates to motor outputs. The
channel model is linear and can be stated as a lumped-parameter linear system, but the channels make it
easier to identify which gains must be changed to reduce system errors.

A basic aspect of the VOR is its adaptability. The reflex adapts over time to changes in the optical system
(e.g. artificially induced dysmetria) [Rob85I. The VOR interacts with other reflexes and the stimuli that
evoke them. For example, large-field rotations that elicit the OKR have an interesting effect. If they are
slow, they bias the VOR (and the opto-kinetic system) in the same direction, which tends to cancel the
movement effect. If they are fast, they induce effects in the opposite direction, which may be interpreted as
ignoring the movement effect [Col85]. VOR gain can be depressed from 1.0 to 0.1 by training that involves
no visual input (subject imagines tracking a target attached to head while moving head in the dark), and is
likewise significantly affected by verbal instructions and other seemingly unrelated activities (such as mental
arithmetic) [JB85].

Adaptation and modeling can come together in VOR behavior that adapts to repetitive patterns (a perhaps
familiar example is disembarking from a longish sailing journey). One way to achieve this capability is
through a "pattern storage" mechanism that effectively produces and uses a model of the outside world.
Some workers are attracted to this idea, others seem to think it is unnecessary and are explicable by, for
instance, channel adaptation.

What has all this to do with a robotic VOR? Many of the issues mentioned above can be made to vanish.
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We may know the relation of the sensor output to the desired motor output if we decide to model the robot
and head kinematics accurately. (In fact in the simulation, the robotic VOR makes several approximations,
including a "spherical" geometry for the camera rotation axes, a small-angle approximation, and others.) We
can sense velocities directly or even actively monitor the relevant control signals we need to cancel. The fun-
damental issues that still need significant work involve adaptation and interaction. Adequate understanding
of these issues would not only give the robot system the efficiency exhibited by natural systems, but could
mean that such exercises as accurate kinematic modeling would become unnecessary.

Head Control

There is less written on head control than on gaze control, but a good recent collection of work exists [PR88].
There are various head stabilization reflexes, some tied to optical stimulation. The relation of head control
strategies to the evolution of particular brain mechanisms and the existence of foveate vision is explored
by Roucoux and Crommelinck [RC88]. Some fairly detailed biomechanical head models exist, and head
movements have been investigated from the point of view of optimal control theory. Head movements can
be quite rapid (600-700 degrees/second) and are part of normal long-distance saccades in primates. Thus
the saccadic and head-control system work together to achieve gaze redirection. There has been some work
here (e.g. [Gui88]) indicating that head movements can take place at differing times relative to saccades.
Typically, they lead or lag depending on whether the target location is predictable or not.

This coupling of head and eye movements is clearly more sophisticated than the compensatory reflex imple-
mented in the simulation, which is not coupled to saccades at all and which must lag eye movements since it
is only driven by eye positions. Thus more work needs to be done if we are to achieve the increased rapidity
of gaze redirection that arises when both head and eyes are moved in a coordinated way.

Another Model of Delay Control

The control scheme implemented in this simulation, the Smith predictor, differs from a scheme seemingly
first proposed in a gaze-control context by Young, taken a step further by Robinson, and used recently in
robotic gaze-control for an agile, two-eyed robotic head at Harvard University [CF88].

Young (You77] wanted to explain how smooth pursuit avoided instability in the presence of two difficulties
that apply if tracking is modeled as a pure negative feedback system. First, the error, and thus control,
signal is zero when accurate tracking is achieved; this should send eye velocity transiently to zero. Second,
tracking performance is better than it should be given the delays in the control loop and the time constants
of the processes. His proposal is that the system tracks not the retinal image, but a neural signal that
corresponds to target motion (in the world).

In 1971 (for a recent reference, applied to saccadic, tracking, and limb control, see [Rob88]) Robinson
proposed a mechanism to implement Young's idea. In the negative feedback system the eye velocity is fed
back and subtracted from the target velocity (with some delay). If the eye is in the process of tracking, then
the target velocity is the sum of the eye velocity (with respect to the head) and the target's retinal velocity
(its velocity with respect to the eye). But the latter is just the error signal resulting from negative feedback.
Thus an estimated target velocity signal can be constructed by positively feeding back the commanded eye
motion into the control loop, delayed to arrive at the proper time to combine with the error term produced
by negative feedback. This mechanism not only provides a signal based on the target's true motion, but it
cancels the negative feedback and thus removes the possibility of oscillations.

Robinson's schieme is related to the Snith controller shown in Figure I in the following way. In Figure 1,
the signal at E is an error signal, and the one at D is a difference of error signals that is zero when perfect
tracking is taking place. This difference of errors is a delayed (but consistent) error signal that is added to
the predicted error signal in the non-delayed path C. The controller in Figure 1 tries to drive errors to zero.
To change Figure 1 to Robinson's scheme, delete path C and remove the modelled world and sensor from
the lower half of the block diagram. Then path B carries the simulated plant, not the simulated error. Path
E still contains error, but path D now contains a prediction, or reconstruction, of the world state. Thus
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the controller now must treat the signal at D as a set point to be achieved through open-loop methods, not
as an error. Robinson proposes parametric adaptive control (in the form of two related gains) to provide
adaptative capability should the open loop yield the wrong results.

There are thus some similarities between the two schemes, but the underlying control philosophies are rather
different. In paricular, losing the power of negative feedback is a large sacrifice that the roboticist may
not need to make. The Smith predictor control system keeps the advantage of feedback control (running
on the modelled world and plant). There are many methods of estimation, observation, and prediction of
world, sensor, and plant used in modern control theory, and thus the Smith model allows for flexibility in
the assumptions underlying its predictions.

FUTURE WORK

We plan to supply more quantitative model parameters, and to try to model the spatial and temporal scales
that actually apply in the laboratory. Sensitivity analysis will be undertaken to quantify the effects of various
disturbances, especially the problem of unpredictable delays.

We plan to integrate some of the existing Kalman filtering tracking utilities [Bro89,BF88] to perform es-
timation of the target's state. Also we may explore estimation techniques [Ge173,Ber76,Eyk74] instead of
simulation techniques to predict the state of the plant.

The simulated system can support other relevant aspects to the control problem, including the important
one of adapting to changes in the plant. In other work, we have implemented "the MIT rule", which is
a gradient descent method similar to back-propagation learning in neural nets, to learn part of the robot
head geometry. In a way this learning system acts like another control system, with inputs the discrepencies
between expected and observed target motions given eye motions, and outputs are parameters to the modeled
plant (in this case, lengths of links in the head kinematic chain).

Implementation of an increasingly sophisticated gaze control system on the Rochester robot should take
place over the next few years. We anticipate substituting a Butterfly Parallel Processor with multiple input
and output ports for the central controller of the system.
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Towards Autonomous Mobile Robot Navigation'
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ABSTRACT

The UMass Mobile Robot project is investigating the problem of intelligent navigation of an
autonomous robot vehicle. Model-based processing of the visual sensory data is the primary
mechanism used for obstacle avoidance, movement through the environment, and
measuring progress towards a given goal. This paper describes our current approach to
goal-oriented navigation through a partially modeled, unchanging environment which
contains no unmodelled obstacles.

The navigation system integrates perception, planning, and execution of actions. Of
particular importance is that the planning processes are able to reason about landmarks
that should be perceived at various stages of plan execution. Correspondence between
image features and expected landmark locations are used at several abstraction levels to
ensure proper plan execution. Experiments in this and three companion papers
demonstrate the performance of the various components within the navigation system.

I. INTRODUCTION

The UMass Mobile Robot project is investigating the problem of enabling a mobile
automaton to navigate intelligently through indoor and outdoor environments. At the
foundation of our work is the premise that higher-level vision beyond the first stages of
sensory processing will greatly benefit from, and in many cases require, the use of
knowledge and models of objects in the environment. Thus, model-based processing of the
visual sensory data is the primary mechanism used for obstacle avoidance, movement
through the environment, and measuring progress towards achieving a given goal.

Our mobile robot, called Harvey, is a Denning platform ultimately intended to navigate
through offices, hallways, and university grounds as it carries out commands such as
"Fetch the book" or "Bring this to Allen". Since this is a rather formidable task, we have
developed a research plan that will be carried out in stages of increasing generality and
functionality. In the early phases of this research, we wish to balance generality with
setting sufficient constraints on the initial research goals to be achievable. Our initial
experiments focus on robust goal-oriented navigation through a partially-modeled,
unchanging environment that does not contain any unmodelled obstacles.

If robust autonomous navigation can be achieved in this restricted domain, then a variety
of challenging problems can be considered as the constraints are eased on the assumed
knowledge about the environment. These problems include: navigation in a partially
known environment with obstacles, navigation in the presence of independently moving
objects, and exploration of an unknown environment to learn a model in order to support
future model-directed navigation. This paper, however, describes the current UMass
approach to the initial problem domain of robust navigation in a partially-modelled

IThis work was supported in part by the Defense Advanced Research Projects Agency under
contract numbers F30602-87-C-0140, DACA76-85-C-0008, and DACA76-86-C-0015, and by the
National Science Foundation under grant number DCR-8500332.
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environment, and our experiments in testing an implementation of such a system.

1.1 Related Mobile Robot Research

We begin with a brief survey of previous mobile robot research; other relevant research
will be addressed in the sections discussing particular system modules. The Carnegie-
Mellon NAVLAB (Kanade, Thorpe et al. 1986; Shafer, Stentz et al. 1986) and the Martin-
Marietta ALV (Lowrie, Thomas et al. 1985) are systems that can move down a path or road or
navigate off-road terrain, but the processing has been restricted to simple goals, such as
controlling the vemile relaive to the sides of the road, or avoidance of major obstales
such as trees. Recent demonstrations of these systems have been quite interesting, but a
laser range sensor providing depth information played a significant role in the obstacle
avoidance capabilities.

Brooks (Brooks 1986) has an unusual demonstration of low-level behaviors and motor
activity to allow a relatively inexpensive robot to wander in an unknown environment
carrying out some purposeful activity, but this work has not yet focused on the
achievement higher-level goal-oriented navigation tasks, and does not make use of models
of the environment.

Dickmanns and Graefe (Dickmans and Grafe 1988a; Dickmans and Grafe 1988b) have
developed techniques for using image features in a real time feedback control loop to
control the motion of a car on the autobahn. In the system we develop in this paper their
techniques could serve as part of the function we term "action level servoing". The
approach described here, like Dickmans and Graefe, accomplishes servoing by tracking
image features, but here the tracking features are constructed from landmarks which have
been selected from a knowledge base.

Due to the complexity of visual perception, autonomous navigation projects, such as those
cited, have utilized only limited visual processing, either in terms of the features extracted
from the environment, or the modeled set of objects to be recognized in the environment,
or both. This is not meant to be a serious criticism, but rather serves as an observation for
the reader who does not recognize the extreme complexity of the problems of vision and
autonomous navigation in natural outdoor domains.

Recently, Faugeras (Toscani and Faugeras 1987) used more sophisticated vision algorithms
involving stereo to derive depth in an office scene. Depth information was extracted from a
stereo pair, the robot was moved some distance, and a second stereo pair was used to derive
depth and the associated motion. Again, this effort does not represent a full robot
navigation system, and made no use of high-level models.

1.2 Overview of System Modules

The processing modules that provide the basic functional capabilities for our mobile robot
system are briefly outlined below. There are many possible control strategies and system
organizations that can be imposed on top of these modules to support effective mobile robot
navigation. In Section III, we briefly outline one such control strategy.

Modelling the 3D Environment (Connolly 1989; Connolly and Weiss 1989) - Geometer is a
solid modelling package that was jointly developed at the University of Massachusetts and
General Electric Corp. The CAD system provides tools for representing knowledge of shape
in an annotatable h4erarchy.

Planning (Fennema, Hanson et al. 1989; Fennema, Riseman et al. 1988)- Tasks (or goals) are
translated by a command interpreter and decomposed by a hierarchical problem solver into
a sequence of milestones and proposed actions. Plans are developed depth-first, with less
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detail away from the current task; task failure triggers dynamic replanning.

Monitor Plan Execution (Fennema, Hanson et al. 1989; Fennema, Riseman et al. 1988) - Plans
are executed in a repetition of two operations: recognize milestone and execute primitive
action. Each milestone is constructed from a perceivable 3D landmark derived from the
model. Finding the projection of the landmark in the image signifies a successful
completion of the associated action.

2D Line Model Matcher (Beveridge, Weiss et al. 1989a; Beveridge, Weiss et al. 1989b) - This
nmodulu. fndb a bc t match aiid fit of a given 2D line niodcl to a subsct of data line segnents
that may have been fragmented, skewed, omitted, etc. during low-level processing. A
search through the plausible symbolic correspondences between model and data lines is
performed, and the optimum 2D translational and rotational fit for each is computed as a
closed-form solution.

3D Pose Refinement (Kumar 1989) - Given correspondences between a set of points and lines
in a 3D model and a 2D image, the 3D camera location and orientation is computed as an
optimization procedure. In addition, uncertainty in the output parameters as a function of
the variance of the noise in the input parameters is provided.

In addition to these modules, several basic vision modules have been developed. These
modules include a fast line finder (Kahn, Kitchen et al. 1987) derived from a straight line
algorithm developed by Burns (Burns, Hanson et al. 1986), a histogram based region
segmentation algorithm (Beveridge, Griffith et al. 1989), an algorithm for determining
subpixel line placement given an image line, and a local template correlation mechanism
(Fennema, Hanson et al. 1989).

II. GEOMETER AND MODELS OF THE ENVIRONMENT

11.1 Geometer

Models of the vehicle's environment are built using Geometer, a three-dimensional solid
modeling package developed jointly by UMass and the GE Research and Development Center
(Connolly 1989; Connolly and Weiss 1989). Geometer is implemented in LISP and is oriented
towards image understanding (although it has many other potential applications). It
currently runs on several types of workstations, including the Symbolics LISP machines, TI
Explorers, Vax workstations, and Sun workstations. Refer to (Comn:olly and Weiss 1989) in
this proceedings for additional information about Geometer.

Objects in Geometer are represented in an annotatable hierarchy:

World * Object * Faces * Edges * Vertices.

In Geometer, the language of simplicial complexes in algebraic topology (Eilenberg and
Steenrod 1952; Greenberg and Harper 1981) has been adapted for describing surfaces. It
provides generality and an explicit representation of edges, vertices, and faces. Each of
these serve as a type of geometric primitive, and can be parameterized as a smooth function

from a point, unit interval, and triangle to R 3 respectively. Surfaces are constructed as the
union of these primitives, and are denoted by a sum of simplices. This representation
produces a triangulation of the surface, where the triangles are not necessarily planar.

11.2 Constructing Environmental Models

The system begins with an accurate, but incomplete, model of the world implemented in
GeomeLer, augmented by the locale structure described in the next section. We have
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constructed a 3D model of portions of the interior of the UMass Graduate Research Center, as
well as a portion of the campus surrounding the building. The outdoor model (shown in
Figures 1 and 2) includes buildings (windows, doors, pillars, etc.), sidewalks, lamp posts,
telephone poles, and most of the significant objects in the area. This model has been
annotated with properties of objects and surfaces which are useful to the planning and
vision routines used by Harvey.

_ _ \

Figure 1. Geometer model of the area Figure 2. A more detailed Geometer model of the
around the Graduate Research Center same areas shown in Figure 1 with hidden lines
used in the experiments. removed. Note that additional landmarks, such as

telephone poles, have been added.

The construction of an accurate 3D model of an environment is a fairly difficult job. The
first attempt involved digitizing data from engineering blueprints using a bit pad
(digitizing tablet). This method is quite error prone given the spatial resolution of the bit
pad, since the blueprints were drawn to a scale of 40 feet to an inch We found errors of up
to 10 feet in the 3D model constructed in this manner. In the second attempt, theodolites
were used to survey the landmarks. This method, while accurate, is very time consuming.
As a check, some of the theodolite data was verified by direct measurement. On the average,
the measured distances matched with the surveyed distances within 0.2 feet.

11.3 Locales

The model of space in this system plays a rather central role in most of the robot's activities.
During planning, for example, the model is used to construct routes. Consequently, the
concept of doorways, portals, exits, and entrances must be represented. During plan
monitoring, the model is used in a top-down fashion to control visual perception by
specifying what is to be "seen" and where to "look for" it. In this situation, only the space
within the perceptual field of view of the robot is relevant. If the robot gets lost, the world
model is used as a means for localizing it within the environment. Space should be
represented and organized in a w3y which simplifies these tasks.

Conceptually, our view of the organization of space is inspired by the topological notion of a
neighborhood. Hierarchically organized neighborhoods serve to successively localize a
point to a finer resolution. We use this concept as a means for localiz;ng the agent (robot)
by associating with each neighborhood a means for determining whether or not the agent
is inside it. This neighborhood-test pair is called a 'locale'. Locales impose an organization
on 3D space and partition it into convenient subspaces that are used for planning and robot
localization.
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A locale is represented by a data structure that captures its neighborhood-like properties
via a 3-D shape description of the locale and a contained-by hierarchy as shown in Figure 3.
Each locale also contains additonal information, such as its shape descriptors as shown in
Figure 4. From this locale data structure, it is possible to construct a test to determine
whether or not the agent is in a particular locale and to pick landmarks to act as milestones.
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Figure 3. Locales are subspaces of the Figure 4. The actual shape descriptions of
environment which are organized into a each locales is a hierarchy of geometric
hierarchy by set inclusion. This simplified entities defined in Geometer. Shown are t~be
example shows three levels of locales entity properties used during perceptual
representing the Graduate Research Center reasoning to construct landmark
environment.

!II A BRIEF LOOK AT PLANNING AND CONTROL

Each task given to Harvey is translated by a command interpreter and problem solver
which ultimately produces a set of navigational goals. The execution of these goals is
accomplished by a tight interweaving of planning, perception, and action, orchestrated by
a dynamic planning and execution scheme (Fennema, Hanson et al. 1989; Fennema, Riseman
et al. 1988) called "plan-and-monitor". This subsystem works with plans, each represented
as a sequence (MO Al Ml ... AG MG) of milestones (Mk) and proposed actions (Ak).
Milestones are used to verify the successful completion of a particular phase of the plan.
They are composed of 3D landmarks (perceivable physical events) and their expected
location with respect to the robot at the completion of the appropriate phase of the plan.

As a plan is executed milestones must be verified (usually visually) before the next action of
the plan can be executed. For example, if the sequence of milestones up to M7 have beenperceptually verified to be in the proper position in the image (i.e. within the acceptable

error bounds), this means that actions Al, ..... A7 have bcen successfully completed, and it is
appropriate to take action A8. If M7 cannot be verified, then the plan must be modified. In
this way milestones allow the progress of the plan to be monitored, and trigger replanning
before the next action is taken when perception and milestone do not agree(Fennema,
Riseman et al. 1989). Complex actions and tasks also trigger replanning in order to refine
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them into a plan subsequence of milestones and primitive actions which can be directly
executed by the hardwar.

The plan-and-monitor executive directs planning, perception, and execution in such a way
as to dynamically modify and refine the plan to fit the actual results of each action and the
details of the perccived environment. The principal activities involved in this process are:
planning, milestone recognition, determination of location, and execution of primitive
actions. This interweaving of perception, planning and action makes specific what task is
expected of perception, and provides a means for focusing the knowledge available for that
purpose. The results is a distribution of perception and perceptual reasoning into all
aspects of navigation. Route planning uses perceptual reasoning to select appropriate
perceptual milestones; plan progress is measured using perception; perception is used to
relocate the robot when a milestone is not recognized; and during the execution of
primitive actions, low-level perceptual feedback is used to keep the robot on the expected
trajectory. The different levels of control all use model-directed vision and compare what is
sensed to what is expected, issuing corrective commands to minimize any difference.

Plan execution depends upon the recognition of milestones. The difficulty of using vision
to perform this task in a reliable and general manner has encouraged us to attack this
problem in two ways. Both methods use model-directed processing by comparing restricted
perceptual processing to what is expected if the robot's motor actions are correct. The next
section describes a type of low-level perceptual servoing used during execution of primitive
actions. Section 5 describes a more complex method for matching models to landmarks and
refining the position of the robot based on these matches.

IV, EXECUTING PRIMITIVE ACTIONS: PERCEPTUAL SERVOING

Navigation goals are ultimately translated into primitive actions which can be directly
executed by the robot vehicle; in the case of the Denning platform, these are (MOVE
distance) and (TURN angle). Even at this primitive action level, however, execution errors
are probable. As the robot rolls along an environmental surface a slippery spot, a bump on
the surface, or even a bulge in its tire may throw it off course, causing inaccurate
oxecution.

It is possible to reduce the error incurred when executing a primitive action by servoing
on prominent visual features in the environment. Using information obtained from the
measured discrepancy between where the features should be and where they actually are, it
is possible to determine the corrective action required to bring the positions into
agreement. This action level or perceptual servoing has the effect of locking the robot
onto a trajectory which improves the accuracy of the primitive actions over that which
would be obtained without servoing.

In order to determine the usefulness of servoing, a simple version was implemented that
used correlation to measure the deviation of actual motion from intended motion. Several
experiments, both with and without correlation servoing, were run. In the experiments
Harvey was to roll along a straight line 40 feet long, marked on the floor of a Graduate
Research Center hallway For the experiments in which servoing was used, an artificial
target was placed on a door at the end of the hallway, since the Geometer model of the
interior of the building was not complete. The target was a circle approximately eight
inches in diameter with two opposing black quadrants and two opposing white quadrants.
The robot's goal was to move down the corridor directly towards the target. To determine
course deviation, the vehicle was stopped every two feet and its deviation from the marked
line was measured.

The experiment was run a number of times; the results in Table I represent the best one in
the sense that the unservoed results represent the smallest deviations encountered during
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the trials. The z-axis referred to in the table is the line the vehicle is following with /=0
defined as the starting location. The x-axis is a line perpendicular to the z-axis and pointing
to the right. Total distance traveled is z-unservoed and deviation is x-unservoed. Even after
a rather painstaking set up procedure the vehicle wandered over two inches from the line
during a 20 foot motion. Other runs resulted in as much as a foot deviation in unservoed
mode. Most of the trials in unservoed mode were stopped at around 20 feet because the
vehicle was significantly off course and the total deviation was increasing. In contrast, in
servoing mode the vehicle stayed within .3 inch of the line for 38 feet. It is worth noting
that in both experiments the actual distance covered was considerably less than the
intended distance. It is consistently short by a constant factor (to 3 decimal places), due to
.,,;,arate calibration of the hardware.

Table 1. Results from one experiment
(All measurements are in inches)

intended-z unservoed-z servoed-z intended-x unservoed-x servoed-x
24. 22.6 22.8 0.0 0.0 +0.13
48. 45.5 45.7 0.0 -0.3 +0.13
72. 68.3 68.5 0.0 -0.4 +0.13
96. 90.9 91.3 0.0 -0.6 +0.13

120. 114.2 114.3 0.0 -0.7 +0.06
144. 136.3 136.9 0.0 -1.1 0.00
168. 158.2 159.5 0.0 -1.3 -0.13
192. 181.8 182.2 0.0 -1.8 -0.13
216. 2(4.6 205.0 0.0 -2.0 -0.38
240. 228.3 227.7 0.0 -2.1 -0.25

480. 456.0 0.0 -. - 0.0

The results of these experiments are encouraging and support the idea of action level
perceptual servoing over reasonably short navigation legs; additional results for (MOVE
distance) as well as servoing results for (TURN angle) are presented in (Fennema, Hanson et
al. 1989). Once the Geometer model of the building interior is complete, similar experiments
will be performed using actual geometric features rather than the artificial target. When
weather permits, the vehicle will be moved outdoors and the Geometer model described in
Section II will be used to determine the effect of terrain cover and topography on servoing
accuracy.

V. RECOGNIZING AND USING 3D LANDMARKS

Recognition of 3D landmarks involves matching an object model to data extracted from an
image, and this task has two parts: a)determining the correct correspondence between
object features and image features and, b)determining the position of the object with
respect to the camera. We refer to the former task as 2D model matching (Section V.1) and
to the latter as 3D pose refinement (Section V.2) These sub-tasks are interdependent, since
an object's position relative to the camera in 3D space cannot be determined without
determining a correspondence to image features, while the correct correspondence
depends on the object's 2D appearance and hence its relative position and orientation in
space.

V.1 2D Model Matching

In contrast to the approach developed by Lowe for the SCERPO system (Lowe 1985; Lowe
1987) we have chosen to separate the 2D processing of model-to-image matching from the 3D
optimization process for computing the camera pose once the correspondences between
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model and image arc completed. Thus, we restrict ourselves in this section to the problem of
matching a 2D model to a set of fragmented, skewed, and missing line segments, a rather
challenging perceptual organization problem. The model line to image line
correspondences determined from this 2D matching method are used as the input to the 3D
pose computation discussed in the next section.

We believe that there are strong incentives to solve as much of the identification problem
as possible via processing in the 2D image space. The combinatorics of establishing
correspondences between object and image features dominates the identification problem,
and geometric computations integral to this process are simpler in 2D than in 3D. In
particular, Beveridge et al (Beveridge, Weiss et al. 1989a; Beveridge, Weiss et al. 1989b) show
that the determination of the optimal position of an object's 2D projection with respect to
corresponding line features has an analytic solution in the two dimensions of image space.
This closed form solution for line correspondence is a new result and we believ,. it to be a
significant contribution. It is highly doubtful that the related 3D problem has an analytic
solution for determining model positions that minimize point-to-line and -oint-to-plane
distances.

Given that matches will seldom if ever be perfect, the emphasis must be on determining the
'best' of the imperfect matches. Hence matching is naturally posed in terms of optimization
over the possible matches. By establishing an objective measure of match quality, the
problem becomes one of determining the correspondence between model elements and data
line segments for wiiicii the measure is optimal. The correspondence problem is
combinatorial, and generally involves mapping one model line to many data lines. A second
optimization problem is implicit in the correspondence problem. In order to measure the
quality of a given model-data line correspondence, the best 2D position of the model with
respect to the data must be determined, and the extent to which they do not spatially
coincide must be measured. This we call the fitting problem. Hence, a match involves both
model-data correspondence and an associated best-fit position.

The following is a sketch of the basic steps used to obtain a good model match:

-Determine the search space of correspondences. Lacking constraints on model
position, all data lines segments possibly correspond to every model line segment. If
constraints are available, only pairs of model and data lines satisfying these
constraints need be considered.

-Determine promising model positions if the search space is large. Use these positions
to determine constrained search subspaces made up of only correspondences
consistent with the estimated position. A promising model position may be found
either through a generalized hough transform or by identifying prominent features.
The generalized hough technique involves an analysis of the space of possible two-
dimensional spatial transforms to bring the model and data into alignment.
Identifying a prominent feature may involve finding a distinctive part of a model,
such as a comer and then using that to position the model as a whole.

-For each of the constrained search spaces obtained above, use iterative refinement to
determine a best match. Upon each iteration perturb the correspondence, adding or
deleting one or several data lines, and then determine the new best-fit model position
and related match error. If the match error is reduced adopt the improved match. Stop
when the match can no longer be improved. The best of the resulting matches is
taken as the final match.

Results are presented for 2D model matching in Beveridge (Beveridge, Weiss et al. 1989b)

using both synthetic data and images obtained from the robot vehicle. Sample results from

this paper for one frame of a six frame image sequence is shown in Figures 5 and 6. The
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output from the 2D model matching system provide the input for the 3D pose refinement
computation presented in the next section.

Figure 5 2D Modeling Matching Results. Figure 6. 2D Model Matching Results. Matches of

Projections of the six 3D navigation landmark model line segments with image line segments; the
models onto the 2D image plane using the current dark lines represent the matches. These matches are
position of the robot. used by the 3D pose refinement module described in

Section V.2

V.2 3D Pose Refinement

Kumar (Kumar 1989) develops a solution to and mathematical analysis of the pioblem of
estimating camera location and orientation from a set of recognized landmarks appearing
in the image. Given cor-espondences between the 3D landmark model lines and 2D image
lines, the goal is to find the camera (or robot) rotation and translation which map the world
coordinate system to the camera coordinate system under perspective projection. Because
of the difficulties encountered in trying to establish accurate endpoint positions for lines
(Kumar 1989; Lowe 1985; Williams and Hanson 1988), we assume that correspondences
established between model and data are line correspondences and not endpoint
correspondences. In addition, intrinsic camera parameters, such as focal length, field of
view, center of the image, size of image, etc. are assumed to be known (Horn 1986; Kumar
1989; Lenz and Tsai 1988).

This problem. under various names and guises, has been addressed by several researchers,
e.g. see (Ganapathy 1984; Horn 1987; Linnainmaa, D. et al. 1988; Wolf 1974); most of the
techniques assume line endpoint data, are iterative in nature, and require an initial
estimate. Liu, Huang, and Faugeras (Liu, Huang et al. 1988) present a solution to the "camera
location determination" problem which works for both point and line data. Kumar's
approach is based on their constraints, derived from the observation that the 3D lines in the
camera coordinate system must lie on the projettion plane formed by the corresponding
image line and the optical center. Using this fact, Liu et. al. separated the constraints for
rotation from those of translatioit, leading to a solution in which rotation is solved for first
and then translation is obtaineC using the rotation results.
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The technique developed by Kumar to solve for the rotation and translation parameters
differs from that of Liu et al in two significant ways. First, rotation and translation are
solved for simultaneously, which makes more effective use o the constraints and is more
robust in the presence of noise. Second, the nonlinear technique used to solve for rotation
and translation is adapted from Horn (Horn 1987) Kumar's version of this optimization
technique provides much better convergence properties than does Liu et al's solution
method based on Euler angles.

Kumar also develops uncertainty measures for the rotation and translation parameters.
Noise in the data is assumed to be only in the image. The 3D model data is assumed accurate.
The data for each image line can be specified by two parameters Oi and Pi (a polar coordinate
representation of lines). For the analysis, the noise for both 0i and Pi is assumed to be
Gaussian distributed with zero mean and
known variances. Furthermore, the noise
is assumed to be uncorrelated for different
lines. Closed form expressions are
developed for the variance of the error in
the output parameters (rotation and
translation) as a function of the input data
and output translation and rotation values.
Kumar shows that the error in the output
parameters is linearly related to the noise
in the input data. The reader can refer to
Kumar's paper in these proceedings for
more details.

Figure 7 shows the results for one frame
(the same frame shown in Figures 5 and 6)
of the six frame sequence used in one of
the experiments. The figure shows the 3D
model lines after projection back into the
image plane using the vehicle "pose"
computed by the 3D pose refinement
algorithm which solves simultaneously
for the rotation and translation
parameters. For this particular frame, the
errors (in feet) for the position of the Figure 7. Results from 3D Pose Computation. The
robot (x,y,z) are (.1, 06, .03); additional white lines are the 3D landmark segments reprojected
results for the other frames of th is onto the image plane after 3D pose refinement using
sequence are given in Kumar's paper in the model line-data line matches shown in Figure 6.
these proceedings (Kumar 1989).

VI. CONCLUSIONS

The work presented here represents the current status of a long term research effort
leading to the development of perceptually-based navigation systems for autonomous
robots. The focus of the research is on environmental modeling, planning, plan
monitoring, and vision. These four components are tightly coupled in a system which
provide the flexibility and extensibility required for an experimental testbed for robot
navigation.

Because the vagaries of the physical world affect plan execution in unknown ways, plans,
no matter how carefully constructed, cannot simply be blindly executed. Each step of the
plan must be carefully monitored and compared to expectations. The system accomplishes
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this by defining milestones associated with each planned action. The milestones act as
preconditions for subsequent plan steps; the next step cannot be executed unless the
milestone is satisfied. This assures a correspondence between the environmental model and
the assumed position of the robot relative to the model and the actual position of the robot in
the physical world. Failure to satisfy a milestone causes replanning to take place.
Interweaving perception, planning, and action in this way makes specific what task is
expected of perception and provides a means for focusing available knowledge on local
goals.

Experimental results from the system thus far are encouraging, although a number of
issues remain to be explored. Harvey's world is completely known, which is perhaps an
unrealistic assumption for an autonomous robot. The perceptual servoing mechanisms
assume that 3D landmarks can be accurately extracted from the geometric model of the
environment. It remains to be seen how the requirement of complete knowledge can be
relaxed yet still maintain the idea of perceptual servoing. Incorporating the type of
reasoning demonstrated by the schema system (Draper, Brolio et al. 1989) might allow
Harvey to respond to instructions like "....continue down North Pleasant street past the
Graduate Research Center, then turn left and..."

A unique feature of the model matching component is the separation of the process of
positional updating into two steps: 2D matching followed by 3D pose refinement. The
robustness of this technique must be determined and its computational efficacy over many
experiments in multiple domains must be explored.

Finally, navigation is an extremely computationally demanding task, yet real-time
performance is crucial for a mobile automaton whose survival may depend upon reaching
critical decisions in a short period of time. An ongoing aspect of the work reported here is
the exploration of means by which the navigation task may be distributed over suitably
configured parallel architectures. Two complementary lines of research are currently
underway, utilizing a Sequent Symmetry multiprocessor system and the University of
Massachusetts Image Understanding Architecture.(Weems, Levitan et al. 1989).
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MATERIAL CLASSIFICATION AND SEPARATION OF
REFLECTION COMPONENTS USING POLARIZATION/

RADIOMETRIC INFORMATION
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ABSTRACT
We present a unified approach to the problems of two distinct areas of computer vision; (i) classification of the intrinsic

composition of material surfaces, and, (ii) separation of diffuse and specular reflection components at illuminated points
on object surfaces. For the first area under consideration, the majority of object surfaces can be simply classified according
to their basic electrical properties; metal objects (e.g., aluminum, copper) conduct electricity rather well while dielectric
objects (e.g., rubber, plastic, ceramic) conduct electricity poorly. Classification of image regions according to whether they
correspond to metal or dielectric material can provide important information both for scene understanding, e.g., it can
be used to prune hypothesis trees, and for industrial inspection, e.g., it might be used in printed circuit board inspection
where precise localization of dielectrics or metals are required. For the second area under consideration, a major hindrance
to image understanding algorithms are the presence of specular highlights on object surfaces. Specular highlights appear
on object surfaces where the specular component of reflection from illuminating light sources is so dominant that most
detail of the object surface is obscured by a bright region of reflected light. By quantitatively separating diffuse and
specular components of reflection intrinsic object detail can be restored in the diffuse component image. Also the diffuse
and/or specular component images can be more readily used for vision algorithms that compute local surface normals
from radiometric information.

Prior to this work no definitive vision algorithm to classify material composition is known to exist (other than some
artificial encoding scheme). This excludes the very specialized work of applied physicists which is not practical for most
vision applications. The technique presented for separation of reflection components extends the current limitations of
previous methods to only dielectrics to include metal surfaces as well. All the techniques presented in this paper rely
upon the empirical determination of the polarization Fresnel ratio . Thus the techniques for material classification and
separation of reflection components are dependent upon the same experimental process, enabling them to be performed
essentially in parallel. We show how once the polarization Fresnel ratio is computed at a pixel, how the object material
at that pixel is classified as a dielectric/metal, and how the diffuse and specular components of reflection are obtained.
Then two methods are presented which si -)w how the polarization Fresnel ratio can be empirically determined at a pixel.

1 INTRODUCTION
Most object surfaces belong to one of two broad material classes: metals or dielectrics.2 Metals have relatively low

electrical resistivity and thus are good conductors. By definition, dielectric materials are electrical insulators. The
difference in the conductive properties of metals and dielectrics in turn produces a difference in surface interaction with
light which is electromagnetic radiation . The reflective characteristics of metals and dielectrics can be vastly different,
especially with respect to polarization. It is this difference we will exploit to classify materials based on camera images.

The classification of surfaces as either metal or dielectric has many potentials in machine vision. First there are
certain algorithms that assume particular material types (e.g., see [Klinker et al. 1988]). Secondly, there are numerous
inspection tasks, e.g., printed circuit board inspection, where the objective is to determine/verify the placement of metals
and insulators. It seems natural to directly compute the material composition rather than attempting to infer it from
standard image observable (color/intensity) and local context. A third use of material classification is as an intrinsic
property of surfaces to be used in image understanding algorithms. Its usefulness follows from the fact that it is invariant
with almost all variations in imaging system (e.g., light source color, light source intensity, camera characteristics, etc.)
and that many objects are composed of a mixture of metallic and dielectric subparts. Depending on the object database,
the knowledge that certain components are metal/dielectric could significantly reduce the matching/pose determination
time.

Other researchers, [Healey and Binford 1988], [Healey and Blanz 1988] have postulated that we can use the spectral
content of reflect light, assuming we know the spectral output of the source, to determine material classification. While
theoretically provoking, these papers do not propose an actual definitive algorithm to distinguish metals and dielectrics.
It is not clear how much spectral resolution is required to classify a matezial surface. If 5 nm resolution is required, then
an expensive monochromator will be needed to separate out the proper spectral components of reflected light.

We present a well defined technique for distinguishing dielectrics and metals based upon an analysis of the polarization
properties of reflected light. Effectively, the degree to which a material surface polarizes light upon reflection gives
information as to whether the surface is a metal or a dielectric. All that is required, besides an imaging camera, is a
relatively inexpensive polarizing filter.

Another problem which we address in this paper is the separation of reflection components. Separation of diffuse
and specular components of reflection from an object surface provides important information to image understanding

'This work was supported in part by ARPA grant #N00039-84-C-0165 and NSF grant IRI-8&00370. This work was supported in part
by an IBM Graduate Fellowship Award.

2
The two main exceptions to this statement are natural semiconductors (which are relatively uncommon), and coated surfaces where a

substrate of one material class is covered with a transparent/translucent coating of the other.
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algorithms. Specular highlight regions on an object surface not only obscure intrinsic detail but can easily deceive an
image understanding algorithm into interpreting such a region as a separate object, or as a region on the same object
with high albedo. The separation of shading and highlight components (i.e., diffuse and specular components) was
first suggested in [Barrow and Tenenbaum 1978] as being useful for intensity analysis because each individual reflection
component is more simply related to the illumination and viewer geometry than is the sum of the two reflection components
together. This is particularly true for rough object surfaces where the specular component of reflection is expressed with
respect to a microfacet distribution function which is a very complicated function of imaging geometry. Such microfacet
distribution functions are presented in [Torrance and Sparrow 1967] and [Cook and Torrance 1981]. The complicated
nature of specular reflection from rough surfaces makes it very difficult to implement methods such as photometric stereo,
presented in [Woodham 1978], to determine local surface normals on smooth objects whose rough level of detail is within
pixel resolution. Removal of the specular component of reflection from rough surfaces, leaving the diffuse component of
reflection which is Lambertian in nature, makes implementation of photometric stereo feasible on these types of surfaces.

Presented in (Shafer 1985] is the Dichromatic Reflection Model for dielectric object surfaces which is used to separate
diffuse and specular components of reflection based upon the color of the total reflected light. This model of reflection
states that the color of light reflected from dielectric objects , represented as a vector in color space, is a linear combination
of two color vectors; the color vector for the body component3 (i.e., shading or matte reflection) and the color vector for the
interface component 4 (i.e., highlight reflection). The color of the body component of reflection depends upon the dielectric
makeup of the object material, whereas the color of the interface component is equal to the color of an illuminating light
source. At specular highlights the color of the illuminant is added to the body color of the object. Experimental evidence
is shown in CKlinker et at. 1988] that demonstrates the separation of the body and specular components of reflection into
an image without specular highlights and an image of just the specular highlights. This technique would not work if the
illuminator were the same color as the object.

A technique presented in this paper presents a new approach to the quantitative separation of diffuse and specular
components of reflection on object surfaces. This approach is based on the polarization, rather than the spectral (i.e.,
color) properties of reflected light. The polarization state of light differs on specular highlights than on regions which
have just diffuse reflection. This is due to the fact that the polarization state of the diffuse component is different from
that of the specular component. This property is seen to have advantages over spectrally based techniques because it is
universal to both metals and dielectrics and holds regardless of object or illumination color.

The techniques presented in this paper for classifying material surfaces and separating reflection components all depend
upon the empirical determination of the same quantity at each image pixel, the polarization Fresnel ratio. The only
difference between the techniques used to classify materials, and the techniques used to separate reflection components
is how the polarization Fresnel ratio is interpreted or algebraically processed. After the polarization Fresnel ratio is
determined, algorithms for ciassifying material surfaces as metal or dielectric, and for separating reflection components,
can proceed in parallel.

The polarization Fresnel ratio is the ratio of the Fresnel reflection coefficients for perpendicular and parallel polarization.
at a point on an object surface respective to some viewer orientation. We present two methods for determination of
the polarization Fresnel ratio, both which use a polarizer mounted in front of the camera sensor. Two images are
taken corresponding to designated perpendicular and parallel orientations of the polarizer. Both methods utilize the
polarization/radiometric information from these two images.

2 BACKGROUND
We briefly present background information necessary for the discussion of the algorithms presented in this paper. We

introduce basic information about polarization, imaging geometry, and the Fresnel reflection coefficients.

2.1 POLARIZATION AND IMAGING GEOMETRY
All light possesses a state of polarization which can be resolved into two independent component directions within the

plane perpendicular to the direction of propagation. The magnitude of these two polarization components can be resolved
by transmitting the light through a linear polarizer oriented in these respective directions. Light which is unpolarized will
have equal transmittance through a linear polarizer regardless of its orientation. Such light is emitted by most typical
lamps. Light which is partially polarized has a different transmittance for different orientations of a linear polarizer. Such
light results from lamp light which is reflected off of material surfaces.

Polarization components are typically expressed with respect to the specular plane of incidence at a point on an object,
which is the plane determined by the incident orientation of light rays from a point lighting element and the viewer
orientation towards the object point. See figure 1. Note that the specular plane of incidence does not necessarily contain
the ,urface normal. On rough surfaces specular reflection occurs off of microfacets which may not be oriented the same
as the actual surface normal. The parallel polarization component lies within the specular plane of incidence, and the
perpendicular polarization component is normal to the specular plane of incidence. When initially unpolarized light is
specularly reflected off of a surface, the reflected light becomes slightly polarized towards the perpendicular polarization
component. This can be observed as a slight increase in the transmitted radiance when light reflected from a surface
is passed through a linear polarizer which is rotated from the parallel to the perpendicular orientation relative to the
specular plane of incidence.

Referring again to figure 1, the phase angle is the angle between the incident orientation of the lighting element and
the orientation of the camera sensor. The specular angle of incidence is equal to one-half the phase angle. The specular
angle of incidence is equivalently the angle of incidence at which specular reflection takes place from the lighting element
into the camera sensor.

3 The body component of reflection is produced by light rays that penetrate into the surface of the object and then back out The reason
why the Dichromatic Reflection Model is not useful for metals is because they do not possess a body component of reflection

4 The interface component of reflection is produced by light rays that singularly or multiply reflect off of microfacets.
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2.2 THE FRESNEL REFLECTION COEFFICIENTS
The Fresnel reflection coefficients, Fil(q/, '), and F.(i?, II') describe the attenuation for parallel and perpendicular

incident polarization light waves, respectively, that undergo pure specular reflection from a planar portion of material
surface. In other words, if the incident radiance of the light wave is represented by Ni, the reflected radiance of the
specularly reflected light wave is NiF 1(i1, 'I) and NF.(q, 'I), for parallel and perpendicular incident polarized light,
respectively. The Fresnel reflection coefficients have a range from 0 wo I inclusive, and are functions of index of refraction,
0, and specular angle of incidence, '1.

In jt most general form the index of refraction can be a complex number, represented as ,7 = n - i1K . The term n
is referred to as the simple index of refraction, and the term K is called the coefficient of extinction. Dielectrics, which
refers to the class of materials which do not conduct any electricity, have Kc = 0, which means that they only possess a
simple index of refraction n. F~or all dielectrics, n > 1.0. Most common plastics, glasses and ceramics have indices of
refraction between 1.4 and 1.8. Some of the highest dielectric indices of refraction occur for precious gems (e.g. diamond)
with n > 2.7. For all metals, n, Kc > 0 and it is not all to unusual for n and Kc to be higher than 10.0, especially for longer
wavelengths of light.

In termis of 'il and o1, the Fresnel reflection coefficients are given by the following equations [Siegel and Howell 1981]:

a2 + b2 - 2acosqIi+ cos2

F.(1 O' x') a2 + b2 + 2acos I' + cos 21

a2 + b2 
- 2asinqgtanpJI + sin2 k'tan2 I

Fl1(r, 'I!) = a2 + b2 '+ 2asinq/ian'P ± si2 tn~ F .(7h Ii)

where

2a 2 = [(ns2 
- K2z _ sin2'I) 2 ]1/2 + ns2 _ K¢ _ sin11

2b2 = [(ns2 - K sin2il)]11 2 _ (n2 - K2 _ sin2ZIg).
The Fresnel reflection coefficients are graphed in figures 2 and 3 for a dielectric and a metal respectively. Note that the

value for F1 is always greater than or equal to F1 for all specular angles of incidence ranging from 00 to 900.
Suppose that a light wave is incident on a material surface with a combination of parallel and perpendicular polarization

components of magnitude P1 and Pz, respectively. Construct 0 < a, /9 < 1 such that a/3 = iPP and a' + /9 = 1. The
corresponding Fresnel reflection coefficient is the linear combination arFil(,7 , tb) + /9F .(r, sb).

3 THE FRESNEL REFLECTANCE MODEL
The techniques for material classification and separation of reflection components are based upon a simple, and yet,

general reflectance model called the Fresnel reflectance model. Much of the motivation for this reflectance model is
presented in [Wolff 1987).

Material surfaces are assumed to have a microscopic level of detail which consists of a statistically large distribution of
specularly reflecting planar microfacets. Each planar microfacet is perfectly smooth. Most light that is reflected from a
material surface arises from the following three phenomena:

* Light rays which specularly reflect off a planar microfacet a single time.

* Light rays which go through at least two multiple specular reflections amongst multiple planar microfacets.

* Light rays which penetrate into the top layer of the material surface and then are reflected back out.

These three phenomena are illustrated in figure 4.
In the Dichromatic Reflection Model, the body component of reflection consists of the third phenomenon, while the

interface component consists of the first two phenomena. In this paper the diffuse component of reflection will at least
consist of the second and the third reflection phenomena. In addition to a microscopic planar microfacet level of detail,
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some rough materials can also have a rough level of detail that is visible but yet smaller than a pixel projected out onto
the object. This is true for brushed metal surfaces. Multiple reflections amongst this level of surface detail is considered
to contribute to the diffuse component. Also protrusions from other regions of a surface n -terial can contribute to the
diffuse component of reflection at a point in the form of stray light reflections. The specul, r component will consist of
only the first reflection phenomenon listed above.

'rte Fresnel reflectance model represents the diffuse and specular components of reflection respectively with the functions
I' and I. These are assumed to be functions of any number of physical parameters such as imaging geometry, surface
roughness, wavelength, etc. . It is not necessary to know the exact form of these functions. The Fresnel reflectance model
states, however, that the specular component function, Is, is separable into F'(i, 4')L, so that the reflected radiance for
a given specular angle of incidence, %P, is represented by:

Id + I. = I + F(ij, %P)L,
where F(y, IV) = aFil(i, T)+/3F.r, P) and some function L, which is assumed to be a function of any number of physical
parameters, except, incident polarization state and wavelength. That is, the dependence of the specular component of
reflection upon incident polarization and wavelength is completely mediated by the Fresnel reflection coefficient.

Of most direct importance to the techniques presented in this paper is the description by the Fresnel reflectance model
of the reflected polarization state of light. Suppose we are given incident light with polarization state (a, /3) at a specular
angle of incidence, 4', upon a material surface with index of refraction, 77. The Fresnel reflectance model states that
after reflection from the surface that the transmitted radiance through a polarizer oriented at angle 0 with respect to the
specular plane of incidence is

I C, F 1(r7, tP)cos29 + /3F±(, fl)sin2 (TI+'di(±q)fF±o, I.(1
T-1 a F11 (I, %P) + /3F.c(q, 4')

For beth metals and dielectrics the diffuse component of reflection arises from multiple random reflection processes. Be-
cause of this, the polarization of the diffuse component of reflection is assumed to be always nearly completely unpolarized.
This is why there is a constant coefficient L in front of Id for all polarizer orientations, 0.2

For incident unpolarized light (a = /3 = 1/2), typically emitted from most light sources, the transmitted radiance,
k-L. k1l of reflected light through a polarizer oriented perpendicular and parallel, respectively, to the specular plane of
inciden,.c, is given by

1 F
Id+ I, = k1  (2)

2 F1 F

SId+ F11 I, =k1  (3)
2 Fu + F±

where functional variables have been supressed.
The Torrance-Sparrow reflectance model [Torrance and Sparrow 1967] is a specific instantiation of the Fresnel reflectance

model. It assumes specific fumiction of surface roughness and imaging geometry. The vision techniques presented in this
paper only need assume the Fresnel reflectance model in its most general form, without worrying about the specific nature
of reflectance functions beyond the Fresnel reflection coefficients.

4 USING THE POLARIZATION FRESNEL RATIO TO CLASSIFY MATERI-
ALS AND SEPARATE REFLECTION COMPQNENTS

Given that the polarization Fresnel ratio, q = LL has been computed at each pixel corresponding to illuminated object

points, we describe how material classification is peformed and how reflection components are separated. In the next
section we describe methods for how the polarization Fresnel ratio is computed.

4.1 MATERIAL CLASSIFICATION
Figure 5 shows the polarization Fresnel ratio curves as a function of specular angle of incidence corresponding to the

Fresnel curves in figures 2 and 3. Since the respective polarization Fresnel ratio curves in figure 5 are typical for dielectrics
and metals, there appears to be a definitive relationship between the magnitude of the polarization Fresnel ratio and
dielectric and metallic materials. In particular, for a fairly large range of specular angles of incidence the polarization
Fresnel ratio for dielectrics is much larger than for metals. Consider the threshold boundaries for the polarization Fresnel
ratios at 2.0 and 3.0 in figure 5 (represented as horizontal dashed lines). Within the specular angles of incidence from 350
to 800 (phase angles from 700 to 1600), a pixel corresponds to dielectric material if and only if the polarization Fresnel
ratio is greater than or equal to 3.0. If within this same range of specular angles of incidence the polarization Fresnel
ratio is less than or equal to 2.0, the pixel corresponds to metallic material.

Recall that the polarization Fresnel ratio for the dielectric in figure 5 corresponds to the Fresnel curves in figure 2 with
index of refraction n=l.7 . What about including all dielectrics having index of refraction between 1.0 and 2.0 ? To
preserve the property that dielectrics with 1.0 < n < 2.0 have polarization Fresn( atio greater than or equal to 3.0, the
range of specular angles of incidence needs to be slightly more restricted to be between 400 and 700 (phase angles from 800
to 1400). This includes practically all commonly occurring dielectrics except rare gems. To include such rare dielectrics
a further restriction to specular angles of incidence ranging from 450 to 650 (phase angles from 900 to 1300) is necessary.

In examining the optical tables in [Physics Handbook], we have found that the polarization Fresnel ratio for metals never
exceeds 1.5 for all specular angles of incidence. In actual experimentation we have found that some commonly occuring
metals can have maximum polarization Fresnel ratios about 1.8 or 1.9 . This is probably due to _mnhomogeneities in tile
metal and/or oxidation. Picking polarization Fresnel ratio thresholds of 2.0 and 3.0 allows for robustness of classification
of metals and dielectrics in the presence of usual camera sensor errors. These thresholds are not heuristic, but arise
directly from the physics of Fresnel reflection coefficients.
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4.2 SEPARATION OF REFLECTION COMPONENTS
Consider equations 2 and 3 of the Fresnel reflectance model equivalently expressed in terms of the polarization Fresnel

ratio, q = a.
F

11

1+q

lId + 1---1,= kil. (5)

Clearly a determination of q at each pixel provides simultaneous linear equations in which to solve for Id and I, at each
pixel. The larger q is, the more accurate the solution of Id and I, are with respect to given errors in kj. and k1l.

5 EMPIRICAL DETERMINATION OF THE POLARIZATION FRESNEL RA-
TIO

We propose two methods for determining the polarization Fresnel ratio from specularly reflected light. The first method
approximates the polarization Fresnel ratio at each pixel from the ratio of the perpendicular and parallel polarization
components of the total reflected light. This method works well for material classification at object points where the
specular albedo is much larger than the diffuse albedo. Unfortunately, because of the nature of the approximation used,
the first method is not suitable for separation of reflection components. The second method is a global technique which
utilizes polarization information from many pixels within a specular region to establish the polarization Fresnel ratio for
that region. This works well for both material classifiaction and separation of reflection components. However, because
it is a global method, problems may arise if the scene is composed of many different materials within a small region of
the image.

5.1 APPROXIMATING THE POLARIZATION FRESNEL RATIO BY USING THE
RATIO OF POLARIZATION COMPONENTS

From equations 4 and 5 above it is easy to derive

- 2d (6)kil - 1-Id

Suppose, as is true for most surfaces, that the specular albedo is much stronger than the diffuse albedo. For such
surfaces, Id < I. for points on specular highlight regions. Observe again equations 4 and 5. Since F± _ F11, we have that
k± > (1/2)1, and therefore for points on specular regions Id < ki. . If in addition Id < ki, then from equation 6:

F. ± k (7)
FI1 k1 "

That is, the ratio of the observed image irradiance values at a pixel corresponding to a point on a specular region
for perpendicular and parallel orientations of a polarizing lens in front of the camera, is a good approximation to the
polarization Fresnel ratio. The condition Id < k1l is true for specular regions on metals and for specular regions on
dielectrics assuming a specular angle of incidence far from the Brewster angle. As can be seen from equation 6 and
simple arithmetic, the ratio k /kl always theoretically underestimates the true polarization Fresnel ratio. In the case of
a dielectric where the specular angle of incidence is close to the Brewster angle

F. k.±

F11  k11

For dielectrics using a specular angle of incidence equal to the Brewster angle, k±/k 11 will be extremely large (> 3),
underestimating an infinite Fresnel ratio.
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?!XEL VALUES AT SPECULAR HIGHLIGHTS FOR TEAPOT WITH HANDLE

HIGHLIGHT ON BASE OF TEAPOT

F ERPENDICULAR PARALLEL Kperp/Kpara

RIENTAT ION ORIENTATION

70 129 110 71 48 93 78 38 1.4 1.6 1.7 1.7
4 179 222 167 56 127 165 112 1.7 1.7 1.9 1.8

145 237 233 225 128 234 235 209 1.2 1.0 <1 1.4
91 189 208 121 54 141 167 92 1.9 1.7 1.4 1.5

HIGHLIGHT ON HANDLE OF TEAPOT

PERPENDICULAR PARALLEL Kperp/Kpara
ORIENTATION ORIENTATION

6 8 60 129 3 6 10 6 - 3.6 >10
13 126 191 78 3 5 3 4 - >10 >10 >10
82 93 67 55 4 4 3 3 >10 >10 >10 >10
25 27 24 6 3 3 3 4 - - -

Figure 6: Approximating the polarization Fresnel ratio on specular highlights on a metal teapot with plastic handle.

Approximating the polarization Fresnel ratio using equation 7 appears from initial experimentation to be very good for
classifying materials as metal or dielectric. Figure 6 from [Wolff 88a] shows the classification of specular highlights on a
metal teapot with plastic handle, illuminated with a small lamp light. (The picture was taken with extra room lighting,
but the specular highlights marked by squares are from the small lamp light.) Recall that, assuming the phase angle is
between 800 and 1400, for a metal the polarization Fresnel ratio is less than 2.0, while for a dielectric the polarization
Fresnel ratio is greater than 3.0 . The approximation to the polarization Fresnel ratio is shown pixelwise in a 4x4 pixel
neighborhood of the center of each specular highlight. Note that if k4. is less than gray value 50 that no ratio is computed
because then it does not lie on a specular highlight. The value of the approximation to the polarization Fresnel ratio is
consistent with whether the specular highlight falls on a metal or dielectric. This is true also for figure 7 which shows
specular highlights on various objects.

So far we have shown experimental results using a single point light source resulting in essentially only a single specular
plane of incidence at points on a specular highlight region. If we were to use an extended light source we increase the
number of dominant specular points which we can classify. However the specular plane of incidence now varies amongst
specular points. Also we must insure that the entire extent of the extended light source is such that all lighting elements
of the source form a phase angle with the viewer orientation within the specified range for robust material classification.

According to the Fresnel reflectance model we can isolate the specular plane of incidence at a pixel by observing extrema
in transmitted radiance through the polarizer with respect to polarizer orientation. Referring back to expression 1, since
always F11 <_ F., and assuming an unpolarized light source (a = / = 1/2), a transmission minimum occurs when 9 = 0
(parallel to the specular plane of incidence) and a transmission maximum occurs when 0 = 90' (perpendicular to the
specular plane of incidence). In general, we can measure the transmitted radiance through the polarizer, at a pixel, for
incremental rotations of the polarizer. After finding out the orientation of the specular plane of incidence, we can compute
q from transmitted radiance, k., ko for any a, 0 relative to the specular plane of incidence. Again using expression 1 we
can derive that

kqsin 2 oa - kasin 2 3
q = k 0 os 2

,3 - kscos 2oa
For better estimation of q we average all the q values obtained from the transmitted radiance values taken for all incremental
rotations of the polarizer.

Figure 8 shows an extended light source illuminating a printed circuit board. The extended light source used was a
standard light table (used in photographic work) approximately 60cm by 90 cm. The light source itself is a 60 watt
fluorescent tube, surrounded with reflecting material directing the light toward a diffusing plate. The intensity is not,
however, unifcrm over the extend light source surface.

The camera images were acquired using our PIPE machine, and a Video logic camera. To minimize the effects of
camera error (and some of the problems inherent in digitizing images when using a fluorescent light source), we averaged
the scene over 64 frames.

In figures 8a and 8b we see the same scene with the polarizer oriented perpendicular and parallel to the vertical specular
plane of incidence. The objects in the scene consist of a PC board on the right, a sheet of blue acetate on the left with a
metal wrench placed just above the acetate. The board/acetate were oriented in front of the camera such that the phase
angles were approximately in the range required by the theory, with the front of the board at approximately 75".

For each scene, we acquired 9 images at 10 degree intervals. The algorithm then used (pixelwise) the maximum of the
transmitted light through the polarizer to define the specular angle of incidence for each pixel. Averaging the 36 values
of q obtained (disregarding some to avoid numerical difficulties) we were able to obtain the q image shown in 8c. The
q values were scaled up in gray value representation to visually see their relative magnitude across the scene. Note the
black "tag" on the acetate in figure 8c. This tag is made of paper with high albedo and is not a metal. The high diffuse
component washed out any specular component here. 'I he completely white portions in figure 8c are points we could not
process (mostly from shadow regions in the original scenes). One can see that the circular regions (corresponding to bolts
or large solder connections) are considerably darker than most of the "lines" of metal. This is because most of the "lines"
are actually metal coated with a dielectric plastic. In figure 8d we see the q image threshold with a value of 1.7. All the
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Figure 7: Approximating the polarization Fresnel ratio on specular highlights on an assortment of metals and dielectrics.

black regions are below that threshold, and are pure metal regions (remember we underestimate q.) Figure 8e shows the
same scene thresholded with a vilue of 2.5, and the coated materials show up as quasi-metals.

If the approximation of the polarization Fresnel ratio in 7 does a good job for material classification, what about using
this approximation for separating reflection components, and computing specular angle of incidence for surface normals
? The problem with separating out reflection components under the same lighting conditions for which k.L/kll is taken
as the true polarization Fresnel ratio is that Id is assumed to be zero by virtue of this approximation. However iL is
conceivable that after computing this approximation for an object scene illuminated using an extended light source so
as to "calibrate" the polarization Fresnel ratio, that this approximation may be useful for the separation of reflection
components under different lighting conditions. There will potentially be problems at points on dielectrics with specular
angle of incidence near the Brewster angle. Otherwise, it is expected that this approximation will work well for computing
specular angle of incidence for surface normals. Experimentation will be performed to verify this.

5.2 A GLOBAL METHOD FOR DETERMINING THE POLARIZATION FRESNEL
RATIO

In [Wolff 88b) a global method is presented to determine the polarization Fresnel ratio on specular highlight regions of
objects illuminated by a point light source. A point light source is used so that specular reflection from various object
points occur 1ro, !ihL rays which have approximately the same incident orientation. Using a point light source, all points
in a relatively small specular highlight region on the same object material surface should therefore have approximately the
same polarization Fresnel ratio. By a relatively small specular highlight region, we mean a specular region small enough
so that all specular reflection into the camera sensor occurs along approximately the same specular plane of incidence.

From equation 6 we easily arrive at the equation:

kL. = qk11 + I2 q Id. (8)

We can view equation 8 as a linear equation in variables (kll,k±) with slope q and k±-intercept equal to 7aId.
Recall again that k . and k1l are the transmitted radiance through the polarizer, in front of the camera sensor, oriented
perpendicular and parallel to the specular plane of incidence, respectively. Equation 8 implies that a conclusion from the
Fresnel reflectance model is that if the 2-tuple (kil, k.) varies from point to point on an object specular region, that it
must be constrained along the linear locus which is specified. As a result of plotting individual 2-tuples (k11, k±) for each
pixel corresponding to a part of the specular region, a linear locus of points will arise. The slope of this linear locus is the
value of the polarization Fresnel ratio.

The 2-tuple (k11, k.L) can vary from point to point on an object specular region for at least two reasons:

" The light source, however much it approximates a point source, is still extended. The spatial inhomogeneity of the
light source with respect to emitted intensity produces specularly reflecting rays of varying intensity from point to
point on a specular region of an object surface.

" The object surface itself can be rough and even if the light source is perfectly spatial homogeneous with respect to
emitted intensity (which it never is) the variation in the per unit area of rough surface detail that specularly reflects
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Figure 11: Metal wrench with rubber handle illuminated by small lamp light and associated polarization plot cluster.

Figure 12: Separated diffuse and specular reflection components for metal wrench with rubber handle.

likely inhonogeneous. Thus the cluster f-r the metal is actually a mixture of different q values. The specular region on
the rubber handle lies on a flat area of a! .lost constant local surface orientation at each point. This accounts for the ideal
linear shape of the polarization cluster for the specular region on the rubber handle.

Figure 12 shows the separation of diffuse and specular reflection components. The value of the polarization Fresnel
ratio, q, used to separate reflection components at a pixel within a specular region corresponds to the cluster which the
corresponding polarization 2-tuple for the pixel, lies.

In figure 13 there is a picture of a cup on which there is a specular region which crosses between two different dielectric
paint regions. The polarization plot, for the specular region in this picture shows a major problem inherent to determining
the polarization Fresnel ratio from a global clustering technique. Within this polarization cluster there are two distinct
linear polarization clusters that cannot be resolved. The slope of each of the two unresolved linear polarization clusters
correspond to the polarization Fresnel ratio for each of the two dielectric regions. The slope of the entire cluster as a
whole is an unknown mixture of two slope values. The separation of diffuse and specular reflection components at. each
pixel shown in 14 used one of 2 polarization Fresnel ratio values (one for each dielectric paint region) obtained by manual
getuss work. An initial estimate of the polarization Fresnel ratios was provided by the slope of the entire polari7ation
cluster.

We have seen that determination of the polarization Fresnel ratio from the slope of linear polarization plots does a fairly
nice job of separating diffuse and specular reflection components, as well as classifying material surfaces. Unfortunately
this global net hod works well on scenes wit I only a few objects and when the illuminating light source is small producing
spec ular regions from incident rays with approximately the same orientation. The problem with generalizing this method
to extended light sources is the inabilitY to cluster up polarization 2-tuples for pixels corresponding to object points with
Hie same polarization lrcsnel ratio. We can segregate polarization 2-tuplei for pixels according to the same specular plane
of incidence, but still cannot guarantee that the specular angle of incidence is the same for polarization 2-tiuples in the
cluster. We can however use extended linear light sources which cali be specially made to guarantee that if on a specular
region if two pixcls have the same specular plane of incidence, then the specular angle -' incidence is approximately tlie
same, As shown in figure 1.3, even for simpl, -cenes there can exist severe problems in i solving polarization clusters if
there exist different materials with similar i % ization Fresnel ratios. These types of pattern recognition problem, with
resolving polarization clusters is seen to be the major disadvantage of this technique.

A t,'ry imiportant aspect of producing polarization clusters which are linear is to corroborate the Vrvsnel refletlance
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Figure 13: Painted cup illuminated by small lamp light and associated polarization plot cluster.

Figure 14: Separated diffuse and specular reflection components for painted cup.
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model which predicts this according to equation 8 in the first place.

6 CONCLUSION AND FUTURE WORK
We have demonstrated vision techniques that (i) classify the composition of material surfaces as being dielectric/metal,

and, (ii) separate diffuse and specular reflection components at illuminated object points. The application of polarization as
well as radionietric information to these two areas of computer vision is not only novel but as was shown provides a definitive
unified methodology for simultaneously classifying material surfaces and separating reflection components. Previously no
known material classification vision techniques existed and existing methods to separate reflection components were

limited to dielectric surfaces. The global method for determining the polarization Fresnel ratio was seen to have potential
problems in the presence of different, but very similar material composition in the same scene. We hope to circumvent
such problems by experimenting with other methods for determining the polarization Fresnel ratio that are local, on1y
requiring computation at a single pixel.

The theory has already been drawn up for unification of these techniques with still a third area of computer vision;
determination of local surface normals on a smooth surface. If the bulk of specular reflection from an object point occurs
into the camera sensor through a single specular plane of incidence then the Fresnel reflectance model implies that this
plane can be determined using a polarizer in front of the camera. Assuming that this specular plane of incidence contains
the surface normal (true for smooth surfaces and a large number of rough surfaces) the polarization Fresnel ratio can be
used to determine the specular angle of incidence. Determination of the specular plane of incidence together with the
specular angle of incidence uniquely specifies local surface orientation. We are currently proposing to build an integrated
system of vision algorithms which simultaneously (i) classify material surfaces, (ii) separate reflection components, and.
(iii) determine local surface normals; all from the determination of the polarization Fresnel ratio. The current name for
the system is POLAIIS which stands for POLarization And Radioietric Integrated System.
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Abstract:

Homing is the process by which an autonomous system guides itself to a particular location on the basis of
sensory input. In this paper, a method of visual homing using an associative memory based on a simple pattern
classifier is described. Homing is accomplished without the use of an explicit world model by utilizing direct asso-
ciations between learned visual patterns and system motor commands. The method is analyzed in terms of a pattern
space and conditions obtained which allow the system performance to be predicted on the basis of statistical meas-
urements on the environment. Results of experiments utilizing the method to guide a robot-mounted camera in a
three-dimensional environment are presented.

Key words and phrases: visual navigation, 3-D vision, associative memory.

I. Introduction

Homing is the process by which an autonomous system guides itself to a particular location on the basis of
sensory input. As stated, the definition can apply to motion in a variety of spaces; for instance, movement in the
joint space of a robot arm. However, in this paper, we focus on controlling the motion of a single, compact sensor.
In particular, we consider a compact observer equipped with an imaging sensor and able to move with 6 degrees of
freedom in a complex (e.g., natural outdoor scene) three-dimensional environment which is assumed to be mostly
rigid. A particular point in the motion space of the observer (position and orientation) is designated as the
goal point. The visual homing problem is to utilize the information in the input image to direct the motion of the
observer so that it can efficiently position itself in the neighborhood of the goal point from a starting point anywhere
in a specified domain of competence.

Visual homing is an interesting problem for several reasons. From a theoretical standpoint, it is relatively
well defined for arbitrary environments. This contrasts with navigational problems which are defined with respect
to a specific environment (for example road following vehicles [Waxm87a]). Homing is thus potentially valuable as
a general purpose component for navigation systems, in which it would operate in conjunction with lower-level sys-
tems providing (for example) stabilization and obstacle avoidance (see [Nels88a Nels88b, also, Ullm79, Praz8l,
Hild83, Waxm87b]). There are also a large number of potential practical uses for a visual homing system, including
docking maneuvers, tool positioning, and grasp operations, as well as the obvious vehicle guidance applications.
Finally, the problem is interesting because it appears to be one of the simplest visual operations performed by bio-
logical systems that involves substantial amounts of learned information. (For instance, certain bees and wasps are
able to home visually in the immediate vicinity of their nests.) Because the mechanisms performing more compli-
cated biological operations presumably developed from preexisting simpler ones, it seems plausible that a general
mechanism for performing visual homing might provide a foundation for implementing and understanding more
complex abilities.

There exist a number of automatic guidance systems which effectively implement homing, ranging from
industrial robot controllers to missile guidance systems and automatic pilots. Many of these, however, use non-
visual techniques. Robot controllers generally perform some sort of dead reckoning based on internally available
coordinates; ICBMs do the same using an inertial guidance system, and a variety of automatic pilots simply triangu-
late on a set of radio beacons. Some surface-to-air missiles utilize an optical array to home on infrared signals emit-
ted by the target, which could be considered a visual method. However, this generally amounts to tracking an
unmistakable bright spot which does not require much sophistication in the way of image processing. There also
exist several experimental systems which attempt to navigate on the basis of range images [Hebe88, Dail88], or by
recognizing specific landmarks [Levi88]. In general, these methods involve maintaining an explicit map or three-
dimensional model of the environment.
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This paper describes a method of visual homing based on direct association between visual patterns and motor
control. The basic idea is to store a large set of reference patterns, each of which represents a concise description of
the environment as seen from the neighborhood of a particular position. Enough patterns are stored to cover the
domain of competence. Associated with each reference pattern is information specifying an action to be taken (for
instance, a direction of movement). Homing is accomplished by comparing an index pattern computed for the
currently visible scene against the reference patterns and determining the best match. If the match is good enough,
the scene is considered to be recognized and the associated action is executed. Note that such a system does not
utilize an explicit model of the world; rather, the relevant characteristics of the environment are implicitly encoded
in what might be viewed as the stimulus-response behavior of the system.

In order for this method to work, the transformation mapping images into the pattern space must possess
several properties. First, the patterns produced for viewpoints close to each other in the motion space of the
observer must be similar under an appropriate definition of similarity. This permits the reference patterns to span a
neighborhood of non-zero volume, and allows the system to take advantage of the fact that similar motions will usu-
ally be required at similar positions. Second, in order to avoid spurious matches, the probability that highly similar
patterns will be produced from unrelated viewpoints must be low. Third, the patterns must be relatively concise, as
it is likely that many will have to be stored. The analysis of the principles involved in satisfying these design cri-
teria is one of the major aims of this paper. Of particular interest is the possibility of obtaining quantitative esti-
mates of the size of the recognition neighborhoods and the spurious match probabilities for various methods of pat-
tem generation and different environments. These values can be used to determine whether or not the system will
work under spccific conditions.

This paper is organized as follows. Section 11 presents the basic definitions on which the system is based,
Section III describes the design of the homing system, and Section IV presents an analysis which defines the condi-
tions under which the system can be expected to work. These conditions are related to measurements which can be
made on the environment and shown to hold for a selection of natural scenes. Section V describes the implementa-
tion and testing of the method using a robot-controlled camera in a complex three-dimensional environment, and
Section VI presents conclusions and ideas for extending the work.

II. Basic Definitions and Operations

The system is based on two concepts: the notion of a pattern, and a definition of similarity between patterns
which allows novel patterns to be compared to reference patterns in memory and to be recognized on the basis of a
partial match. The definitions used are more or less classic, and were chosen to be as elementary as possible in
order to facilitate analysis of the system. The idea is to show how these simple definitions can be used in conjunc-
tion with experimentally verifiable assumptions about the structure of the visual environment to implement a robust
systerr' f visual homing.

A pattern is defined to be a tuple (al ,a2 , • am) which is an element of a pattern space A ,xA2X... xA
where A1 ... Am represent finite sets referred to as features. The idea behind this definition is the description of a
scene in terms of discrete primitives. The features can be high level or low level, binary or multiply valued, depend-
ing on the desired characteristics of the pattern space. For example, a high level binary feature might be the pres-
ence or absence of a blob having a particular parameterization in the scene; a low-level multiply-valued feature
might be the dominant edge direction in a particular receptive field.

The similarity s (p ,p 2) of two patterns which are elements of the same pattern space is defined to be the frac-
tion of positions in the tuple at which the values are identical. Thus, for example, if the pattern space is chosen to be
strings of length 3 over the English alphabet, then s(CAT, RAT) = 2/3 since the strings match in the last two posi-
tions, while s(ARM, MAR) = 0 since the strings match in no position, despite the fact that they contain the same
characters. The similarity is related to the distance metric dp, which is equal to the number of locations where the
tuples differ, by the formula s=(l-dp)/m where m is the length of the tuples. The intuitive appeal of this definition is
that it classifies visual objects as similar on the basis of the number of common features they contain.

The above definitions can be used to classify of patterns on the basis of a set of training samples as follows.
First, store in memory all the sample patterns and their classifications. These constitute the set of reference pat-
terns. When the system is presented with an unknown index pattern, it compares it against all the reference pat-
terns, and extracts the one having the highest similarity. If this similarity is above a certain recognition threshold t,
then the associated classification of the reference pattern is returned; otherwise, the system returns a "don't know"
response. This can be considered to be a primitive associative memory, since classification is, in a sense, an
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associated pattern.

A memory constructed as above has an effective limit on the number of patterns that can be stored.
Specifically, it is undesirable to store so many different patterns that an arbitrary "random" index pattern has a
significant probability of yielding a response above the recognition threshold. This would lead not only to false
recognition, but to mistakes in classification as well, since if a random pattern is likely to be recognized, it is also
likely that the best match will be due to a chance coincidence and not the result of a meaningful similarity. The sim-
plest way of avoiding such classification errors is to make the pattern space much larger than the domain of com-
petence, and rely on statistical expectations to distribute the reference patterns across this space so that they do not
interfere unexpectedly with each other. This idea is developed and made precise in the analysis section of this paper
where it is used to derive measurements from which the performance of the system can be predicted.

IH. Design Principles

The method of pattern classification described in the previous section can be adapted to the homing problem
as follows. First, design an appropriate mapping 4) from images to a pattern space, and select an appropriate recog-
nition threshold t. Then, at each of an appropriately chosen set R of reference points in the motion space, store in
memory the corresponding pattern, and associate with that pattern either a direction of motion which will ultimately
bring the observer closer to the goal, or information specifying that the goal has been reached. The set of patterns
so stored constitute a set P of reference patterns, and the associated information can be viewed as the classification.
Once the system has been trained by storing the set of reference patterns, homing is accomplished by applying 4D to
the currently visible image to obtain an index pattern, and searching the memory to find the reference pattern that
best matches. Assuming that a good match is found, the associated action is executed. This system operates
without the use of an expli it global model of the world, utilizing only locally available information. Such a system
is potentially extremely robust and, moreover, is more easily analyzable than one based on a global model, since all
the interactions are local in nature.

The key to making the system work lies in the selection of the mapping, the recognition threshold, and the
reference points. There are two basic conditions that must be met. First, the parameters must be selected so that
every point in the space of competence C of the observer generates an index pattern which matches one of the refer-
ence patterns, i.e.

(VxE C)(3yE R)s (P., Py), -t,(1

where s is the similarity previously defined, and P, and Py are the patterns corresponding to points x and y respec-
tively. For any point y in the reference set, the set of all local x such that s(P1 ,Py)>t is termed the
recognition neighborhood of y. Thus this condition simply states that the recognition neighborhoods of the set of
reference points cover the domain of competence. The second condition is that the index pattern for a point x
should match a reference pattern with antecedent point y only if x and y are near each other in the motion space.
More formally, there must exist a function r (x), sufficiently small for all points, such that

(Vx)(Vy)s (P.,Py)>t--d (x,y)<r (x), (2)

where d is a distance measure on the motion space. r can be thought of as representing the desired accuracy of the
system. This condition prevents misclassification of points. The underlying assumption is that the variety of
features present in complex scenes will, in general, be sufficient to allow a particular scene to be uniquely identified.
In practice, what will be shown is that the probability of misclass ication is sufficiently small.

If these two conditions hold, and the appropriate actions are associated with the reference patterns, then the
homing system is guaranteed to work in a static environment. If the probability of misclassification is nonzero but
small, as will generally be the case in practice, then the system will work with high probability. In this case, the
probability of error is bounded by the probability of making a misclassification on the path from the starting point to
the goal. In fact. the situation is considerably better due to the fact that, since all reference is local, the system can
generally recover from the effects of an occasional misclassification.

The two equations given above and the nature of the homing problem impose specific constraints which can
be used to guide the design of the pattern space. First, the patterns produced for viewpoints which are close to each
other in terms of movement of the vehicle should be similar, since similar motions will probably be required. This
ensures that the reference points generate meaningful recognition neighborhoods. Note that the larger the recogni-
tion neighborhood, the fewer the number of patterns that must be stored to cover a given space and satisfy Equation
1. Second, and conversely, the patterns produced at widely separated locations should be dissimilar since dissimilar
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motions will probably be necessary. This is the essence of the constraint in Equation 2. Third, the pattern space
must be large enough to hold the required number of viewpoints without impairing its "don't know" capacity.
Fourth, the patterns should be relatively small in terms of the information required to describe them, since many will
be stored. Thus, for example, storing the gray-level representation for the entire image would not be a good stra-
tegy. Finally, since the system is desired to work in real-world environments, the visual features chosen should be
relatively insensitive to changes in lighting and to small perturbations in the physical environment.

A relatively simple idea which satisfies these constraints fairly well is to use the orientation of edges in local
receptive fields. The basic strategy is as follows. First, identify edges in the image using some simple operator, and
classify them into one of n (say 8) directions on the basis of the gradient direction at the edge points. Then divide
the image into a set of receptive fields (for example, a 5x5 grid of squares), and determine the dominant edge direc-
tion in each field. The pattern consists of the vector representing the dominant orientation for each field. The scale
of the edge detectors should be set so that, for well textured images, only a few lines run through each of the fields.
The gradient estimators should be similarly scaled. This ensures that edges at the appropriate scale determine the
pattern. Figure 1 illustrates the situation for a 5x5 grid of local rzceptive ficld, awid a classification of the edges into
8 possible orientations. In this case, the patterns consist of vectors of 25 features, each of which can assume 8
values.

Such patterns are concise, and edges are relatively stable features under changes in lighting. The technical
conditions are easily checked. Since the dominant orientation is determined by a few edges in each receptive field,
the patterns will tend to change gradually with observer position as it will take a substantial change to move all of
the edges out of their original fields. Thus the patterns behave as desired under observer motion. The size of the
pattern space also seems to be adequate. For example, if the patterns are vectors of length 25 with 8 possible values,
and the recognition threshold is 50%, then the probability that two patterns chosen randomly from a uniform distri-
bution will have a similarity > t=50% is about 1.5x10 - 5 . For patterns of length 49 (corresponding to a 7x7 array of
receptive fields) the value is about 5.5x1C-10 . (These values can be computed from the cumulative binomial distri-
bution.) Of course there is no guarantee that the patterns arising from real images will be uniformly distributed
through this space - in fact, the existence of large-scale structure in the world would suggest otherwise; however,
the scale of the probabilities suggests that there is enough room in the pattern space to deal with practical problems.
The question of the actual distribution and the error probability in patterns taken from the real world is taken up in
Section IV.

Figure 1: Edge image and pattern representing dominant edge direction in 5 x
5 array of receptive fields. The ticks in the pattern represent the direction of the

grauilnt ac ss the do(01nant edges.
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Another issue that must be addressed is the question of the accuracy of the homing system. In general terms,
the maximum accuracy with which the system can position itself with respect to any one of the degrees of freedom
is approximately equal to the radius of the recognition neighborhool in that dimension. There is thus a basic trade-
off involved in determining the size of the recognition neighborhoods. On the one hand, using a large neighborhood
reduces the number of patterns that must be stored. On the other hand, the same large neighborhood reduces the
accuracy of the homing system. One solution is to use a multiple resolution system. Far from the goal, a coarse
resolution and large recognition neighborhoods can be used to approximately position the observer. Closer to the
goal, information from a higher resolution set of features is used. By doing this at several levels, very high accuracy
can be obtained over a relatively large domain of competence with the use of a modest amount of memory

Reducing the required amount of storage is an important issue for several reasons. In the first place, there
may be physical limitations on the available memory which must be observed. In general, however, a more impor-
tant reason for limiting the number of reference patterns is to minimize search effort, and to reduce the chance of
exceeding the capacity of the pattern space. There are several strategies that can be used to improve the perfor-
mance of the system in this respect.

A simple method of reducing the required memory is to utilize a physical search strategy to eliminate one or
more degrees of freedom. For example, given a domain of competence encompassing one rotational and two trans-
lational degrees of freedom, one might store patterns only for a single value of the rotation parameter. If the system
does not recognize the scene at the outset, it rotates until it does, and then moves in the remaining degrees of free-
dom. If the time needed to search the memory is short with respect to the time it takes to move the observer (as is
the case with biological systems), then this could be an efficient strategy.

A more sophisticated method of reducing the search space and sparing the capacity of the pattern space is to
make use of intermediate goals. The basic idea can be illustrated by considering the case of following a well-
defined path. The path can be conceptually divided into a number of segments with an intermediate goal at the end
of each. Along each segment, only the memory relevant to that portion of space is searched. When an intermediate
goal is reached, the current memory is deactivated and the piece of memory describing the next segment is
activated. Thus the information for one portion of the space does not interfere with information about another. The
multi-resolution strategy described above is a special case of this.

The use of intermediate goals can be viewed as a simple method of utilizing the geometric structure inherent
in the problem to organize the data. The idea can be generalized to link together separately described regions of
space in more than one dimension. Carrying this process to its natural limit yields a "moving window" structure
which organizes the memory at the granularity of the individual patterns over the full dimensionality of the motion
space. This would be implemented by linking each pattern to the other patterns in the memory which correspond to
points a short distance away in the motion space. During homing, these patterns are the only ones which would be
accessed and compared. In a conventional machine, such an organization could be accomplished with pointers. In
a neural implementation, excitatory links could be used to "preactivate" certain units. Use of the above method
would virtually eliminate problems with saturation of the pattern space and with bounding the search. This is an
important conclusion because it means that, in principle, the size of the domain of competence is limited only by the
size of the physical memory and the efficiency of the encoding transformation.

IV. Analysis of the Associative Memory

In the previous section, two equations were presented which established conditions under which the homing
method could be expected to work in a static environment. Informally stated, these conditions were first, that it be
possible to store patterns corresponding to a set of reference points whose recognition neighborhoods cover the
desired domain of competence, and second, that the probability of an index pattern being misclassified be
sufficiently low. For a given pattern space and environment, there are two pieces of information which are critical
to determining whether the conditions can be satisfied. The first is the size of the recognition neighborhoods. This
will determine how many patterns must be stored to cover the desired domain of competence. The second is the
probability pf that two patterns corresponding to mutually distant points will match (i.e. have similarity >t). From
these, the probability ps of misclassification can be determined.

Recall that the recognition neighborhood of reference point is the set of all local points which produce pat-
terns whose similarity to the reference pattern equals or exceeds the recognition threshold. For the purposes of
visual homing, an attempt is made to design the pattern space so that the recognition neighborhood is a simply con-
nected volume surrounding the reference point. In order to predict the number of reference points needed, and to
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determine their spacing, some ,.stimate of the size and shape of the recognition neighborhoods must be obtained. In
general, these quantities may -epend upon the location of the observer in the motion space.

The size of the recognition neighborhood about a particular point in the motion space can be determined
directly by moving the observer about and comparing the patterns at a large number of positions in the neighbor-
hood of the point. By following such a procedure for many points in the motion space, an idea of the average sizes
of the neighborhoods in various regions can be obtained. However, for spaces of more than two dimensions, this is
a lot of work. A somewhat less arduous procedure would be to determine, either empirically or on the basis of
knowledge about the features composing the patterns, the one-dimensional extent of the recognition neighborhood
along each degree of freedom. The volume of the full neighborhood could then be estimated on the basis of these
values. The naive formula would be simply to take the n-dimensional rectangle with principal axis lengths equal to
the corresponding one-dimensional values. This corresponds to an n-ball in the motion space under a scaled max-
length or chessboard metric. However, it ignores the cumulative effect of motion along different degrees of free-
dor, and produces an overly optimistic estimate of the volume. Use of a different metric can take this into account.
It can be shown that, under reasonable assumptions, the recognition neighborhood will contain, in the worst case, an
n-ball under an appropriately scaled sum or city-block metric, which corresponds to the n-dimensional analog of the
octahedron. (Basically, one argues that the difference between patterns obtained at points x and y in the motion
space is bounded by the change that can accumulate if the observer mn", from x to y along a path that changes one
coordinate at a time.) In practice, the neighborhoods tend to lie su. e between the worst-,.ase city-block n-
ball and the Euclidean n-ball.

As an example, consider the problem of two-dimensional translation parallel to a flat, patterned surface. Let
the pattern space be defined by edge orientation in an array of local receptive fields as described in the previous sec-
tion. Since the edge detectors are designed to produce only a few lines crossing each field, the feature value is prob-
ably determined by one strong edge, and will change when that edge moves out of the field. The diameter of the
recognition threshold can thus be estimated theoretically by computing the motion which would, on the average,
cause a fraction I-t of a randomly distributed set of points to move from their original fields. For translational
motion, the decrease should be fairly linear; thus for a recognition threshold of .5, the recognition radius along each
coordinate should correspond to a movement which causes the image to translate about halfway across the local
receptive field.

The above situation can be easily simulated by windowing in a single large image. A series of tests were run
using the four images shown in Figure 2. The pattern space utilized a 5x5 array of non-overlapping receptive fields
each 9x9 pixels with a recognition threshold of .5. For each image, results for 100 different positions were com-
bined to obtain an idea of the typical behavior in the neighborhood of a reference point. The arrays shown in Figure
3 depict, for each image, the average recognition neighborhoods in the two-dimensional motion space. Unit dis-
tance corresponds to a motion which would cause an apparent motion in the image of one pixel. The symbol "*'"

indicates the location of the reference point and "+" indicates locations where the scene was recognized. Note that
the shape of the recognition neighborhoods fall between a diamond (city-block metric) and a circle (Euclidean
metric). Also note nat the radii, as predicted, are approximately the distance required to move the image halfway
across the receptive field (here 4-5 units since a unit corresponds to a motion of one pixel).

In higher dimensions, some care must be taken in packing non-cubical regions together so that all the comers
get filled. The severity of the problem becomes apparent when one notes that the proportion of the unit cube which
is occupied by unit spheres under the other metrics decreases exponentially with increasing dimension (Table 1).
For more information on n-dimensional geometry see [Coxe48] and [Somm29].

The second problem that must be addressed is showing that the probability of misclassifying a pattern is
sufficiently low. Recall that the basic approach is to use a pattern space which is large enough to make it unlikely
that an arbitrary pattern will be sufficiently similar to one of the reference patterns to trigger spurious recognition.
The hope is to show that if an index pattern with antecedent point x matches a reference pattern with antecedent
point y then, with high probability, x and y will be relatively close together in the motion space.

The first step is to define spurious similarity. As a shorthand, two patterns will be said to match if they have a
similarity greater than the recognition threshold t. Now consider a scalar function r (x) on the motion space which
can be viewed as the desired accuracy of the system with respect to some distance metric d. If two patterns P. and
PY with antecedent points x and y match, (i.e., s(P,,Py)>t), but d(x,y)>min(r(x),r(y)), then the match is said to be
spurious. In such a case, the similarity is presumably due to chance rather than physical proximity of the antecedent
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F'igure 3: Average recognition neighborhoods for images of Figure 2.

Table 1
_______Volurn of n-hiiaof radius I____

Dimension citv-block Euclidean chessboard
1 2 2 2
2 2 7T 4
3 4/3 4701 8
4 2/3 gr2 /2 16
5 4/15 87t2 /15 32

points.

Thc function r provides the basis for a precise condition to be used in evaluiting the probability of
misclassification. Let x and y be an index point and a reference point respectively, and let P, and Py represent the
corresponding patterns. Now let p, represent the conditional probability that d(x,y) !min(r(x),r(y)) given that
S (P5 P,)>t, where d is an appropriate metric, and s is the pattern similarity. In other words ps represents the proba-
bility that a given match is spurious. If it can be shown for a given r that
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PS < 4. (3)

for some sufficiently small value It, then a bound can be placed on the probability of the system making a naviga-
tional error due to misclassificatioii of a pattern. Clearly r must contain the local recognition neighborhood if the
condition is to be satisfied for reasonable values of It. The best possible result would be to show that the relation
holds for values of r which are just slightly greater than the radius of the recognition neighborhood.

One way to show that (3) holds is to compute the "spurious match" probability p, directly for a given r, and
show that it is sufficiently low. Two values are needed to do this: a "near match" probability p, which is the pro-
bability that two patterns with antecedent points x and y will match given that d(x,y)<min(r(x),r(y)), and a "far
match" probability which is the probability that two patterns will match given that d(x,y)>min(r(x),r(y)). In gen-
eral, p, is expected to be fairly large, and pf very small. These values depend both on the structure of the pattern
space and on the nature of the environment, and thus represent a real world component in the analysis.

Consider two domains A and B in the motion space. Later these domains will be interpreted as the sources of
index and reference points. In general, their intersection will be non-zero, and in many cases they will repre,_ent the
same region. Now consider a point pair x,y where xEA and ycB. The probability p, that the corresponding pat-
terns P. and Py match is given by

Pn PfPd,+PnPd <r (4)

where Pd_> is the unconditional probability thai d(x,y)>_min(r(x),r (y)) and Pd<; is similarly defined. The probabil-
ity p, that the match is spurious given that a match exists is then

PfPd r _ P(1-Pd<r) (5)
PfPdr+PPd<r p( Pl-Pd<r)+,,Pd<,

Note that p, is just the conditional probability pd_ given that P. and Py match. In general, the regions A and B will
extend over distances much larger than r, so that n"<, is small compared to 1. Thus p, can be approximated by

PS PP .(6)
Pft+P.Pd <r

Furthermore, in the anticipated event that p, is small, pf must be small with respect to P,,Pd,. Thus the further
approximation

ps - f (7)PnPd r

can be made.

The value of Pd<,r must now be determined. It was noted above that, in general, the regions A and B will
extend over distances considerably larger than r. This will also be the case for the intersection ArnB. If this is true
then, for reasonably configured regions (i.e, no pathologically shaped common boundary), the distance between x
and y will, in most cases, be less than r only if both x and y lie in the region of intersection. If the distribution ofx in
A and y in B is uniform, and the two points are assumed to be independent, then the probability that x lies in the
region of intersection is given by IArB I/IA I where the magnitude corresponds to volume, and likewise for y. If
the distribution of points within the regions is not uniform, the same formula can be used with volume replaced by a
weighted integral. Within the region of intersection, the probability Pd<,r is the ratio of the average volume v, of a
ball of radius r in that :egion to the total volume of the intersection region itself. Hence

Pd< 7 Ard 12 vr I A nB I v, 81IAI IBIAVBrI IA BI (8)

If A and B represent the same region, this reduces to v,/Vtot where V,,o is the volume of the entire region of interest.

Combining (7) with (8) yields the equation

pfIA IIB I
p, IA rB Iv,.

Since the recognition neighborhood will, in general, be contained by the r-neighborhood, p, is given by the average
volume ratio of the two neighborhoods. In general, r can be selected so that this ratio is approximately consunt, in
which case PV,=v,/Vr where v , is the average volume of the recognition neighborhood. Hence
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Ps _ pI1A I 1B 1
v,ArB I(10)

and in the case that the two regions are the same

Ps PfVtorpfvgo-- (11)
Vrn

Thus the probability of misclassification by the system is approximately the minimum number of recognition neigh-
borhoods required to cover the region of interest, times the probability of two patterns matching accidently. This is
more or less what would be expected intuitively.

Now let A correspond to the source domain from which index points are to be drawn, and let B correspond to
the domain of competence covered bgy the recognition neighborhoods of the reference points. In practical applica-
tions, these regions will be well behaved in the respects required by the preceding derivation, which means that p,
can be calculated using (10) or (11) and used to show that (3) is satisfied.

It remains to determine a value for the "far probability" pf. Recall that pf represents the probability that two
patterns whose antecedent points are separated by a distance greater than r will match. Intuitively, it corresponds to
ihe match probability for "unrelated" patterns, that is, patterns for which any similarity is due to chance rather
proximity of the antecedent points in the motion space. The simplest approach is to assume first, that patterns for
points separated by d>r are uncorrelated, and second, that the patterns obtained from the environment are uniformly
distributed over the pattern space. In this case, pf can be computed theoretically from the characteristics of the pat-
tern space. The first assumption is reasonable, since a pattern space which works well for the homing application
will tend to have this property. For example, in the edge-based pattern space discussed in Section III, the long-
range correlation of edges, at least in messy natural images, is fairly low. The second assumption is questionable,
since it implies that there is also no short-range correlation of the features. It is certainly suspect for the edge-based
space of Section III, since short-range correlation of edges will be found in almost any image. The value for pf
computed under the assumption of uniform distribution represents a best case, i.e., p/ can not possibly be any
smaller. This is a consequence of the information-theoretic result which states that the ensemble having maximum
entropy is a uniform distribution (see for example [Gall68]). It thus has value as a screening test for a proposed sys-
tem. If the pf is insufficiently small under the above assumptions, then the system certainly will not work.

For the pattern spaces of Section III, the computation of the match probability for patterns drawn indepen-
dently from a uniform distribution is straightforward. The patterns consist of n independent features each of which
can make on m values with equal probability. They can thus be thought of as strings of length n over an alphabet of
m characters. The probability that two patterns selected independently from such an ensemble will match in k or
more positions is just the value of the cumulative binomial

i,[J (l/m)i(l-I1/m) - i .  (12)

Table 2 lists the value of this expression with m=8 for a number of pattern lengths (n) and several similarity
coefficients (k /n). As can be seen from the table, there is a great deal of space available for modest sized patterns
and reasonable (e.g. 50%) recognition thresholds. Moreover, the match probability at a given recognition threshold
decreases exponentially with increasing pattern size. Hence as long as additional features with some degree of
independence can be added, there should be little trouble devising a pattern space of sufficient size for any particular
problem, assuming that the features used are adequate in other respects.

As was mentioned above, the ensemble of patterns generated from the environment is unlikely to be uni-
formly distributed, and consequently the value of p1 in a real application tends to be higher than would be predicted
from the above formula. The actual departure from the uniform value varies considerably depending on the particu-
lar environment. Since it seems unlikely that an abstract model for natural scenes can be devised which does not at
least use empirically determined parameters, obtaining an approximation for pf will probably require empirical
measurements of some sort. The most direct method of determining Pt is simply to estimate the match probability
statistically by comparing the patterns corresponding to a (large) number of points separated by distances greater
than r. The required number is not actually as large as might first be supposed. k points will produce on the order of
k 2/2 interactions, so probabilities on the order of 10- 5 could be reliably estimated, and upper bounds on the order of
10- 6 obtained on the basis of a few thousand patterns.
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"Iab'.e 2
Probability of 100k/In percent match between two
random strings of length n over alphabet of size 8.

Length
I M)k/In 10 20 '10 40 50L

10% 7.4x10 - ' 7.3x10 - ' 7.4x10 - 1 7.5x×10 "-' 7.6x 10- 1

20% 3.6x10 -1  2.3x10 - 1  1.6x10 -1  1.2x10 -1  8.8X10 -2

30% 1.2x10 -1  3.1X10 -2  9.0X10 - 3  2.7x10 - 3  8.6x10 -4

40% 2.7x10 - 2  1.8x10 3  1.4x1O-4  1.1XI0 -  9.3x10- 7

50% 4.4x10 -3  5.2x10 -5  6.8x10 -7  9.6X10 - 9  1.4x1i -('
60% 5.1x10 - 4  6.9x10 -7  1.1X10 - 9  1.7X10 -1 2  2.9x10 -15

70% 4.0x10 -5  4.2x10 - 9  4.9x10 - 13  
6.2;<10

-17 8.Ox10 - 21

80% 2.1×10-6 1.0X10" l  5.8X10 - 7  3.4x10 - 22  2.1x10 -27

90% 6.6x10 - 8  8.2x10 5  l.1X10-21 1.7x10-28  2.5x10- 35

1 00k/n 60 70 80 90 100
10% 7.810' 7.9x10 -1  8.0X10 -1  8.lx0 -  8.2x10 1

20% 6.6X10 -2  5.0X10 - 2  3.8x10 - 2  2.9x10- 2  2.2x×10 - 2

30% 2.7x10- 8.7x10 -5  2.8x×0 -5  9.2×10 - 6 3.0x10 - 6

40% 7.8x10-8 6.7X10 -9  5.7xl0- 10  5.0X10 11  4.3x10 -
1
2

50% 2.0x10 - 12  3.0x10- 4  4.5x10 - 16  6.8xl0 8  1.ox1 - 9

60% 5.0×O10 -l  8.6x 10-21  1.5x10 -23  2.7x1 0-26 47x 10- 29
70% I1.0X10 - 2  1.4x10 - 21 1.9X10 - 32  2.5X10 -3 6  3.5XI0-4
80% 1.3x10 2 8.2x 10-38  5.2x10- 3  3.4x10- 8  2.2x10- 53

90% 3.9X0 -42  6.1x10 - 9  9.6x10 -5 6  1.5x10 -62  2.4x10 -69

A number of experiments were performed to compare the values of the "fa. match" probability ' for pattern
ensembles based on real images to the values computed for a uniform distribution. Three edge-based pattcrn spaces
were used, utilizing 5x5, 6x6 and 7x7 arrays of local receptive fields. The same two-dimensional scenario that was
used to test the local similarity was used here, the only difference being that the sample points were separated by
sufficient distance so that no point in the image contributed to the same feature in two different patterns. Measure-
ments were made for the four images used previously. Regions without visible features, such as uniform rky, were
excluded from the analysis. Approximately 6000 patterns were used in computing Pf for the tree, orchard, and
storm images, and ,pproximately 2500 for the stone image. 6000 patterns generate on the order of 2X10 7 interac-
tions; however, the conciseness of the patterns allowed all the comparisons to be made in a reasonable amount of
time. Tablc 3 summarizes the results of the experiments.

As expected, the match probabilities are higher than would be predicted from a uniform distribution, with the
magnitude of the difference varying acc( rding to the image used. The probabilities for the orchard image are smal-
lest, and thus closest to the uniform values for both pattern spaces, probably because the picture is full of very fine
dctail with little correlation at the scale of the operators used. In general, the match probabilities are low enough to
allow a considerable number of patterns to be stored with little risk of misclassilication. The table also illustrates
the dramatic effect of a modest increase in the size of the pattern. Going from a 5x5 array to a 6x6 increases the

Table 3
Match probability for "unrelatedi" patterns

5x5 6x6 7 7

Uniform 1.5x10 -5  .2x10-' 5.5x10 -'(
Stone 6 .5x10(

-  3.6x10-6 <1()-6
Tree 5.2x 10 - 6.3x10-6 3.3x l0- 6

Orchard 2.8x0 -5  1.7xl0 -7  <10 -1
Storm 1.1x10 -

4 4.Ox10-6 9.1XI0 -7



storage requirements by less than 50%, but results in a 10-fold or greater increase in the number of patterns that can
be stored at a given misclassification probability. This suggests that, at least for edge-based pattern spaces of the
type considered !.ere, reduciag Jie chance of spurious classification to an acceptable level is not a major problem.

Using the above results, it is possible to predict the size of the domain of competence that can be covered.
Table 3 indicates that an edge-based pattern space utilizing a 7x7 array of receptive fields (49 features) would per-
mit on the order of 10" reference patterns to be stored with only a small (1%) chance of misclazqifirntinn ThiQ ic
also about the maximum number that could be comfortab!y handled by our experimental system. The question iN,
\hat kind of domain can be covered using ten thousand reference points? The answer depends on the nature of the
d,'-ircd domain of competence.

As a first example, suppose that the motion space corresponds to two-dimensional translation at constant alti-
tude with a downward looking observer over an environment where the vertical relief is relatively small compared
to the altitude of the system (Figure 4). In order to make the results meaningful, suppose that the motion space is
scaled so that one unit corresponds to a movement which will cause an image shift the diameter of the visual field.
One unit of area in the motion space thus corresponds to a "camerafull". If the image contains 7x7 visual fields,
the recognition neighborhood would be expected to have a diameter of about 1/7 unit, and an area (if the worst-case
city-bNock metric is assumed) of about l/2xl/7xl/7-1/100 square units. t0W reference points will thus permit a
domain of competence corresponding to about 100 camerasfull. This is fairly sizable in a local sense. In concrete
terms, it corresponds to learning about 4 square miles from an altitude of 1000 feet with a 60°x600 field of view.

As a second example, consider the same situation but with a rotational degree of freedom added to the motion
space. A rough calculation of the rotation that would cause the principal edges to move out of half of the receptive
fields yields a ballpark figure of 1/25 of a revolution (150) for the diameter of the recognition neighborhood along
the rotational degree of freedom. The volume of the recognition neighborhood, (again assuming the worst-case
city-block metric) is 1/6xl/25x1/7xI/7---/7500 revolution-camerasfull. 104 reference points would just cover one
camerafull over a full rotational degree of freedom. This would be sufficient for performing local docking
maneuvers, but the result also indicates that the edge-based patterns are not particularly appropriate for performing
coarse orientation movemc-ts in several degrees of freedom. A better plan would be to use a pattern space having
features with considerable invariance under rotation to roughly orient the observer, and then use an edge-based sys-
tem to perform accurate maneuvers. Such coarse pattern spaces might utilize higher level primitives, for instance,
parameterized blobs or colored regions.

As a third example, consider the problem of navigating a course along a system of roads. The homing system
must keep the vehicle centered in the road, and negotiate turns at the proper time. The domain of competence can
thus be considered as a "fat" one-dimensional space. The primary extension is along the forward translational
degree of freedom, but a small buffer zone in the other two degrees of freedom (one rotational, one translational) is
needed to direct the vehicle back to the correct path should it start to wander off. A 3x3 extension in these two
dimensions should be sufficient, and resultant domain can be viewed as a "worm" of diameter 3 wandering through
an (x,y, C) motion space (Figure 5). L7 the camera has a 450 field of view, and it is assumed that there is scenery
along the sides of the road, then rough calculations indicate that the diameter of the recognition neighborhood in the
direction of forward motion for a 7x7 array of edge features is approximately w/7 where w is the width of the road.
In this case, mo, of the diameter can be used, which leads to a domain of competence of length
10,x/9×l/7xw]00w. For a road width of 50 feet, this is about a mile. If a special purpose system were available
for keeping the vehicle on the road, and the memory were used only to recognize regions within (say) 100 feet of
w here a turn had to be made, then a longer course could be navigated.

V. Implementation and Testing

A system based on the principles described in Section III was iml,;cented, and its performance tested in a
Sistally complex domain. A mobile observer was implemented by attaching a small ccd camera to a robot arm. By
appropriate motion of the robot, the camera can be moved about the environment with six degrees of freedom.

The pattern association sy;tem utilizes an edge-based pattern space of the type described in Section IllI.
Specifically. the patterns are composed of 25 features which correspond to the dominant edge direction in a 5,5
array of non-overapping recepLive fields. Generally, the feature value indicates one of eight possible directions, but
there I, also a ninth "don't know" value which is used to inlicate insufficient information. The iecogniion thiec,-
hold xas ,Net at 12 matches, i.e., approximately .5. The array is scaled to cover the 35 x48 field of view, and lhus, IN
'ictul h(ir homing at rather coarse resolution. If better ultimate resolution is required, a ,,mailer subfield Louldi b,,
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Figure 4: Geometry for observer moving over Figure 5: Restricted domain of competance in
landscape in three degrees of freedom, three degrees of freedom sufficient to guide an

observer along a particular path such as a road.

used for fine-tuning the position near the goal. The results of Section IV indicate that this pattern space could be
expected to have a pf somewhere in the range from 10-5 to 10-4, which would permit on .he order of 100 patterns to
be stored with less than a 1% chance of spurious identification. This capacity was sufficient to permit the initial
experiments to be successfully carried out.

The system memory is created by a training procedure. In this phase, the camera is positioned at a number of
reference points in the motion space. At each point, a picture is taken by the camera, and the corresponding pattern
extracted by the image processing software. Also at each point, the system determines what action is appropriate to
take at that location (e.g., "stop, the goal has been reached", or "move one inch in the z direction"). The pattern
and a code for the associated action are then stored as a "memory trace".

Once the system memory has been established by sufficient training, the following procedure is used for hom-
ing. First, an image is acquired from the camera and the corresponding index pattern computed. This pattern is then
compared against the reference patterns ir. memory, and the one having highest similarity is extracted. If the simi-
larity is higher than the recognition threshola, the associated action code is retrieved. In this implementation, the
code either specifies a direction of motion or indicates that the goal has been reached. If movement is indicated then
the robot is instructed to move the observer a small distance in the indicated direction. This incremental motion
minimizes the consequences should spurious recognition of a pattern occur. Several heuristics are included to make
the system more robust. For instance, if no match is found for the index pattern, an additional muve is made in the
previous direction in the hope of skipping over the "blind spot . If no previous information is available, the system
enters a random search. Similarly, two successive goal-reached codes are required for the system to conclude it has
indeed reached its goal.

The procedure described above is actually a discrete simulation of a much finer-grained "continuous" control
procedure which could be uscd if the cycle time were fast enough to permit real-time dynamic operation. In this
case, the action code would specify a desired velocity (direction and magnitude) rather than simply a direction of
motion. The motion persistence, which was included rather artificially in the discrete procedure in order to make it
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more robust, would tend to arise naturally from the dynamics of the system in the continuous case.

As a test of the system, a model environment fancifully christened "Tinytown" was constructed using HO
:c~ic scenery: trees, bushes buildings, etc. The model, is shown in Figure 6. The robot was configured so that the
camera pointed towards the "ground" and was constrained to move in a two-dimensional motion space parallel to
the this ground plane. The resulting images thus simulate low-altitude aerial photographs. Figure 7 shows one such
imaige and the results of various stages of processing. Figure 7a shows the original image, 7b the reduced resolution
version, 7c the results of edge extraction, and 7d the 5x5 pattern of dominant edge directions.

The model environment consists of about four camerasful at the selected elevation. In order to exercise the
ability of the system to deal with occasional unclassifiable patterns, a slightly coarse sampling grid was chosen for
training. Approximately 120 reference points were needed to cover the two-dimensional motion space. A goal
position was se'cted in which the camera was approximately centered over the model and the patterns correspond-
ing to the 3x3 block of reference points surrounding this positions were assigned goal-reached action codes. The
rest of the reference patterns were assigned one of eight directional codes corresponding to the straight-line direc-
tion to the goal.

Figure 8 shows the results of testing the system on a grid with twice the sampling rate of the reference grid in
a region surrounding the goal. The figure indicates the value of the action code determined for each point, or
whether the pattern was unclassifiable. As expected, because of the coarse spacing of the reference points, a fair
number of the points (about 25%) yield unclassifiable patterns. However, of the points where an action code was
returned, only one has a value which would misdirect the system. This is consistent with the estimate mentioned at
the beginniig of this section, that the pattern space could result in a 1% spurious classification rate for 100 stored
patterns.

The information provided by the memory, even with the coarse reference sample, is sufficient to permit the
svstem to home. reliably using the procedure discussed previously as can be seen from Figure 8. Figure 9 shows a
typical path taken by the system in returning from the periphery of the domain of competence to the goal. In this
case, the step size was set to .7 times the sample spacing to prevent a misleading positive result. Note that the goal
zone represents a fairly extensive region. If a more accurate final position is required, the above procedure would
represent only the first step of a multiresolution process. Instead of halting upon reaching the goal zone, fie system
would perform a context switch, activating a different associative memory whose domain of competence approxi-
mately encompasses the goal zone, and a higher resolution set of sensors.

Figure 6: "Tirytown"
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Figure 8: Results of testing associative memory Figure 9: Typical path followed by robot.
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and dots a "don't know" condition. boxes a goal-reached condition, and question marks

a "don't know" condition.

The above results support the position that an associative memory based on the principles presented can be
used to implement visual homing in a general, complex environment. The results of the analysis and empirical
experiments involving the storage of thousands of reference patterns carried out in Section IV are persuasive evi-
dence that the system could be made to work in a more extensive environment. The only change necessary would
be to use a slightly larger pattern, say one based on a 7x7 array of receptive fields, in order to provide more capacity
in the pattern space.

VI. Summary and Directi-ns for Future Work

This paper has argued that visual homing constitutes a basic navigational operation for which a general solu-
tion exists. In particular, a method of visual homing based on the direct association of visual patterns with observer
motions has been described. The basic idea is to store a large number of reference patterns, each of which is a con-
cise representation of what the world looks like in the vicinity of a particular reference point, and to associate with
each pattern a movement which will bring an observer at the antecedent point closer to the goal. By storing a
sufficient number of reference patterns, it is possible to associate an arbitrary index point (within a specified domain
of competence) with nearby reference points on the basis of pattern similarity, and thus obtain an appropriate
motion. The proposed method relies on the fact that there exist mappings which take images into a concise pattern
space in such a way that the patterns corresponding to images from close pairs of points are similar, and the patterns
corresponding to images from distant pairs are unlikely to be similar.

The paper provided an analysis which identified explicit conditions under which the method could be
expected to work. It was shown that both the required number of reference points and the probability of error can
estimated on the basis of the structure of the pattern space and measurable properties of the enviionment. General
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high-level considerations suggested that a group of edge-based pattern spaces might represent one class of mappings
having the required properties. Large scale statistical tests run on a variety of natural images tended to support this
position. On the basis of the tests and analyses, it was concluded that a homing system using an edge-based pattern
space would be practical for performing accurate navigation in "fat" one- or two- dimensional spaces. Problems
such as city street navigation can be put in this form. Coarse orientation in several dimensions seems to require a
different pattern space. As a practical demonstration, the method was implemented using a camera mounted on a
robot arm to navigate in a model environment. The system was able to home successfully in a complicated 3-D
environment.

The proposed method has several advantages. First, it is a general navigational technique. It can be applied
in any environment which has sufficient visual variety in a sense which has been well defined. Training for a p,-rtic-
ular application is accomplished using a set of examples which are selected on the basis of a well specified set of
principles. Second, the method is quite robust, both in terms of dealing with small changes in the environment, and
in terms of recovering from the results of misclassification or missing information. This robustness is due both to
the qualitative nature of the pattern matching process, and to the redundant formulation of the problem which results
in similar information being available at neighboring points. Thus if a mistake is made at some point, or the neces-
sary information is unavailable, it is likely that correct information will be provided nearby. Finally, the method is
easily realizable in a massively parallel architecture, which makes it a candidate for real-time implementation.

This project sparked a large number of ideas for continuing research. One avenue concerns the identification
of pattern spaces which are appropriate for handling large-scale rotational orientation at a coarse resolution. This
leads directly to applications in 3-D object recognition. Another avenue concerns the apparent generalizing ability
of systems utilizing the sort of associative memory described here. In one experiment, the system was trained to
home on the noses of 16 different faces. It was then able to successfully home onto the nose of a face it had not
seen before. This kind of behavior has implications for automatic generation of special purpose systems such as
road followers. A third avenue involves the consequences of attempting to implement the method using a neural
paradigm. In order to do this in a reasonable manner, it turns out that modifications must be made to the memory
storage procedure which have the side effect of causing the system to organize the information in a way that can be
interpreted as automatic generation of classes. All three avenues appear potentially fruitful.
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Abstract: An approach to representing objects viewed over long periods of time and with chani-ing resolution.
is presented. The basic strateg- is to apply different representations as they become appropriate. is a result, the
model of an object typically goes through a sequence of representations as new data are gathered and processed.
One of these sequences might start with a crude blob description of an initially detected object, include a detailed
structural model derived from a set of high-resolution images, and end with a semantic label based on the object's
description and the sensor system's task. This evolution in representations is guided by a structure we refer to
as representation space: a lattice of representations that is traversed as new information about an object becomes
availabie. One of these representations is associated with an object only after it has been judged to be valid. We
describe one approach for evaluating the validity of an object's description that is based on the temporal stability of
the description. We illustrate these ideas with results from the TraX system which constructs and refines models of
outdoor objects detected in sequences of range data.

The Problem: Temporal Integration of Information

The problem we address is how to incrementally construct a description of an object as new information about that
object becomes available. Our approach combines well-known quantitative strategies [1,4,7] with a more qualitative
technique that permits the underlying representation to change over time.

To illustrate why the temporal integration of information is important, consider the example of an autonomous
robot navigating off-road terrain. One approach to this task is to have the robot analyze one range image at a time,
completely indepc:idently [2]. At each time step, the vehicle captures a range image, computes the scene geometry,
plans a short, clear path toward the goal location, and then starts down that path. A potential flaw with this
approach is that a single mistake in processing an image can produce disastrous results. For example, assume that
the robot's algorithms occasionally make a mistake of omission - not detecting an obstacle in the field of view. If the
robot plans the next path based solely on the current image analysis, the vehicle can decide upon a (potentially) fatal
choice of action. Even if a system can detect obstacles in an image 99 percent of the time, it is almost guaranteed
to make a mistake in a short time when it processes tens or hundreds of images per minute.

In contrast with the above description, consider a system that integrates visual information over time, constructing
a visual map of its environment. Assume that a robot, again using range imagery, initially detects an object at a
distance of 20 meters (the obstacle is actually a thin thistle bush). At this range, the system cannot be certain
whether this object is a real obstacle; confirmation in subsequent images is required. By analyzing three or four
new images of the scene, the program determines that the object is real, but poor sensor resolution permits only
a crude estimate of the object's size and position. As the vehicle approaches the object, the increased resolution
allows the robot to specify the size and position more precisely; again, agreement between estimates from one image
to the next provides a high degree of confidence in the estimates. As the vehicle gets closer yet, the variance in
the estimated depth of the pixels on the object indicates that the object is not solid, but more like an open, leafy,
spine-like structure through which the laser can penetrate to different depths.

The next change in the description of the object, is to a configuration of "sticks," a shape-description language (a
specialization of generalized cylinders) well suited to describing thin objects such as fence posts and thistle bushes.
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Figure 1: The evolution of the description of an object. As more information becomes available, and as more powerful
representations can be computed reliably, the description of an object increases in its specificity.

And finally, because the descriptions of the object match those of thistle bushes, the robot can classify it as a thistle
bush. This evolution of representation is shown in Figure 1. If, during the analysis that produces these descriptions,
the bush is not detected in an image, the program does not assume that the bush has vanished. Rather, it attempts
to explain why the bush was not detected. Perhaps it was out of the sensor's field of view, was occluded by another
object, or was missed by the low-level segmentation process.

This simple description of a system that integrates information over time leads to the following observations:

* The underlying representation used to describe an object may change significantly over time. These changes
are required for the incorporation of new knowledge, whici can support stronger inferences about the object.

" A change in the representation of an object should occur only after the representation has been judged to be
reliable. Stability over time is an important method of assessing reliability.

" There is more to determining stability than counting the occurrences of a description or maintaining the variance
of a parameter. Explanations are required for the phenomena that can interrupt the continuity observed in an
image sequence, such as occlusion, limited field of view, and image-processing errors.
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POS SIZE TEXTURE

Figure 2: The representation space for the TraX system. The shaded nodes represent components of the representation in
use. A new node can be shaded only if one of its connecting nodes is shaded and the stability conditions necessary for its
acceptance have been met.

In this paper we develop these observations into an approach to building reliable descriptions of objects. We assume
that a robot is attempting to construct a model of its environment as it gathers visual data; an autonomous land
vehicle is an example of such a robot. The goal of the perceptual system is to integrate information as it becomes
available into coherent representations of the objects in the environment. To provide a control structure for the
integration of information, we introduce the concept of representation space: a lattice of representations that is
traversed as new information about an object becomes available. We contrast this structure with other approaches
to multilevel representations. The concept of stability of a description is critical to our formulation because it serves
as the basis for traversing representation space, for evolving the description of an object. Finally, we describe how
the stability analysis is combined with representation space to produce reliable object descriptions. We illustrate .:e
power of these ideas by presenting results from the TraX system, a system designed to construct and reline models
of outdoor objects detected in sequences of range data.

Representation Space

Assume, as in the introduction, that we have a vehicle or robot navigating some cross-country terrain and
constructing a visual map of its environment. Whenever a new obstacle is detected, a description of it must be
integrated into the vehicle's model of the world. To accomplish this task, we need to select a representation. As
illustrated by the example of a robot approaching a bush, one can describe obstacles as simple blobs, textured blobs,
or more detailed three-dimensional models, for example, using superquadrics or generalized cylinders. Which level
or levels of description are appropriate?

The first important point of the thistle bush example is that different representations are appropriate at different
stages in the analysis. Initially the bush can only be described as a blob with uncertain location. Eventually that
representation can be improved to include size and texture information. Once the resolution of the data is high
enough, a stable stick description can be computed. The importance of making these changes in representation is
that as the representation of the object evolves, more powerful inferences about the object can be made. For example,
when an object is represented as a blob, only rudimentary image properties such as position and spatial extent, can
be predicted. With a stick description, one can predict what the bush will look like from a different viewpoint, thus
improving the performance of object-matching techniques; the structured shape description also supports the object-
matching tasks required for localizing the robot in the world. For planning purposes, knowing that the object is a
bush allows one to infer that the bush is not an important obstacle if the robot is a ten-ton ALV. By modifying the
type of the r, pr.,entation over time, we can accommodate additional information and support additional inferences.

To make explicit the idea of multiple levels of representation, we introduce the concept of representation space -
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a lattice of representations that is traversed as new information about an object becomes available. The importance
of having a lattice is that it allows us to select representations that are appropriate for a given object, and the
selection of the representations can be guided by characteristics of t.he object.

Figure 2 shows the representation space used in the TraX system. We consider representation space to be
coImposed of fundamental represettatins and enhancements. Each fundamental representation reflects a qualitatively
,i~ti.ict representation, while an enhancement corresponds to the addition of a few parameters or an additional
prperty. 1 In the diagram, each large node corresponds to a fundamental representation; each small node, to
an e'nhancenient. As indicated, fundanental representations available in our TraX system include 2-d blobs, 3-d
lds. superquiadrics (SQ), sticks (a three-dimensional parts representation described later), and several semantic

rj r,,s,ntt ions including BUSIt and TREE.

Hepresentation space is similar to scale space [8] in that the representation of an object is not restricted to any
c410 level of description; different levels of specificity are possible. Unlike scale space, however, and unlike hierarchical

pr'sentations [3.5] representation space is not homogeneoas. Fo. example, Marr and Nishinara propose using
,.'eeralized cylinders of nianv scales to achieve a representation that spans data of different resolutions. Although
the description of an object improves as more detailed inforniation is acquired, there is no change in the type of

irifer,.nces the representation can support. Only the level of accuracy improves. In representation space, however, a
clrnge in representation often implies the ability to assert new properties about an object.

()ne, of the implications of representation space is that as new data are processed, the representation of an object
can be nodified in one of three ways. First, the parameters of the active components of the representation can be
updated. We refer to this process as rfineinenl; refinement procedures use standard filtering techniques and are
similar to algorithms used by others to reduce parameter uncertainty [1,7]. The second type of change is the activation
of a paramiter or property attached to an active representation. For example, the active representation indicated
in Figire 2 could be expanded by activating the TEXTURE node under 3D-BLOB. This type of modification is

re',rred to as enhancement; the representation is enhanced by the addition of a new parameter. The final type
of update is augmentatior; in Figure 2 this would correspond to activating either the SQ (superquadric) or the
SlI('K fundamental representation. The augmentation of a representation for an object means that the object can
he dt-scribed in a completely new vocabulary.

Arcs in the representation space diagram indicate ways that the representation of an object can be extended; that
is. they provide the control structure for the evolution of the representation. A new node in representation space
Can become active - indicate that the corresponding representation is active for a given object - only if one of
its connecting nodes is active. By shading nodes in this diagram we indicate the active components for a particular
objert. For example, in Figure 2 the large shaded node labeled 3D-BLOB indicates that a reliable three-dimensional
bloh descriptior has been computed for the object. The small shaded nodes labeled SIZE and POS reflect the fact
that lit size and position of the blob are known. 2 Thus, for this particular object, the TEXTURE, SQ, and STICKS
noes can be activated the next time data for this obi-c' -e analyzed.

Ilow do we control the activation of representatiol . It is always possible to compute a stick or superquadric
nol l or an other high-level representation of an object. However, a given description may not be a valid one. By
valid we mean that the description correctly characterizes the object, as opposed to being a transient artifact, of the
alorithin. A description of a tree expressed in Euclidean solids may bear little relation to the actual structure of the
I r,. Tiis observat ion underscores the second important point of the autonomous robot example of the introduction:
slaliityv ovr time is an indicatioi' that a description is valid. If a particular set of sticks is computed repeatedly,
w,. assuni, that this consistency is caused by the fact that the sticks accurately model the shape of the object.

'll" activation of representations and enhancements is the responsibility of supervisory processes that check for the
stalhility of computed parameters. Examples of these processes are presented in the next section.

Note t hat the arcs in representation space do not imply computational dependency. For example, the algorithms
iii t ie TraX system for computing a superquadric model of an object are independent of the e for computing a 3d -
l,db description. Thiis differs from typical "levels of abstraction" hierarchies where each new description is computed
from I he previous level representation; such chaining of representations leads to the compounding of processing errors.
It contrast, the different levels of representation space can be used to check the validity of a computed descript ion.
If thlhe 3d b)lob predicted by the superquadric model is not similar to the lob computed directly, then tie systemi

i'w, ie,'og n izet hat here is no fo rmal dist inction between levels and parameters. flowever, Ihe itit i i, that there are sev,'ral qaliia-

,t Ivlifffriit repres,'ntati(;ns, eadh of which ran be enhanced by the additior of a few parameters, is strong and wel have found the
, ih o i ti fii..

ilr this ,lii , sioll we are ignoring the issue of uncertainty in the estijinate of a parameter. lII a I ity . once the ln w-sureolili tii f 2a
I,.ralieIfr i, fet,riried t, be relatively statle we use Katman filtering techniques to ilpdaie the atue otf the, parameter ad i atii ain
an , xpli, it . iliat' of the 1 iceriaintly of the value.
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would have evidence that at least one of its descriptions is not valid. While we have not yet explored this issue in
detail. we hope to make use of the independence of representations to increase the overall robustness of the system.

Stability and Explanations

Representation space provides the basis for multiple levels of representation; the system associates a new repre-
sentation with an object only after the representation has been declared valid. Currently, our principal indication of
validity is stability over time, meaning that the bottom-up analysis of each image in the sequence produces essentially

Ihe same description of an object. This simple definition, however, is inadequate because errors in the single-image
processing can alter these computed descriptions. Therefore we augment our definition oj stability to allow for vari-
atiuns in description as long as the system can explain away these events by drawing on its knowledge of the task,
the sensors, or the analysis procedures.

The technique we use for determining when a representation is stable is to construct a quasi finite-state machine
(QFSM) for each component of the representation space. We use the term "quasi" because as an object moves
through these states the history of its traversal is recorded and can sometimes affect the exact operation of the

control structure.3 Each QFSM is designed to incorporate the various pieces of knowledge relevant to that particular
representation. Generically each QFSM has states labeled Initially-Computed, Probably-Stable, and Stable to
represent degrees of stability. Other states that appear in the QFSMs include Probably-a-Segmentation-Error,
Stable-But-Missed-Once, and Unexplained, which represent other assessments of the objects. The transitions
between the states specify the reasons for changing evaluations. Reasons include found-a-similar-representation
(in the new image), did-not-find-a-match-but-can-explain-why-not, and no-match-and-no-explanation.

Figure 3 shows a sim,lified version of the QFSM used for the analysis and tracking of 2-d blobs, the first
representation invoked for a:i object. Thus, this control structure is responsible for determining when the 2d-blob
representation should becenic active for a given object. Notice that there are several ways to enter the Initially-
Dctected state, including being detected in the first image of the sequence, coming out from behind another object,
and splitting off a previ.8asly detected object. The importance of making these paths explicit is that we can later
use the history to explain une.:pected phenomena.

Once an object is Initially-Detected we try to match titat object in subsequent images. As an object is
successfully matched it moves into the Stable state; at this point the object is considered to be "real" and attempts
to extend the representat!on are begun. If, however, after initial detection the object is no longer matched, the object
quickly moves to the Artifact state, indicating that the detected obstacle is an artifact of some processing step and
slhould be discarded.

Notice that at each state there is a nissed-but-can-explain transition. This arc represents a situation where
the object is not successfully located in an image in which it is expected, but there is an external explanation as to
why not. These explanations are crucial because they provide a way to recover from apparent breaks in continuity,
for which there are many reasons. Consequently, increasing the competence of the system requires recognizing these

situations and incorporating explanations of them into the evaluation process. We currently have implemented the
analysis required to support the following explanations:

" The object is no longer in the field of view of the sensor.

" The object is occluded by another known object.

" The object is a small, short blob far enough away that it can be easily missed.

" [he object merged with another object to form a larger object.

" The object is unmatched because an error in the ambiguity interval assignment greatly changed the apparent
characteristics of the object. (Ambiguity interval assignment is a preprocessing step necessary for determining
the true range from a phase shift range image.)

'I actuality, some explanations have a greater impact on the state of the object than simply causing them to remain

in the same state. For example, if an object's absence is repeate'ily explained by its having been nierged into some
larger object, then eventually that object is discarded; this removal of an object happens more quickly if the object
,ntered the Initially-Detected state by splitting off of some other object.

,V ,,ii, iml,,,nent the control structure using a true FSM by simply increasing the number of states. We choose not to do so bcaklse
we wui~d ,nd p with many states that were qualitatively similar, obscuring the general structure.
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Figure 3: Part of the finite-state machine for determining stability of 2d-blobs.

Figure -1 is a sequence of segmentation images produced by the single-image analysis. Object 1 (the short object
on the right) is detected in all four images. Initially, this object is not matched in the fourth image because the
object's shape has changed drastically. However, the change is mostly explained by the addition of a column of pixels
i) the last iniage. Bccausc a column-scanning algorithm is used to disambiguate the range image generated by the
phase-delay range finder, this change in an object's appearance is symptomatic of an ambiguity interval assignment
error. Thus, the program concludes that an ambiguity error has probably occurred. Object 2 (the thistle bush to the
l,,ft of object 1) is an example of a single object splitting (third image!) and then merging again. In order to build a

robust model of the environment the program must be able to handle situations such as these. The density of these
events in this short sequence is higher than usual, but they are typical of the events that occur in our analysis of
hundreds of images.

In the future we plan to expand the list of possible explanations. As we understand more of the fuidan-ntal
properties of objects and more about the behavior of the analysis procedures we can implement more exl:lanations.
thus increasing the competence of the system.

Finite state machines monitoring the temporal stability of dscriptions are used iot only to activate a particular

ropresontation for an object, but also as a method for incrementally constructing the description within a particular

representation. One example from our TraX system is the computation of "stick" models for objects. Vhien objcts

are corniposd of thin pieces. as are fence posts and thistle bushes, fie response of tlie range sensor tends to "fatte'"
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Figure 4: Tracking detected obstacles from image to image.

the parts by generating averaged range pixels along the sides. This blurring prevents other three-dimensional model
constructing algorithms (e.g., fitting the data with superquadrics) from finding the true stick-like description. To
model these thin objects we have designed a special representation we call sticks. By definition, sticks appear as
one-pixel-wide lines in range images. Thus, to compute a stick model of an object, we first thin the range image
of tile object, and then compute a minimal covering; our technique for computing the covering is analogous to that
proposed by Pentland and Bolles [6] for fitting superquadrics.

Figure 5 displays the results of applying the stick-fitting procedure to a detected object. Each model is computed
independently, making no use of the previous solution. Note that most of the resulting models capture some structure
of the bush. However, except for the last one, none captures all of the structure. The principal problem associated
with minimal-covering modeling techniques is the lack of data to constrain the models. As a result, there are often
many descriptions that characterize an object equally well. Although many approaches can be taken to improve the
stick fitting procedure, our goal is to use temporal stability to compute a more robust model.

In the interest of brevity we omit a detailed description of the strategy used for determining a stable stick
representation. The basic approach is to attempt to match sticks in the current model of an object to sticks
computed from a new range image. Model sticks that are matched by the new sticks are reinforced in terms of their
stability, and their parameters are updated using standard Kalman filtering techniques. (We use our model of the
sensor and its noise characteristics to estimate the variance of the new measurements.) Sticks that are detected once
but not matched again are eventually discarded with the explanation that they were an artifact of the stick fitting
procedure. Figure 6 shows an example of the stability analysis applied to sticks. On the left is the stick description
computed independently using the single range image as input. On the right is the set of stable sticks tracked over
time. A new stick is added to the model on the right only after it has been deemed stable. Note that the stable
description converges to (what is known to be) an accurate model of the bush.

To underscore the role of explanations in the stability analysis, consider the case in which a model stick has
been stable for some time but is then missed repeatedly in new images. Currently, we include only one explanation
that allows this stick to remain as a viable part of the representation: the vehicle has backed away from the object
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iThi-*,d THISTLEIik

Figure 5: Computing stick descriptions of a thistle bush. The column on the left displays the silhouette of the object a~s
determined by the obstacle-detection procedure; the middle column is the thinned version of the these objects. The right
column displays the best "stick" model of the thinned bush. Note that some of the sticks are quite robust, such as the vertical

stick on the right. Others are less stable, while some are artifacts. Though the fitting technique can be improved, our goal is
to use temporal otability to compute a more robust model.

and the stick may no longer be detectable by the sensor. If this is not the case, then the stick is marked as an
unexplained-disappearance. We plan to extend the stick QFSM to enable the system to explain a wider range

of possibilities, including situations in which two new stable sticks replace an old one.

Summary

Our goal is to design a rpresentation scheme that provides a natural mechanism for a representation to evolve
over time. In this paper we propose the concept of a representation space that provides a graduated set of object
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descriptions. Given these multiple descriptions, which ones are appropriate for a specific object'? To answer this
iJUieStio we introduce a definition of stability that incorporates explanations to account for the problems and special
cases that invariably arise in the processing of real imagery. In this paper, stability is our key to reliability.

As part of the idea of a representation space we defined three types of changes to an object's representation: re-
tirienit. eniancenent, and augmentation. Refinement updates parameters that are currently active; enhancement
activa tes new parameters for a currently active representation; augmentation activates completely new representa-
tions. Figure 1 illustrates the operation of these updating procedures as they transform an initially detected blob into
a semantically classified object. The figure shows the changes in representation that occur as the robot approaches
the aforenientioned thistle bush. The bush, when it is initially detected, is represented as a two-dimensional, image-
1based blob. After additional images have been processed and the three-dimensional location of the blob stabilizes,
the oljct's description transforms into a 3-d blob. When the size parameter of the 3-d blob is stable, the 3-d blob
is 'nli:c,,d to- include a size paraneter. When the texture parameter stabilizes, the 3-d blob is enhanced again,
tis ie by a texture parameter. When a stick description for part of the bush is deemed to be stable, the bush's
stick re-presentation is activated. As more sticks stabilize they are added to this description level. And finally, after
Cuotl0i sticks have stabilized to form a thistle-like structure, the bush's representation transforms into a thistle bush.

This ability to change an object's representation incrementally is crucial in autonomous navigation tasks because
objects are viewed iiiany times, from different viewpoints, and with different resolutions. By continually updating
the objects' descriptions, an autonomous robot is in a position to base its decisions on the most current information
at all levels, including the semantic level.

In the future we plan to continue exploring the idea of using stability to evaluate the reliability of representations.
In particular. we plan to (1) implement finite-state machines for analyzing the stability of superquadrics and other
representations, (2) develop new explanations based on support and gravity, and (3) explore ways to combine other
types of reliability with stability.
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Abstract

In the four years of the Carnegie Mellon Navlab Vision project, we have built perception modules for following
roads, detecting obstacles, mapping terrain, and recognizing objects. Together with our sister "Integration" contract,
we have built systems that drive mobile robots along roads and cross country, and have gained valuable insights into
viable approaches for outdoor mobile robot research. This work is briefly summarized in the first part of this rcport.

Specifically in 1988, we completed one color vision system for finding roads, began two others tit handle
difficult lighting and structured roads and highways, and built a road-following system that uses active scanning
with a laser rangefinder. We used 3-D information to build elevation maps for cross-country path planning, and

used maps to retraverse a route. Progress in 1988 on these projects is described in the second part of this report.

Introduction
This report consists of an overview of accomplishments during the four years of our Navlab Vision project;

discussion of progress during 1988; a compendium of our insights and practical advice for building mobile robots; a

discussion of future directions; and selected publications of our research group.

Overview of Accomplishments

Outdoor mobile robot vision research at CMU has been funded by DARPA since January 1985. The scope of the
project is very broad and has included cross-country runs and obstacle detection as well as road following; direct
3-D sensors along with video cameras; object recognition and terrain mapping; and close cooperation with the Warp
group and with the Na% lab Integration work, to build complete mobile robot systems. Progress for each of the four
years is described in the year end contract reports [16, 34, 35, 36].

Color-based Road Following. The culmination of our road-following work is a reliable system that drives the
Navlab along a narrow, twisting, tree-lined bicycle path. The heart of the system uses adaptive color classification,
which automatically adjusts for changes in road appearance or lighting conditions. Variants of the system use two

cameras to extend the dynamic range to handle deep shadows; find intersections of known shape; incorporate
additional features such as texture; and use the Warp processor for high speed. The latest version uses the Warp to

achieve a 2 second processing loop, allowing vehicle speeds of 1 meter / second even on our narrow test course.

Terrain Representation and Obstacle Detection. We have developed three levels of terrain representation
corresponding to different resolutions at which the terrain is described [11, 12, 13, 191. At the low resolution level
we describe only discrete obstacles without explicitly describing the local shape of the terrain. We used this level
for fast obstacle detection and avoidance. At the medium level, we include a description of the terrain through

surface patches that correspond to significant terrain features. At that level, the resolution is the resolution of the
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operator used to detect these features. This level of representation is especially useful for cross-country navigation
in which we have to deal not only with large discrete obstacles but also with the changing shape of the terrain. This
representation has been successfully demonstrated in conjunction with a path planner developed !!nder the
Integration contract. Finally, the description with the highest resolution is a dense elevation map whose resolution is
limited only by the sensor. The techniques we developed for this representation provide a complete description of
the terrain including occluded regions and uncertainty. After the low-resolution obstacle detection was
demonstrated as part of the Navlab, it was ported to Martin Marietta. Work in conjunction with Martin reduced run
time to less than one half second, the frame rate of the ERIM scanner. This was the only project during the Martin
ALV contract that was developed outside of Martin, integrated into the ALV, and used in one of the ALV main
demos.

Map Building and Nlatchvng. In addition to extracting snapshot maps of the terrain from range images, we have
developed algorithms for matching and merging individual maps into a single consistent representation. Again, the
matching algorithms are applied to the three levels of representation: At the lowest level discrete obstacles arc
matched in order to compute the displacement between consecutive maps. At the medium level terrain features are
matched to compute the best consistent match between maps. At the highest resolution maps are directly correlated
to compute the displacement by a minimization technique. The accuracy of the resulting displacement can bc as
good as the resolution of the map (as good as 10 cms in our experiments) [13, 191.

Road Following by Active Sensing. Our ERIM scanner measures not only distance to each point but also
reflectance. If the road surface (e.g. asphalt) has much different reflectance than the surroundings (e.g. grass), it is
straightforward to detect and track the road. For situations in which reflectances do not significantly differ, such as
dirt shoulders, we have to pay attention to details of signal attenuation, grazing angle, and surface fitting in order to
find the road border. Since the ERIM uses its own laser as its light source, it is insensitive to shadows or lighting
changes. This system has even driven the Navlab at night. This method has also been ported to Martin Marietta,
and has driven the ALV [ 121.

Systems. The Road Following vision modules has been integrated into the systems built by our Integration work.
Highlights of these systems include:

" Navigating the Schenley Park bicycle path, starting with a crude map and producing an updated map.
This system included color vision for road-following; range data analysis for mapping both discrete
obstacles (trees) and terrain; intersection recognition and navigation; a planner that followed the road
and avoided obstacles; and sequencing to predict road appearance and to tell perception when to take an
image. The system was based on CODGER, our adaptation of blackboard ideas for mobile robot
navigation developed as part of our Integration research [5, 6, 25, 27, 28].

" Navigating the CMU sidewalk network, using a preloaded map to predict object appearance and to
choose between a forward-looking and an angle-mounted camera to see the next sidewalk or
intersection. The map was also used to invoke a program to locate stairs, which used a "colored-range
image" built by fusing camera data with xyz data from the rangefinder [4, 20, 37, 381.

Sonar. Some of our earliest successful outdoor runs used Moravec and Effes's sonar system, originally
developed for indoor use, to drive our Terregator robot in Schenley Park. The sonar system was very good at
mapping and avoiding natural obstacles such as trees 13, 23].

Stereo. The FIDO stereo system was ported from indoor laboratory robots to the Terregator, and reimplemented
on a prototype Warp. It successfully steered the Terregator around man-made outdoor obstacles, but was less
successful with trees and bushes. Future systems could use the complementary strengths of sonar and stereo to build
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complete and reliable mapping 121, 22, 25, 291.

Other Road Detection Methods. Our early systems tracked edges, oriented edges, road cross-section profiles,
correlation wii.Jow outputs, and other features 137, 38]. Each of these methods works well, but only in particular
circumstances. Current research is using several of these operators together to track the lines, shoulders, and other
features of public highways 1171. A model-based control program will take advantage of the structure oi highways
to decide which features to track and how to track them. This approach should be robust as well as efficient. Other
current work is exploring new methods, such as an unsupervised color classification scheme that uses shape
information but does not need color data from previous images. This scheme is not susceptible to quickly changing
illumination, and can find the road at the beginning of a run to initialize the color tracker [11.

Calibration. Our multi-sensor perception experiments need to know the geometrical relationship between
scnsc.,  Fven for a single sensor, it is important to know the transform from sensor to vehicle coordinates. Our best
calibration system uses images of two grids of points to build transform lookup tables, or to derive traditional
camera parameters such as location, piercing point, row and column vectors, etc [7].

Object recognition. In order for a mobile robot to perform a meaningful mission, it must be able to see and
recognize known objects. Examples of our object recognition wofik are two programs for recognizing cars, one
using color data and the other using range images. Color car recognition used hierarchical grouping, in which edges
are grouped into lines; lines into parallels; parallels into trapezoids; and trapezoids into connected sets that could be
car roofs, windows, trunks, or hoods. Starting with range data, the 3-D system first detected flat surfaces, then
applied single-surface constraints such as range of orientations allowed for a roof or door, then used surface-pair
constraints such as the angle between a roof and door. Both methods work on several views of different cars
11l, 12, 20).

1988 Progress

In 1988 we neared completion of one of our road following programs, and began work on three new road
followers. Our range data processing built maps atid, in conjunction with NASA sponsorship, began very high
resolution terrain analysis. The highlights of these projects, and of the systems that use them, are briefly described
below.

SCARF: In 1988 we completed SCARF, our system for Supervised Classification Applied to Road Following
[11. SCARF is the logical continuation of a long chain of road following programs that use color classification.

The first implementation of SCARF in 1986 ran on Sun workstations, with 32 by 30 pixel images, in about 12
seconds per image. Later implementations of that version ran on the prototype Warp and on production Warps, with
speeds as fast as one image per 4 seconds.

Over the past year and a half, we have upgraded SCARF to use, first, higher resolution images (60 by 64), and,
second, two images to increase dynamic range. This slowed our runs to tens of seconds per image, even on a Warp.

Now, taking advantage of compiler upgrades for the Warp's W2 language, and doing some code restructuring, we
have reimplemented SCARF on the Warp. Our processing time is now down to 2 seconds per image. We moved
almost all of the code onto the Warp cells themselves. Further, we reduced the number of calls to the Warp per
image from 14 (last year) to 3 (earlier this year) to 1 (now). After initialization, we pass the Warp cells each new

275



image, and get back only the new road location. All of the system state is saved on the cells from call to call. Wc
also have debugging versions that can extrat classification information for display, but those extra Warp calls aad
data movement slow down the system. Current running time is I second of Warp time per image.

The full formulation of the probability equation used in classification includes the log of the determinant of each
class. Early implementations of SCARF on the Warp have always avoided logarithms, since there is no log function
in W2. On benign data, this did not cause any problems. But running with the Navlab outside on a snowy day, the
system did not vyork correctly. In our standard test sequences, each class had approximately the same siue
determinant (i.e., the classes had approximately equal variance), so we could safely ignore that term. But on a
snowy day, the "snow" and "road" classes each had very small variance, while the "trees + parked cars + trash
barrel" class had a much larger variance. This imbalance caused improper classifications. We worked with the
Warp group to include a log macro and to compile it into our W2 code. The resulting system pc,forms no better on
most of our images, but dramatically improves performance on snowy days and under similar circumstances.

The resulting system has driven the Navlab many times, along our narrow bicycle path in Schenley Park. The top
speed at which we have run is one meter per second, the length of our test course (compared with 20 cm/sec last
year). With the fast processing loop and the complete formulation of probabilities, the vision results are solid.
While vehicle speed has always been a secondary concern of our work, we can now drive at moderate speeds on our
difficult test course, and should be able to use the same system to drive at higher speeds on wider, straighter roads.

UNSCARF: One of our new road detection algorithms for this past year is UNSCARF, for UNSupervised
Classification Applied to Road Following [1]. A large problem with our early road perception work was dealing
with rapidly changing illumination. If the sun is covered by a cloud, the lighting is diffuse and we can follow roads
with a single camera. If the sun is out, there are problems with camera dynamic range, but our methods that use two
cameras work. But if the sun is quickly covered or uncovered by clouds, then colors change and shadows change
and the brightness changes. If object appearance differs greatly between successive processed frames, current
methods have a hard time tracking the road.

UNSCARF places less emphasis on colors and more on shapes. Instead of classifying each pixel according to
statistics from previous images, it groups neighboring pixels using unsupervised clustering methods. We have
found that clustering with 5 parameters (R,G,B and row,col) gives us classes that are both homogeneous in color and
connected in the image. We then piece a road shape together out of those clusters, instead of from individual pixels.
Evaluating candidate roads uses shape cues such as parallel edges, smooth edges, edges the right distance apart, and
so forth. The combination of unsupervised classification and evaluation with shape cues makes UNSCARF tolerant
of the large illumination changes that have given problems to previous systems.

FERMI: FERMI deals with public highways and roads, that have more structure and variation than our Schenley
Park test site [171. The key to handling diverse roads is explicit modeling of the colors, shapes, and features of each
road type. FERMI has a representation that lists width, maximum curvature, color, surface type, location of lines,
type of shoulders, presence of guard rails, type of adjacent vegetation or soil, illumination conditions (sunny or
cloudy), illumination direction, and so forth. By having many simple experts, one for tracking each type of feature,
we are able to follow many kinds of roads within the same control framework. None of the individual trackers
(edges, lines, color discontinuities, etc.) that we explored in our early work were adequate by themselves for road
following. But by incorporating many of them into a single system, and intelligently selecting which tracker to use
to follow which feature, we expect FERMI to be reliable and flexible. In 1988, FERMI has been designed and
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partially constructed, and has driven the Navlab.

ERIM Reflectance: A new project for 1988 is road tracking using the ERIM reflectance data. Our ERIM laser
rangefinder produces not only range at each point but also magnitude of reflectance. Since the scanner produces its
own illumination, the reflectance images are not distorted by shadows or sunlight or changing cloud cover.
Reflectance is affected by distance (less of the illumination is reflected back to the scanner from more distant
objects), but this caij be compensated for by using the range data. Thus many of the sources of error in standard
video images are not present in active reflectance data.

There still are, however, some problems with using reflectance data. The magnitude of the reflectance changes
with grazing angle: the road at larger distances appears at a shallower angle, and reflects less. Reflectance also
changes from place to place along the road, as the road surface goes from dirty to clean or from wet to dry. And
finally, since reflectance is only a single channel (rather than the three channels of an RGB camera), not all objects
have distinct appearances.

The solution to the grazing angle is to process each image as a series of horizontal bands, so within each band the
grazing angle is approximately constant. We keep separate appearance statistics for each of the bands. We handle
changes from place to place by updating our appearance models each image. The problem of multiple objects with
the same appearance is more difficult. Part of the solution is to limit processing to a region around the predicted
road location. Another answer is to use geometric constraints, such as expecting road edges to be locally parallel.
But the effectiveness of these solutions depends on the materials that form the road and its borders. Asphalt and
grass have much different reflectances, so the portion of our test path that is grass-lined is easy to segment. Dirt,
however, can appear much more like asphalt, so in dirt-lined segments we have to use more detailed processing,
such as tracking a single road edge when the other edge is indistinct.

Our program to follow roads using ERIM reflectance has run the Navlab many times, including runs at night.
This is the first time we have had a usable dayiiight road following system. The program was also transferred to
Martin Marietta, and successfully drove the ALV.

In addition, this wcrk provides the first step in a new project in building and re-using maps. As we drive, we
record the position of the road (from reflectance analysis) and of obstacles (from range analysis). When we later
retraverse the same path, we use the detected positions of the road and obstacles to locate the Navlab on the map.
The map can then be used to predict upcoming obstacles or turns in the road, and to plan paths beyond the current
field of view.

Our work with reflectance processing and road mapping is described in [12, 141.

Terrain Mapping: Algorithms that build a terrain description made of polygonal regions have been
implemented and demonstrated on the Navlab. The resulting description is a mesh of polygons built from an Erim
image, each of which is a feature of the terrain. This terrain modeling program provides the type of information
required by the new path planncr [28). The combination of terrain modeling and path planning has been
demonstrated on the Navlab and is a major step toward cross-country navigation and the implementation of the Core
system.

Terrain mapping work is included as part of an overview of all our range data analysis research in the past four

years in 1121.
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Insights and Advice

Through the course of our work, we have developed some basic tenets of developing outdoor mobile robots.
While some of these are scientific insights, most of them have the flavor of pragmatic advice. The most important
include:

Computing is a bottleneck. Our best results use the Warp, rather than a Sun, to gain processing speed.
The extra computer power is mostly used not to drive the robot faster but to process images more
frequently. Processing images more frequently in space means easier predictions, more objects shared
between successive images, and smaller changes in apparent size and shape. Processing more quickly
in time means less sensitivity to lighting changes. The 100 MFlops of the Warp help give us a 2-second
loop for our current color vision algorithm. But processing remains a bottleneck. Even for the same
algorithm, we could use an additional factor of 60 to get to frame rate, times an additional factor of 64
to process higher-resolution images.

* Development environments are a bottleneck. While the Warp gives us vast improvements in
processing, until recently it was difficult to harness that power. Hardware developers and computer
engineers tend to expect their users to have a few well-specified algorithms that can be compiled once
and run many times. But it is the nature of research that programs and parameters need to be changed
frequently. To be useful, a supercomputer needs to have debuggers, hardware diagnostics, easy access
to display devices, and compilers that run in reasonable amounts of time. Fortunately, those are now
becoming available on the Warp.

" Simplicity helps. Object models, algorithms, and systems should be no more complex than needed. A
road model, for instance, that attempts to derive too many geometric parameters from a single
interpreted image, may be subject to large instabilities due to small errors. We have had much greater
success in modeling our road as locally planar and straight. By solving only for two parameters (the
road's heading and lateral offset from the vehicle), we have a stable solution insensitive to minor noise.
And by processing quickly, we can track the road as it does eventually turn or pitch, and compensate as
we arrive at those points.

• 2-D is often adequate. We often create a distinction between Image Understanding (IU) (3-D, reasoning
about the scene, physical models) and Pattern Recognition (2-D, reasoning about the image, statistical
models). In the IU community, the usual assumption is that IU methods are always better. But for
many of our road following experiments, we do not have the detailed object and illumination models
needed for a real IU approach. Instead, careful attention to the details of pattern recognition approaches
(supervised and unsupervised clustering in color space, Bayesian classification, Hough transforms in
image coordinates, etc.) allows us to build functioning systems. One reason for the success of pattern
recognition methods is that many of them are suitable for parallel implementation. The high speed of
our Warp programs allows us to process more closely-spaced images, and compensates for the
relatively weak scene models.

" Direct sensing helps. Reasoning in 3-D is much easier when the data starts out in 3-D, such as from a
scanning laser rangefinder. Our ERIM data is not perfect, but gives us an excellent starting point for
obstacle detection, terrain mapping, and 3-D object recognition.

" Image Understanding (IU) is still needed. There is no direct sensor for "road" or "tree". Furthermore,
there are objects and tasks that we do not yet understand how to handle with simple algorithms and
models. So even with good 3-D and color sensing, it is still necess..y to do all the IU tasks of modeling
and interpretation. Direct sensing may eliminate some of the messy low-level interpretation, but does
not eliminate the need for fundamental work in IU. Pattern recognition often works, but does not use
the physical 3-D models that are needed for interpreting complex scenes.

" The world changes. Our early outdoor stereo work was foiled by wind-blown trees. Early color vision
made assumptions about constant appearance, and ran afoul of variations in grass color from place to
place. Fairly sophisticated vision systems can be fooled by a cloud suddenly covering the sun, which
changes not only the intensity but also the color of illumination. The appearance of the road changes
from one run to the next, due to our own tire tracks, oil drops, and other effects.
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* Sensors are a bottleneck. Too much effort goes into overcoming insufficient dynamic range, fighting
noise, and modeling errors. Our solutions include using 2 cameras mounted very close to each other,
with different iris settings, to extend the dynamic range. This is an engineering solution to a technology
problem, and diverts effort from science. Yet this sort of "hack" is needed to use many current sensors.

" Integration is difficult but crucial. Capable mobile robots need multiple sensors, probably with multiple
sensor interpretation methods, and have multiple goals and multiple control schemes. If the individual
components are designed separately, they are not likely to work together. Much of our design and
testing effort has been devoted to working with our sister Integration effort to build systems that can
follow roads and avoid obstacles; that can look for landmarks while looking for roads; and that can
handle other conflicting demands.

* Easy tasks are easier than expected, hard tasks are harder than expected. Following a well-lit sidewalk,
bordered by green grass, is nearly trivial. Following a winding path with dirty asphalt, bordered by
trees, grass, dirt, and fallen leaves, with changing lighting, is much more difficult.

" Do not trust laboratory simulations, or runs on a few canned images. Simplified or reduced test data is
useful for first debugging, but success in the lab does not guarantee success outdoors. There is no
substitute for lots of experimental runs.

" Mobile robot research is increasingly important. Results from our work have already been directly
applied to interpreting sonar data (for design studies of an underwater autonomous vehicle) and to
mapping terrain for planning footfalls for a walking planetary rover. The ideas and experience coming
from our project have influenced many other mobile robots, ranging from underground mining vehicles
to other road following efforts. And in general, the Navlab Vision work is part of a paradigm shift in
image understanding research, moving from generic interpretation of single frames of laboratory data to
goal-driven analysis of streams of images from a real, continuously moving, outdoor robot

* Technology transfer is difficult but crucial. Success in our work will ultimately be measured by its
impact outside the research community. We have hai some success in transferring both code (e.g. the
CODGER blackboard) and ideas (via papers). But by far the most effective technology transfer is by
people exchange. Our industrial visitors and graduate students have not only learned particular
algorithms, but have also absorbed the Image Understanding culture and methods of attacking
problems.

Future Directions

Our work is expanding from simple systems to more integrated approaches, and is beginning to include other
research directions such as machine learning.

Multiple approaches will be needed for general robots. Where simple approaches and 2-D techniques work, we
can build simple and therefore reliable systems. But where those methods fail, we need to resort to more time-
consuming and complex (and potentially buggier) methods. In path planning, for instance, we have both a simple
pure pursuit tracker for following unobstructed gently curving roads, and a path planner that uses a complete
kinematic vehicle model for avoiding obstacles and cross-country traverse.

Our systems to date have not used multiple approaches. Instead, each system had a single module for each
function, so we could test that particular approach. We now understand basic navigation to the point where we can
build a reliable navigation platform, and do research on applications that assume that navigation is provided.
Building the basic platform will require providing a repertoire of perception and planning methods, all of which
work through a common representation.

The unifying representation for our next systems will be the Local Environment Map, or LEM. It describes the
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immediate vicinity of the robot in terms of terrain shape and type, and includes symbolic labels such as "mud",
"road lane boundary", or "rough terrain". The LEM is built by 3-D sensing and color vision, with contributions from
specialiied experts for particular situations, such as terrain typing, road tracking, or high-resolution mapping. Thc
LEM is updated as the vehicle moves anL. iooks at the terrain from new directions. Finally, local trajectory planners
will use the LEM for choosing the vehicle path.

A new research direction we are beginning to pursue is the incorporation of learning. Our FERMI system uses
models of road features, vehicle motion, and the capabilities of individual feature trackers to follow structured roads.
This style of model-based vision is an excellent candidate for explanation-based learning. The system needs to
detect its mistakes, explain why they were committed, and update its models. If, for instance, the double yellow line
in the center of the road is not found at its expected location in an image, there are several possible explanations and

corresponding model updates:
" If other features are found, but shifted from their expectations, perhaps the road turned and the

geometric model should be updated.
" If the tracker failed because the line entered a shadow, a different tracker should be selected and the

lighting model should be changed for all trackers in the next image.
" If the double yellow line ended, there may be an intersection, which will change expectations for road

edges as well.
The power of model-based road following is that we have enough redundant information to detect and diagnose
failures. The power of explanation-based learning is that we can use these diagnoses to update our models, and
improve our understarding of scene geometry, lighting, vehicle motion, and operator performance.
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prohabilistic4 c-ertainty calcuilts Levitt it al. - 198t,;a( specifies how e-viden-ice extracted from sytIit lietic aiper-
tur, radar (SAP?) iniagerv and tirrali datab~ases is mulatcheib againist till miodels aind coiniiiid to infecr tin
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MODEL IMAGE DERIVED DATA

TANK BATTALION -------- 1ATTALION

___T ~MOTORIZED RIFLE BA TTALION ---

TANKCOMPAN-------------- ---------------------

-- ~MOTORIZED RIFLE COMPANY-----------CMAYp

MOTORIZED RIFLE PLATOON------------ PLATOON

BAYFS NEFT

BATTALION TANK BATTALION :.08, BATTALION, MOTORIZED RIFLE BATTALION: :0.1. BATTALION FALSE ALARM 01]

CCFAPANY 1 TANK~ COMPANY: 0.6, COMPANY, = MOTORIZED RIFLE COMPANY:= 0.2. COMP'ANY( FALSE ALARM: 0.2

COMPANY 2 = TANK COMPANY 0.7, COMPANY 2 =MOTORIZED RIFLE COMPANY: 0.2. COMPANY 2 FALSE ALARM. 0 1

COMPANY 3-TANK COMPANY = 0.8. COMPANY 3 MOTORIZED RIFLE COMPANY :0 1. COMAPANY3 FALSE Al ARM: :3

fi2irt 1: Moll.' iscdii Baivisiai lhiftlrciie App)roachi

j riclI(ci r :iihseilce Of ililitarv 1111.III flartlicllr. radar data. forces. te'rrainl or - 1her Iitities thfat liivc
!-I'l IIIodled ill tile certailitv caflcIlll -all bfe lISCII 1a evience for iiifereices output I-v tilt- svstltli_

lit- model database of INTLACi'S imlici~lv colitajins all possible chains of infercec thfat tilt syvstml
'1ii liset t1 draw anv conchlsofI. Hoiwever. aliy informiationl whatsoever can be used for ciii!ro)l ill til 115ci

Vitholli~~~~~ ~~~~ Tahro iclrra~~tl l t oilsos lis distinction between conitrol anid~ inferlccis

,!li t' fill r"(fiiireiiietit thfat aiiv outpit livlpotiieses about forces In a region musilt ihe silpport( ki by inive
IIn 1, Train ,vId(,et ajs specified litil iiimodiel database, thtus resulting ill a clean split l-oet iei IlliIeretire

4l0t ri. r cxattple. -11icr ou)Irce iiteiligeiict (other thani limagerY) caill be isedt~ h, dirtlt searh.
pliIrrelictionls. or act as a triLegetr to ;ictivati azeiits or otfler processintz. bilt it cannoit he, Iuied h- provift-

%id'iltal s iipf)(rt fr svstcnil oitplits Illesit Is iiodel1ed inl tile muriel datablase. and lil tile eertaltItcacuus

fl I,,re I ;hfo%%- tie concept be iiinil tilie iiodef- based fBavesian in ference in I NI'AC(S. U videnel'. smch
'iltcrs 4t drtectioii5. are riiatclifri aLinst tile, geomectry of' fo)rm"tionS t fiaJt -Ire ('XrhIl~itlV r(jrrcSe ttii ill

I ilill kkttihasc. Matchies lead tI generatioti of alternative lhvpot fieses of the presenice of frees'. suchd ais

I atlallioils and comlpaniies. t hat are draiiicalfv- created t(l insantate in a dfata struter called a BIaVeSOLl
1'.tw rk . Additionial evidenlce is accrued to refine tilie livpothfeses iii ternls of their force aiir rlrploviniiei types

:111d1 to 4 tilte refinetd be(-lefs associafted with the iivpotfiesized forces, Uider tII his flralfigni tfilt' >sr

h, tilp interprvt tile scene iv focliiig oni tile correct iivjoiiihses lin a ufviiatnic flierarcliickl ruaviiillZQ

I lIw ii lcctlonl descriie= '0r1 tIiodil-ihisci app~roachi tio iiiiage cXlltatijroi. ,clo 3' 'i rrovIiis an

rf,.~ of 4 iOw IN.A( -TS s%,strili ;lrclitlltire. S'et on .1 proViifeS ;it w~atinpll' of a sztijlfl rim. b ~di
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2. MOI)EL-BASED BAYESIAN INFERENCING

Initftrt ncr in I Nl'A( PS Is p crf, rmutd ( vcr ;a spacc 'It t1iirircI-ticailt II I it tiv t est's. Tht tipot lusts art.
gvncrallv of the( tormn: 1hitt is it iiili/Oivi/ firo of telp 1/1t di jdiolo it 1/) at wwid hoi-aOa', L, ti himt TI.
'I'll( lcurarch v inl te hitybpot hesis spwc co rrvsp ndis to I It, tuicraurcv Ii lit ril inl milit arv duoct rin ri'Iirt.sclltcdl
bv tilt- Inlodd' (ltahasc. hillS C0'tllipallY iIuyto ttii',tS are linkecd ito Ilieir i'omipilie-lit vilticit tl~'pitlit'sf. inl
otil dlrecti- and a11]:ri' grouietl totili'tir to f4 rmi hat tauloni livpilhc li' Ili Iii' othtr direct in. I'Iii inst.t
dtataliasi' also spcclfics diffterent lases for tOwi vauri~uik'i Inakilig lip Iti' tIlpo ttlesis dtllitioli - It t 11i15litilieS
mcuali for rcfiiii., comiilal lispotlics''s to Siict r tint-i clsc.> .1 lank i'omlp"Iui ;iii Iiloriziit rI-1tv cllipallv

livplot tiesi5. Ilii'rarclical itavcslii ilili-ro'lci was Ilt roduic- lv (;t I vs :lii Wilike( . t lvs andl \illkc W;:
tSchtit mid Puiiarimui Stunni11 - SW, 1I"Cll .11( ant Lrariv , 16-11 alit I3,-trelIuv 7

3 andi hias t carriqi (I'orw~irt

lv jlit-rs, fbr -x;Lup~lt levitt ct at. - IISIGa Ime Gr it, ant ItiltrI I

It iiirt'lO'e p1' ness is 1), rf(,iliii li a tilcrarci'' 111,11111tr Ill o'rder to ,'tiiv(-v tavi-,raiti co'iiiil~ -
tori's and (2) :1 ri-asiiing letiavior of foiislui1 on tilt lust ite rprttat llo ill ;I 'lolrsito t ll ilitr. llii
liie-rarctiieal st riictui of the ttvpotit-sis space. is (I .ljs into tw,, ort hii4ouul O I'.li onc dir-ct iln. ilii'

hivpot liksi5 arc hroiki dtown bv strlicttire- niiginelts at coi 1i(isi'd ot balt tauruos, whlichi lli t arc irluljost-i

(if comipants. Ili Ili(, other dirictiou. tw ly iv)Irttiscs ar' rrroki downi bY t~vpe ;I cillipa~liv Illv bv a1 tanlk
irr lirrrrz r itle. crllllaliv, whlicit ilm llrli Iitu to li lVi-. :1issi1111llv. roadl~ liivilililit, or rioadt halt

'Ili' coMluitultoric tuenifit is two-fold IIA t igcr - 5 ~By v tcit Iv i silg ;a st ruclit re. or part -of, hlirarctuv

wr ri-traIit t'r, I Ii ever crliitI'trI ilg a wileI cla, ss , .1 ilivatIirt Icrrn)t igwiirt I it si. TIO( partt II I ra r,- I v pa rt itirn)is t Ii-
si'areti spac- inito poiti'ia beat nrc- nail ehs hI I'( Jgmj.g to fic saul- siub-foirci. M any ftat lire miatctiis canI

be reiiuovi-d fromu colisiteratioli by Irt ue of Ireloligilg toi a ditl'eri-nt suhl-firrce t lion I tie one, uidir current
coutsidt-ratioii . '['lit- overall possible, seatrch space, consist s of att possi bt assiginients (If lilagv features t o uiiotit

fiati iris. While a rt'cogllition systeni would nti, ioriiallv i-xjitore- Itl thewse contigiurationis, it is prcferahl-, to

start wit Ii as sinall a si-arch set as possit'ti. Fr aI miudt of .ll fiat lire s and anl Image- of I feat lires. tto- search
'spai'- (for onci-tin-nom- feature. matching. ass'lilling 1 .1 'i) for aI linl-liirareliicat recogluizer is (1 1.' " tIo- 1,

muodlt is )li 11u piisit Intor A parts, tie( scarcti sI)tca- re-lices to-: X' 'hiis scheine a'hlicvt's favoratnle

re-sults as lonig as the( rcrii.gition ot' t liw siitforcvis callu easliyh I n ibluliew to reach ;til ilterjpretat lon for

thei whole- model. This che(ck fnor consistency aullillg tilt- cemolliil1t5 Call 1IludhY lite thilic (j1liCklY sIllcc I t

limluilitr tif sllt)-forces is small. F-or i-xtIiple. thet search space, is inucti sllaller if we, structure t ti search fir
aI ri-glulluit aS a set. oIf liattiil5 thatd ill tiurun consist of' coiilipaulv c-lusters rathe'r t hanl deftinng a rcgiliet
direct lv aIs conftigurationis of CoIrll)Ipli-S. ( 3el :1 ttht'iols of -I coilijallits cacti Ill a ri-gilllit lIiiihl'l andi
20t pirt(-tIafl -om~panyV nlllsters ill thle, iulagcrv. ile si-arcti spc of tI tie nou-hierarMchical rt'cogllizer wonild be

I; c1(oil inratiolls whl t * cIlte starcll spate for t lcIt' hirarch ical rccogn 1zi'r %vimid bet :1 I it).

Iii eth Iic c oIlfi t (if ;I tv pi, o r is-ui. huetrarcll itN s th fat, all t hit, feat- t res d(I o tia mv- to hi' coitllsjtr-(
ait ( ilu-'i Iv iuitIlly I v iit -Ii'tig it I t I tlui i'ii rst fi at lu res, wi' avoid cx II rtorig tlit'- whlolt situirch sI)acui'I'l( Ili it
teaIt Iris Mvr~ cinnsid'r-d latic-r tin rcti 1ici- )'.,issIIfy* iiti'x actI c( .I rsi c( it1iuLr iniIts.

B v vi1rtui- of t is It ic-r rcumcal nu tton' . I tii svst-iluu s iulpuiirt s tiut ij ituIIIp~ ferin cc pt Is. 'I'lIs ltxilihit IIvIs

d tisiramldI- il o rder to i allow tt(It itlft-ri'lic- prio'tss to (,proccei-iI il t It(- dti r'ctiit it t hat i-x plot ts t It c Ilt aslival I al'I-
I.Vid,'iui'- iir tI I ont' t hait mlakcs lost uise- If Itt avalal ri-siiiri'i-s. Vti r t-x IIi ic, if1 it IIs ;itIIc ttlli itlg I oi ,oui irtii

or hIll,-I a tanktIi re-giIllelt1 fo rce. tlit(- S.yst il Illay c, 'm111ltelci Iv f lilt it g s,-v-il itv poit hutst-s about 1,(tiictis
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N t lIi ,,-s lit t ItIIr 1* -r(.. vI t lIlisil2 t it poI Iit tt's I ctrral i i,list ralitsi )o(r dcIo itiltnt ge~anctI ric. (If tiitvy

AIf. ii gh -, .1t ri pro wc'Sili.g inl I N TA( ''IS -at I w -,ft p~cx , tict st riet ifrt of iiift'rc foil. ,As a pat tern

kll I 1 t11t C odl o11(CI f Illilita4r forccs. iThest' iotitis consist if firee structu re and forijatiji titscript ions.

Ih lii vplolses ,lru ' ncliratci ltv hiirairtiit'ut anit pairtial mlatcing of t list' iiiitarY force loiistt tvvI

d1'' k :Ivii~tii' inl radaur itlagt'rv. FI'.lIeiict' ( it' t I riut i of' a pareint livlw~ttitsis is aiceruid inwzricail' fromi

pr''alilistl i' stiliat'> ;uhotit fiti i- iipi' that comprisc the parvnt iivptttiiss as welIl uts frtiii thter
rxii Id Il- -nrc.'>. tich ias t'rrainI. that directly suipport I f( pacu ilypilisis.

'Ilit act tial rrasonilig, y vr I lit iivptt)t loIses thlat t akes place lin Ite Baves iitt is iii t lit' ft,,riui of evaliat Ing

I- i,-f' 1 rod, 's :nmittg c.uij'itiOwns (d iivpot tcsts, 'i'lt' systeil Is act itailv reasolilg over sets of iltt naill
,.Aciii'I t . l iat'it couifiitrat in~is of iivptt lwst's. This mlappinig frtit indtividuial li pt liests to ,(,nfiguirations

4I liv ptt if, ss is ncessarY sil' t lic vontfleth lewcel inidividilual hyti~(te(ses iiiiiv rendcir tliii teliiiciit oii

-u I eitr. I.aihl iod In tilt( Baves net groilips itoget her conflicting or (tepenitunt Iiv N.pothtt'sts, generates

ii, stetitt ,ciiiirationis of' 'Iv' hypotlheses, andi t'valiatts tile btelief of each consistent coiifigiiration ini a

iiiif'rti tliailiir uising fit- laws o~f probaiiitY. A ii t-xamitlet of tile gene.ra!ioli of the( Haves liii is shiown Ill
I,ii I g sti rg 2. Iii riu - s how s t Ie gcera Ii tio i of I w,,C, 11 t oItetilg h a t hit l Y If oI It'55 bast'tl tit fi itr cIifI Ija iiv'

IifjN I lts. Hic dijagraml aIt tit top slokws friii:itiuii rt'gioil conistIraint Is ,f iosId A attItIII ms If Itte to
c,'11ipmtI'( oriiiat i, ii ctlist raitfit s. 'Illt's' ItvN.pot11es. L'5' art rip'l itto i od es iit tu I Hc aves iltcI wlit're flit-

't,,tt'li rt'als ,vcr flit- cosistent Collfigiratio)ts silutwn. Illt' heliti of ant intdividtial hlYpothiesis tiav theni btu
'uitctiiatci l'v aditiitg t itt beliefs df' the ctiifigtirat is iat i'id'th it ohesofit.rst lltc I~iia

prIali1t v maiot ri x aiss, ia ifig l'aUt n etm onigtirt6itms iItIf coillpaiiiv ctinfigirations is caicutlateti fromt resul ts

f mnatti ii t Iltf( c,,nipatlits to it)attIaliolt formtat it)is.

( )it -f t lit' niarivlvations for seitectinig prtbabIilItY thet(ry it s tflit- tinilriving teeiiii1ooigy for thlt

Ili iit-ricalt ()rna f tVIdt'itce is t hat Bayesian ifi(rence Is a wt'li-dt'v'ttpt't sceeitific I htory anti already
cxIsts f',r irtiiaiiilistit' evidetitial reasoning; st't f'or examle I). yon Wititerfiltit aind Wi. Edwards - 8t31. lThis
;ipprttachi thlotigh, rtequtirts n, tt la tilt, aJ liritiri tit- links ht'twettin eVIdeiiee and l1ixpitleses ill thlt modelits

ov%,er whichiflthe systenti will reason. TIhese links art' tilt( producltt of hiildlitg probability imotdels for til' tvienee
5 tiiret'>.

A simiipifielI picttirt of tht' infert-nte priocess is sitintiarized is Figure, 3. Iit goal1 it' to e va'luaIte alterna-
tv', ilvjtot lost's: ii t in ordt'r to acctiimplishi that task we gattiut'r evidetnice from 1iiiiltipit' tvilenic.' solrets usinig

lptit' o 'tie probtability mtodels, miatchi the hiypothetstes to Forimatioin itotits to) gcerate condhitittial lproibabil-
it it' rioin th potleses, anid 11171l) tilt fiiptttitsts to (Imllail'. exeltisit/e tttisistt'iit coiifigii ratitiils t hat

kt' actuial Iv rclsoil ovcr.

".1 I ODEAI D)ATA BASh:

'IIli' iMoti 1tiatablasi' suprts the liitrariiiicai strIItitin' ttf thte inift'r'ict' systnti by~ tiescriltiiig tlit, fort'ts

iccttriig to t itir force' Ic ipiuinet tvp's aind strnuctutre. The tittit" diefiine tilt' silt-part (ciii'ttiittsitittit
Ftat ir aistrai'tiii. fitti iiatthiaitle'at iris of the font(-- uniits.

l'aci forte. inistance is a node on)i a graph. lii oil', direction, part-of liniks 1tiiit It tit- nodt's siipt'r-forct'
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B2

=CZ -:2

C COMPANY HYPOTHESES

BAYES NET

Consistent Configurations

e 2 s oartaion & E. snot battaiion
BA-TTALI ON 8, s not Dattajon 8S oatta:.on

is snot oattaion & B, IS 1ot Dattaion

-CNDIT'0NAL

Consistent Contguratons.

0,,- C s comoany & C,s company & 030s company & 0 4 is company
C ICis compoany & C, scompany & C3 .is company & C4 isnot compoany

COPN s company & C2 is company & C, is not company & 04 is company
0 s company & C , s company & 03.s rot compoany & C4 isnot cornoany

Figure 2: Ba~ves Net Generation Example

-voothes

'apping

:onfiguration

Figure3: Si HYPOfT HElShmIS fIfee
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IP~N

,I rio"T upr (g. art illt rY battr isr pNa);rt of artillerY bati talioti) andl In t ie( orthiogonial dire-ctioti ls-a Iliks INojlil

1,1lit modNI's generalize-d tlype (c.g. art illery battalion is a tYpc of battalion ). Attached to each 110(1! arc
b-script ions Of its lpossilhlc fiiitioiis. A sectioni of a samiple iiodel database is shown lin Figures .1 tlirongli

111050 figueso sucssive reljncineiits of thli coarsest level nmodel dles riptioi 'I'lis Corsst pairt-
of Ilicrareh, ligiirv 4A, has abost racted features commnon to all units of approxinuately thec samc silt, 7!l.d

kit-scrib Ns t 1w models in gelieric terinis. Th~lus a brigade conISISts Of four kLattalOiiS. o"7ch conisisting of fhir'e

tI, stNeii Collnpamn~eS. FigUre 4lB shows, a force type refinemenet of th, part-of hierarch). and Figure 5 furil her
retiiius t he niodels l~v deployicii tyvpe. 11w force andl teplovinent type refinemlents are actuallyv intericavc.l
own)v further is-a refint-n lots so ait each description level the s 'steii canl choose c it her direction for fuirt her
rcefieminrit. The links shown ii these figures arte part-of links. i-a links are not. shown, but. arc llh'st-nt
across thle fi gu res. For exaiilpl. b)oth Ii ask Foict and A rtilcr Batltaio n inl Figuire 413 have is-a links to)

Battotu-sz unit inl Figure 4A. Figure 6depicts at formlationl description for tile artillery firn tg plat N!ii.

Sliniilar descriptions are attaclol f) cvtrY iiodcl node.

2.2 FEVII)LNCE S0171(IKS

Evidect'Ihat is to be fused directlY into the infcrenice pr~ocess must, he niodeled ill tile systeml so that
felNI it'(s extracted from the evidencc source! caii he uisid to genlerate probabilities lin support or denial of

hie geiierated lihypotheses. hThe p~robab~ility space then provides a uniifornm inechmisiii of comibiriingcvlvilcc
fromn dith-runt sources. It follows t hat to extend INThA("FS to a full fuision system, it will be imlcssary to (h)
he rest arch oni the knowle-dge rupreseliation (of the additional sources of informnation, and~ the p~robabilist ic

relationships between(-i t hiese sou1rces and thle cutities aJrvady accounted for lit miodls and thle calcullus.

Cuirrentl. prollLilit~v models hiave been generated for radar tlerivel udata (detectilns andl clusters) iil,
lcaltrraill data (low-le-vel terrain att ribuite suitability for forers) levitt et al. - 198Gt h1vit t (it al. - Pis ;

lev%,it et al. - 19 7 . D~etectioni and cluster mnodels allow calculat ion of probabilistic support for fJi7,(- ull vs
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iivjp. Ii' t d-- -ii ti-littr ,r-- i riall- Irii illagtrv. Work is, als' llrict--(iiiLu -,t pir(vidiiiig

-:.,- -r difll rIi \, hiik1 ,I "v' -iv1 'it-s f'rt Il' st-rx-t-d Iili;iqg f(-at itres. Lical tt-rrlmill lHili li1-

,f- i id vii, Ic- r 1lit 'r-lit Grot- tvpi-s based (in direct iinderling terraln chlarat-cri.,ile sn' 1 1

i-.i !1 . 111ts- noi h-is lia t-ii liilt through pt-rfuriiiance-l'as-d iwhgttlett'ii

:-1 1 , 1:L v-i- I f :L k:Li I t hI t i :, atilI kinowtledia- eilgi iteriiig scssi(I'Ii wi th It ilaili tx Itwrt s. Fflirts t,'

\I, Ti pr, lI-:JIlit Ili.-
1 dI ,r :iddlI.l'a trce tvpit- andi evi(it-iitial featiiris arc c''w iinig.

i., , -~ - - . i r- .r whic I -WIwI ( it ollvt- : pa )aI'iitv iiiodel (-Ili IwI- itlcor po ud C- I iti ( t it,-r %%vs I tn

t~ ~ ~~i iii )1,1) 1 ,rij i t it I -r -iit r, I rat iii-r I iani it ifi-rnce. 'Iince( tIlto- colit ril aiid iiift-rt-iict- pr, c-- ,

:1"Irt. N\t iii it- siwli kin 'lt-i'- a signal iiteiligii-i- foir wlhichi we do ni hay' pr .,a Lijlt nwdii-

r 1, 1.A 11 :t r - c i r, 1 -i i r , Ir-cct It p )t lit-ls gt-uiirat i il pathIts

'm - t jc.rti1iilr ;t iiiL ,i t (xtit ins list r Ikit-r\ c i to g t il.tiiltti Iii f ) at it tilt ,I ( Is ,ti cI

ii in 1 : I - i. i fl. I s Iit, it r(-iiii-d it) rct-c-t such rules s a fil Illy inq 1t nu ll .in dt Id"ui nil1 M(t.~i

1 .. q-ii lit mililtbr line. soy ail( vti- qS. or for, I- q~ (iiin almo ('I~ phQ In- i'i.di

11, - 711l-- it- I cumrrt-it Iv lia\t ;i so(ciattui jrokalitY inides since t lic-v pt-rf'irii ciniiiicx r-ird ill,-

I -, t I, 1i -I i Ii hay-%, ~ hi- ,, ar'nciv iiatclieui to Iiag-e batiirus aind t it ihere retlects iii t lit- liivpI t l-'

1~ 1, f i -I I r, i-tiui ii1 it ,f t lic- ma~tch . This rtiiiu-iit action, teriitul sit niat ionl moili aipl ist liii lit re Ji ii-s

lIi It,~ Is -t, Iv inc--q) rprkt 1i m,.,,ls t rajitits inlict-nt lin tit- prt-vailini, situiationi as dehfiltid kv tin hcI Illrait H 1
f T r r: i ilii ii ii i I Ita r v I . wI r i it ,-

. i \l; )Y I J I 'S S L:_ci F i I\

Iv p( t I-s-- art- mitrati-i fromii t iii ri-sits of uIiatCi nig sitb-iiuits tit( parelit Iorccit nit s. Al 11liatcll(-s fall ig

WIIt1 11i 1n It 'it ra iI ItIs ( f ItcI I Ic iiin ll uiaV lotliialv he g-uuerate-d evc-i- tholugh l unv thei hts"t oil-s art-

jiiu'' i trt -li-tvaliiati'll 4I iii- 1iiac is thiil iisedl as evidencei'V lv tfililig the condliitionaul priilialtllit 1

at wi tih- sul'-uits withli lit(- part-lit unit. initial hiviitlit-sis ge-n-ratioli is petrformed-( iy usinig tilt- rci-s t

-fciiist- rii ',r I-te-ti''i. Ani iimportanit distinction betw(eni ciiusteriing and muatching is that cliistt-riuig dhis
iT I" ginrat'- 4tographiicalit, o)verlain~~jg liylot best's While matching potentially does. 'This deision is imade

t, Lit-i aik Iiuir(,vct-ilt- c(iiihiatoriis at lte lower force I-vt-is. (iust-rig Is thus inteiidi-' to gt-ieratc coar,,-

asMr i- VtI k plmt lt-si-s that mnav iattr b~e refined. Sintic- we arcti lt iuiatu-lv int-restedl in tiut- locatioii andi

id, iOit -, tilt- iiiglii-r-it-v-l foirce Ix ' pothi esis, and~ thle false alarnii rate is vt-rv hig ig t the( lowtir levc-Is xvi-
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OVERVIEW OF THE SCORPIUS PROGRAM

J. F. Bogdanowicz
Arthur Newman

Hughes Aircraft Company, Data Systems Division
El Segundo, California 90245

ABSTRACT

This paper presents an overview and current status of the SCORPIUS program. The SCORPIUS program
is an applied research effort whose goal is to combine technologies from DARPA's Image Understanding
and Computer architecture research areas in a real world application, automated exploitation of aerial
imagery. The vision system under development as well as the parallel processing testbed which is being
used to host the vision system is discussed.

INTRODUCTION

In July 1985, The Strategic Computing Object directed Reconnaissance Parallel processing Image
Understanding System (SCORPIUS) program [SCORPIUS,1987; Bogdanowicz, 19871 was initiated.
SCORPIUS is an applied research effort whose goal is to combine technologies from DARPA's Image
Understanding and Computer architecture research areas in a real world application, automated
exploitation of aerial imagery. Image exploitation is the process of extracting intelligence from image data.
The quantity and quality of the products from various sensor systems are outpacing the improvements in
the exploitation systems. The SCORPIUS program is focussed on correcting this imbalance; it is the first
significant effort to implement a fully automatic image understanding system. The prototype system being
developed will be evaluated over a large image testset. The introduction of this technology will be
evolutionary instead of revolutionary, due to the difficulty of the task and the need for high confidence in
the results produced by the machine. The goal of the program is to demonstrate object-directed image
exploitation by a machine over a wide range of imaging conditions with performance equivalent to a novice
image analyst in quality and within an order of magnitude in speed using scalable architectures.

The vision system under development is concerned with object-directed analysis. Object-directed
analysis involves detecting, identifying, and counting modelled, man-made objects in known target
locations and issuing a simplified assessment of the situation.

The SCORPIUS program has been structured around a risk reduction prototyping approach based loosely
on the spiral development methodology [Boehm, 19881. The major SCORPIUS prototype
demonstrations have been used to focus on three key system requirements and include 1) automatic end
to end operation of the vision system over two different scenarios with each scenario having two different
target locations, 2) vision system support for a wide range of imaging conditions and complexities, and 3)
vision system processing time within an order of magnitude of that required by an image analyst. Specific
prototypes have focused on key technical issues related to the vision system and the parallel processing
system environment developments. For each prototype, specific capabilities needed for the final system
are incrementally addressed. Based on the results of a prototype demonstration, an assessment is made
of how well the requirements were handled and refinements to the requirements and the plans for
succeeding prototypes are then made. This approach has allowed the system to evolve in a flexible
manner.

The second section describes the current structure of the vision system. The third section describes the
application level of the vision system detailing the various discrimination levels implemented using the
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tools discussed in previous section. The fourth section provides, as an example, some of the technical
details of the region and object discrimination levels of the system. The fifth section provides an overview
of the parallel processing testbed that has been developed. Finally, in the sixth section, a summary of the
major prototypes and milestones of the program are presented.

VISION SYSTEM DEVELOPMENT TOOLS AND STRUCTURE

The SCORPIUS program utilizes a model and knowledge based approach to computer vision [Berlin,
Bogdanowicz and Diamond, 1987] with a toplevel conceptual structure as shown in Figure 1. The
SCORPIUS vision system is actually composed of three major subsystems, the symbolic subsystem, the
numeric subsystem, and an interface subsystem that connects the two. These subsystems reflect the
underlying hardware architecture in addition to being conceptually distinct from a programming viewpoint.
The specific hardware configurations on which these subsystems exist are intended to evolve throughout
the life of the SCORPIUS project.

~KEY ASPECTS

KNOWLEDGE SEPARATES DOMAIN
BASE KNOWLEDGE AND CONTROL

. GENERIC OBJECT-DIRECTED
ANALYSIS STRUCTURE

PLANNNG/ PARALLELISM SPLITS OUT
NATURALL

FETR L ATUR L AND

SELECTION FACHN EXTRIN CLAEA

Figure 1. Toplevel Conceptual Organization of Vision System

Computer vision algorithms can be categorized as image-to-image, image-to-symbol, or symbol-to-symbol.
Image-to-image algorithms typically transform 2-D arrays of pixels into other 2-D arrays of pixels. Image-to-
symbol algorithms transform 2-D arrays into 1-D property lists, or feature vectors. Symbol-to-symbol
algorithms often build abstract data structures out of property lists. This class of algorithms also includes
manipulating pre-stored model information in various ways and in matching model information against data
structures ultimately derived from pixels.

The symbolic subsystem runs symbol-to-symbol algorithms. It also has a planning / control function and
acts as the top level executive for the vision system. This software is called the vision executive or the VX
shell. The symbolic subsystem decides what algorithms to run and what data it needs. It does this by
issuing two types of commands to the interface: algorithm execution requests, known as AXRs, and data
extraction requests, known as DXRs. AXRs are interpreted by the interface which schedules and monitors
their execution on a machine in the numeric subsystem. DXRs cause data to be transferred from
somewhere within the numeric subsystem to the symbolic subsystem through the interface. The numeric
subsystem runs image-to-image and image-to-symbol algorithms.

The planning component of the VX shell determines flow of control at the macro level. It decides what to
do next. The planning component does not itself call any symbol-to-symbol algorithms nor does it create
or receive AXRs or DXRs. These actions take place within a set of seven control expert systems. The
control experts decide how something should be done. They do this by generating an appropriate
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sequence of AXRs and DXRs. Communication between the planner and the control experts takes place
through an active data structure known as the interpretation graph. The interpretation graph maintains the
processing state of the vision system at any point in time and also represents what has been identified in
the image. Before continuing with a more detailed description of the VX shell, it will be helpful to discuss
the different software layers that are used to build the symbolic subsystem.

In addition to the operating systems of the underlying machines, the symbolic subsystem software can be
divided into four layers as shown in figure 2. The innermost layer is Common Lisp. The next layer is
MOBIUS, a Hughes developed artificial intelligence tool. MOBIUS contains software for object oriented
programming and for building rule based systems. The next layer is the vision execution (VX) shell. The
VX shell is built out of various MOBIUS software objects. The outer layer is known as user application
software.

Figure 2. Symbolic subsystem software layers

MOBIUS has a frame system, a message passing system, a forward chainer, and a backward chainer. Rules
and facts can be organized into inference objects (blackboards), as shown in figure 3. Inference objects
can communicate with each other via message passing. The backward chainer is a syntactic variant of
PROLOG. The forward chainer can be used to set up state space search problems. Rule conditions in the
forward chainer can manipulate the STM of an inference object in a SIMD fashion. Both the backward and
forward chainers use a similar syntax for rule conditions and have a wide variety of built-in predicates.
Several mechanisms are provided for interfacing with Common Lisp.

The VX shell is constructed from a set of objects. As used here, the term object means a frame and zero or
more associated methods (procedural Lisp code). A number of these objects are always present when the
vision system is running. It is important to note that the VX shell software itself makes no commitment as to
the representation of features or models. It contains no symbol-to-symbol algorithms. It is domain
independent. It has built into it a set of assumptions underlying a particular philosophy as to how computer
vision systems should be built. It also makes no hardware specific assumptions about the numeric
subsystem. The VX shell also provides a small set of standardized frame patterns that can be instantiated
and manipulated by the user software. These frames are used to build the interpretation graph.

One of the pre-defined VX shell objects is known as a plan. A plan is made up of a sequence of plan steps.
Plan steps have an identical syntax to MOBIUS forward chaining rule conditions. Unlike forward chaining
rules however, plans do not have pre-conditions or post-conditions. Plans are written ahead of time prior
to a run of the vision system. Hence, plans are equivalent to scripts.
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Figure 3. MOBIUS Inference Object

User software includes objects, sets of forward chaining rules, sets of backward chaining rules, plans, and
Lisp functions. This software is for the most part domain dependent. It is used for building particular model
representations and it manipulates anticipated representations of features obtained from the numeric
subsystem.

The purpose of the VX shell software is to help support the primary SCORPIUS project goals of generality,
image complexity, and speed. The VX shell software helps to meet the generality requirement by
providing software that is scenario independent. Images that the vision system are required to process are
of sufficient complexity that a large degree of ambiguity is present. It is believed that flexible planning /
control capabilities are required in order to successfully disambiguate competing hypothesis that are
inherent in intensity based imagery. The speed requirement is being met by utilitizing parallel processing
hardware provided by DARPA. By suitable tailoring of the search strategy used in the planner, the VX
software can provide a macro level flow that matches the space and time resources of the parallel
processing hardware.

In figure 4 are shown the VX shell objects that can be manipulated by the user software. There are also VX
shell objects not shown that are not manipulated by the user software but are instead used for internal
message passing and bookkeeping. Two major classes of objects are shown, objects that make up the
interpretation graph, or igraph, and the seven control experts. Two miscellaneous objects are also shown,
the top level vision-system object and resource manager 2 (RM2) which communicates with the interface
subsystem. The seven control experts manipulate various properties of the data and include features
(FX), models (MHX, MPX, MAX), databases (HINT), control (PHX), and interpretation (MATCHER).

OVERVIEW OF THE VISION SYSTEM DISCRIMINATION LEVELS

Using the basic tools described in previous section, the vision system is implemented as a multi-level
discrimination process as shown in Figure 5. The image level discrimination function consists of two
subfunctions: cloud detection, and scene registration. Cloud detection is the process by which regions of
the image that are obscured by clouds are identified and labelled. The scene registration process labels
fixed structures and semantically important locations within the scene. Such information can be used to
both guide the feature extraction and reasoning processes in other discrimination levels.The cloud
detection process classifies the pixels of the original image as being "cloud" or "not cloud". The result of
this classification process is actually a probabilistic map of the entire image, with each pixel being assigned
a probability of being a cloud. Pixels in dense cloud areas have a high probability of being a cloud, and
thus have probability values near 1. Pixels that are part of the land or water, but that have no cloud pixels
near them, will have probability values near 0. Regions near the boundaries of clouds, or those that
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constitute heavy haze, will have probability values somewhere between 0 and 1. The scene registration
process uses a previously stored model of the location of interest (port or airfield) in order to determine the
precise location and orientation of the image. This facilitates the immediate labeling of a number of the
areas within a scene. For example, knowing the precise location of the image makes possible the
identification of fixed, invariant scene objects such as piers and runways. The use of this knowledge can
facilitate more directed searches for objects and can provide supporting evidence of an object's presence
or absence.

plan pmfoyp

IN~erlce eradction

eXelXperl

"D ~cton

Figure 4 Symbolic Subsystem

The area level discrimination function combines the information produced by cloud detection and scene
registration into a combined scene map. This map can then be queried by other discrimination levels to
extract semantic information which can be used to guide processing. If the image is obscured and not
enough of the image remains for subarea and region discrimination processing, the entire image will be
discarded at this time. Otherwise, processing continues to the next level.

Subarea discrimination is the process by which portions of the image are identified to focus the
processing of the vision system. These windows of interest are identified by either applying a pixel basedoperator to the image and generating blobs which have properties that have characteristics of man-made

objects or by the use of contextual/historical information based on known scene registered locations.
Region level discrimination processing is the last step in the detection process to determine the presence
of single or multiple man-made objects of interest and the rejection of clutter. Clutter regions can be
generated by subarea processing. Such regions might represent ice floating in the water, smoke or small
clouds that were not identified by cloud detection, or glint. During region level processing, they are
rejected as clutter by performing a shape from shading analysis and by utilizing context in the reasoning
process. In most cases, this leads to the elimination of such regions from further processing. Regions
that do pass through this step, however, can still be identified as clutter and eliminated during the
classiicaeiion process based on more detailed shape matching and the search for object details.
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Object level discrimination involves the hierarchical classification of objects as to class, subclass, and
model. For example, an object in an airport which was passed by the region discrimination levels as being
an airplane is analyzed to determine that the plane is a commercial aircraft (object class), due to, say, si7e,
number of engines, and location of the aircraft on the runway. Information such as the above, in addition to
knowledge of the wing sweep angle and other features, might allow further classification as a Boeing 747
(object subclass). Finally, fine detail might allow for identification of the aircraft as a 747-B (object model).

Consultant Data Input

DETECTION Image, acq Info

Image Level
Scene Registratio
Cloud Detection.

Knowledge Registered sceneBase IDetected clouds

Area LevelHistorical --- Prdictio.n

Contextual] Scene database

H IW 
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Figure 5 Overview of SCORPIUS discrimination levels

The discrimination levels are controlled by a meta-level component called the system consultant. The
system consultant utilizes various knowledge bases and information provided by each of the
discrimination levels to control and optimize system flow within and across discrimination levels. The other
major system component which is accessed by the discrimination levels is the model prediction and
mensuration system.

REGION AND OBJECT DISCRIMINATION LEVEL DETAILS

In this section further details on the specific approach to region and object level processing are
presented.

The goal of region processing is to isolate single objects of interest while rejecting false alarms. The
resulting orientation and position specifications are used by object discrimination to focus its search for
predicted object parts. Another important design goal was to develop techniques that applied with a
minimum of modification to two different scenarios, demonstrating that the SCORPIUS system could be
extended to additional scenarios. A simple and powerful method has been developed for locating a class
of generic cylinders [Binford, 19711 in images. Using constraint models and a flexible matching strategy, it
has been applied successfully to both naval and airport facilities.
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To a first approximation, the objects in which SCORPIUS is interested are cylinder shaped, or can be
decomposed into cylinders. The spines of these cylinders are straight and the sweeping elements either
maintain a relatively constant cross-section for most of the object (submarine and fuselage) or
monotonically increase along its length (wings). Region processing accomplishes its task by finding
cylinders of this restricted class in the image, then using contextual information to resolve the cylinders
into submarines at a pier (seaport scenario) or into the wings and fuselage of an airplane (airport scenario).
New scenarios will require the introduction of new generic models to guide processing. In the current
system there are three algorithmic groups within region processing: fine registration, feature extraction
and matching.

Fine registration which is invoked for the seaport scenario only, localizes the pier with the precision
required to assign detected submarines to berthing zones. It uses the results of scene registration (image
discrimination level) as an initial orientation and translation estimate. Using the Hough transform and
projections, the required accuracy for both orientation and translation is achieved.

Rather than compute a complete shape from shading surface as in [Horn, 1970], the SCORPIUS system
works with a sparse representation that facilitates the search for cylinders. Two methods of feature
extraction are used to generate the sparse representation. Based upon the expected dimensions of the
objects of interest, a set of spatial frequency bandpass images are created. Linear approximations of the
ridges and valleys of the bandpass images form one set of features. The other set of features is derived
from the topograghic primal sketch [Haralick, 1983]. Regions of pixels that are labeled convex and
concave are skeletonized, and the linear approximations of these calculated. Figure 6 shows an idealized
intensity profile and the relative locations of the skeletonized features along its length.
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Figure 6. Arrangement of features across generic cylinder

A generic cylinder model specifies the order and perpendicular displacement among the feature lines that
describe the cylinder. Since the perpendicular displacements among the lines vary with illumination and
viewing angles, the generic model must also specify the acceptable range of values that can occur. In
both scenarios, the cylinders are composed of 7 feature lines; however, the technique could easily be
extended to accommodate other intensity profiles.

304



The matching process proceeds in two stages. First, it searches through the feature extraction results to
find cylinders. Then, it combines the matched cylinders with any contextual information available for the
pier or parking area to arrive at the proper configuration.

Cylinder matching begins by grouping the extracted feature lines into close, parallel bundles. Each
bundle is bisected and the intersection point of the bisector with each feature line in the bundle is
calculated. The intersection points provide the lateral displacement information used by the matcher. The
matcher then applies the generic model to the intersection points of each bundle.

In the seaport scenario, several parallel cylinders can be significant, one for each submarine as well as one
or two generated for the sides of the pier. In the airport scenario, close, parallel cylinders are not
expected. For this reason, the matcher used by the seaport scenario must return as many non-
overlapping cylinders as it finds, while the airport scenario matcher can simply return the one best match.

The final step in the process is to generate a configuration from the cylinders. Employing knowledge of
the pier location and width, the seaport scenario configuration matcher removes the cylinders that are
artifacts of the pier, then assigns berthing zones to the remaining cylinders. In the airport scenario, a
simple set of length and angular constraints is used to form an airplane. Should one of the components of
the airplane be missed by the cylinder formation process, the configuration matcher can hypothesize the
missing component. When the fuselage is the missing component, the angular relationship between the
wings provides unambiguous evidence to complete the configuration. If a wing is missing, then evidence
of the wing inserting into the fuselage and/or contextual information provided by registered scene model
is used to complete the configuration.

Object processing is a model driven fitting of stored and calculated expectations to evidence extracted
from the image. Using available historical and contextual data for the parking location under consideration,
a set of possible identifications is generated. 2-D projections of stored wire-frame models are generated
for each candidate identification at the orientation specified by region processing. Specific measurable
appearance data, by which object parts can be located and relationships among the parts compared, is
derived from the 2-D projections. Possible part locations are identified using the appearance data for each
part. The matching step generates a best fit between the possible part locations and the expected spatial
relationships among the parts, yielding a confidence value for each candidate identification.

Image morphology forms the basis of the part location capability for the object discrimination level. Using a
combination of grey-scale and binary structuring elements, object parts can be emphasized and located
with a high degree of specificity. The grey-scale structuring elements are applied as a preprocessing step
and are parameterized on the basis of image statistics, resolution and object size. The binary structuring
elements are dynamically created specifically for each of the object parts and are applied to the
preprocessed image to generate possible part location.

Objects are represented within the system in several forms. Aside from a 3-D wireframe model, objects are
also represented as a set of part frames which contain image-invariant information. In order to custom
generate structuring elements for the object parts, the 3-D wireframe models of the candidate set are
predicted at the orientation specified by region discrimination processing. The prediction is warped to
match the taking conditions of the image, therefore, statistics calculated for modeled parts reflect those of
the imaged parts. By combining the image-invariant information from the part frames with the prediction
derived statistics, a set of image specific structuring elements is created for each part. Another set of
frames associated with an object are called discriminants. These ale used to record the
distance/orientation relations among all the object's parts for later use by the matcher.

The most specific structuring element for a part is a binary silhouette of the part. This 'literal' structuring
element is effective only for parts whose intensity signatures are relatively constant across their extent.
For many cylinder-like parts, a 'linear' structuring element is effective. While this class of part is usually
wider than a pixel, its intensity signature forms a ridge that is most amenable to enhancement by a
structuring element with a single pixel width. Finally, for parts whose intensity signature is dominated by a
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small patch of specular reflectance, or whose structure is below the resolution of the image, no structuring
element is generated and the parts are matched against bright spots extracted from the image.

Once the prediction, structuring element generation and preprocessing have completed, the part
extraction process begins. A backward chaining ruleset attempts to find object parts in the image, using
progressively less specific structuring elements. A part is considered to have been found when one or
more hypothesized locations passes a test that is both part and scenario specific. The shape, size and
orientation of the hypothesized part location must be within acceptable limits, and using the results of
region discrimination, the part must be located in a particular relation to the configuration. For example, to
be a left wing engine, the hypothesized part must be parallel to the fuselage, within acceptable length
limits and proximal to where the left wing has been localized. All part hypotheses that pass their test are
passed on to the matcher.

Input to the matcher are the possible part locations extracted from the image and the pairwise
distance/orientation measurements taken from the 2-D projection of a single object. It performs a depth
first search of the possible combinations of hypothesized parts to determine the best fit. A numerical
confidence value is assigned to the degree of fit between the hypothesized parts and the model. The
match step is repeated for each candidate in the set.

EXPERIMENTAL PROTOTYPE SYSTEM

The experimental prototype system (EPS) is the heterogeneous parallel processing testbed used to
implement the SCORPIUS vision system. The testbed has evolved from a single user system to a multi-
user system in order to better support the development and testing activities of the program. The current
architecture of the EPS is shown in Figure 7. Some of the key differences from the original architecture
include splitting the 120 node Butterfly machine into two 60 node machines with each connected via a
high speed interface to the Aptec bus. This change provides system redundancy and physical hardware
separation between users since the Butterfly Chrysalis operating system has limited memory protection. A
sophisticated RAMfile system for the Butterfly machine was developed to suppo- 'he handling of large
images at high data transfer rates across the Aptec bus into and out of the Butterfly machine transparent to
the application programmer. A second parallel transfer IBIS disk subsystem is being added for system
redundancy and for additional disk space. A Vax 8600 is being used instead of the Vax 750 for increased
computational power. The single lisp machine with a Butterfly machine acting as a backend processor has
been replaced by multiple lisp machines each which can individually access the testbed. The backend 16
processor Butterfly machine based on the BF1 model was eliminated due to address space limitations and
the poor performance of a beta version of parallel lisp based on Scheme. At the current time, no shared
memory parallel lisp implementation alternative is commercially available. A Sun workstation based
relational database to support history and collateral data has been added and will serve as a source of
validated information that can be used to support the operation of the vision system and to save
processing results. The Warp machine which was included in the original architecture is not being
integrated into the testbed due to programmatic constraints. The STAR ST-1 00 array processor which has
similar capabilities to the Warp has been integrated. A number of major enhancements to the Warp
hardware and software environment were worked jointly with Carnegie Mellon University and General
Electric. The DARPA Intacts program which has adopted a similar architecture as SCORPIUS will be
completing the integration of the Warp into their system.

DEVELOPMENT STATUS & PLANS

Table 1 summaries the various major prototypes and milestones of the SCORPIUS program. Of the
prototypes listed three major milestones remain to be completed and include P4 vision system
demonstration (August 1989), Experimental Prototype System acceptance test (November 1989) and
EPS test and evaluation (March 1990). The enhanced P2 vision system is currently undergoing test and
evaluation on 16 images from two different scenarios and includes four target locations. In parallel,
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additional capabilities are being developed for integration into the next P4 vision system prototype
demonstration. The P4 demonstration will include the first fully integrated used of the parallel processing
equipment. After the P4 demonstration, additional algorithms are planned to be moved to the parallel
processing hardware and the system will undergo further integration and test resulting in an acceptance
test. Once accepted, the system will be tested and evaluated using a database of 100 images of varying
complexities and will be documented in an extensive evaluation report.

Development mode on
target machines
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processing environment

T Butterfly 2.8 Gigabytes of disk
E (60 nodes storagej access at rates

c up to bytes per sec)

m machine B utter • 3.6 Gigabytes of VAX
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Sun iedoing integrated system

ry 8 testing

Symbolic Processing Numeric processing

Figure 7. SCORPIUS Multi-user Parallel Processing Testbed

The prolotyping approach used on the SCORPIUS program ha-. proved to be an extremely useful
approach in structuring the research and development activities of the program. Utilizing this approach,
the SCORPIUS program has evolved in a flexible manner, has resulted in a better problem understanding
and has provided the customer with valuable information related to long lead time research and
development activities needing further effort.
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Table 1. Summary of SCORPIUS Prototypes and Key Milestones

Prototype/Milestone Purose Date

P0 Process new test imagery, current algos July 1986

P1 Enhanced algos, new vision system architecture April 1987

Enhanced P1 Algos integrated into enhanced vision architecture Nov 1987

P2 Major restructuring of vision system, enhanced April 1988
vision architecture, new algo approaches, 2
scenarios, benchmarks on Butterfly, Warp, & STAR

Enhanced P2 Further enhancements for speed & robustness Dec 1988
(process 4 integration & test images)

P2 Test & Evaluation Process 18 images: 4 different sites, 2 scenarios April 1989

P3 Demo of system interfaces Sept 1987

P4 Further image complexities & improved speed Aua 1989
using parallel processing testbed

P5 Integrated demo of interfaces & distributed exec Jan 1988

EPS Acceptance Test Final test of EPS prior to test & evaluation Nov 1989

EPS Test & Eval Process up to 100 images March 1990

Note: Underlined dates indicate milestones yet to be completed.
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Abstract
In this paper we discuss the importance of scene registration for several tasks in the automated interpretation

of aerial imagery. These tasks are structure matching, stereo matching, and stereo visualization. While the
processes of registration and matching have traditionally been treated as separate problems, particularly in the
case of stereo matching, we describe techniques that may unify these processes. We also demonstrate the
automatic generation and matching of control points in complex aerial imagery and show that the resulting
registration is comparable to that achieved using manual control point selection. Finally, methods for the
generation and visualization of stereo disparity images and stereo ground truth scene segmentations are
described.I

1. Introduction
Scene registration is a fundamental requirement for a number of image analysis tasks such as stereo matching,

multi-image matching for temporal changes, and image sequence or motion analysis. As a result there exists a
rich variety of techniques to perform scene registration. For example scene registration can be accomplished by
identification of image points to a common frame-of-reference via control points whose three-dimensional location
is accurately known. Registration can also be accomplished in a relative manner by identifying corresponding
points between one or more images, i.e., the establishment of image-to-image control points. The position of
these points need not to be known in the three-dimensional world. For some applications registration can be
accomplished with respect to a cartographic map, a photomosaic, or an orthophoto that has been warped in order
to remove position distortions due to terrain relief.

Depending on the type of registration there arise many issues in accuracy. Accuracy is generally evaluated
within the context of a particular task requirement. Often techniques with some inherent inaccuracy can suffice in
many task situations. If we look at traditional photogrammetric techniques for recovering the position of an image
we require detailed information of the camera, its focal length and lens characteristics, the platform coordinates in
terms of height above the ground and its three-dimensional position (pitch and yaw). Inaccuracies arise when we
are unable to know any of these parameters precisely. In the case of digital imagery, the image formation
process can introduce additional errors. For example, the sampling process, in terms of geometric precision and
radiometric accuracy, is rarely modeled for digital imagery generated by digitizing photographic film. There are a
variety of digitization apparatus including rotating drum scanners, flatbed optical scanners with a single optical
element, scanners composed of linear arrays of elements or a full three-dimensional element array. Each has its
own inherent inaccuracy. The kinds of errors introduced include those due to sampling a continuous tone
photograph into a discrete intensity range over an arbitrary sampling window and limitations in the sensors'
dynamic response. The geometric accuracy with which the scanner is positioned and moved over the film varies
greatly between scanning methods. Even once we have accurate image, sensor, and platform information our
ability to locate ground control points accurately in digital imagery is independent of the inherent accuracy of
those control points.

This paper raises issues in how scene registration can be achieved in digital imagery and illustrates the
importance of accurate registration for three analysis tasks. In Section 2 we discuss some general issues in
registration in computational vision. These issues include use of a spatial database to provide coarse ground
control information, the selection of manual control points, and the automatic determination of control points. In
Section 3 we discuss the importance of registration to three particular tasks in the interpretation of aerial imagery.

1This research was primarily sponsored by the U.S. Army Engineering Topographic Laboratories under Contract DACA72-87-C-O001 and
partially supported by the Defense Advanced Research Projects Agency, DoD, through DARPA order 4976, and monitored by the Air Force
Avionics Laboratory Under Contract F33615-87-C-1499. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Army Engineering Topographic
Laboratories, or the Defense Advanced Research Projects Agency, or of the United States Government.
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These tasks are the correlation (or fusion) of monocular analysis from partially overlapping views, computational
stereo matching techniques, and the visualization of stereo matching results. We also discuss the
interrelationship between registration and matching. In Section 4 we describe the results of a fully automatic
scene registration from initial coarsely registered stereo pair to a final three-dimensional interpretation. Finally, in
Section 5, we present conclusions and discuss future directions for our research.

2. Scene Registration
In this section we describe some basic principles of stereo photogrammetry, a part of computational

photogrammetry [251. The primary goal of stereo photogrammetry is to determine the three-dimensional position
of any object point that is located in the overlap area of two images taken from two different camera positions.
The determination of the orientation of each camera at the moment of exposure and the relationship between the
cameras is a necessary step in the photogrammetric process. In Section 2.1 we discuss the problem of camera
orientation that determines the relationship between the image points and ground points in the scene. In Section
2.2 we describe the classical epipolar geometry for stereo imagery. When two images are registered in the
epipolar geometry the spatial relationship between corresponding points in the left and right images is greatly
simplified.

2.1. Camera orientation problem
The solution to the general camera orientation problem has four components: the interior orientation, the

exterior orientation, the relative orientation, and the absolute orientation.
The interior orientation refers to the perspective geometry of the camera. The parameters of the camera are

generally known a priori and can be determined by precise calibration. This includes the focal length, the position
of the principal point in the image plane of the camera and the geometric distortion characteristics of the lens
system. These parameters are intrinsic to the camera and are generally detailed on a standard camera certificate.

The exterior orientation characterizes the orientation of the camera during the image event. It is defined by the
geographic position of the optical center in a three-dimensional rectangular coordinate system and the direction of
the optical axis. Therefore, the exterior orientation determines the projective relationship that exists between the
image coordinates of the image points and the ground coordinates of the corresponding object points in the
scene. In the context of stereo photogrammetry, the exterior orientation can be decomposed into the relative
orientation and the absolute orientation.

The relative orientation determines the relative three-dimensional position of the two images in the stereo pair
with respect to each other. As shown in Figure 2-1 three lines characterize the exterior orientation of the two
cameras. Two lines are the rays emanating from an object point P and passing through each of the optical
centers, CL and CR, of the two cameras. These lines are P to PL (passing through CL) and P to PR (passing
through CR). The third line is CL to CR passing through each of the optical centers. This is called the baseline of
the stereo model. These three lines are represented in a three-dimensional rectangular coordinate system and
must be coplanar. This coplanarity relationship gives an equation with twelve parameters that defines the exterior
orientation of the two cameras. Of the twelve parameters, just five are necessary to define the relative orientation
of the two cameras. In order to determine the five parameters, we need five pairs of corresponding points (PLPR)
in the left and right image. Each left/right pair defines one coplanarity equation.

After the relative orientation is accomplished, the stereo model must be scaled, translated, and leveled with
respect to a ground reference system. The process of orienting a stereo model into an absolute reference system
is called the absolute orientation. It relates the absolute coordinates of an object point in the ground reference
system to its coordinates in the model coordinate system of the camera. Each control point, for which the ground
coordinates are known, gives rise to three projective transformation equations when its model coordinates are
measured. Three control points are necessary to define all the parameters of the absolute orientation.

In our work we consider that the interior orientation or calibration has been already performed since we assume
an ideal pinhole camera. Therefore, the calculation of the relative orientation is the registration problem [12].
Knowing the relative position and attitude of the two images in the stereoscopic pair with respect to each other
defines the relationship between the two images of the scene. All of the results presented in this paper will be
relative measurements. However, as we have discussed, these relative measurements could be used to
calculate absolute metrics, such as height, length, and area by using three-dimensional ground control points to
establish the absolute orientation.
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Figure 2-1: Relative orientation of stereo imagery

2.2. Epipolar geometry
After we have established the relative orientation of the two images, it is possible to reformulate this

relationship into the epipolar geometry. The epipolar geometry defines a constraint based on the geometric
relationship that the plane containing the two optical centers of the cameras, CL and CR, and the ground point P,
intersect the two image planes on two lines. These lines are called the conjugated epipolar lines. As shown in
Figure 2-2 these lines, EL to PL and ER to PR' contain the two image points PL and PR' These lines emanate from
a common epipolar center, EL and ER. This epipolar center corresponds to the intersection of the image plane
and the stereo baseline CL to CR. Thus, the points in the left and right image (PL and PR) correspond to a single
three-dimensional scene point (P) and are on the same conjugate epipolar lines EL to PL and ER to PR. After this
relationship has been established, it is common to register the two images so that the conjugated epipolar lines
become corresponding scanlines in the left and right image. Therefore the corresponding points are on the same
scanline in each image and the displacement between the points, or disparity, corresponds to the relative height
of the three-dimensional scene point.

This epipolar geometry is a common framework for most stereo matching algorithms: [1], [5], [6], [22], [24].
These stereo matching techniques assume that the registration is ideal and that the epipolar constraint is
completely satisfied. Some researchers have attempted to explicitly account for the inaccuracy of the image
registration and have attempted to improve it by preprocessing the imagery before beginning the matching
process [8], [9], [11], [29]. Modeling inaccuracy in image registration has most often been studied within the
context of the robotic applications where it is common to have a good deal of control over the cameras [101 and
where a detailed preregistration and calibration step is possible. However, for many applications in aerial image
analysis one is often simply given overlapping images or partial image areas where the epipolar geometry must
be derived.

In the following section we present two methods for scene registration given overlapping stereo imagery. The
first method performs a coarse registration using landmarks from a spatial database. The second method uses
pairs of corresponding points in the two images to perform a relative orientation. As we will see, many of the
techniques used in computer vision to establish scene registration are approximations to the photogrammetric
ideal. These approximations cause the scene registration to be inaccurate. The effect and implications of these
inaccuracies will be explored within the context of two matching tasks.

2.3. Coarse registration using a spatial database
The most common method to establish the relative orientation between two images is to select pairs of

corresponding points in the two images. One alternative method is to independently tie each image to a common
frame of reference. A cartographic coordinate system such as <latitude,longitude,elevation> is one possible
frame of reference. Thus, the two images are related to a ground coordinate system, or map. The use of
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Figure 2-2: The epipolar geometry

landmarks with known <latitude,longitude,elevation> is a common method to orient each image. The overall
accuracy of the registration is dependent on the accuracy of the three-dimensional position of the landmark and
the accuracy with which we can recover the image position of the landmark. We use the landmark database
component of CONCEPTMAP, a spatial database system that integrates imagery, terrain, and map data to provide
landmark descriptions [17,181. Each landmark description in the datioase has a reference image fragment, and
a ground position definition which contains the <Iatitude,longitude,elevation> information, its position in the
reference image fragment, and a brief textual description of the landmark for the user. Each image in the
CONCEPTMAP database is put into correspondence using manual selection of landmarks.

Figure 2-3: Left image DC38008 with
coNCEPTMAP database registration Figure 2-4: Right image DC38007 with

CONOEPTMAP database registration

Figure 2-3 and 2-4 show a stereo image pair of an industrial area taken from the CONOEPTMAP database.
These images were digitized from standard nine inch format mapping photography taken at the altitude of 2000
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meters by a 153 millimeters camera. One pixel corresponds to 1.3 meters on the ground. The left image is a 512
x 512 sub-area selected from 2300 x 2300 image. The right image sub-area was generated by calculating the
<datitude,longitude> for the corner points of the left image and projecting those points onto the complete right
image. This projection is then used to extract the image sub-area from the complete right image. We have
superimposed a set of gridlines on both images in order to make it easier to see the actual misregistration.
Typically CONCEPTMAP provides a registration accuracy of between ten to thirty meters for imagery digitized to a
1.3 meter ground sample distance.

2.4. Fine registration using Image control points
As we have seen, the computation of the relative orientation can be accomplished by selecting pairs of

corresponding points in the two images. After the relative orientation is calculated, two images can be
transformed so that they satisfy the epipolar constraint. We begin the fine registration with the coarse registration
described in the previous section.

We make several assumptions that simplify the relative orientation model. We assume that the cameras are
metric and have the same interior orientation. We also assume that their optical axes are parallel and are, in fact,
vertical. Because we are using aerial imagery taken by the same camera along the same flightline, these
assumptions are not unreasonable. The largest source of error is whether the camera platforms were at precisely
the same altitude and orientation at each imaging event. Given these assumptions, the transformation between
the left and right image is only a translation and a rotation, because the image planes are the same. Therefore, of
the five parameters describing the general relative orientation, only two are remain to be solved. The absolute
distances in the two images are preserved and the epipolar lines are already parallel. After the transformation the
epipolar lines correspond to the scanlines.

Problems with the accuracy of point selection lead us to use more points to determine the transformation
between the two images. On some images this model was not flexible enough to account for the variation in the
ground elevation and the variations to our ideal sensor model. As a result we developed a polynomial
transformation adjusted by least squares to fit the selected corresponding points. In the following sections we
discuss the manual and automatic selection of image control points.

2.4.1. Manual selection of common points
The classical method to select corresponding points in order to perform interior orientation is by the manual

identification of landmark points in stereo imagery. Typically, man-made features such as road intersections,
boundary corners of fields or parking lots, or markings such as road centerlines are used because of the ease
with which they can be found in the imagery. We chose to manually select shadow corners since these points
were the focus of our experimentation in automatic landmark detection. Given that we are working in an urban
environment, shadow corners have the advantage that they are generally on the ground and therefore in the
same plane, assuming only small changes in terrain elevation. Although the shadow position changes as the sun
moves, if we have imagery taken at nearly the same time, as is common in aerial mapping photography, the
shadow corners will fall on the same point in the three-dimensional scene. Such comers also tend to be uniformly
distributed in scenes containing large numbers of buildings. The manually selected shadow corners give us a
baseline against which we could measure the accuracy of the automatic landmark selection process. Figures 2-5
and 2-6 show the manually selected shadow corners in the left and right images respectively.

2.4.2. Automatic selection using shadow corners
Clearly, one requirement for automated registration is the automatic selection of corresponding points in the

stereo pair images. There are actually two problems that must be solved. First we must automatically detect
potential landmarks in each image, and then we must determine those landmarks that have been found in both
images. General landmark matching is an unsolved problem ar- most automatic registration techniques relie on
the matching of characteristic points [21] that often have no physical significance or reference with respect to
landmarks.
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Figure 2-5: Manual selection of points Figure 2-6: Manual selection of points
[left image] with coarse registration [right image] with coarse registration

Figure 2-7: Automatic selection of points Figure 2-8: Automatic selection of points
[left image] with coarse registration [right image] with coarse registration

For this experiment, we assume that a coarse registration of the two images, such as described in Section 2.3
has already been performed. Using this coarse correspondence, we are able to limit the search to find
corresponding features in the images. Most of the remaining error is translational rather than rotational which
simplifies the determination of corresponding points.

As described in the previous section, shadow corners are good candidates for automatic detection and
correspondence as well as for manual selection. We use a monocular detection of shadow regions and
determine the boundary line between the shadow and the building [14]. This boundary is used to determine the
position of the shadow corner in the left and the right images [2]. After removing corners that were inconsistent
with shape and orientation constraints imposed by the sun angle, we selected sets of shadow corners that were
detected in both images. Figures 2-7 and 2-8 show these corresponding shadow comers on the two images.
Note that the corners selected differ from those selected manually.
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Figures 2-9 and 2-10 show the results of the fine registration using shadow points selected automatically. This
registration is obviously better than the coarse registration using the CONCEPTMAP database shown previously in
Figures 2-3 and 2-4. In the following section we attempt to quantify the registration quality.

MN 1W"W" M3E.~ sum MM EUF M L. IM M

Figure 2-9. Left image of the fine registration Figure 2-10: Right image of the fine registration

2.4.3. Quality of registration
Tables 2-1 and 2-2 show the local accuracy of the different scene registrations performed on D038008 and LAX

stereo image pairs.2 The first three rows of each table characterize the quality of the CONCEPTMAP registration
using three set of control points: the points selected manually, the points generated by automatic detection of
shadow corners, and the points derived from structure matching. In the case of 0038008 11 conjugate point pairs
were manually selected, 26 shadow corner pairs were automatically extracted, and 16 point pairs were found
using structure matching. In the case of the LAX stereo pairs, these numbers are 14, 13, and 16, respectively.
Because the CONCEPTMAP coarse registration is derived by a polynomial fit for the entire scene (2300x2300 for
0038008 and 2000x4000 for LAX), it is interesting to evaluate the quality of the local fit for the 512x512 image
sub-areas using each set of independently derived control points. The CONCEPTMAP registration produced a
translation to within approximately 12 pixels (163 meters) of the the true registration for both images. This
registration was quite consistent across all three sets of test points.

For the other two types of scene registration, isometrical and polynomial, we evaluated the quality of
registration with respect to the manually derived control points. That is, the solutions for manual, corner, and
structure matching were validated using the manual points. In all cases both registrations achieved significantly
better results than the CONCEPTMAP coarse registration. In several cases the registrations achieved by matching
shadow corners and structures is quite comparable to the manual registration. However, the manual registration
is in all cases as good as any of the automatic control point experiments. In all cases the manual selection of
corresponding points produced a registration of less than one meter, or subpixel accuracy. In some cases similar
subpixel results were achieved using the automatic point selection. Finally, the polynomial approach led to better
results although the simpler isometrical model gave comparable results.

One additional issue is how well our local solution performs as a global registration in other areas of the
complete stereo pair. In Table 2-3 we show the results of using our local fine registration for both the isometrical
and polynomial methods in four quadrants of the complete stereo pair. In each of the four quadrants we manually
selected 12 control points and used the manual solutions for DC380O8 to calculate residual errors. Because of the
large variation in the row and column offsets, it is clear that the local model can not be treated as a global model
even though the row residuals stay within reasonable bounds. However, it is the case that the fine solution
should be a better global solution than the CONCEPTMAP coarse registration.

2W e will introduce some matching results for ihe LAX airport scene in Section 3.1.2.
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Statistics on the quality of the different registrations for DC38008

Type of Number of Avg. row Std. row Min/Max Avg. col Std. col
registration points offset offset row off. offset offset

Coarse manual 11 -12.4 1.6 -15/-8 905.5 1.2
Coarse corner 26 -13.2 1.6 -18/-10 905.7 1.7

Coarse structure 16 -12.1 1.6 -15/-8 909.3 3.4

ISO manual 11 0.1 0.7 -1/2 1.3 1.3
ISO corner 11 1.7 1.7 -1/7 5.1 1.2

ISO structure 11 0.5 0.6 0/2 -3.4 1.4

POLY manual 11 0.1 0.3 -1/1 0.1 0.5
POLY comer 11 -0.2 1.8 -3/4 0.0 1.6

POLY structure 11 0.1 0.5 -1/1 -3.3 1.5

Table 2-1: Statistics for different registrations on DC38008 stereo pair

Statistics on the quality of the different registrations for LAX

Type of Number of Avg. row Std. row Min/Max Avg. col Std. col
registration Points offset offset row off. offset offset

Coarse manual 14 10.6 0.9 9/13 1866.6 0.7
Coarse corner 13 10.9 0.7 9/12 1866.8 1.4

Coarse structure 16 10.9 0.4 10/12 1869.3 1.7

ISO manual 14 -0.4 0.9 -2/2 0.6 0.7
ISO corner 14 -0.4 0.9 -2/2 1.6 0.7

ISO structure 14 -0.4 0.9 -2/2 -2.4 0.7

POLY manual 14 0.0 0.1 -1/1 0.1 0.7
POLY comer 14 1.3 1.0 -1/3 1.5 0.9

POLY structure 14 -0.3 0.7 -1/2 -2.9 0.9

Table 2-2: Statistics for different registrations on LAX stereo pair

Quality of the registrations for the complete image DC38008

Type of Region in Avg. row Std. row Min/Max Avg. col Std. col
registration image offset offset row off. offset offset

ISO manual North 1.7 1.5 0/4 4.5 0.8
West -1.3 0.4 -2/-1 1.4 1.2
East 1.3 0.6 0/2 -2.4 1.5

South -2.5 0.8 -5/-1 3.1 1.1

POLY manual North -1.6 1.2 -4/0 -70.5 16.6
West -1.3 0.7 -2/0 -2.4 3.0
East -0.1 0.3 -1/1 2.7 3.7

South 0.8 0.7 -2/2 -51.5 14.3

Table 2-3: Statistics for different registrations on DC38008 stereo pair

Although traditional error analysis can give us an idea of relative accuracy for each of these approaches, this
does not necessarily translate into the effectiveness of the registration. That is, for many tasks in scene analysis
a coarse-grain registration to within 10 to 30 meters is quite adequate, especially considering that the imagery
covers several square kilometers. For instance, tasks that require assembling a collection of image subareas
taken over time for change detection and analysis can be supported using this level of accuracy. However, for
other tasks, such as matching and stereo analysis, the effect of mis-registration may become more critical. In
Section 3 we will see how such tasks are affected by coarse and fine registration.
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3. Tasks Requiring Accurate Scene Registration
In this Section we describe three scene analysis tasks that require or support scene registration. These tasks

are matching structures derived by monocular analysis of overlapping imagery, traditional stereo matching using
area-based and feature-based matching techniques, and the construction of a three-dimensional image to present
matching results to a human using a stereo display monitor.

In the case of matching of monocular structures, we can acquire additional information about the actual
structure of the objects, including their height, as a result of the matching process, and also generate new
automatic control points to refine the registration. The goal is to match high-level structures in two overlapping
images, where the actual detection and delineation of the structures is likely to contain significant errors, and
matching is complicated due to a large numbers of false alarms produced by the structure generation process.

In stereo analysis the goal is to automatically match points in the left and right images of the stereopair in order
to establish a disparity between these points. This disparity can be used, along with the camera model, to
calculate the actual height of the matched point in the three-dimensional scene.

Finally, it is becoming increasingly important for researchers to be able to visualize the three-dimensional
models that their analysis programs are generating. Such a visualization tool allows us to directly compare these
results to three-dimensional ground truth models for performance evaluation.

3.1. Correlation of monocular analysis
There are many situations where overlapping coverage imagery is available but may not be suitable for stereo

matching due to sensor acquisition parameters, temporal or seasonal changes, or image scale. The issue then
becomes one of how to relate the results of independent monocular analysis. One of the first examples in the
literature was symbolic change detection [26, 27] and the matching of coarse regions such as lakes, fields, and
forests based upon relationships that were largely invariant over small rotations in the image plane (< 45 degrees)
and relatively large scale changes (factor of 10 resolution). These techniques have been generalized to the
matching of semantic network descriptions generated by separate monocular analysis or from a baseline
cartographic description [28].

Our interest in matching of monocular interpretations arises from our desire to relate structure descriptions
generated from a building hypothesis system. The BABE Built-up Area Building Extraction system [4], performs
monocular analysis on an image by extracting lines and corners and generating structure hypotheses. This work
is similar to Huertas and Nevatia [131, but differs in that a large number of hypotheses are purposely generated
such that buildings are rarely missed. These structures are then evaluated by a number of techniques such as
shadow verification, shadow prediction, and shadow grouping [14]. The processes of verification, prediction, and
grouping are used to rank order or prune the large number of BABE structure hypotheses.

3.1.1. Structure Verification
First of all monocular matching can be viewed as another form of structure verification. That is, sets of

independently derived hypotheses from different images are matched using the scene registration model to relate
absolute ground position in the two images. The results of this matching provide information that is not available
in a single image, including an estimate of structure height and the reliability of each hypothesis. For example,
because matching allows multiple hypotheses in one image to correspond with a single hypothesis in the secona
image, we can use this fact to guide a re-examination of the structure delineation in the first image. The
fragmentation of structures is a common source oi error in computer vision, and understanding fragmentation
requires some external process to predict its occurrence or to identify situations where it has occurred. Even in
cases where there is a good one-to-one match between structures, different viewing angles, accidental
alignments of objects in the scene, or differences in imaging conditions will produce differences in the
segmentation which can be recognized as cues for further interpretation.

The use of high-level image cues such as aligned or oriented structures composed of lines, corners, and
surfaces for perceptual grouping and stereo matching has recently seen some research activity (7, 23]. In our
examples we have focused on the verification and grouping of hypotheses in order to improve monocular
analysis. The determination of height is only one component of the matching process, rather than the primary
result. We also used this matching as another way to select control points automatically and to perform scene
registration.
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3.1.2. A Matching Experiment
In this section we describe our matching results on a portion of a stereo pair of Los Angeles International

Airport (LAx) used by Huertas and Nevatia in their building extraction research [13]. Figures 3-1 and 3-2 show the
results of BABE hypothesis generation on the left and right image, respectively. The BABE results have been
pruned automatically using shadow analysis [4]. As is evident in these results, BABE generates hypotheses for
most of the buildings in the scene. However, it is apparent that there are differences in the quality of the
delineation and in detection errors between the two images. In the ideal case, we should have the same number
of building hypotheses in each image. Further, the roof delineation of each building should be quite similar but
not identical, because of the displacement due to height.

Figure 3-1: BABE building hypotheses for Figure 3-2: BABE building hypotheses for
LAX [left image] LAX [right image]

Figure 3-3: BABE results superimposed on the Figure 3-4: BABE results superimposed .)n the
left image using coarse registration left image using fine registration
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Figure 3-4 shows the superimposition of BABE results on the LAX left image using the fine registration technique
described in Section 2.4 while Figure 3-3 shows the accuracy of the coarse registration described in Section 2.3.
This superimposition allows us to see directly the structure correspondence as well as the differences between
the two monocular analysis results in Figures 3-1 and 3-2. The horizontal displacement between the hypotheses
for the fine registration can be related to the relative height of the structures because of the epipolar constraint.
Coincident structure hypotheses give very strong support for hypotheses of buildings. This is due to the fact that
the feature extraction process rarely fails in exactly the same way in each of the images.

To automate matching between the hypotheses in the left and right images we utilize geometric constraints.
We take each BABE hypothesis from the left image and find the best corresponding hypothesis on the right image.
To evaluate the effects of the registration, we performed this matching on both the coarse registration using the
CONCEPTMAP scene model, and the fine registration described above. Figure 3-5 shows the matching results
using the CONCEPTMAP registration while Figure 3-6 shows the matching results of the fine scene registration. In
both cases we have chosen a small area in the left-center of the LAX scene to illustrate the details of matching.

The matching process is a global search between two sets of boxes according to local limitations in the search
area. The epipolar geometry of the fine registered images can be used to constrain the search area to a range of
scanlines in the images. Then we use a simple criteria to select potential matches: the position of the hypothesis
center-of-mass projected into a rectangular search space and amount of overlap between the pairwise structures.

This simple matching process allows us to consider arbitrarily complex polygonal structures because we are
not performing discrete vertex or structure matching to establish a stereo correspondence such as in Mohan and
Nevatia [23]. This is required given the relatively complex imagery and imprecise segmentation delineation
provided by BABE. In many cases detailed high-level structure matching (as in [23]) will be defeated by errors in
monocular feature detection due to occlusion, texture, and accidental alignments of objects and background.
These are precisely the errors that cause area-based and feature-based matching to fail, although propagated to
a high-level matching process.

Because our matching criteria are not very selective, we must disambiguate among many plausible matches.
However, even if we devised a more specific set of match criteria, it is unclear whether we could account for
situations in built-up urban areas where the buildings are very close, and have very similar shapes, orientations,
and heights simply by using a set of local optimal matches. There are several examples of the alignment of
similar buildings even within the LAX imagery. Thus, there is a virtue in the application of weak constraints
because they do not require detailed high-level knowledge about the mis-registration. Instead of trying to
disambiguate the matches locally we use global considerations based on the plausibility of the matched sets of
structures. We define four different situations that occur depending on whether several structure hypotheses
share the same correspondence with a hypothesis structure in the other image.

Tables 3-1 and 3-2 show the results of the monocular matching using the coarse and fine scene registration. In
this experiment we search for the best match for each of the building hypotheses produced by BABE in the left
image. A similar analysis could be performed on the structures generated from the right image. Four different
situations can occur during matching that correspond to the application of local and global properties:

" Type 1 This case corresponds to the "ideal" situation where we have a unique correspondence
between a single hypothesis in the left and right image. The score of the correspondence gives us
an estimate of the quality of the match between the two structures. A match score greater than 0.9
indicates that the two structures are quite similar. Pair (10,29) is an example of such a good match.
A lower match score, as in the case of Pair (8,11), indicates that while there is a correspondence
between structures their BABE delineation is not completely consistent between the left and right
image.

" Type 2 This case occurs when a structure in the left image shares a right structure correspondence
with other structures in the left image. This correspondence is therefore ambiguous. In this case the
match score is not sufficiently different to disambiguate between the multiple choices. However,
knowledge of a reasonable height range for these structures could be used to select the correct
correspondence. For example, Pair (28,12) and Pair (29,12) have a significant difference of 4.5
meters in their height estimate. However, neither height is sufficiently unusual to prefer one
interpretation over another without some external information. However, in the case Pair (7,10) for
the coarse registration, this match could be discounted due to a height interpretation that is below the
local terrain.

" Type 3 This case occurs when several matches were possible with different structures in the right
image, for example Pair (26,3). The correspondence selected has the highest confidence match but
other correspondences are possible, i.e., Pair (26,10). Once again, knowledge about the reasonable
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Figure 3-5: Matching of buildings using a coarse registration

Results of the matching of boxes for the coarse registration

Type of Left box Right box Corres. rel. height rel. line
corres. corres. score estimate offset

1 2 7 0.92 4.0 18.2
8 11 0.73 3.5 21.0
9 27 0.85 4.4 16.4
10 29 0.94 3.7 18.3
25 6 0.83 3.8 17.4
30 31 0.93 4.2 18.2

2 7 10 0.73 -9.3 16.9
28 12 0.89 -0.1 17.5
29 12 0.80 4.4 17.1

3 5 3 0.75 -10.0 22.0
26 3 0.87 4.5 21.5

4 11 13 -44.5 19.6 -24.9
12 13 -34,5 16.0 -18.5

Table 3-1: Matching Results For LAX Building Hypotheses with coarse registration
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Figure 3-6: Matching of buildings using a fine registration

Results of the matching of boxes for the fine registration

Type of Left box Right box Corres. rel. height rel. line
corres. corres. score estimate offset

2 7 0.92 3.1 0.2
8 11 0.73 2.5 3.0
9 27 0.86 3.4 -1.6
10 29 0.94 2.7 0.3
25 6 0.83 2.8 -0.6
30 31 0.93 3.2 0.2

2 5 10 0.75 3.7 4.9
28 12 0.89 -1.1 -0.5
29 12 0.81 3.4 -0.9

3 26 3 0.87 3.5 3.5

4 7 10 -11.4 -10.3 -1.1
11 31 -44.6 -35.5 -1.6
12 13 -51.5 15.0 -36.5

Table 3-2: Matching Results For LAX Building Hypotheses with fine registration
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height range for structures could be used to select the appropriate correspondence.

*Type 4 This case occurs when struct res in the left image do not have any reasonable
correspondence in the right image such as in Pair (11,13). Nevertheless the best correspondence is
given. The utility of such a match is to provide another analysis process with a context to search for
new structures in the right image or to eliminate this structure from further analysis.

As we have seen, the ability to perform scene registration allows for the efficient correlation of monocular
analysis. There appears to be no major difference between the matching results using the coarse or fine scene
registration. In the case of good matches, i.e., Type 1, having a high score, the results are identical for the coarse
and the fine registration. Even if, according to the registration, different types of matching are possible for the
ambiguous matches, this technique still seems to be quite robust. However, different scene clues can be derived
by the analysis of the absolute match score, the match type, the estimated height, and the relative row offset for
the different registrations. For example, in Type 2, matching a choice between two competing interpretations
must be made. A verification process could be invoked to locate a better matching and delineation of the
structures. The estimate of structure height in the fine registration can be compared to the results of specific
stereo matching algorithms. We can also characterize the quality of the scene registration (epipolar geometry in
particular;, by the relative row offset results for the matching of a given set of accurate structure delineations. For
example, given a reference manual segmentation of buildings in the left and right images we can use the local
translations in rows and columns between the matched structures in the coarse registration (i.e. the estimated
height and the relative row offset) as estimates of the misregistration. Actually a simple analysis of th'
translations for the good matches in the coarse registration is used to set a spatial constraint to reduce the search
window while refining the matching process. The relative row offset in the coarse registration is approximately 18
pixels. This can be derived by averaging the row offset of the good matches and can be verified by subtracting
the relative row offset of the fine registration from that of the coarse registration.

Thus, the matching of high-level structures extracted from monocular analysis can be used for evaluation of the
quality of the structure delineation, height estimation, or provide a refined estimate of the scene registration. In the
following section we discuss in more detail the use of structure matching to refine the registration.

3.1.3. Structure Matching for Registration
As we have seen, starting from the coarse registration, we are able to perform structure matching that provides

an estimate of the local offsets in rows and columns for the center-of-mass of the structures generated by BABE in
the left and right images. We can consider these corresponding points as control points selected automatically
and then perform a registration of the stereopair exactly as with the shadow corners.

This observation can be generalized, and we can consider the automated registration more globally. As we
have seen, one requirement for automated registration is the automatic selection of corresponding points in the
stereo pair images. Classically these points are physical features of the images like shadow corners, road
intersections or specific marks, but we can also think of "virtual geometric points" defined by a geometrical
relationship to real features in the images. The center-of-mass of the structures generated by BABE belong to this
category.

With such a definition of control points, the automated registration can be performed using many different
ieatures such as isolated points, edges, boundary contour, regions, and structures. The problem is, as before, to
perform accurate matching in order to end up with control points whose position is accurately known. Our ability
to match various features is the characteristic that tends to limit our choice of techniques.

The traditional "characteristic points" approach is often accurate in point position, but because it is highly iocal
in nature it is very difficult to find an accurate one-to-one correspondence. The more inherent complexity in the
feature selected as a match point, the more constrained the matching becomes. For example, single intensity
points in the images are very accurate in position but the matching process to find the correspondences is very
difficult. On the other hand, very complex structures can be very easily disambiguated to find good
correspondences. The problem is that as we match high-level structures our ability to determine match point
positions becomes less accurate. Because complex features such as road intersections, building outlines, unique
terrain points require a detailed analysis, their detection and delineation may be inexact. From these inexact
corresponding structures we must generate "virtual" control points whose position in the feature is less sensitive
to these errors.

The Figure 3-7 shows the "virtual" control points we selected in the images Using the matching of structures
generated by BABE. The structures generated by BABE in the left image are shown in white, the right image
structures are shown in black. The automatic control points selected correspond to the good structure matches.
Given that BABE does a fairly good job in structure delineation and generates consistent hypotheses in both
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images, the set of control points considered is quite reliable. In fact, the residuals of the registration shown in
Table 2-2 are comparable to the registrations using a manual set of control points.

Figure 3-8 represents the BABE results superimposed on the left image using the isometric registration derived
using these control points. The results are nearly identical to those derived using manual registration and show a
good superimposition of the building structures.

Figure 3-7: Structure matching using coarse Figure 3-8: Superposition of structures using
scene registration structure matching registration

3.2. Registration for stereo matching
The central issue in computational stereo is the solution of the correspondence between features visible in two

overlapping images. The correspondence of a point feature visible in the left and right image of a stereo pair can
be used to generate the three-dimensional description of that point in the scene. Points need not be the only
teature matched. As we have seen, the result of matching structures generated by monocular analysis can be
considered as stereo matching and yields a relative height estimate.

In Section 2.2 we discussed how the epipolar constraint is used to simplify stereo matching by reducing it to a
one-dimensional problem. This is because the epipolar lines in the imagery are registered to be corresponding
scanlines in the left and right image. The assumption that the scene registration is ideal and that the epipolar
constraint is totally satisfied is rarely warranted in imagery digitized from aerial photography. This is due to all of
the orientation problems previously discussed as well as inaccuracies inherent to the digitization process primarily
due to rotation of the image. In the following section we discuss the effect of coarse and fine scene registration
on two stereo matching algorithms.

3.2.1. Two stereo correspondence algorithms
Algorithms for stereo correspondence can be grouped into two major categories: area-based and feature-

based matching. Examples of area-based matching include correlation techniques for matching image intensity
patches using various evaluation functions including normalized cross-correlation, mean-square-difference, or
surface fitting residual error. Feature-based techniques match image features derived from edge, line, or
boundary detection. Area-based techniques provide a dense disparity map with an estimate generated at every
point in the image. Feature-based approaches provide depth information only at points where the features are
generated, often points of intensity discontinuity that may correspond to discontinuities in depth.

Both classes of techniques, area-based and feature-based, have advantages and drawbacks that primarily
depend on the task domain and the three-dimensional accuracy required. For complex urban scenes, feature-
based techniques appear to provide more accurate information in terms of locating depth discontinuities and in
estimating height. However, area-based approaches tend to be more robust in scenes containing a mix of
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buildings and open terrain. For this reason we have developed two stereo matching algorithms. Si is an area-
based algorithm and uses the method of differences matching technique developed by Lucas (15, 20]. S2 is
feature-based using a scanline matching method that treats each epipolar scanline as an intensity waveform. The
technique matches peaks and troughs in the left and right waveform. Both are hierarchical and use a coarse-to-
fine matching approach. Each is quite general as the only constraint imposed is the order constraint for the
feature-based approach. The order constraint should generally be satisfied in our aerial imagery except in cases
of hollowed structures.

Both matching algorithms assume the epipolar geometry but have different sensitivity to its accuracy. The si
area-based approach uses a hierarchical set of reduced resolution images to perform a coarse-to-fine matching of
small windows in the two images. At each level the size of the windows for the matching process depends on the
resolution of the reduced image. An initial disparity map is generated at the first level. Subsequent matching
results computed at successively finer levels of detail are used to refine the disparity estimate at each level.
Therefore the amount of error in the scene registration that can be tolerated by this matching algorithm depends
on the size of the matching windows. However, since there is a relationship between the matching window size
and the level of accuracy, simply using larger matching windows may not be desirable.

The S2 feature-based approach matches epipolar lines in the left and right image. It uses a hierarchical
approximation of the intensity waveforms to match peaks and valleys at different levels of resolution. To avoid
mismatches it uses inter-scanline consistency that enforces a linear ordering of matches without order reversals.
It also applies an intra-scanline consistency that considers the matches in adjacent scanlines. Application of
intra-scanline constraint is used to increase the confidence of matches found to be consistent across multiple
scanlines and to delete improbable matches.

Figure 3-9 is a complex industrial area scene and was the focus of our discussion on coarse and fine scene
registration in Sections 2.3 and 2.4. This scene contains many of the difficulties found in stereo matching,
including occlusion, complicated textures, large depth discontinuities, and complicated three-dimensional objects.
The Figure 3-10 shows the results of the matching for the CONCEPTMAP coarse registration using the area-based
algoriihm si. In all of the disparity match results presented in this paper, brighter regions are closer to the camera
and have greater height. Darker regions are at or below the relative terrain ground plane. The results using the
coarse registration are quite errorful. We can barely discern the general shape of the taller buildings in the middle
and the upper left areas of the scene. The S2 algorithm is completely unable to use a coarse registration since
the scanline matching assumes that the epipolar constraint is satisfied.

The Figure 3-11 shows the results of the matching using the si algorithm with the fine registration produced by
the manual selection of shadow comer points. The matching results are significantly better with the bright areas
again representing the highest regions and corresponding to most c; the buildings in the scene. Although the
delineation is not crisp there are few major mismatches, and we have an adequate impression of the range of
heights in the scene. The si algorithm has many of the advantages and drawbacks of any area-based technique.
As we can see in Figure 3-11 most of the errors are due ,o abrupt changes in height due to man-made structures.

The Figure 3-12 shows the results of the matching using the s2 algorithm with the same fine scene registration
in Figure 3-11. This technique performs very well on the disparity discontinuities caused by man-made structures,
and therefore we have a much better delineation of the buildings than in Figure 3-11. Nevertheless, despite post
processing of the disparity results, the resulting disparity image is noisy. As expected, the S2 algorithm can not
provide robust matches in areas of uniform intensity or in highly textured areas.

The results of the two stereo matching algorithms are quite complimentary, and we believe that it is possible to
take advantage of the different failure modalities in order to form a composite disparity map that gives a more
accurate three-dimensional representation of the scene. It is also clear that stereo matching relies on a more
accurate scene registration than is provided by the coarse registration described in Section 2.3. Even when the
matching window size for an area-based stereo algorithm is larger than the inherent mis-registration, it may be
difficult for the matching algorithm to recover from mis-matches due to poor scene registration. This is in contrast
to the results in structure matching presented in Section 3.1 that appear to be much less sensitive to a coarse
scene registration.
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reconstruction. Synthetic reconstruction can be used to visualize and compare the results of stereo matching by
direct visualization.

A relative height computation, or disparity, is the result of most stereo matching algorithms. The disparity is
usually encoded in a representation related to the geometry of the left image. In this disparity map, the values of
each point in the map correspond to the relative height of that point in the left image. In order to generate a
synthetic reconstruction containing the information extracted by the matching process we must generate a new
right image. Each point in the right image is the corresponding point in the left image displaced by the relative
height estimate in the disparity map. This process is exactly the opposite of that used to generate the disparity
map. However, we do not have to solve the matching problem. The computed right image is, by definition,
perfectly registered since there aru only local horizontal shifts between the left and the right image. Thus, we
satisfy the epipolar constraint. Figure 3-14 and Figure 3-13 shows reconstructed synthetic stereo images for the
stereo matching results produced by S2 in Figure 3-12.

3.3.2. 3D segmentation for ground truth determination
The visualization of scenes and stereo matching results is a powerful tool for the qualitative comparison of

different scene interpretation techniques. One technique is the side-by-side comparison of the original stereo
scene and the automated reconstruction. Such a comparison allows us to quickly see those buildings that are
missing or have errors in height or ground position.

However, a quantitative approach is also possible and is potentially more useful. Using the anaglyph display
techniques we can generate a three-dimensional segmentation that allows us to store the structure of each
building in the scine. The form of the data is simply a segmentation description file containing collections of left
image points and their relative height. From that representation we can infer a partial three-dimensional
representation of the buildings guessing the shape of the invisible parts, much as is done with simple wireframe
models. We can also use this representation as a baseline reference representation for buildings in order to
compare and contrast the various processing results.

Figures 3-15 and 3-16 show how this technique can be used to construct a simple three-dimensional ground
truth segmentation that can be visualized as a stereo scene. We simply represent the building roofs as horizontal
surfaces and displace these surfaces proportionally to the actual height of the buildings that we got from the
three-dimpncinnal segmentation of the roofs. Such a stereo pair is very useful in order to compare the results of
automatic scene matching.

4. Automatic scene registration
As we have seen, structure matching, stereo matching, and visualization all rely on the quality of the stereo

registration. The registration and the matching process are therefore interdependent. Structure matching
appears to be a task that we can reliably perform even with a coarse scene registration. Further, the results of
structure matching provides a method to automatically refine the initial coarse scene registration. In this Section
we demonstrate a complete end-to-end scenario of automatic structure matching, fine registration, and stereo
analysis. Thus, we can automatically generate a three-dimensional i, presentation of the scene starting from the
CONCEPTMAP image database.

We began with the DC38008 test area corresponding to Figures 2-3 and 2-4, previously shown in Section 2.3.
We then utilize the BABE structure results and perform structure matching to select reliable control points. The
structures generated by BABE are fragmented and are not as consistent as those generated for the LAX stereo
pair. Nevertheless, we are able to find a number of good matches, well distributed across the image, as shown in
Figure 4-1. Subjectively, the registration quality is good, as seen in Figure 4-2, where many of the building
fragments are now aligned. The overall registration quality is detailed in Table 2-1 (ISO structure) in Section 2.4.
While it is not as accurate the registration derived by manual ground control selection, it is clearly comparable.

Finally using this automatically registered stereo pair we performed stereo matching to get a dense disparity
map of the scene. Figures 4-3 and 4-4 show the results for the si and the S2 matchers. The results are
comparable to those in Figures 3-11 and 3-12 achieved using manual selection of control points. Thus we have
shown the feasibility of end-to-end processing to establish precise local registration using automatic ground
control point estimation.
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Figure 4-1: Automatic control points using Figure 4-2: Superposition of structures using
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Figure 4-3: si disparity map using Figure 4-4: S2 disparity map using
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5. Conclusions
The importance of scene registration in the automated interpretation of aerial imagery can not be overstated.

Scene registration is required for monocular matching, stereo analysis, scene visualization, accurate mensuration,
and for many other photo-interpretation tasks. Most work in computational stereo has ignored the problem of
scene registration assuming that the left/right image pairs were already in epipolar geometry. As we have seen,
this may limit the utility of many feature-based and some area-based matching techniques, especially in cases
where there are significant residual errors in the registration process.

Traditionally we have separated the stereo analysis of digital images in two problems, registration and
matching, and have attempted to solve each independently. However, t.e results of matching, whether structural
or using a stereo model, are actually the ultimate form of scene registration since the matching solves the
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correspondence between different objects in the images. In some sense registration and matching are
corresponding processes that are performed at different representational levels. Registration relies on
mathematically modeling the image acquisition in the three-dimensional world, while matching defines the
relationship between corresponding points in two images. Registration is generally necessary to constrain search
during matching, but at least a sparse matching is necessary to perform the registration.

5.1. Future Work
There are several areas for future work focused on improving techniques for scene registration. First, using the

image-to-map correspondence, we need to improve the accuracy of the landmarks stored in the CONCEPTMAP
database. It may be necessary to include accurately surveyed geodetic control points in addition to those that are
acquired from map sheets. However, given the high resolution of the imagery that we are working with, it may
actually be quite difficult, using these control points, to improve on the current level of accuracy. More complex
known landmarks such as road networks may be utilized to accurately register imagery to maps for automated
scene registration [16].

For direct image-to-image correspondence we have seen some limitations in automatic extraction of shadow
corner points in complex urban imagery for registration. Additional sources of reliable registration points should
be available using monocular extraction of man-made structures such as the road networks. From our previous
work in road detection [3 and tracking [19] it seems quite reasonable to use these structures as potential
landmarks for scene matching. Furthermore the model of transformation between the two images should be
enhanced to get a better registration once we have accurate control points.

Finally, we need to pursue the experiment of iterative refinement of registration via coarse-to-fine matching.
The basic idea is to perform a coarse registration using road networks, or known ephemeris data. This coarse
registration would be followed by feature matching using structure matching or shadow corners to generate an
estimate of the error in the registration. This estimate can be refined using a hierarchical approach using high-
level features that are easily matched but have inaccuracies in position, to low level features that are difficult to
match but have unambiguous positions in the stereo pair. The process of registration and matching would then
iteratively converge to a complete matching of the scene. Whether this approach can achieve high registration
accuracy equal to manual correspondence is a topic for further research.
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ABSTRACT

This paper summarizes various projects in the Lockheed Missiles and Space Company Image Technology Development
Program. These include: knowledge-based systems, applications of neural networks, perspective invariant object recog-
nition, space astronomy, materials research, integrated electronics and architectures, advanced software, image process-
ing, automation and robotics. Image Understanding aspects of the projects are highlighted, with an emphasis on three-
dimensional data derivation and visualization.

1. INTRODUCTION

This presentation has two objectives. First, we give a brief overview of Lockheed Missiles and Space Company's
(LMSC's) activities in digital image processing and interpretation, highlighting aspects of the work that we have
judged to be of interest to the present audience of experts in the image understanding community. Second, we present
technical depth in one specific area, the utilization of three-dimensional information in imagery exploitation, since this
subject plays a vital role in several of the DARPA Strategic Computing (SC) Vision application areas and programs,
such as object modeling for photointerpretation, automated manufacturing and robotic manipulation.

Lockheed is a ten-billion-dollar corporation with major activities in the United States and throughout the world,
hence the present paper cannot summarize all imaging research activities. We will focus on image algorithms and tech-
niques developed at LMSC's Palo Alto and Sunnyvale laboratories, a major portion of Lockheed's image technology
program. In common with a number of the major aerospace corporations, Lockheed develops a proportion of its imag-
ing technology for controlled access programs, and thus this information must be sequestered. However, the authors
feel confident that this latter restriction, while cutting down on specific details, will not detract from the accuracy of
the overall picture.

At LMSC, image technology development is driven by the requirements of the company's various missiles and space
programs. These requirements include:

* AUTOMATED SCREENING of visible, radar and sonar imagery from spacecraft, aircraft and oceangoing
platforms;

* AUTOMATED INSPECTION of missile and aircraft parts and electronic components using various sensing
technologies;

• AUTOMATED ASSESSMENT of imagery-derived features, with applications to collection system
management and mission planning;

* IMAGE ANALYSIS WORKSTATIONS that facilitate interactive imagery exploitation and incorporate
automated database access, analyst aids, and report generation capabilities.

A number of LMSC technology developers and managers, recognizing the high payoff that would result from success-
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ful automated image understanding systems in these areas, are optimistic about the migration path from the communi-
ty's present comparatively modest accomplishments to significant capabilities for automated systems within a decade.
Current estimates of the probable dollar value of image-related sales over the next five years have helped to assure
that LMSC management will continue to view image technology development as an important component of the com-
pany's strategy for missiles and space business.

We now proceed with Part 2 of our presentation, an overview of LMSC image technology research. Part 3 treats three-
dimensional issues in greater technical depth. Technical articles and video tape presentations on LMSC's work in sever-
al of these areas can be made available upon request.

2. OVERVIEW

In the following pages we summarize various major projects within LMSC. They include automated image screening
and processing, knowledge-based technology, or rapid (video-rate) cue extraction and scene generation.

21 KNOWLEDGE-BASED SYSTEMS

211 AES

The Automated Exploitation System (AES) addresses requirements for monitoring objects of interest and performing
situation assessment over large geographic areas. Figure 1 illustrates the four main subsystems of the overall architec-
ture: Cue Extractor (CE), Knowledge-Based Exploitation (KBE), Interactive WorkStation (IWS) and a database sub-
system. AES is partitioned in a manner intended to optimize the use of numerical and symbolic processes, algorithmic

DATABASE SUBSYSTEM

MAN-MACHINE INTERFACE

Figure 1. AES architecture.

and heuristic components, and appropriate conventional and knowledge-based technologies. The CE processes raw image
data, and identifies objects and target cues based on pixel and object-model data. Hence, the CE consists primarily of
numerically intensive processes based on image texture, variance measurements, and pattern matching algorithms. Cues
and image registration coefficients are passed to the KBE subsystem for screening and verification, situation assess-
ment, and planning. This system combines the cues with ground-truth and doctrinal knowledge to determine their im-
portance and generates reports on the screening results, plus evaluation of the cues. This information is passed to the
TWS where an image analyst can monitor, observe, and evaluate system functionality as well as respond to critical
items. The database subsystem stores and shares reference imagery, collateral information and digital terrain data to
support both automated and interactive processing. This partitioning of functionality into subsystems facilitates hierar-
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chical application of knowledge in image interpretation. The current AES prototype helps in identification, capture,
representation, and refinement of knowledge. The KBE subsystem software is written mainly in LISP, although the
ART expert system shell is used in the implementation. The hardware testbed includes a Symbolics 3675 computer.

IniLially, the CE performs analysis on raw imagery data and produces a list of vectors, (x,y) pixel locations, and nota-
tions as to the "likeness" of the selected positions in the image versus a specific catalog of objects (roads, rivers, and
other cultural data) and targets (tanks, jeeps, and strategic objects). This cue-level information, along with rudimenta-
ry registration coefficients which transform the (x,y) locations into (latitude, longitude) space coordinates are provid-
ed to the KBE software.

The KBE accepts a list of these cues from the CE and uses various types of knowledge about terrain, object-terrain po-
sitioning doctrine, formation of object grouping, and historical data to screen the cues, then validates and assigns a sta-
tus to each target. Finally, it outputs symbolic target descriptors to the IWS. The purpose of the KBE is to analyze
and evaluate the outputs of the cue extractor and to provide significant cues to the image analyst to assist him or her
in performing routine commonplace tasks more effectively. It accomplishes the former by providing figures-of-merit
and expedites the latter through maintenance of database information and interpretation of target cue data.

Airs Monitor I \_AES Mqonitor It
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Figure 2. Terrain model for site-l: overview and close-up.

In addition to performing automated cue processing functions, the KBE provides interactive softcopy terrain modeling
capabilities. Terrain data is introduced to the KBE via ASCII files containing terrain element descriptors. Capabilities
within KBE's terrain functions include symbolic representation, display, and manipulation of Digital Feature Analysis
Data (DFAD). The user can obtain or construct softcopy maps for areas of interest using terrain features appropriate
for his application. Along with this, the KBE provides generic object-terrain reasoning capabilities for doing spatial
reasoning. Areas of interest (where imagery was acquired) are modeled with digital terrain features such as roads, rail-
roads, fresh water, mixed trees, building, and military construction.

The AES testbed includes capabilities for digitizing terrain features from imagery data in a semi-automated mode. Fig-
ure 2 shows a representative DFAD-like manually constructed terrain model for one area used in our examples. Cur-
rently, research is being conducted at Lockheed and elsewhere for automatically extracting terrain features and produc-
ing such symbolic maps from imagery data.

334 Lockheed Imaging Technology



2.12 COBIUS

A constraint-based image understanding system (COBIUS) has been developed which focuses on high resolution aerial
imagery interpretation. The major problems which this system addresses are:

1) generic domain object representation

2) compensating for unreliable image segmentation

3) knowledge control

The system consists of knowledge bases for domain object models and control strategies, blackboard areas to contain
the instantiated hypotheses of objects and constraints, and an image feature database to fuse results from multiple im-
age segmentation modules (Figure 3).
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Figure 3. COBIUS image understanding architecture.

To address problem (1) above, COBIUS uses a hierarchical representation scheme for both domain objects and con-
straints. The domain object representation hierarchy consists of event, scene, group, object subpart, surface, and curve
levels. In a similar hierarchy, constraints are represented from coarse to fine at different levels. Both objects and con-
straints (at all hierarchical levels) are represented as schemas.

Constraints can be applied either to domain objects or other constraints. This allows the decomposition of complex
constraints into primitive constraints and allows constraints to be modified by rules and other constraints. The advan-
tage of this representation is that constraints can be treated like domain objects; therefore, model-based prediction and
verification of primitive constraints from complex constraints can be used to reduce the combinatorial computation of
graph matching techniques.

To address problem (2) COBIUS uses a multiple feature fusion approach with model-based feature verification capabil-
ity. The *mage segmentation component consists of both region and edge segmentation modules, and a model-based re-
segmentation module that uses model information to guide the segmentation of expected objects in the selected image
areas. The region segmention provides coarse image features that are useful for initial image interpretation. The edge
segmention provides detailed shape information suitable for model-based verification.

Depending on the scene content, region or edge features are selected according to the current processing goal and strate-
gy to provide adequate descriptions for feature-to-model matching. The model-based resegmentation routine is con-
trolled by object verification rules. With the ability to fuse multiple image features and to use model information for
resegmentation, COBIUS significantly ameliorates problems caused by unreliable segmentation.
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To address problem (3) COBIUS reasons opportunistically, pursuing and refining the most plausible hypothesis first.
Control knowledge is represented explicitly in terms of control schemes and strategy selection rules. Dempster-Shafer
style uncertainty reasoning is used to minimize the problem associated with errors in the segmentation process. Uncer-
tainty is also used as control information where high certainty hypotheses will be explored first. Another source of
control information is encoded in the representation hierarchy of the constraints. This constraint hierarchy is used by
the constraint manipulation rules to dynamically determine what are the best constraints to evaluate next.

Figure 4. Split-and-Merge segmentation results.

COBIUS is implemented in Automated Reasoning Tool (ART) and LISP programming language on a Symbolics ma-
chine. The focus of our effort has been to design and implement COBIUS to be as scene independent as possible. As a
processing example, however, we have applied it to airport scenes.

Region and edge segmentation results on an aerial photograph of Washington National Airport are shown in Figures 4
and 5. Long edge segments are grouped together to form runway hypotheses. Regions with straight boundaries and
elongated shapes are classified as buildings. Constraints such as "buildings are not too close to runways" are checked to
resolve inconsistent scene hypotheses. Building hypotheses satisfying the NEXT-TO spatial constraint form building-
complex hypothesis at the group level on the blackboard. Additional building hypotheses are predicted at the two ends
of the building complex based on the NEXT-TO constraint.

Once the building complex hypothesis has been extended, the airport scene model and constraints are used to predict
roughly the locations of taxiways, parking lots, and access roads. These predictions help to narrow down potential ar-
eas of interest for detecting airplanes. Trapezoid shape primitives extracted from edge segments are used to form air-
plane subpart hypotheses. Spatial constraints between airplane subpart hypotheses are evaluated to form airplane hy-
potheses (Figure 6). Independently, regions with airplane model attributes are classified as airplanes. For partially sup-
ported airplane hypotheses, missing subparts are predicted (boxes in Fig. 6), and the model-based resegmentation
module is used to verify those predictions. The verified airplanes are shown in Figure 7.

We have designed and implemented a constraint-based image understanding system for interpretation of aerial imagery
and have applied it to an airport scene. The novelty of this approach is that we represent constraints as objects and orga-
nize them hierarchically (similar to the way objects in the scene are represented and organized). This allows tremen-
dous flexibility for generation, combination, manipulation, evaluation, propagation, and satisfaction of constraints. In
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addition, it makes it convenient to adapt the system to new domains.

<I

Extracted Edges /
Figure 5. Canny edge segmentation results.

Detected Planes

Figure 6. Detected airplanes and predicted wings.
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We have also devised a set of flexible control strategies which can manipulate constraints in the same way as objects
are manipulated. Using this representation scheme and control strategy, we provide greater modularity, flexiblity, and
avoid graph matching and its combinatorial explosion as well.

A",i

LMMI

Figure 7. Final interpretation results.

We are currently exploring incorporation of the following schema into our image understanding system: (1) temporal
relations and constraints to analyze sequences of aerial imagery, (2) ancillary knowledge from maps or previous scene
evaluations, (3) detection of more' sophisticated temporal events, (4) automatic report generation for monitoring re-
sults.

21.3 Cartographic image analysis

The overall objective of the Cartographic Image Analy s project is to investigate image understanding algorithm meth-
odologies which will provide accurate and efficient automatic interpretations of overhead digital (softcopy) imagery.
This includes investigation of new automatic and semi-automatic techniques for feature (object) extraction and delinea-
tion, feature classification and identification, intelligent information storage and retrieval, image screening, and a vari-
ety of difficult application domain tasks such as change detection, trafficability analysis, and reference map prepara-
tion. Our effort explores new and promising technology areas which may yield fruitful results to the challenging as-
pects of automation for photointerpretation. Two recent highlights of this activity include: 1) a new tool called "High
Accuracy Reference Map Extractor" which provides automated delineation capability of high-value urban objects with
pinpoint accuracy, and 2) a new Neural Network for image understanding.

The High Accuracy Reference Map Extractor improves upon the results of the Lockheed semi-automated region extrac-
tion/delineation capability. It takes as input a noisy representation of an object's boundary and converts it to a sequence
of straight line segments which yields an accurate object delineation. Such straight line segments are very appropriate
for computer generation of reference data for a mission preparation task, with much improved results deriving from
the application of this strategy. User efficiency and more effective personnel utilization can occur from the application
of such a strategy.

The second highlight exploits multiple image resolution levcls for improved delineations and classification of high-
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resolution digital imagery using a Neural-Network structure. A given feature is best represented as a whole at some
optimal level of detail, dependent on its spatial dimensions (the recognition of a vehicle requires a higher level of de-
tail than the recognition of the road it is on). At resolutions below the optimum a feature may not be visible, or con-
textual features may dominate. At resolutions above the optimum a feature's internal features may dominate. Informa-
tion on either side of the optimal threshold is important for reinforcing or cancelling the interpretation of a feature,
all of which is ignored in the more standard global interpretation process. A set of requirements for a new approach to
image inrtzrprtation, called Multi-Pass Multi-Resolution (MPR) was developed which partitions refined shapes by
splitting and remerging adjacent partitions according to the type and quality of their classification, and tracks the
changing confidence in feature interpretations due to refinement of partitions and the exposure of internal features,
weighted, or "fuzzy", classes. The preliminary results on urban imagery are extremely encouraging.

22 APPLICATIONS OF NEURAL NETWORKS

22.1 Automated terrain elevation extraction

We have studied how match points between stereo image pairs can be used to derive terrain elevation data from aerial
photography. The applications are obstacle avoidance and target downtrack ranging for camera guided vehicles. These
measurements are made possible by the relative image offsets, or parallax, produced when objects at different ranges
are imaged from different angles. In other image comparison applications, such as change detection, parallax may con-
stitute a significant nuisance, producing undesired relative image distortions. Parallax removal through pixel by pixel
image matching is then necessary before image comparison can be performed.

Fractional parallax determination at each pixel location was attempted by using image cross correlation calculations.
This data, corresponding to image window sections, was input to a back-propagation, two hidden-layer, symmetrical
neural netwo -. Network output included the parallax offset value for the center pixel of each window section. The
network was trained using simulated stereo imagery so that the exact parallax offset at each pixel was known.

Network results on simulated test sets show a distinct improvement over results using correlation smoothing meth-
ods. The trained network was then used on a real image pair for elevation extraction and change detection. The result-
ing elevation surface and change detection difference image are illustrated and evaluated in section 3. Further results of
this study are also described there.

222 Inference mechanisms in knowledge-based systems

In a second study, relations among neural networks, linear programming and continuous or "fuzzy" logical inference

have been derived and demonstrated. A statement in the propositional calculus, like "p D q" may be represented as a

function of its propositional variables, e.g. f D (p,q). These functions are generally thought of as integer valued func-

tions of the discrete variables p,q; for example, p D q or f D (p,q) = 0 if p=l, q=O, or f : (p,q) = I otherwise. We
have explored the consequences of generalizing these functions, allowing the propositional variables to assume a con-

tinuum of truth-values 0_p!l, 0_q<_l, in such a way as to coincide with the traditional functions of discrete logic at
the corner-points of the (p,q) square. We call the resulting theory "continuous logic".

Theorems about the logical functions f D (p,q), f, (p,q) f-(p,q) f*(p,q) can now be provided by reasoning about mathe-

matical inequalities. A tautology in this theory is a satement whose minimum truth value, subject to the mathemati-
cal inequality constraints imposed by the premises, is unity. The proof of a proposition becomes a mathematical exer-
cise in non-linear or linear programming, maximizing functions of propositional arguments subject to inequality con-
straints. If the logical functions are defined as linear algebraic functions, proving theorems in logic is accomplished by
solving linear programming problems, which becomes a candidate inference mechanism for knowledge based systems
grounded in continuous logic. The linear programming procedure generates a monotonic path through the search space;
backtracking or trial-and-error are not required. With this theory, we can explore the consequences of attributing
truth-values other than 0 or I to propositions, and we can prove statements involving generalized logical relationships
among such propositions.

The second element of our approach makes use of J. J. Hopfield's observation that a variety of constrained optimiza-
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tion problems, including linear programming, can be solved by neural networks. We have shown how to concatenate
these results, and have demonstrated several examples of solving logical inference problems with neural networks. Ap-
plications of these results to automated inferencing in "smart" collateral data bases are being investigated.

2.3 PERSPECTIVE AND MOTION INVARIANT OBJECT RECOGNITION

23.1 Projective invariants

Dimensionless metrics derived from ratios of geometrical distances and volumes, may provide a computationally low-
cost means for classifying and cataloging objects in imagery. The cross-ratio theorem in the plane is an example of us-
ing the ratio of sines resulting from object feature locations in image space to perform image rectification and object
identification. After establishing the basic invariant theorem under Mobius transformations, the principle of image
space property invariance is generalized to arbitrary scene space point placement, then extended towards stereoscopic
and unconstrained object classification in higher dimensional space. Particular focus is paid to the 2-1, 2-2, and 3-2
scene-to-image dimensional cases and the forms which these invariants assume. Several examples of applications of in-
variants in object identification have been demonstrated, using engineering drawings and "ground photography" of air-
craft and vessels. Figures 8 and 9 show an example of comparing invariants calculated from engineering drawings of
the Bear-D bomber, with invariants measured from an oblique photograph of this aircraft.
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Figure 8. Bear-D engineering diagram with calculated invariance.
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23-2 Motion invariant image features

A method has been developed which uses correspondences of five lines in two views of a moving object to calculate its
structure, axis of rotation, amount of rotation, and translation vector. If the observer is moving, then the structure ofthe environment and the motion of the observer is determined. The only information used is the directions of the
matched line segments between two views, i.e., no point to point correspondence is required. This alleviates the fea-
ture matching problem, since it is generally easier to match line segments accurately between two pictures than to
match points.

T
upolev 

T
u-

1
42 ("Bear-D") from Cuban base, photographed about 36 nm (67 kn; 42 miles) off

Virginia Costhne while ronitoring sea trials of new US nuclear-powered aircraft carrier Carl Vinson
(US Nary)
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Figure 0. Oblique photo of Bear-D with calculated invariance.

Most published techniques for motion estimation and determination of structure from motion assume the moving ob-
ject (and/or the environment) is rigid. This assumption is often implied and sometimes is used explicitly to establish
equations. A few researchers have used line correspondences along with the explicit use of the rigidity assumption.

In the Lockheed method, the structure of the moving object (i.e., the relative position of the line segments in space) is
determined first by solving a set of polynomial equations. These equations are based on the following property of arigid object: the angle and distance between any two lines on the object do not change from frame to frame. Once the
relative positions of the lines in space are recovered, the axis of rotation, the amount of rotation, and the translation
vetor are easily recovered (in that order) by solving a set of linear equations for each parameter.
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2.4 SUMMARY OF 0OTIlER IM.AGING RESEARCH

2.4.1 Space astronomy

Research has been carried out in the development of x-ray, extreme ultraviolet, and ultraviolet sensors to gather diag-
nostic information about energetic physical processes occurring amongst space bodies. In this environment it is impor-
tant to understand the natural space photon environment and its role as a source of background noise. Edge enhance-
ment, threshold, noise reduction, and segmentation algorithms have been developed to interpret the spectral signatures
returned by these extreme wavelength sensors. These algorithms have contributed, for example, to an understanding of
the behavior of supernova 1987a.

2.42 Material science

Advanced polymer-based materials used in aerospace systems are typically very complex, possessing a wide variety of
poorly understood chemical and physical interactions, both at the molecular and macroscopic levels Research has cen-
tered on nuclear magnetic resonance (NMR) spectroscopy and NMR imaging to investigate these interactions. NMR
imaging has provided a too)l whereby critical variations in important features such as local particle variation of solid
piopellants can be mapped out. Simulants containing a broad range of materials have been studied for the detection of
embedded voids and particle agglomerates. The technique employed has been projective reconstruction using only one
spatial encoding gradient. This approach, first used in the medical sciences, reduces the imaging time in half', but with
the slight disadvantage of a greater propensity of ghost images. Defects are located in the NMR images by simple
thresholding and edge enhancement processes. Projective reconstruction has also been employed to determine the behav-
ior of viscous materials undergoing laminar flow. Contrast differencing techniques have been used to chart the unidirec-
tional movement of suspended particles in NMR temporal image sets.

2.43 Integrated electronics and architectures

We have investigated how image analysis algorithms can be implemented on neural networks, and the related develop-
ment of a massively parallel hardware system called GSIMD using very large scale integrated (VLSI) chips. The archi-
tecture which has emerged contains a smart controller and a laige configuration of Geometric Array Pixel Processing
(GAPP) single-bit array processing chips assembled onto standard size 19-inch rack-mount boards. The system has fa-
cilitated the development of near real-time algorithms for aerial surveillance, visual inspection, and robotic vision.

2.4.4 Advanced software

An important question to consider in the implementation of IU algorithms is how shared memory Multiple Instruc-
tion Multiple Data (MIMD) parallel architectures can be applied to speed-up results. Our research has conceitrated
on practical implementation of algorithms for region-based segmentation, stereo topographic profiling, and image com-
pression. These algorithms are designed to run on commercially available multiprocessors, e.g., Sequent B/21 and Al-
liant FXi80. Approaches considered for segmentation include tile-seaming, straight region growing amongst mutually
cooperating processes, simulated ainealing, and successive relaxation. Application of a specific technique depends upon
the size of images, qual, of segmentation desired, and absolute (real-time) speed requirement..

Table I. GSIMD array processor benchmarks.

Time Time
Operation GSIMD Other Systems

2D Convolution 15 Its 30 ms (Cray)

llxII Convolution 0.2 ms 3 ms (CM2)

Sobel Edge 30 pIs 30 ms (Cray)

Gaussian Zero Crossings 0.25 ms 0.5 ms (CM2)

Isolated cluster elimination 7 Is 5 ms (Cray)

Neural Net 100x100 Forward & Back 6 ms 1 s (Cray)

Random Assignment Problem 0.5 ms 1.5 s (Cray)

Abingdon cross benchmark 0.1 ms 1.5 ms (CM2)
Voronoi Diagram Construction 0.15 s 0.5 s (CM2)
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Numerous SINlID algorithms have been devised and coded for the GSIMD array processor. Table I contains some bench-
arks for these algorithms and comparisons with the Cray-2 and Connection Machine (CM2).

2.4- Solar physics

Sol;ar phenomena modify and control the Earth's atmospheric and magnetospheric environments. Predicting and under-
st~undiii solar flares, magnetic storms, and solar particle events are essential to the survivability of man and satellites
in space. An ongoing projcct is attempting to investigate these phenomena by exploring the use of optical disks for the

rt ,rage of Ir.4c temporal image databases. With this technology, exceptional continuum frames from the Swedish So-
1,ir )b.servatory have been processed to make the highest resolution solar movie in existence. Transverse flows have
heen measured in this data by correlation tracking, and a vortex flow in the photosphere has been discovered. This is
the first reported observation of such vortex motion in photospheric levels, although numerical simulations of granu-
lar convection have predicted this behavior. Fourier filtering of this movie has removed the variability caused by obser-

;itory seeing to a remarkable extent.

2.4.6 Nondestruclive-Testing Technologyv

Improvement, in hardware systems are often achieved by reducing tolerances in design. Nondestructive testing (NI)T)
is a general class of inspection methods that leaves objects unharmed and suitable for their intended use, yet ensures
th:it hardware meets designed tolerance levels. Research carried out by the NDT group has concentrated on both noncon-
t1wt _ltrasonic and x-ray scatter imaging techniques. Significant progress has been made in (1) correcting realtime ra-
dlographs (RTR) for gain and offset using digital filtering techniques, (2) identifying material composition using dual-
energy RTR imaging, (3) demonstrating the feasibility of noncontact ultrasonic inspection, and (4) developing the
first digital laminographic technique that uses RTR images to focus on selected depths of an object undergoing radio-
graphic inspection.

2.4.7 Automation and robotics

()ver the past several years a sophisticated testbed has been developed to support applications : ech as the Mars rover,
Space Station, and satellite repair and recovery. This dual arm system consists of a network of Intel 80386 micropro-
cessors with built-in control algorithms, advanced Datacube machine-vision hardware and software, conventional arm
sensors for measuring displacement, velocity, acceleration, force, and electronic currents, special ERIM range-finding
sensors, and communication links for remote command. Vision cameras are mounted on both wrists for close-up work,
and twin stereo cameras are mounted on the robot body for navigation and collision avoidance. To simulate space-based
activity a special laboratory has been furnished with an air table, special lighting fixtures, a safety system, and a opera-
tor command center. IU research has focused on object modeling and recognition, obstacle detection, and collision
avoidance algorithms.

3. DERIVATION AND VISUALIZATION OF 3-D DATA

The preceding overview was intended to show the very wide range of image exploitation activities underway at Lock-
heed. The rest of this paper highlights a specific technology arena, that of 3-D scene exploitation. Lockheed has been
exploiting the characteristics of 3-D scene knowledge for enhanced image understanding capabilities for more than 10
years. Accurate 3-D scene knowledge can provide significant advantages for more reliable image modeling and interpre-
tation applications. Recent advances in parallel processing has also provided enhanced capabilities in several areas where
speed has been a concern. We describe examples below which illustrate activities in 3-D laser ranging, 3-D topographic
reconstruction, and 3-1) scene visualization.

3. 1 LA SER RANGING A PPLICA TIONS

A laser range imagery sensor provides accurate distance measurements to a raster of sceie locations. Such data
_an provide significant insight for a variety of image exploitation problems. An obvious application is for terrain and
obstacle avoidance. Resolution and accuracy of operational range sensors now available combined with advanced 3-1) al-
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gorithms have also yielded the development of highly reliable tactical mobile targeting, guidance position updating,
and offset aimpo)inting capabilities. Two application areas are described.

3.1.) laser Ranging Data for Offset Aimpointing

A highly accurate surface shell representation of the viewed scene is extracted. We have exploited such imagery to
identify and extract planar surfaces associated with building walls. The relative locations and orientations of these sur-
faces are then used for precise offset updating.

The reference information required is the building orientation and its computed normal distance to the offset location.
If the offset location lies at the intersection of two building walls, each of their offsets is zero. More generally, the
offset is the shortest (i.e., perpendicular) metric distance from the offset point to the infinite plane through the build-
ing wall. Planar surfaces and their normal distances to the sensor are easily extracted from the sensed data using
Ilough transform techniques which determine the Cartesian (x, y, z) values associated with the pixels on the building
walls to identify both the 3-D planarity and constant normal distance values as constraints.

The vehicle location is computed as a simple mathematical functions of the metric difference between the reference and
sensed normal distance pairs. A minimum of three non-coplanar surfaces are required for a precise 3-D geodetic result.
Figure 10 shows typical normal distance values extracted. A least-squares solution is computed when multiple walls

Building

02
D2 .. X - Target Lo-cation

Figure 10. Example of normal distance values between building and offset locations.

are available. The derived metric value of the normal distances between sensed co-planar wall surfaces are used in con-
junction with their stored values in the reference data base to match sensed building wall surfaces to their corresoxnd-
ing reference wall. Tests on both sensed and synthetically created data show very precise aimpointing accuracies.

Reference preparation requirements are greatly reduced over many traditional position updating strategies (e.g., correla-
tion) since: 1) only a limited set of surface features and their attributes are required and 2) accurate scene rendition is
unnecessary. Preparation for the mission of interest can proceed from maps which show the relative Positions of build-
ings in the scene used for aimpoint or guidance updating. Geodetic errors would then only occur due to: 1) the extent
that the map has mislocated the buildings on it, and 2) the later accumulation of vehicle position, orientation, and ve-
locity errors. Figure I la shows a synthetically created image of a building scene; Figure 1lb shows the results of
matching the sensed graph associated with the scene wall extractions to the reference graph which would he stored pre-
flight

3.12 3-D Object Modeling

Another area of interest is the recognition of 3-1) objects for robotic applications. Such recognition can be considered a
two-stage problem. In the first stage, the system analyzes the object model to determine prominent object features
suitable for recognition and to compile these features into an algorithm for object recognition. In the second stage, the
system applies the selected algorithm and recognition strategy at run time for efficient object recognition. Most exist-
ing IIJ systems only address the second stage problem. The tasks of identifying prominent object teattres and recogni-
tion strategies are left to the system developer who manually encodes this information ;ntI the system.
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We plan to automate the first stage problem by developing an object model feature compiler that extracts and organiz-
es object features automatically from object models based on geometric properties and spatial reasoning. In our repre-
sentation, object recognition is treated as a general graph matching problem where image features are matched with ob-
ject model features. The function of the object model feature compiler is to identify prominent features from object
models and order them according to their importance to form an efficient recognition strategy. The object model fea-
ture compiler accepts geometric models created for CAD/CAM purposes and also takes advantage of domain specific
rules to determine recognition strategies..
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Figure 1 La. Synthetic Building Scene. Figure llb: Results of Graph Matching

The object model feature compiler generates two types of object feature graphs--qualitative and quantitative. The quali-
tative object feature graph describes the general structural configuration of an object. This graph is used to recognize a
generic object class and to determine coarse object recognition. For each qualitative graph, a more detailed quantitative
graph is used to recognize the specific object instance and to find the exact object orientation.

The object model feature compiler does not need to generate all the features, but just enough to achieve reliable object
recognition. Therefore, the size of a compiled algorithm is much smaller than information needed to display the object
model. The purpose of the object model feature compiler is to select the minimum number of nodes and links in the
graph that provide sufficient information to recognize the object.

32 3-D TOPOGRAPHIC RECONSTRUCTION

3-D sensed data is available in a very limited set of domains. More conventionally, stereo pairs are used to determine
topographic properties of the sensed imagery. Match points between the stereo pairs are determined, and the relative
image offsets, or parallax, used to determine terrain elevations. We describe two algorithm strategies, one area-based
and one edge-based, which provide accurate 3-D reconstruction of such data.

321 DTED Perspective View Generation

In Lockheed's area-based approach, correlation proceeds from coarse to fine image resolutions. Parallax data from
coarse resolution data is used to dewarp the right image to the left image at image resolution 2X finer than the coarse
imagery. Parallax offsets at the finer resolution are bilinearly interpolated from the first stage grid values. This opera-
tion is typically repeated until the finest resolution is reached.
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Coarse image registration can be achieved by matching image windows from one image to another using a correlation
search. A window of pixel grey levels from one image is stepped along a range of offset positions along the parallax
direction in the second image. The cross-correlation of pixel grey levels is calculated at each position. The peak correla-
tion position determines the average parallax offset over the image window.

The initial pass (pass 1) involves repeated calculation of the two dimensional cross correlation formula:

P n~2n .xiy i - (Exi)(Eyi) ()p -(1)
[n.x 1

2 - (yxi) 2][n1yj 2 - (Iyi)21

where the x, and yi are window intensity samples from the left and right views and n is the number of these samples.

Two samples of size n are said to be well correlated if the correlation coefficient p approaches the value 1, where -
l<=p<=l. Implementation of this step can be carried out by applying a sliding window concept to compute the Ey and
Xy 2 in the right view. Depending upon the size of the overlay window, a significant savings in the total computation
time involving formula (1) can be made by precomputing the integrated right view, and its pixel by pixel square. We
have investigated the use of Vector and Multiple Instruction Multiple Data (MIMD) machines for this step and have
shown that significant speedup ratios can be realized. Table I gives some of the performance speedups obtained. Figure
12 contains a block diagram of the basic algorithm. The term FOM should be interpreted as "Figure of Merit."

Table 1. Passl benchmark on Sequent B/21.

number of time speedup
processors (min.) ratio

1 69.98 -
2 35.90 1.95
3 23.93 2.92
4 17.95 3.90
5 14.95 4.68
6 11.97 5.85
7 10.47 6.68
8 8.97 7.80

Initialize candidate Select highest Calculate dewarp Correlation search
FOMs candidate FOM predict match with dewarped window

Remove Dewarp fails matchcandidate from "Correlation mac

candidacy list _ _ _fails

Correlation successful

Raise FOMs of neighbors,
Restore candidacy of
failed neighbors

Figure 12. Pass2 dewarp correlation algorithm.

A neural network has also been implemented to estimate the match position to subpixel accuracy based on the image
correlation trends in the vicinity of the pixel location being matched. It provides increased capability where sharp vari-
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ations in parallax offset (terrain relief) exist, which can cause deterioration in correlation value related to the match
position variance. The statistical relationship of correlation as a function of image position (x, y) and parallax offset
(z) can become rather complex. Neural networks are well suited to learning these statistical relationships using train-
ing data for which the correct parallax is exactly known.

The input to the neural network consisted of a volume box of correlation data containing the correlation values for an
image window centered at a (x,y) pixel position in the first image and correlation values for the -5 < x < 5 neighbor-
ing pixels. The correlation values at each position span a search range of parallax offsets (locally proportional to ter-
rain elevation) forming the z-dimension of the box. Each step in z is one pixel of parallax offset.

The output layer of the network is a single neuron which calculates, as a function of its inputs, a value representing
the parallax offset at pixel (xo,yo). Between the input and output layers are "hidden" layers. Each input signal value
is multiplied by a weight value and then the weighted inputs are summed. A bias value for the neuron is added to the
sum. The performance of the net is determined by the values of the weights and biases which are adjusted in the train-
ing process. The training data set was obtained by correlating images of a simulated stereo pair. The grey levels of the
first image were generated using a damped random walk. Elevation data were generated by the same method and then
the original grey levels were modulated to simulate sun shading effects according to terrain slope. The second image
was generated from the first using a "painting" method to accurately simulate parallax distortion according to the ele-
vation variation.

Table 2 summarizes the comparison of neural network performance versus the traditional adaptive correlation smooth-
ing method. The data represented quite rough terrain. In addition, small amounts of noise were introduced in one of the
images. The data used spanned a test set of 18,000 parallax match points which did not include the training set.

Table 2. Neural network performance on simulated data.

RMS error 99th percentile % matches with
Method in pixels error error > 1.4 pixels

unsmoothed 1.14 4.6 11.8
adaptive .75 2.9 5.9
neural net .55 1.8 2.7

The neural network results show a significantly reduced RMS error in parallax determination. In addition, the table
shows that the network was able to significantly reduce the number of larger errors.

The network, trained on simulated imagery, was applied without further changes on a selected real image pair. The im-
ages chosen were vertical photographs taken from an airplane near San Bruno, California. The difference in viewing an-
gle is 30 degrees. The stereo pair, reduced in size for viewing by stereoscope, is shown in Figure 13.

The images were then processed by a Lockheed developed automatic terrain elevation extraction program to obtain
about a hundred coarsely spaced high confidence tie points. These tie points were used to accurately determine parallax
direction and cross-parallax relative image distortion. The images were then warped to produce an image pair with the
x axis along the parallax direction and excellent image registration in the cross-parallax y direction (a full quadratic
dewarp was adequate for this image pair).

322 Urban Scene Stereo Reconstruction

Urban scenes provide a different type of environment for stereo disparity computations as the terrain does not vary
smoothly and continuously. Edge-based matching techniques, unlike area-based approaches, match edge points which
correspond to surface discontinuities. This means that the edge location in an image can be detected to sub-pixel accura-
cy. Consequently, the accuracy of height estimation is higher than that obtained from area-based matching. Another dif-
ference is computational efficiency. The search space for edge-based matching, consisting only of edge points, is a con-
siderably smaller subspace of the entire image. Thus, the computation time for edge-based matching is less. In fact, the
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search space can be further reduced if one knows the geometric relationship between the cameras used in taking the ste-
reo pair. That is, once the pair of stereo images are rectified so that the epipolar lines are horizontal scanlines, a pair of
corresponding edge points in the left and right images need only be searched within the same horizontal scanlines. If
the camera parameters are not known, the geometric relationship can be estimated.. When the two principal imaging

Figure 13. Top: Stereogram of test scene.
Bottom: Perspective reprojection of scene using neural network derived elevations.

planes are vertical to the ground, the estimation is performed by using a four-parameter transformation which accounts
for rotation, translation, and scale change. With a set of tie points selected from the stereo pair, the parameters of the
transformation are estimated and then used to warp the stereo images individually so that the epipolar lines are hori-
zontal scanlines. The pixel intensity values in the geometrically transformed images are determined by cubic interpola-
tion. Once the images are warped, the next step is to extract edges for stereo matching. Any of the currently available
edge detectors such as the Laplacian of Gaussian zero-crossing technique or the Canny's operator can be used to extract
edges. We used a multi-resolution segmentation technique to segment the image into regions because: 1) the edges can
readily be extracted from regions, and 2) the region information can be used in conjunction with height information
for other investigations such as feature classification and interpretation.

The process of matching edge points is based on intra and inter-scanline search. Intra-scanline search refers to the prob-
lem of finding the pair of corresponding edge points within the same horizontal scanline in the left and right images.
fnter-scanline search refers to the use of mutual dependency between scanlines as consistency constraints. In intra-scan-
line search, the edge-delimited intervals are used as the basic elements for matching. Using the nonreversal constraint
in edge correspondence, namely, the order of matched edges has to be preserved in the left and right scanlines, the
search is done in the left-to-right order on each scanline. The intervals are matched based on the similarity of the
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mean and the standard deviation of the intensities for the left and right intervals as well as the starting and ending pix-
el locations of the intervals. When the best match is found, disparities of the starting and ending pixels for the
matched pair of intervals are calculated. When no good match can be found for an interval, the interval is either
skipped or merged with its neighboring interval. Skipping intervals corresponds to the case where a visible part in one
image is occluded in the other image. Merging intervals corresponds to the case where some edge pixels may in fact be
noise pixels and therefore have no matching points on the conjugate scanline.

Figure 14. Building shapes from stereo images.

After the intra-scanline search is performed for each pair of scanlines independently, the inter-scanline search is pro-
cessed across the scanlines to detect and correct the matching results which violate the consistency constraints. The in-
tra-scanline search performs a local optimization for the correlation of individual lines in the image. A strong global
constraint is apparent from the fact that the connected edges of a region delineated by the multi-resolution approach
should have similar disparity values. Therefore, a pairing of edges is inconsistent if its disparity is greatly deviated
from the average disparity of all pairings in that region. Using this connectivity assumption, inconsistent edge pairings
are removed. A rematch is made for those pixels using the average region disparity to guide the search. In a similar
fashion, gaps along the edges are filled. To produce a complete disparity map, the following simple interpolation
scheme is used. For each pixel in the interior of a region, two linear interpolations are done. One interpolation is done
between the two closest edge pixels on the opposite sides on the horizontal line. The other interpolation is done verti-
cally. The average of the two interpolated values is assigned as the disparity for that pixel. Inter-scanline search is
again applied to remove and correct the interpolation results which violate the continuity assumption. Figure 14 shows
the results of this processing on an urban scene pair.

3.3 3-D SCENE VISUALIZATION

33.1 Digital Perspective Generation and Display of Terrain Data

A combination of DTED, ocean sounding data, and aerial photographs were combined to form stereoscopic perspective
imagery. Impiemented on a fast PIPE architecture permitted near real-time fly-through movies of a scene.
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The process of rendering perspective views is well-known. Researchers at Lockheed have extended this capability by in-
corporating sonar data into a single view of both on and off-shore elevations. Ocean depth sounding data, such as ob-
tained from NOAA (National Oceanic and Atmospheric Administration), consists of a list of features that describe in-
dividual points that make up a depth map. Each line in the list contains the latitude, longitude and depth, as well as a
variety of other descriptors that pertain to a single sounding data point. The data spacing varies irregularly over the
depth map, with points more densely clustered in regions of higher depth variation. This data must be manipulated to
create a regularly spaced grid to 2orrespond to the DTED configuration. A "gridding" algorithm was created which in-
terpolates the value at each gr.d point by weighting surrounding depth values according to their proximity. The only
depths included in each interpolation are those which fall within a rectangular window which is centered on the grid
point. The size of this window is adapted based on data density. When no data falls within the maximum window
size, the grid value is set to zero depth, accounting for land regions. The resulting grid is a smoothly varying, regular-
ly spaced depth map with maintains the accuracy of the original sparse NOAA map.

A USGS map and a USGS aerial photograph of the composite area were digitized, and the photograph and sounding
grid registered to the map using a two dimensional linear warp, maintaining a map coordinate reference. The land re-
gions of the USGS data were then overlaid with the ocean bottom regions of the NOAA data, thus creating a compos-
ite image and a composite elevation grid. Perspective views of the elevation data could then be created.

The original perspective program, written in FORTRAN on a Sun 3/160, takes four minutes to generate a single
512x512 frame. A version of this program was adapted to run on an Aspex PIPE computer. A modified perspective re-
projeLtion equation was used-

x 0 0 0y oxx (xoYo'Zo) is an aim point in space along the optical axis;
0, 0 M Y-Y0  r is the range from the camera to the aimpoint;
0 0 1r z-z 0  y' is the overall magnification.

The parameters y and r, along with the tilt and azimuth angles which are contained in M, govern the orientation of the
reprojected plane. These four parameters are individually controlled through a programmable constant on the PIPE, en-
abling dynamic corntrol of the reprojection. This new tool allows interactive generation of fly-through movies of a
scene.

This display capability provides a strikingly effective way of enabling an analyst to view the data in a context that is
familiar and easily recognizable. The viewer can also readily relate coastal surface terrain features to their sub-surface
counterparts. Figure 15 is a stereo pair of coastal terrain images prepared on the PIPE computer using techniques de-
scribed above.

Figure 15. Land and ocean bottom coastal terrain.
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332 3-D Visualization Research

Volumetric 3D data sets arise from several sources, such as stacks of adjacent computed tomograms and fluid flows
computed or measured on a 3D sample grid. Such images can provide significant information about structures embedded
in the dense array of samples. Because of the overwhelming quantity of data, understanding such images requires the ex-
traction and interact've display of important structures. We have investigated this problem for scalar fluid flow data.

The first step is to extract interpolated iso-intensity surfaces represented by voxels, (small rectangular parallelepi-
peds). A contour surface can frequently reveal important structure, particularly if the 3-D image if appropriately pro-
cessed prior to surface extraction. Shaded displays of surfaces aid the understanding of the flow. A central problem
with interpretation is the superposition of structures (hidden surfaces) when the surfaces are convoluted. We have ad-
dressed this problem with a surface peeling approach to dissecting the displayed surfaces.

While viewing the flow surfaces in stereo, the observer interactively segments the initially undifferentiated surfaces
into a disjoint set of subsurfaces that encode his interpretation of the flow structure. For example, obscuring front
surface regions can interactively be peeled away to reveal hidden interior structure. Figure 16 shows a stereo pair of a
V-shaped streamer. Figure 17 shows the same streamer after part of the front surface is peeled off to show the tubular
structure thought to be part of a counter-rotating vortex filament pair. Structures can be tested for connectivity, and

Figure 16: Stereo Pair of v-Shaped Streamer Figure 17: Dissection of streamer

significant structures such as interconnections can be highlighted. The mechanism is a sequence of 3-D connected sun'ace
voxel traversals, each starting at a cursor specified seed voxel and stopping according to various criteria, such as hit-
ting a cursor drawn boundary, exiting a subvolume centered at the seed and/or exceeding a threshold angle between the
local surface normal and the line of sight to the observer.

Surface peeling is distinct from standard dissection methods such as cutting and contour level scrolling. Cutting can re-
move all surface regions within a specified subvolume. It is simple and useful, but does not reflect the specific struc-
ture of the surfaces. Surface peeling is riore effective at preserving and focusing on interior interconnections because it
selectively follows the flow structure. One can also generate a sequence of surfaces by varying the contour level. This
approach can show how structure varies with intensity level, but is not suited to understanding connectivity relation-
ships.
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GEOMETRIC PROBLEM SOLVING BY MACHINE VISUALIZATION
Extended Abstract

Rand Waltz man

Comnpu te r Vision Laboratory
Center- for Automation Research

University of Maryland
College Park,NMI) '207-1'2-3-111

\ i'oali zatIion in general, and t lie direct ulse of imauges and diagrams, ill farticilar, Ias long been recog-
ijized as a powerhil t echinique II in human problem solving. III this talk I will present. my first. results in an invest i-
gal ionl of hlow inages anl diagrams can be used in problem solving by a machinie.

A central the me of this work is that, a powerful technique for reasoning in a problemn domiain is to embed
the, semiant ics of the( (domalin in a represent at ion system so that, syntactic olperations corresp~ondl to (lomaili opera-
tios. i have exploited this idea in the domain of geomet rv. The resuilts of tis work dlemlonst rate that. p)owerful
l non- tagical- synlt actic' techniques (alli b~e usedi for reasoning iii domains suichl as, geomietiy where tradlitioiial
logic-basemd technliiques have hlad liimitedl success.

As a vehiiclhe for this Inivest igat ion I have butiltasyste iii for solving prob~lemos of' tile following t y J: We aIre
giv('li a set, of t hree-dimei(nsionial polyhedra l pieces anid told that they ,ill fit, together to forin a solid rub e (i.e., no
eilpty spaice inside) of' given dimienisionis. T he p~roblem is to (leteriie how all the Jpieces fit. together. Tn
p~rolemt canl also be thloughit of as a packiing problemii, i.e., hlow caln the set, of pieces be plackedi inito aI ciibic -oi-
Sainer of t lie given dlimiensioins. The Indilvidlual objects iii this problem are the polyhedral pieces. (t'otrietrical
lprolert ics of interest. might, be symmletries, conlcavit'ies, nuimber of faces, dimnsions, etc. ltrsiggeleri
Cal relations between poly'liedra iiigh~t. be lock-and-key relat ions (does oiie polyhedron fit into aniothier), 'onita~ct

e gfwich faces are touching), relative orieciltat ions, etc. A problemn-solving hetiristic t hat we mlight, use is:
A'lwa'ys place picsin such a way that a vertex of a piece exactly fits- Into a ve'rtex of tfle coiitainer.

More formially , thle problemi canl be s-tated: Fiiid thie spatial location andt orienttion of each piece relhative'
to a cublic' tontainer of' a give'n diiieiisioii so that, thie container is comll)etely filled by the pieces. hach solution
step'j conlsists of' placiiig a peeat a particiilair locatioii and or'ienitationi in space. The basic problem state( at. any
giv eli Iil ii ('onsist s of IIe( locations and~ orientations of all the pieces placed so far, as well as t it' shapes, loc-
I ions., alid orii'it iOils of tile conitaiinei's remiaining to be filled. (Note that, at, any stage thitre miay he mnore t han
oniel conlta;iner to be filled sinice the place'met't of any piece iiay dlividie a single container into two or miore ('oil-

t.;iiiers.)

he probleii t hat. I 1ave described Is aii Impiort ant comlponient. of se'ver'al wellI kliowni probbl'Iins for which
c'oiiplttely sal isfactoi'y solutions have not, yet. been found. There is thie general class of priolblemls of l);ltkilg a

wtof objects Iiilo a1 cointaiiner. The ('ontainier niighit, bv a mnics of transpol'tat [of] (e.g., ship, plane. or truck) or
of storage (t'.g., shelves or bins). H elated to thiis are problemns of layimig ot, office space or fact ory floor space
whvire tii' conital ncr is trhe( total floor space that we have to work with andit the ol)j-c t.5 are wall partitions, dlesks,

office eqipmeni'it, anid factory equipmenit'it. Auitomnatic asse'nibly planning p~rob~lems formi another imipoi'tait class.
l\-nov. ledge aboult alitoial it' assemily planiiing cali be iiicorporated into coimptt'r aidedl detsigni (CAl)) systems

W!re, for e'xaiiple, a critiquing colipoiit'lit, of the CAl) systemi could1( iit('l'ct ively provide advice to It'e dt'gne'i
nibo. t ill' iiiiiiuilact iralbi lit v of a giveii desigii

I liuanv of Ili('se prlolemtis, the i'equiire'd paickiiig or i'rangemit of' objecis iiulst sat isfy coniditions o1ti'r
Ot liIlie onle th1 ll(. objects gt'omiet rically lit. Voi' t'xaiipit', whieni loading cai-go onito :mi aii'plaiil', tflo're are 'ei'-
tailli I1'elil'iiil'ii abill lit hu (list ribiition of wt'ighit that, Inist be satisfied. WVlieii arr'aniging iiachiinery onl a fac-
tory floor, t here miiust be etioigli space left to allow access for i' iaiit euilince. Whieni planiing aii1 assemibly opvra-

llllll''',5l't pi~iking probb'iiis undei'i' t tyvpes of' roust raiitits iii this woi'k. The t'xinlples ar' i't'sltted to puirtly

The! gt):i of' this %(lrk is to dvelop aI fraiiiework for dlealiiig with a liiiited ty pe (If gl'oliiet'ic pirolemli .soll-
ilg, to i(Ilii if ome101 or ill' basic issue-', inivolve'd, ail to1 suggest c'ncetett way' s of addr'essiing sollil' of It'ese issules

inll' (,ntix oI t l lrtl rtinig aI systvito I solve' plolllis liki'e i( xamitict problim.

'Thei fr~inilwotk For g.iiiiltir prolemii "olvinig f iimi I prioip)sl colnsists of ille1 following two pnitls:



a spatial algebra

* a geometrically salient formalism for knowledge representation

A SPATIAL ALGEBRA

A powerful feature of logic as a representation language is that it provides a general technique for express-
ing the semantics of a problem domain through axiomatization. Then, objects in the problem domain can be
manipulated and reasoned about using purely syntactic means. For example, automatic theorem provers can
prove semantically meaningful results in a given domain using domain-independent resolution techniques.
Though this use of !cgic has been shown to be effective for many domains, success in geometry has been limited.
This is due. in part. to the fact that generality is achieved at the cost of the ability to explicitly represent, impor-
tant domain-specific structural information. Though this information is implicitly available, i.e., could be com-
puted. the lack of immediate accessibility can be the source of tremendous inefficiency in the problem solving
process. The question is whether there is a representation for geometric objects, not based on logic, that would
allow more explicit representation of this domain-specific structural information and admit syntactic operations
that directly correspond to meaningful geometric manipulations. I have shown that, the answer to this question
is positive by describing such a representation. I will refer to the set of corresponding syntactic operations as the
spatial algebra of the representation.

INTRINSIC AND ISOMORPHIC REPRESENTATION

\lost of the existing geometric problem solving systems are logic based and function by extracting
geometric properties and relations that. can be represented by high-level predicates from a low-level representa-
tion of the geometrical objects involved. This low-level representation is generally in the form of an image
stored as an array of pixels or as a set of point coordinates. By using predicates in this way the immediate
geometry is lost, to the problem solving system. My proposed knowledge representation scheme operates at an
interiediate level: an enhanced version of the representation used to describe the geometric objects themselves
is used to represent problem solving knowledge. This geometrically salient, formalism allows problem-solving
knowledge to be expressed directly in terms of the structure of the objects that are the subject of the reasoning
t'CeSS.

The geometric representation proposed here is intrinsic. It is coordinate free and yet contains complete
metrical and topological information for the objects represented, i.e., objects are completely described indepen-
dent of location and orientation in space. The representation is also,.unique, i.e., there is a one to one relation
between representation and object. Finally, the representation is isom~rphic in the sense that the structure of
the representation directly reflects the structure of the objects being represe-nted. This is an example of what I
call a visual data structure. The nature of visual data structures makes them well .nited for use in determining
structural characteristics of individual objects (e.g., symmetries) as well as relations between structural charac-
teristics of distinct objects.

The system tries to detect patterns in the geometrical structure of the current problem state that suggest
the next best, move (e.g., which piece to place and where to place it) at each step in the problem-solving process.
A major goal of this work is to develop the capability of representing and using problem-solving knowledge
which allows the system to exploit geometrical structure that the problem might have. For example, if there are
symmetries in the pieces or the container into which the pieces are to be placed, the system could take advan-
tage of them in deciding the most effective move. A problem-solving heuristic in this case might be: Place
pieces which are mirror images of each other into container locations which are equivalent tinder a mirror sym-
iuet)y of' tIre container.

In addition, there will be a variety of geometric computations (e.g., compute the .ie current spaces
to be filled, deterumine whether a given piece will fit into the space at a given location, etc.) tnat may be relevant
it each step in the problem-solving process. Some of these computations could contribute to or even provide

solutions to restricted versions of more general problems. For example, one might ask whether given two
polygons thire is any wa.y that one of them might fit, inside the other. A more restrictred version of this problem
would be: (;iven two polygons A and 1, will A fit inside P given that vertex a of .! coincides with vertex b ol"
B. the size of a is the same. as that b , an(] the two sides of .4 that form a are shorter than the corresponding
-id', of 13 tHiat form b? The second problem is much easier to solve than the first. Part of the problem-solving
'trat,,gv of the syst i is to use aI gorithns which solve such restricted versions of more general probhlers by try-
itng to guvss when their application will prodrce us(,fuil information, i.e.. to isi(' them hierist icallv. "()r this

to be worthwhile, it Iutist )e relatively easy for the systerm to recognize the appropriate rvtrii'tiv
oiiu'tic conditions in a probleni under which a given algorithin is applicabl'. I will sho' how this can be done

u-ing t, hw proposed i'i')rest,iation.
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ii (, g.. the part stippurts th li(-Xistttite of thit whole') anid lso cottribuites tot lilt- rth of sulppotrtinig

clillfr-n1. Wl(.-n ne(w t-vidt nc, appears at a lottlt. it is vssimiilart-d andt applroplrialtt vt-rsions ,I' that e~vidtac-

art- pirrtagattl limg aill otlll-r links -,ltril or (exiting th,- node. \Vt itst- the propagationi algiritluis if It;rl

hearl - *-;.binifrd 7

As k%-(- d v it Iit Ici 'v c mtat- t I I,- BI avcs IIAI It I-1tit Ill('-,o tile inlstatit i onl is guliIdc Ity th 1wa priori IitItIScl

i'f I, I Its . Ih Ill* ilt-n,1ce of t llit-r (-(,iiptint-nis. and theiir rtlatn, sliips. Svstem ti itr( l att-rnialt-s b-tw%%--ii

t-xatiiiii;kt i(Ii of tilt- i ii.t"Llt Iiat,- taYts mI-s cililpnri g. ai.ainst thet mn It-s. lint chit t sing what acttonls tto
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DECISIONS

PROCESSING
ACTIONS

BAYES
NET

'Fcp igir I dc~ fiti iLfln ice D~iagra In

takc t,) grc\v lilt net. w~hichi Is rquicif 1I? I sellnu norest rature. Ii the world. ITlms, InI'rtnc prot (I
L~v choosinig actions froml tie mlodel1 slpac that crcat new no~des and arcs in the Bt i in-i All pwssille~

chains of inferenlc that the system c-an aehrintir specified a priori inl the niodel-bas-. This f,;it ire carly'
dist inguishes inlfererice from control. ( 'nt rd li actions and allocates them over avai Ial1 proccssi rs.

and~ returns re-sults to the inife-rece. hife-rence nscs the existing Haves net, thec cuirreint re-stlt- d' actions

(i~~~e.,~ th oletdeidne enerates Itttv.-, iicd-s and arcs, propagatt-s probabilities y vr to-, lin- anld

acCimiilates the selectabic actions for CXajlujiiiatoI0l I)V contrrol. Ini tis approach, it is, 1iisiefr fte
systenm to re-ason circularly, as all i'nstant'ited chainso neec lls l n~)re4l ~i-iei
minlr coiiistt'it with thev model-Lasc.

Thei )l)rortizaLtli and sClect itt;tics l viewe-das a (lcsiomniakinu Ir ite- t re-lr-

senti ng the selection of actions at a single Haves -rn ol as a single deccision, we c real ;ill Ilinl tilce da.rai

shiacliter - Sf; with the lpropcrtv that se vering an, decision node from thle diagram htavcs il ltave-s-in-i

iiitact. Figure -4 illustrates t his Teiii his allows lis to construct coilrol algrflit hu %, yr Ilie- iiitluiiic

diagram where evidence accrual Iii the( Haves-net. aiid decisioiis of actions to execte-., :tppe:ir as in-hIilar

oh) irat i oils.

3. UTILITY FOR EVIDENCE-GATHERING ACTIONS

Ourapproach to sel-cting actionls bY litilit'. fll orv is to coliilit ;: etstuntile k;1iI and C-ie ecsf'I e:1,11it0 i

ll(Iel Illaxiize- value colist raiil l. Iv a I't1 Iuh on t lit- total cost. 'c del'ie co- -st (,f ;t it w i 1 s 1m It, :t% , racL,

prtcessing imei for theit action. If In a ti Is ali algorithin t hat (-ail Le- pe-rftriiiee ,it .1i15re l' p-- '

with radically diffe-ret compul~ltationi fincs, w(t caii Iiie this as two( diffe-rent alctllsl.

'I-oll(l0l1itatuimof vallie is perform i-i ii-rarcllicallv over In' Baves net, wher i-ra :rciy1 Ilh lit, rrit%
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iihlt-rutit iii tilt- i- Id >,pwc. That is. We View Comtputinig tilhe value of ain atction, A, at the cliuldl-ltpothesis,
Ilk , :s t lic ilckr( III, lit inl evidetitial value achieved at tilt, parenit ltvpot hecsis, P. We define the value, V, as

I (( 'hild. Actl(i) I/( Ilk, A)

p- ( pParent I Ik., A) (Parent IA Il "V(Parent)

Paret jit

I lu>. wt. can legi i at thle top) level of thec model hierarchy and assign vaIlties to recognizing, for example, the

,trtinus nijljitarv im its or inidutst rial parts. We then, recuirsi vely compute tilte valute at each child, or sul)-part,
don the niodul hierarchy. Inl tile instantiated Bayes-net, this comti ilationi is proportiontal to the numtber of

I inst ant ated l, vv1> in thet Ii ierarcliv. For examplle, in trying to colt fin or de-ny the( pre( of a task force,
": rill assign a Nv'il le of .", to It, task force, .1 toi "2 -x cataputlt battalion and .1 to 113 -- other. These are

I II( 4jctis iii thle goal Barves node. Thet actions inctide "searcht for sister stiL uilt", "get closer observation

'If 1,11hIce tvpes an. id 'aIdjust itiatch of formation based onl adaptation to tiiderlyitg terrain''.

If we havet aI set of clhiild livpot heses, Ilk, at Bayes-node N, then the( valuec of takintg action A1 at node

X Is Iit flud a,;

V(\ Ni) 1 (HA A)

I f art j In A4 ));I,;os I,,,. we. uIaxinuimze. expecte Cd Val IIe

,IlfbJccl1t tilt Ip rottraitit that total cost is bounded by T':

Zy IA t A 'I'
A

,lit h

I Iif wxe performu A
A 0 it we (10 not, performi A

1,-, / Ill, lliaXittit1'ltl' alhabl processing tihe. For lilly fixe TN , wc produtl an1 equi valene class of ljlans

-A' :wfti,tt1 t 1- p, rft-d i am the results of executing these plants mrc reogtuizcd objects with prohlalilitics.
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I' 1 ~; I fit 1, -il r,,h I pc i~frrinaucc. I c.. cge iera t sclts o)f plians fo r eaich Vale oft 4 T. Wt

ri -t it i iiii i I ;issi iit i 1m it h Its appr ':ich t hatl all ext-k- it aild actions arc ri-presented lit i
:t I r- 'i- ri. :ml' I I Iit valtits ar, caIlcllit rd to) account fir (,(,ItIiiiuiis ranges of v~'afiies for linhdii lial

* .1 vil:'r. Vt Ii11iiple. '-\ct I tg a pr( iltre Ito in-Ifer thet( cuitrvatuitre of a part mitay depend iip1),ii

pI I i iti- :ii, I II III.! agal list 1,-'-1ici n lr vat irus. WXe Utse t le expe)-Ccd Valu ot-(f a (I lasi-initvariatnt Inceas itre

I t ii k- i 111 '_ r 'tIIllizait 1, 1 1r e itrc t ( sceict over the jpossil dc sets of ac't iois (x-c-ii taileh i 1

11 i in, I i t, it I ;ii lit 6 r iiaxini Ii'iig ti iItyv muist Sove I t- la hssic "'kiiap sack" p ro,1l1lit

ILk pr, 1' k t l i i, J.

uuaXIii:'c x

- 1iijc't It the ii<staml t ts T / and r I t1.

V it r( io n uiti rIiiL ;1'ji>. is 1 dI1 ,1ie vallue of a givil act1 l aIli t , itI itlle to lcr f, r I i
1, 0 0 it' p 1t'1l Ill is t' mai liz' vlduu I choousing Which ac(tionIs to pefri(corre~sponIding.L t'

i l~ v. lic it I tpt fricrepii to i _ (1) whlile' staving Wit hinl thetin limiC111t.

it, kiitp ;ok trldcmi is ani NM' iiarl prohtitn (,'.r''v - . cauise w(e expect to it decaling w%-it It ill,.
r. ,r a t I t ioti. It I s i f'isil t I sod% Ie lto prohleun exact ly. There fore, wve use an algori tilit that fi nds,

%n i:tj \lit slt ii ptcifv tit, d'-it-I :cit;'v i iilk it find(S a1 solutionI sati'sliiig w I.tr

I i 11, 1o :lhliet f t( ie Iital s.dl t'll. Tflec afgrif1111 has tutul' coluiijlexitv'C Nn)-'( (.y
-' Cult 11 (N)i '~ %. (N i' who r N is thei nuiiiier of actions.

low r( tit i I piiit 1 1tig

it L"ii, rad, t It iilcteu- HIi btlief' inl t lie- pat'ent (ieptinls in the results of compuitations perfortieid tin te
allt 11 I. %%hich -;ait , li t i rn. depit-n ,iiimaIv ()t hecr re'sllts of processing at other nodes 'orrespuiding to, still.

'-iirliihless W\t. applY tayt's ntil,.

~~ p~1 (( 'liild. Actiont Parcut ) (Iarui
I~arttt Ito li~i ((Childl. Actioii
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i-l -k lhat I' l:ir,iit i is known :it ruitlilt'. Whli a Baves ito' is aiireadY Iilist alliI ittcl. aiild lii

p ~ ~ ~ ~ ~ ~ ' Iibl..c i otK ht rprci.'l :is tll iaccuracv with which tite results of the action canlt b iiii-a-

- iIirI . LI.ivlt I lI, t ;it, f hr chiild. F Ir ex~tIi I Ill' if I lw(it hIl I j s aII- no I iir v o f a gi'iiera Iizcel cvIlluiter o f tI li

pirilt :tIII till LAt III i> zi cirvatulre iiasiiriint, theii tile- Joint probabilitY cain detceriii how accuratelyN
lo cItIr, i tit lre-c :ii I., it ,:is itrci'd. gi vii thei p IxcIs ob serve d onl thIc iit(Ilar v.

F-il:kdiv. It I, f~rill, ( '11id, A.c t ioll Parent) is de-fined as

hf r, pi uh mo.ii Pairtt )iiljC i'11pue andt stoiredl a priori . For cx'itiple, if tile child is ;1 pair (f

i~iir~ii''i iii~'r. ot1 00.ananulritiaslireiiieiit Ia'twten tllelil, and~ Ilh' parent! is a Joilt width

kii-wii aiigtiiar 1100511rr: Ow lieu ;dv heA' Oriiiula specifies till p)rob~abilty we would ohiserve a giveli (iitiitti'

IItwivit hoi' trill' idh iit'. Sit' Iiiiibrd - S7 for tii examlple of'such a comlputtationi.

If if hid ii~or le aves nloblo, t'.g., aI -ciieralizekl cvfiildcr. is not Yet inlstantiated. but wt Wish ti

'i iltlo vai .1a ti n lista"litiatedo lower level node. e.g., all observed itlge (of a gier ali't'l CVylin-

dhr. I loii lilt, prg iailtv. ( iraiz'.II cvliobr). inlst bc i'stiiiteul a priori for the( rccursivi' imipjutatiit1

v ai t the ohl-rv..i iip ii \Vi tatki I lisi' lriors to bw till- task-basetl likt'ihod thlat given objict>

otr pr, <-iit inl a sceliaro,. For 'Nalijie. ,i n llisseiilil' lilt(- appulicationi. bast d o"til c irr( lit inalillact iiriii

1 i'k a. atii a pIri notion df what parts t( cxIjail, ont tIcllt hu.

'trid iiilii i llliti twitagraln is ifh'ctt'd by tit( tip-level loo~p oif: i'xt'i'lti actions. ac irne pr,'la'ilitii S.
*'Iliipit.';11c vulll'siixiilze utility., andl select action., .Aversioii of this algoritlin lit teriiisof tiiill ivi's-iit

clii i i i F uri

F xcii'litm 1 1If a11 uIs C;IlI occlIIr oh IllHlditi [)I(' 111iil:lItIes Ill 1. (list rI biitiih cnviriinent . I?e(stilts are slitill iIl-

riz -I;I itI rt I tirtit Ii v ii chli ,iisl v to I I I( hia1vis lit. Wc have s1 rllet itiri-t It(e mloudel sliaci', andl I hiriforcI' lii'

It 1, i ,lch 51111 Ow:1 ii'astillpti', if lorrls al, -ritlitit Pearl - sG are fillftille-d. This allw Nv :ituch rot ui.

III -Il;t i itg, uil I rijiligtaIP i If 1 rb. LI ilIit Ii 's . thit rimigIlu tItI i I I'I-nt . hIi' caiise i0 o (ec-isIilit itIOlts are I wt wi'ei I I;'I.

it. Ics, ParlIs ;i I ,IfrIt I111 ti Ip pIiis ovi'r IlIti' sii bsits o f theI, itihfiii-itcc( iliagraui that arecon cioir('ted I Havc'I](.-tt

N ti' t hat I his st ruit linie f t liti ifii.noc dhiagram.i sil' Figuire -1 , was iit'c'ssary to jiirniit a control si riot lift

Ili which pr-Iailit v ;tc-rial, and 1i-cislon iiakiiig are se 1 )arablvi'lop-ratioins.

4. EXAMPLE

it, -~hiigixamtph- prcs'nlt thll 11se fiitihit kas'l conitrol ti) drivie tlli ri-cogitioi offtiilitary uniits from

:i',rial liingi'rv. Thrt' anl1 itlagery ilsil is issiiiid to be r'lativi'ly low resolttii si thit Indtividutal vt'hici's

;tip difficulit to, Ill lliII( to t liiir stmalll s ize :old a htigh faksi alarmi rate. As a result add~itionlal contexnial
rtlts a~;r' iii- to lit'iw aetiriw evidence isftachergintcst.ii

tniiit:mr fire, mt I's li p)rler to dtitiriiuiii its sluppotrt. TI'ii foi,"'' litoluls rciteli lit I li(. systi'ii an' showin

i hugitri' 2.'ii r''col-itioil systili iioriialhv collltnimc'-s jrocssintg byv gilirat ilg hivpotluesi's for thei coarse

Titulel, anl pri ctI's 1% ri-fining hiiti aioh using t Itii tit ginurate- ightr-li-v'l livpit hieses. 'I'li Raves titt is
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Until ((time exceeded or (termination condition achieved))

For each instantiated Bayes node

Get list of possible actions from node

Evaluate value of each action

End for

Until (all processors allocated or all actions selected)

Maximize expected value constraine cl by total processing time

Allocate selected actions ovei. available processors

End Until

Until ((a node's probability ratio exceed's threshold)

or (all k actions return values))

propagate evidential returns over Bayes net

update values at node

End Until-

End Until

Figure 5: Control Algorihni

tlien ll t I, Lroiip conflikt ling livpot hesis coniifgnrations anid to propagate lheliets t iirotiglilit thec hi~potlin sis

>,pacce

hiii. hjxinilpIc we ar( ait tepting to confirmi the prese-nce of a Brigade lin thti' boxed rcgioii lint flie iipper

,fti~i fth li iap sliowil i II Fiire 6a. The systemi Is Initialized by locati ig pi ssi l vchliclu dl~t.ectioiis Ini t lic

:iv~ti1ia1lleiiagery. These detectionis are then clustered inito 'oipany-sixe U nit liv pot heses 1based (.ii coarse

paraiiit-ter.s ii the Hinodel database- such as inter-vehicle distance, liilibr of Vuli-les inl a unlit, al iinaXIiinIIIII

cxt'ilit ,f a 1unit. BY initializing the Bysnet with Coilipany-size Uliiits and tlot inldividuial Vehicle., we

acivc; larg'- r( diictic'ii lin conihiiiatorics. The initial cluster units are siwnin l igiirc tGb.

A ft''r iniitialization thec ,ystuiii progresses by perfornilinig any of the fohhow~iiig actions' ,i the appropriate

B av', ioes

" B efiii a Bayes net ierarchy by usiiig the niore (hetall for' 'pe nidel description ( Reflne-type).

" h''tifii a Bay' it hierarchy by using a niore detailed formnat iol (esripl~toii ( Refiii,-foriiiat iou)).

* ,,earch f',r iiiatthiles anlong lower-level force hypothes.es lin ord-r to generate hiher-level force hYpotheses

(S, archi).

9 Att;(ieh terralin 'vitenic#- to a Baves nlode b~y exaniliiiig thne suipport t Iic uiii'lrlving terralin priaidos fr

lie- p i v' force ( Irraiti-si poirt )

e Attachi class;ifiration evidce to a Hayes leaf neohe lidicat ing tHic stipp rt for Hte giveni 1f'rc t',lu (,h-

naliiied fromn high resohlion scinsors, anl accuirate irsthat I ii n'rniiallv cxpenii s th prforni ( las,-
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I iir 6:a rea of JInterest b. Initial Hyxpotheses (Solid Liiies) and] Actual ( rii nd Tru th Di(aslhed Lines)

At cach step, the system nienerates the available aCtiOns and conmpiutes their it ility basedl onl value and

C'st in oddls derived fromi previous sYst .. m pertormance. O)ptimial actions, are thlen selected by Illa-XitniZitig thet

,xpceted vale of the acttions L'~ canl be cxeclited lit a givein t ime st ep us51ing liikill)isack approximilationl

al go rit ini. laleI I lists the act ions slcted by the Sy'Stl nliat each Step).

The Initial Baves ii et after gu.Ierat ion of (otapanyv-size Unit hyp)ot heses is sl wn III IiFigure 7a. the

8 ttIached probabilities are the oiips, obtained froum the detection li kelihoods and] cilistern ig miatches. After
lie actitoils InI step I were perforimed, the Ha 'ves net eotltaiiled refined hyohssfor T[eamn Task Force

Ir ridii tartcrs. anol titapault Batt~ery. These refined hypotheses are shown in ir 71) T. Thle niext iterat ion

,e iclt el actlins supplying t errainI and classificationi sutpport, for tile four Bavcs tiodes.- Thel resiultaut lproba-

I ilit ics arc sltown in Figure 8a. Th0- hypothieses with high belief are dlepictedl graphiically iii Figure root-3b)

'I'lic third itecration step searched for miatches amiong the likely hypotheses aiid geineratedl Task Force and~
Cutapait t Bat tal ion hv pothIescs. These are shown in Figuires 9a1 and 91). The fouirth it p) dIirected thle systeii

to mat eli the Task Force and Catapatil t Battalion hypothleses itto Birigadle hYpothe-ses. The resultant lBayes

liiet is shown in Figure 10 and thle locations of the two resultant hypotheses are showin iii Figures 1 a and 11i).

'I'lie lifthI step attached terrain suipport to the Brigade hypotheses, a process that resultecd inI the BIrigade

liv pothlues's receivintg high support (Figure 12). As a result the s * steit report ed thlit a, Brigade most likely
exists iii the area ( since the two liypethu-se's conflict, the belief that a Btrigadei is Iprtseiit Is .9(1 ) and its exact

locat ion is give.ii by thle likelier hvypothecsi.

5. CONCL~USIONS

W, hayc dt'vol' ptI a inetlliollogy for visioni sYstetit conitrol based oti iitilit v t aioe:pplied to iuiohel-biasel

Hayesian infe-rece-. We have i il iileeut ed this miethiodology in] ADIE hl$a radalr ,it-veillancre systeni aind

a iiuil,ittiiig it iii SI*(ESSOII, a systeml forf comlputer vision of Iiidustrial parts iii optical imiagery.
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T.a11 I: \c Iis SIh'ctd y th SvIc.II at Each Step
tcp A;]<c -d ,\ t 'l Val u, Cw>t

I (ItF 'INIE-iTY I t(- 112226 11 .. 2223 2.12222 ! .)1 11.22 l;(il
(SI'A1('t for inatchc ,,f hvp, Ih,. t illn5- ."67 1 S-12

12226 . B2223 112220 - H

(iL .I? A IN-SUIPPOt1T for 12220 112.', s2i)

('TR RAIN-S1 T P I()I ('I for B222'l ) 7w S $2()

(TEItI R A IN-SI1P P0UT fr - 1222! . 7(;9 820)
(I IER1AIN-S UIT)1PT for B1222: .) 217 s20

2 ('ASSIFI('ATION-St'I'()11T for 1323.11, .) 19 13211
(TEIR IAIN-SI: 1tPPu II for k2341 -) 32; G 20
(CLASSIFIC'ATION-SF PI'OIT' for •22!9,:.) 445 N13210
('LASSIFI('A'I'ION-S' P POIT for 123i0 .1.11 1320

(''EI{ RAIN-SUPPOIRI' for 1122',99 .) 234 820
(''ERRAIN-SITP'ORJ T for 1323.*0' ..) 232 820

(CI,ASSIFICATION-SUPPOR1T fir B2321 • 139 1320
(TE H P A IN-Sit t,()lPl' for - 13231 ) 73 820

3 (SEARCII for inatct'bs of tlvlotlhcs, hi 23,59 i11
(- 1323,11 B 2321 . 1323,8(J 12299! -

(SEAU(11 for mnatches of hypothlcscs in B12739 .) 1672 832
(I II" INE-FOMATION of 112739 ) 1060 $100
(SEARCII for ijatches (,I hvpotlh'scs il ( B2321 .) 20 801

(i'ERRAIN-SI'I'IT O)II' ft.r 12739 -) 281 230

(TE.;3 HA N-.SI'PP'l'O for 133230 .) 272 2300
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1 6I H'PPTZP9C.&vz 'it 329 "P

r, -.It Nod(tes f tlit I It lalI Iz(d I aves, Net 1. Root No d s of the Bavcs Net after tl Ilt- ]rs t "'tcp

\lanv te-hlijal ilII, )Vaitilll wtere du(lt'pl(iSd inc'ilinig

" IRel)re-set Mation oif control1 and in ferencte ill a i'sgn it ivet v tractable miodlel pronmoti ng clean and efficicent

sYs tt'in dlesig~ns.

" Se-paration of d1ecision making from cviIdellce accrual.

* lDVWmarmmmc inStanitiation Oif Ha;1Ve(S netS and in1lnens't' (lialgramnls.

" H~ierarchiical valuc comnputatioin a1clipve(l bY assigning valuecs only at the top mnleld-level.

" flandlig rscil worldl p~roblemns.
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Task F e/ tput tt] rB2
3

Hiyp othes es: 
Tas - 8

HYP-T2718-Task Force: 0.91 Tan- 716

HYPT272ZCatapault Battlion: 0.47

HYP-T2716-TasK F~rce: 0.36- 
4

HYP-T2708-TasKc Fcrce: 0.36 
C
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QUALITATIVE TARGET MOTION DETECTION AND TRACKING

Bir Bhanu, Peter Symosek, John Ming, Wilhelm Burger, Hatem Nasr, and Jon Kim

Honeywell Systems and Research Center
3660 Technology Drive
Minneapolis, MN 55418

ABSTRACT

To detect and track moving targets using image information exclusively obtained from a vision system on-board
an autonomous robotic vehicle, we present a comprehensive qualitative approach which allows for (a) determination of
vehicle motion, (b) qualitative estimation of dynamic 3-D stationary structure, (c) detection and classification of the
motion of individual objects in the scene using point, edge, and region features. The 3-D motion of targets i, obtained
from displacement vectors of point features without any knowledge about the underlying 3-D structure, discovering
inconsistencies between the current state of the initial qualitative 3-D scene model and the changes actually observed in
the scene, and by detecting moving edges and regions. We have also integrated map-based information into the
system's reasoning framework. The digital map information, which consists of elevation, photographic, and terrain
feature (roads, rivers, land cover, etc.), is used to predict target motion, track targets through occlusion, and assist in
on/off road navigation by the robotic vehicle. The digital map information provides valuable clues when detecting
moving targets in high clutter and low contrast environments. We present experimental results to demonstrate the
capabilities of the system.

1. INTRODUCTION
Current multimode tracking approaches incorporate several possible techniques such as feature matching, correla-

tion, centroid tracking, silhouette matching, and Kalman filtering for motion detection and tracking from a mobile plat-
form. 2 These systems encounter problems in practical scenarios where conditions including arbitrary sensor platform
motion, high clutter, low contrast, distant targets, sun angles (glare), variety of terrain features, vehicle maneuvers,
countermeasures, target occlusion, and battlefield conditions pose significant threats to mission success. In some target-
ing scenarios, target location prediction is not enough for tracking; recognition of the target and clutter rejection algo-
rithms may be required. At Honeywell, we are developing a comprehensive qualitative approach for target motion
detection and tracking from a mobile platform.3 , 4. 6. 8, 10 Our objective is to achieve robust behavior in such a system.
The key elements of our approach are shown in Figure 1.

The target motion detection and tracking problem can be viewed as the task of finding consistent and plausible
3-D interpretations for any change observed in the 2-D image sequence. Due to the motion of the Autonomous Land
Vehicle (ALV), stationary objects in the scene generally do not appear stationary in the image, whereas moving objects
are not necessarily seen in motion. The three main tasks in our approach for target motion detection and tracking are:
(a) to estimate the vehicle's motion; (b) to derive the 3-D structure of the stationary environment; and (c) to detect and
classify the motion of individual targets in the scene. These three tasks strongly depend on each other. The direction
of travel (i.e. translation) and rotation of the vehicle are estimated with respect to stationary locations in the scene.
The focus of expansion (FOE) is not determined as a particular image location, but as a region of possible FOE-
locations called the Fuzzy FOE. We present a qualitative strategy of reasoning and modeling for the perception of 3-D
space from motion information. Instead of refining a single quantitative description of the observed environment over
time, multiple qualitative interpretations are maintained simultaneously.

The qualitative interpretations are built in three separate steps (see Figure 1). First, significant features (points,
boundaries, corners, etc.) are extracted from the image and the 2-D displacement vectors are computed for this set of
features. For the examples ghown here, points were automatically selected and tracked between individual frames. The
image database used to carry out the experiments is described in Section 2. The Interest Point detection and matching
approach, which is a revised version of the Moravec interest point operator 18 and Barnard and Thompson's disparity
analysis technique, 1 is optimized for low depression angle ALV imagery and is described in Section 3. During the
second step, the vehicle's direction of translation, i.e. the Focus of Expansion (FOE), and the amount of rotation in
space are determined. Almost all the necessary numerical computation is performed in the FOE computation stage,
which is described in Section 4. The third step (2-D Change Analysis) constructs an internal 3-D model of the scene.
Section 5 outlines the concepts and operation of this Qualitative Scene Model. Scene interpretations obtained from
Qualitative Reasoning are validated with geometric reasoning and validation rules employing an auxiliary map data-
base. The details of the map-based target tracking approach developed for the Scene Dynamics program are presented
in Section 6. A preprocessing stage for the detection of rapidly moving objects in the field of view is incorporated.
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Figure 1: Qualitative Reasoning and Modeling approach for target motion detection and tracking.
From the original displacement vectors (obtained by matching corresponding point features), the Fuz-
zy FOE and the derotated displacement field are computed. The Qualitative Scene Model (QSM) is
built in a hypothesize-and-test cycle by two sets of rules. Generation rules search for significant im-
age events and place immediate conclusions (hypotheses) in the QSM. A set of environmental enti-
ties that are believed to be stationary is supplied by the QSM for use in the FOE computation. A di-
gital map database interacts with the QSM to detect and track moving targets in the image.
Edge/region based approaches are used detect rapidly moving objects at close range.

We have performed experiments on edge and region-based approaches for target motion detection in color imagery, to
assist in obtaining robust performance from the Qualitative Reasoning system. The technical details of these algorithms
are described in Section 7. Finally, in Section 8, the conclusions of this paper and our plans for future enhancements
of the qualitative motion detection and tracking approach are presented.

2. DATABASE OF IMAGES
In order to verify the capabilities of the system shown in Figure 1, a large image database was generated and

processed. In subsequent sections of this paper, we will illustrate some of the results. The processing consisted of five
stages:

(1) Interest Point Detection,

(2) Disparity Analysis,

(3) Qualitative Reasoning for Motion Detection and Tracking,
(4) Hypothesis Verification using Auxiliary Map Information, and

(5) Edge/Region Motion Detection at Close Ranges.
The image database contains five sequences which represent configurations of the imaging system and target that

often prove to be extremely challenging for traditional tracking approaches. The five configurations are:
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(1) Motion detection for targets travcling directly towards and away from the ALV.

(2) Tracking targets through total occlusion.

(3) Tracking targets in high clutter.

(4) Tracking targets at long ranges.

(5) Tracking system verification with auxiliary map information.

The images were obtained from the ERIM/Martin Marietta Collage I database. Examples of each of the five
configurations could be found in multiple sequences, but the objective was to resolve just one problematic scenario per
sequence. Three examples of images from one of the five sequences are presented in Figure 2. The images were digi-
tized at 0.5 second intervals. The images were digitized as gray scale because the demonstration of target tracking
requires only Interest Points or points of significant change in multiple directions in the intensity function of the image
and these locations can be detected using the luminance or Y component of the NTSC television signal. When moving
edges or regions are employed for matching by the Disparity Analysis algorithm, color information is used as well.

The images were preprocessed with a 3x3 window average filter to attenuate digitization noise. The noise was
due to a lack of sufficient bandwidth in the digitizer and resulted in I pixel duration pattern noise in the signal output.
The 3x3 window average filter was sufficient for the attenuation of the noise so that the Interest Point detection algo-
rithm performed reliably.

3. COMPUTATION OF DISPLACEMENT VECTORS

3.1 SELECTION OF INTEREST POINTS

The first stage of the motion algorithm suite is the detection of Interest Points or points where the image's inten-
sity demonstrates a discontinuity in multiple directions of the eight neighbor directions of the quadruled pixel grid.
Discontinuities of this kind are indicative of corners in 3-space. These locations are detected with a modified Moravec
Interest Operator. 17.18 The operator derives "interestingness" employing the same approach that the Moravec Operator
utilizes, but the revised operator is adaptive for expected range-dependent image features. The window dimension for
the modified Interest Operator is established with

!I=W=wo+2 i * lntSF(
512'(1

where
H the height of the window,
W = the width of the window,
w= the window dimension for the first row of the image,
i = the row coordinate of the current row of the image, 1 <= i <= 512,
Int_SF = a scale factor that controls how rapidly the detection operator window dimension varies with range,
[ x J = the greatest integer less than or equal to x.

Figure 2: Three images of a sequence in which a car is approaching the ALV and another car is
receding at a distance. This figure also shows the displacement vectors (by white lines) for Interest
Points.
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The approach, given by equation (1), essentially realizes a range adaptation capability by changing the window
dimensions as a function of row coordinate. For low depression angle imagery, the range to 3-dimensional objects of
the scene is approximately inversely proportional to the row coordinate of the image of the object. The resolution of
scene regions that are seen in the lower portions of the image is greater than that of regions that are seen in the upper
portions of the image because they are nearer to the ALV. Therefore, to detect features in these regions, the window
dimension must increase to encompass enough image area for the entire neighborhood of the feature to be seen.

Because the scenes that comprise the NTSC video portion of the Collage I database are all on-road, the Moravec
Interest Operator t 8 detects fewer discontinuities in the higher resolution regions for several reasons. First, because of
the rural nature of the Martin Marietta ALV Test Site, there are very few man-made objects by the side of the road
(which normally exhibit good quality Interest Points), except for a few guard rails and telephone poles. Second, due to
the scarcity of high quality interest points, the locations that are detected by the Moravec Interest Operator are often
from regions displaying arbitrary textures such as small rocks or isolated stands of grass. The Moravec Interest Opera-
tor employs a cut off quota for point feature detection: The point features detected by the Interest Operator are stored
in a list sorted in descending order of rating (a heuristic measure of the strength of the discontinuity). Only those
interest points whose rating is greater than a cut off threshold are transferred to the next stage. Therefore, very few
interest points for the lower regions of the image are archived in the locations of the list above the cut off quota.

In order to guarantee that the Interest Points the operator detects are not biased to any specific range, the revised
operator does the following: The revised version of the algorithm uses a varying quota, where the quota is calculated as
a function of the line coordinate of the image. This quota permits only 1 * Cut 0

for the first i lines of the image, where Cutoff is the cut off level of the original approach. When the number of
Interest Points detected for the first i lines of the image is less than * Cut-Off, new Interest Points' quantified rat-

512
ings are stored on the list in the usual fashion. When more than * Cut 0

512 - fItrsPonsaedtcefoth
first i lines of the image, these locations are integrated into the list only if their rating is greater than the ratings of the
previously stored Interest Points. Otherwise, the new Interest Points are discarded.

3.2 DISPARITY ANALYSIS

The second stage of the Interest Point displacement estimation approach is disparity analysis. This algorithm is a
revised version of the Bamard-Thompson Disparity Analysis algorithm. 1 The major difference between the Barnard-
Thompson algorithm and the revised algorithm is enhanced feature matching that employs range adaptation. The
phases of the algorithm where range adaptation is used are: 1) Neighbor Search, 2) Initial Match Likelihood Calcula-
tion, and 3) Relaxation. The revisions for each of these stages will be explained in the following sub-sections.

3.2.1 Neighbor Search

To restrain the size of the total set of candidate disparities and therefore, to diminish the computational complex-
ity of the algorithm, the group of current frame Interest Points to which a previous frame Interest Point can be matched
are those Interest Points lying in a Ws by 11s window centered at the previous frame location. The vertical and hor-
izontal dimensions of this window change with the line coordinate of the previous frame Interest Point. The approach
used to calculate the dimensions of this window is to estimate the maximum expected location change or disparity for
an object at ground level for the imaging geometry of the ALV (as a function of line coordinate) and then empirically
approximate the relation with an exponential function. The Neighbor Search window's dimension, obtained with this
approach, 17 is:

4' =s= 2 [CexpC2*L] + C3 + 1 (2)

where
Ws = the width dimension of the Neighbor Search window,
1ts= the height dimension of the Neighbor Search window,
C1 = 8.32 * SO

log [SMA

C2- =, 424

C3 = wo, the Interest Operator for the first line of the image,
SMAJX = the maximum search window size for the near-field of the image (maximum expected object displace-
ment),
i = the row coordinate of the Interest Point in the previous image.
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3.2.2 Initial Match Likelihood Calculation

The window dimension for this stage is calculated by

V- 1 = 2 ["o + *' - IMSF ]+.(3)

where
rno = Initial Match Likelihood window dimension for the first line of the image,
IM_SF = the Initial Match scale factor, and
i = the line coordinate of the current line.

The Initial Match Likelihood is calculated as a function of a heuristic measure of the correlation of the image
intensities of the previous and current frames in windows centered at the location of the Interest Point in each frame.
This heuristic measure will be explained in the latter paragraphs of this section. Because the relaxation algorithm used
to refine the estimates of the disparity likelihoods employs probabilities Li.e. each disparity I = [i, 11! is characterized
by a number p(l), where p() is an element of the range [0,1] and . p() = 1), the Initial Match Likelihood is

transformed into a probability using normalization. The heuristic measure is calculated for every candidate disparity
I ; j = .J, where Ji is the total number of disparities identified in the neighbor search for a specific Interest Point i.

nimploying the notation of relaxation labeling schemes, each previous frame Interest Point represents a node or object
in the object space of the iterative approximation procedure. Let a,, i = 1,....Cut Off represent each node of the object
space. The labels for each node ai are 1I, j = 1_.. Ji and an undefined disparity lv (defined in the next paragraph). The
set of all labels, lj, j = Ji, and I- is denoted L,. The objective of the iterative approximation procedure is to use
evidence obtained from neighboring nodes of the object space to refine the estimated disparity likelihoods until one
likelihood is approximately I and the rest 0, i.e. each object is uniquely labeled.

Because Interest Points are not detected with 100% certainty in each image, it is also possible that no valid
match exists for each previous frame Interest Point. To account for this configuration, a non-match disparity l° is
defined. The likelihood p4(l) for node ai represents the likelihood that the node i has no match. The first stage needed
to transform heuristic correlation measures into probabilities is the calculation of the initial probability of the disparity
p,(l'). Using the approach of Barnard and Thompson. 1 the probability that an Interest Point is not matchable is approx-
imated as I - wi(/mu), where w,(IMx) is the heuristic measure of largest magnitude for node a,. The assumption is
justified due to the fact that the label of maximum weight is, in general, the correct one. We have verified this
assumption for low-depression angle ground-to-ground imagery by empirically calculating the Initial Match Likelihood
heuristic measure for a large number of frames and then tabulating the number of times that the true disparity was the
one with the greatest measure.

The next stage is the application of Bayes Rule to obtain an initial estimate of the probability that a, should be
labeled I for labels other than I . This calculation is carried out as follows:

P = p(I, 1 Y )); l * I (4)

where
p°(l) = the Initial Match Likelihood for disparity Ij of node ai,
pi(Ij I i) = the conditional probability that ai has label lj given that ai is matchable,
(1 - p°(l°)i = the probability that ai is matchable.

The quantities pi(lj I i) are estimated with

p,( i) = (1)
Wik (5)

In order to guarantee that the revised Disparity Analysis algorithm would perform correctly for a wide variety of
scenarios, the following was done: A variety of match measures were evaluated for sequence 1 and the measure which
produced the best results in terms of a qualitative visual evaluation of the estimated disparities was used to process the
remaining four sequences. The qualitative visual evaluation was carried out by creating a pseudo-colored image (where
one frame is displayed with the color green, the second is displayed with the color red and the estimated disparities are
displayed with the color blue) and then visually checking the validity of the matches. The Initial Match measure which
was judged to be the best, because it produced the fewest errors for a wide variety of scenarios, was

w,(j)- 1 + *S[ +L ;i=1 .... CutOff;j=1. Ji, (6)

where
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w,(1) =vthe ,,utial match evidence of a candidate disparity I1,
Ik . th Interest Point's rating, where the k'th Interest Point is the current frame location of the feature
that defines disparity l,, and 0 < 1A < 1,
Cut-Off = number of Interest Points detected in the previous frame,
J, = total number of potential disparities for Interest Point i,
C, L = constants, and

I [gjo+j. ko - h1l+1.k~k

jk C N

where
g, = intensity of the previous frame at the location (m,n},
h, = intensity of the current frame at the location {m,n),
UJ), ko} = previous frame coordinate of the point feature for disparity Ir
(jr, kj) = current frame coordinate of the point feature for disparity 1i, and
N = Initial Match region for disparity Ij.

3.2.3 Relaxation Region

With a relaxation labeling scheme, the valid disparities with low initial likelihoods are elevated in magnitude by
the correlated evidence of their neighbors in the object space of the scene. By correlated evidence, it is meant that the
disparities of neighboring nodes exhibit approximately the same magnitude and direction displacement. A node is a
neighbor of another if it lies within the relaxation window centered at that node. Therefore, the correlated evidence for
a specific disparity Ij of ai is calculated as the sum of the disparity likelihoods for all neighbors of a,, where the dispari-
ties of the neighbors have approximately the same magnitude and orientation as 1. The degree of mismatch between
the neighboring node's disparities and 1, is defined in terms of specific error thresholds for orientation and displacement.
The Relaxation Region window's dimensions are calculated with this equation:

= 2 F -R + 1  (7)

where
WR = the width dimension of the Relaxation Region window,
H1 R = the height dimension of the Relaxation Region window,
r0 = the Relaxation Region window dimension for the first line of the image,
R_SF = the scale factor for adaptation of the Relaxation Region window dimension with respect to range, and
i = the line coordinate of the current line of the image.

The iterative update rule for disparity probabilities, employed at each stage of the relaxation algorithm, is

l((1) P*,-'(,) * (B + A * G'(lj)) j J.., (8)

Pff(l.) = -t~

- p (I,)

I E Li

where
Pk(lQ) the probability that a specific hypothesized disparity 1j, at the k'th iteration, is the true disparity,
Ph-'(Ij) = the probability that a specific hypothesized disparity lj, at the (k-1)st iteration, is the true disparity,
Gk(IJ) - the correlated evidence obtained from other disparities lying in the Relaxation Region at iteration k,
A, B = constants that control the rate of convergence of the iterative procedure, and
R, = the WR x 11R Relaxation Region window centered at the previous coordinate of the point feature.

For the preceding equation, terms with tildes (-'s) are evidences. Evidences are not constrained to be elements
of the range [0,1) and therefore are not probabilities. Normalizing these terms by the total weight of all the evidences
for a specific domain transforms evidences into probabilities.
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3.3 RESULTS FOR DISPLACEMENT VECTORS

The adaptive window approach was validated with several sequences of real ALV imagery. Figure 2 shows the
displacement vectors (white lines) for a few frames of a sequence in which the ALV was traveling along a paved road
and, during the first half of the 8 second sequence, a vehicle passes the ALV on the left and, during the last hali of the
sequence another vehicle approaches the ALV in the opposite lane. Another example, given in Figure 3, demonstrates
the estimated disparities for the points employed for matching for two successive frames of a sequence. The Interest
Points were ranked on the basis of their interestingness, and the best 50 were selected, subject to the constraint that for
each line of the image with coordinate i, no more than (i / 511) * 50 points were selected. By choosing a greater
number of Interest Points for the lower half of the image than the upper half, the Interest Points detected represent
valid object features and not arbitrary textures. The interest operator window size varied from 4x4 to 8x8. For a
specific y coordinate, the interest operator window size is computed by

4"ij
Window Sizex = Window Sizey = 4 + 41i (9)

The Neighbor Search window size varied from 4x4 to 120x120, the Initial Match Likelihood Calculation window size
varied from 5x5 to 7x7, and the Relaxation Region window size varied from 32x32 to 128x128.

Another series of experiments was carried out with imagery obtained from a video camera on-board a low flying
rotorcraft. The detection of obstacles such as low-hanging branches, trees, and power lines is critical for rotorcraft
engaged in flying in Nap-Of-the-Earth (NOE) courses due to the substantial clearance required by their rotors. Figure 4
demonstrates the automated detection of Interest Points, the derivation of the valid disparities, and the calculation of the
Fuzzy Focus of Expansion (FOE) (discussed in the next section). Each frame of the 246 frame database is processed
with the revised Moravec Interest Operator and the revised Disparity Analysis algorithm for the estimation of dispari-
ties. The array of disparities for each pair of frames is transferred to the FOE computation stage.

(a) (b)

Figure 3: Selection of Interest Points and disparity analysis. Displacement vectors are indicated by
white lines. Note the displacement vectors present on the moving cars.
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4. COMPUTATION OF THE FUZZY FOCUS OF EXPANSION
For short time intervals, the 3-D motion M of the ALV can be modeled by a translation T followed by a rotation

Re about the Y-axis and a rotation R, about the X-axis: 9, 10

M=RR oT . (10)

This results in a mapping d from the original image 1o at time to into the new image I, at time ti.
d:Io--I = rrotlo = r.reo'. (11)

The intermediate image Io' in (11) is the result of the translation component of the vehicle's motion and has the
property of being a radial mapping, which deterministically is represented as:

t = { (xi , xi') E= IXl I xi' = xi + i (xi - xf) ,ti R, li > 0 } . (12)

Unlike the two images I and I, which are actually given, the image Io' is generally not observed, except when the
camera rotation is zero. It serves as an intermediate result to be reached during the separation of translational and rota-
tional motion components. The fact that

=' = reI r.,I = t I0 (13)
suggests two different strategies for separating the motion components:

(1) FOE from Rotation: Successively apply combinations of inverse rotation mappings r r-, ro- r 2....
-ut r-t 6 is r wt ""

rek rok to the second image 1I, until the resulting image Y is a radial mapping with respect to the origi-nal image 10. Then locate the FOE xf in 10.

(2) Rotation from FOE: Successively select FOE-locations (different directions of vehicle translation) X1l,
Xf2.... Xf, in the original image Io and then determine the inverse rotation mapping '6 -16 that yields a
radial mapping with respect to the given FOE xf, in the original image Io.

Both alternatives were investigated under the assumption of restricted, but realistic vehicle motion. It turned out
that the major problem in the FOE-from-Rotation approach is to determine if a mapping of image points is (or is
close to being) radial when the location of the FOE is unknown. Of course, in the presence of noise, this problem
becomes even more difficult. The second approach was examined after it appeared that any method which extends the
given set of displacement vectors backwards to find the FOE is inherently sensitive to image degradations.

Although there have been a number of suggestions for FOE-algorithms in the past,' 5. 20.22 no results of imple-
mentations have been demonstrated on real outdoor imagery. One reason for the absence of useful results might be
that most researchers have tried to locate the FOE in terms of a single, distinct image location. In practice, however,
the noise generated by merely digitizing a perfect translation displacement field may keep the resulting vectors from
passing through a single pixel. Even for human observers it seems to be difficult to determine the exact direction of
heading (i.e., the location of the FOE on the retina). Average deviation of human judgement from the real direction
has been reported21 to be as large as 10' and up to 200 in the presence of large rotations.

It was, therefore, an important premise in this work that the final algorithm should determine an area of potential
FOE-locations (called the Fuzzy FOE) instead of a single (but probably incorrect) point. The method described below
avoids the problem mentioned above by guessing an FOE-location first and estimating the optimal derotation for this
particular FOE in the second step.

4.1 FUZZY FOE ALGORITHM

Given the two images 10 and 1 of corresponding points, the main algorithmic steps of this approach are: 9

(1) Guess an FOE-location xy) in image Io (for the current iteration i).

(2) Determine the derotation mapping rel, ri which would transform image I, into an image I,' such that
the mapping (xr,1o,1,") deviates from a radial mapping with minimum error E(0 .

(3) Repeat steps (1) and (2) until an FOE-location x k) with the lowest minimum error E(k) is found.

An initial guess for 'he FOE-location is obtained from knowledge about the orientation of the camera with
respect to the vehicle. For subsequent pairs of frames, the FOE-location computed from the previous pair can be used
as a starting point. Once a particular xf has been selected, the problem is to compute the rotation mappings r1 and r
which, when applied to the image I, will result in an optimal radial mapping with respect to Io and x.

To measure how close a given mapping is to a radial mapping, the perpendicular distances between points in the
second image (xi') and the "ideal" displacement vectors is measured. The sum of the squared perpendicular distances d,
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is the final error measure. For each set of corresponding image points (xi E I, x' E I'), the error measure is defined as:

E (xf) = YE = Xi 1 - l XJX i]2 (14)A i ix I

The final algorithm for determining the direction of heading as well as horizontal and vertical camera rotations is

the following:

(1) Guess an initial FOE xfo, for example the FOE-location obtained from the previous pair of frames.
(2) Starting from x0, search for a location xYP' where Emi(x:7) is a minimum. A technique of steepest des-

cent is used, were the search proceeds in the direction of least error.

(3) Determine a region around xlp' in which the error is below some threshold.

The error function E(xf) is computed in time proportional to the number of displacement vectors N. The final
size of the FOE-area depends on the local shape of the error function and can be constrained not to exceed a certain
maximum M. Therefore, the time complexity is O(MN).

4.2 RESULTS FOR FOE COMPUTATION
Figure 4(d) shows the computation of Fuzzy FOE for the data taken from a rotorcraft during Nap-Of-the-Earth

flight. Fuzzy FOE is shown by the white area near the horizon. The black dot in the center indicates the best estimate
of the FOE.

5. QUALITATIVE REASONING AND MODELING
FOR MOTION DETECTION AND TARGET TRACKING

5.1 QUALITATIVE REASONING TECHNICAL APPROACH

The choice of a suitable scheme for the internal representation of the scene is of great importance. The Qualita-
tive Scene Model (QSM) is a 3-D camera-centered interpretation of the scene that is built incrementally from visual
information gathered over time. The nature of this model, however, i, qualitative rather than a precise geometric
description of the scene. The basic building blocks of the QSM are entities, which are the 3-D counterparts of the 2-D
features observed in the image. For example, the point feature A located in the image at x,y at time I

( Point_Feature A t x y )

has its 3-D counterpart in the model as

( PointEntity A ).

Since the model is camera-centered ("retinocentric"), the image locations and 2-D movements of features are
implicitly part (i.e., known facts) of the model. Additional entries are the properties of entities (e.g. "stationary" or"mobile") and relationships between entities (e.g. "closer"), which are not given facts but hypotheses about the real
scene. This is expressed in the model as either

(Stationary entity ) or ( Mobile entity ).

It is one of the key features of the QSM that it generally contains not only one interpretation of the scene, but a
(possibly empty) set of interpretations which are all pursued simultaneously. At any point in time, a hypothesis is said
to be "feasible" if it exists in the QSM and is not in conflict with some observation made since it was established.

Interpretations are structured as an inheritance network of partial hypotheses. Individual scene interpretations are
treated as "closed worlds", i.e., a new conclusion only holds within an interpretation where all the required premises are
true. Interpretations are also checked for internal consistency, e.g. entities cannot be both stationary and mobile within
the same interpretation. The QSM is maintained through a generate-and-test process as the core of a rule-based black-
board system. The two major groups of rules are: Generation Rules and Verification Rules.

Generation Rules

Generation rules examine the (derotated) image sequence for significant changes and modify each interpretation
in the QSM. Some of these observations have unconditional effects upon the model. For example, if an image feature
is found to be moving towards the Fuzzy FOE (instead of diverging away from it), then it belongs to a moving entity
in 3-D space. The actual rule contains only one premise and asserts (MOBILE ?x) as a global fact (i.e., it is true in
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every interpretation):

(defrule DEFINITEMOTION
(MOVINGTOWARDSFOE ?x ?t)

(at ROOT (assert (MOBILE ?x)))) /*a global fact*/

The directive "at ROOT" places the new fact at the root of the interpretation graph, i.e., it is inherited by all existing
interpretations.

Other observations depend upon the facts that are currently true in a "world" and, therefore, may have only local
consequences inside particular interpretations. For example, if two image features A and B lie on opposite sides of the
Fuzzy FOE and they are getting closer to each other, then they must be in relative motion. If an interpretation exists
that considers at least one of the two entities (x,y) stationary, then (at least) the other entity cannot be stationary (i.e., it
must be mobile). The following rule "fires within" each interpretation that considers the first entity (x) stationary:

(defrule RELATIVEMOTION
(OPPOSITEFOE ?x ?y ?t) /* first observation */
(CONVERGING ?x ?y ?t) /* second observation */
(STATIONARY ?x) /* true inside an interpretation */

(assert (MOBILE ?y))) /* local to this interpretation */

Verification Rules

While the purpose of the generation rules is to establish new hypotheses and conclusions, the purpose of
verification rules is to review interpretations after they have been created and, if possible, prove that they are false.
When a hypothesis is found to be inconsistent with some new observation, it is usually removed from the QSM. Any
interpretation that is based on such a hypothesis is removed simultaneously. Since we are always trying to come up
with a single (and hopefully correct) scene interpretation, this mechanism is important for pruning the search tree.

Verification rules are typically based on image observations that, used as generators, would produce a large
number of unnecessary conclusions. For example, the general layout of the scene seen from the top of a land-based
vehicle suggest the rule of thumb that things which are lower in the image are generally closer to the camera.
Although this rule is not strong enough to draw direct conclusions, it may be used to verify existing hypotheses:

(defrule LOWERISCLOSERHEURISTIC
(CLOSER ?x ?y)
(BELOWTHEHORIZON ?x ?t)
(BELOWTHEHORIZON ?y ?t)
(BELOW ?y ?x ?t)

/*mark this interpretation as conflicting*/

(assert (CONFLICT LOWER/CLOSER ?x ?y))).

Whenever an existing hypothesis (CLOSER ?x ?y) violates the above rule of thumb, this rule fires and marks the
interpretation as conflicting. How the conflict is eventually resolved depends upon the global state of the QSM. Sim-
ply removing the afflicted interpretation would create an empty model if this interpretation was the only one. This task
is handled by a set of dedicated conflict resolution rules.3

The kind of rules described up to this point are mainly based upon the geometry of the imaging process, i.e., per-
spective projection. Other important visual clues are available from occlusion analysis, perceptual grouping, and
semantic interpretation. Occlusion becomes an interesting phenomenon when features of higher dimensionality than
points are employed, such as lines and regions. Similarities in form and motion found by perceptual grouping allow us
to assemble simple features into complex objects. Finally, as an outcome of the recognition process, semantic informa-
tion may help to disambiguate the scene interpretation. If an object has been recognized as a building, for example, it
makes every interpretation obsolete that considers this object mobile. For all these various lines of reasoning, the QSM
serves as a common platform.

Meta Rules

In summary, the construction of the QSM and the search for the most plausible scene interpretation are guided by
the following meta rules:
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" Always tend towards the "most stationary" (i.e. most conservative) solution. By default all new entities
are considered stationary.

* Assume that an interpretation is feasible unless it can be proved to be false ( the principle of "lack of
conflict").

" If a new conclusion causes a conflict in one but not in another current interpretation, then remove the
conflicting interpretation.

" If a new conclusion cannot be accommodated by any current interpretation, then create a new, feasible
interpretation and remove the conflicting ones.

More details about QSM and rules are given in the Dynamic Reasoning using Integrated Visual Evidence (DRIVE)
technical report.3

5.2 QUALITATIVE REASONING RESULTS

The computation of the Fuzzy Focus of Expansion and Qualitative Scene Model are implemented on a Symbolics
3670. Qualitative Reasoning is implemented in a knowledge-based system development environment, called the
Automated Reasoning Tool (ART), which is supplied by Automated Inference Corp.

Figure 5 presents four frames from the Collage I database, where a vehicle is seen traveling down on the very
distant roadway in the top right corner of the image. The distance from the ALV to the other vehicle is several hun-
dred feet. The four frames were processed and the estimated Interest Point disparities between the first and second
frames, the second and third frames and the third and fourth frames are shown in Figures 6(a)-(c). Note that the target
is detected in the images even though it is quite far away from the ALV.

The estimated disparities for each pair of images are then transferred to the FOE location estimation stage. The
results obtained for the first pair of images (frames 15 and 16) in Figure 5 are shown in Figure 7, where Figure 7(a)
depicts the Interest Point locations in the coordinate frame of the second image of the pair along with the estimated
disparity of the point (shown as a line attached to the apex of the pointer to the Interest Point location) and Figure 7(b)
is the result of Qualitative Scene Model Calculation. The results obtained for the second and third and third and fourth
frames of this example are presented in Figures 8 and 9, respectively.

6. MAP-BASED TARGET TRACKING
Target motion detection and tracking is essential for the potential military applications of a robotic vehicle.

However, purely image-based target motion information may have restricted use in many practical military scenarios
such as reconnaissance, where map location (latitude, longitude, and elevation) of the moving targets, precise informa-
tion on their direction of movement, and knowledge about nearby roads and terrain may be crucial. We have
developed and implemented the Map Assisted Tracking System (MATS), which integrates the digital terrain map infor-
mation with Honeywell's Qualitative Reasoning system, 5, which was described in the last three sections. At present,
MATS is loosely integrated with the Qualitative Reasoning system to provide a comprehensive set of information about
the map location of the moving objects, the road label that the targets are possibly traveling on, and neighboring land-
marks. Beyond practical mission considerations, digital terrain map information can be very helpful in detecting and
tracking moving targets in high clutter and low contrast scenes.

Figure 10 provides a high level view of the MATS system. As shown at the top of the figure, Qualitative Rea-
soning provides the motion direction, x and y image location, and relative range of the moving targets. MATS per-
forms an image-to-map correspondence for the individual targets and determines the approximate location of the targets
in the map. An uncertainty area is computed for each target. Then, the digital roads file is searched to locate nearby
roads. A search algorithm determines the most likely roads and nearby landmarks. This computation requires that the
vehicle's position in the map must be given, which can be obtained from the Land Navigation System (LNS) or an
Inertial Navigation System (INS), for future robotic vehicles. MATS assumes a given camera view angle, which can
be obtained from the gimbal controller. Road and terrain information is used to predict obscuration so that the Qualita-
tive Reasoning system is able to track targets in high clutter scenarios.

The prototype of the MATS system has been implemented and initial tests have been performed in conjunction
with the Qualitative Reasoning system. Currently, MATS is functional, although it needs to be fully integrated with
the Qualitative Reasoning system in an end-to-end experiment. The image-to-map correspondence algorithm must be
refined and further testing needs to be done on the entire system. The remainder of this section describes the charac-
teristics of the digital map data that we have used and explains the details of its use in the MATS system and experi-
mental results for two representative scenarios.
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Figure 5: Four frames (15, 16, 17, 18) from the Collage 1 database, where a vehicle is seen traveling
down in the very distant roadway in the top right comer of the image. (a) Frame 15. (b) Frame 16.
(c) Frame 17. (d) Frame 18.
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Figure 7: Fuzzy FOE Computation and Qualitative Scene Model. (a) The Fuzzy FOE is shown by
the shaded area. The circle within the shaded area is the most probable location for the FOE. (b)
Qualitative Scene Model, where the size of one circle denotes its distance from the vehicle and links
between circle or points indicate that closer relationships have been established between stationary en-
tifles.
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(a) (b)
Figure 8." Fuzzy FOE Computation and Qualitative Scene Model. (a) The Fuzzy FOE is showvn by
the shaded area. The circle within the shaded area is the most probable location for the FOE. (b)
Qualitative Scene Model, where the size of one circle denotes its distance from the vehicle and links
between circle or points indicate that closer relationships have been established bet'., cn .tionary cn
titles. Note that object 391 has been detected as moving. The direction of the arrow indicates that
the target is moving downward.
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6.1 DIGITAL TERRAIN MAP DATABASE

The existing digital terrain map database of the Autonomous Land Vehicle (ALV) test site contains elevation,
photographic, and terrain feature data. The elevation data specifies the elevation in meters above sea level at a given
map position. The horizontal resolution of the elevation data is live meters per pixel. The photographic data includes
a digitized aerial photograph of the ALV test site. The terrain data includes road, river, land cover, and soil informa-
tion for the area. Only the road feature data from the terrain database was used in our MATS experiments. The road
data consists of unique identifiers for each road segment. The roads are represented by their width and segment end-
point coordinates.

Each elevation data point in the original database was represented as 16-bit data. Since the actual variation in
elevation over the mapped region was only 901 feet, we derived an 8 bit per pixel representation of the data that had
units of meters. After the elevation data was derived, we transforned the feature data into the correct scale.

The terrain feature data files are provided as character files. Each line segment lists a brief header which
includes a brief description, a unique identifier, and the number of line segments that belong to that segment, followed
by the segment end points. The first step was to scale the endpoints to the elevation data and to run a lim, tracing
algorithm to convert the data into vector form.

Using the digitized photograph at 4096 x 4096 resolution, a USGS 7.5 minute topographical terrain map, and the
elevation data, prominent landmarks were identified and the correspondence was manually established. The road
features were primarily used to establish the correspondence. Registration was done manually by selecting four
colrcfponding points in za,'. file. The four points were selected at the outer boundaries. Although the digitized aerial
photographs were not orthophotos, they were treated as such for the purpose of these initial experiments. Future exper-
iments would be better served by the usage of sensor and platform data to eliminate the effects of relief aintorticn and
the resulting misalignment between the map and the image. Since the photograph data had a much finer resoiion
than the elevation data, the elevation data was bi-linearly interpolated to match the resolution of the photographic data.
This resulted in a 0.7 meter spacing between posts in the elevation data. The same interpolation was performed on the
road data. However, there was a trade-off to be made here between processing time and achievable resolution. It was
decided that very fine resolution was not critical to the experiment and the data was sampled at a 1.4 meter resolution
between posts.

Figures 11-13 show the digital terrain database which includes grid elevation data, elevation intensity data, and
terrain features overlays.

Figure I/: Digital elevation map of the ALV test site area displayed in a grid format.
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Figure 12: Digital Elevatof mode, (DE~m) with overlays showing roads (black) and rivers.

Figure 13: Close-up of digital elevation map with all feature data overlayed.
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6.2 MAP ASSISTED TRACKING SYSTEM DESCRIPTION

The MATS functional objectives are: 1) locate the 3-D map coordinates of moving targets, 2) identify the roads
or terrain that they are traveling on, and 3) identify nearest landmarks to the targets. MATS assumes that the following
information is given:

" Target (x,y) image location and traveling direction in image coordinates
" Range to target
" Camera model and a fixed view angle
" Digital terrain map database
The first task that MATS performs is to find a view vector from the vehicle's camera center to the target. As

shown in Figure 14, the target is detected at T(x,y) location and the center of the image C(256,242) is where the view
vector coincides with the optical axis of the camera. The equation of an arbitrary view vector can be determined given
the imaging system's 3-D coordinates (this is obtained from the Inertial Navigation System data available on a full-
scale robotic vehicle) and orientation.

For the current implementation of MATS, the estimates for the ALV's Universal Transverse Mercatur (UTM)
coordinates are obtained as follows: The image coordinates of three landmarks, observed in the image, are noted and
the view vectors to the landmarks in a vehicle-centered coordinate frame are calculated. Because the absolute location
of each of the landmarks in terms of UTM coordinates is known, the distance between each pair of landmarks is known
and the subtended angle between any pair of neighboring legs of the triangle defined by the landmarks is known.
Because the geometry of this triangle is known, it is possible to estimate the distance from the imaging system to each
of the landmarks. The coordinate of the ALV in the UTM coordinate space is obtained by solving for the unique 3-D
location that is the prerequisite distance from each of the three landmarks. This also establishes the orientation of the
ALV in UTM coordinates. Improved accuracy is obtainable by using 4-10 landmarks for calculation of the ALV's
coordinates (employing least squares techniques).

When the orientation and location of the ALV is determined in terms of the UTM coordinate system, the location
of the target is estimated with the following approach. Let the orientation of a view vector in terms of the camera
coordinate system be expressed by the pure horizontal rotation R0 and pure vertical rotation R as shown in Figure 15.
The 0 and 0 required to bring the target location to align with the optical axis are obtainable by estimating where the
line of sight ray (defined by the view vector) intersects the digital terrain elevation map.

Let (Ax, Ay, Az) be the displacement vector from the target to the vehicle, then the target's real location in the
map coordinates, (X., Y, Z.), is:

X. = Xv + Ax , Y = Yv + Ay , , = Zv + Az (15)

where (Xv, Yv, Zv) is the coordinate of the current vehicle location in the map.

There are obviously uncertainties about the current vehicle map location and the location of the detected moving
targets. In addition, there are uncertainties about the estimated range to the target obtained from Qualitative Reasoning.
The terrain map information is used to correct such uncertainties. The initial hypothesis that targets are moving on
roads allows MATS to search for the roads nearest to the computed target map location. The road file is represented as

4T (x,y)

C (256,242)

Figure 14. Orientation for locating target view vectors.
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a 2-D image file, where pixel values represent roads labels. Pixel values of zero indicate no roads, otherwise pixels
values correspond to roads labels. From this road map representation, another file is generated which contains the shor-
test distances from each pixel to a oad, and this file is pre-compiled to allow very rapid search. Once the target loca-
and infers the road that the target is traveling on.tion is estimated in the map, MATS quickly searches for the x and y coordinates values in the road map representation

6.3 EXPERIMENTAL RESULTS
Experiments with MATS have been conducted on two scenarios (Figures 5 and 16). In both experiments, the tar-

gets detected were moving at a relatively far distance from the vehicle. Typically, the ranges were several hundred
feet. Both scenarios contained high clutter and the contrast of the targets was low. In both experiments, only one tar-
get was moving in the image. Figures 17 and 18 show results calculated by MATS for the first example scenario and
Figures 19 and 20 display the results for the second experiment.

several hundred feet.
Figure 16. The second experiment shows another target moving across the scene with a range of
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Figure 17: In the first experiment, MATS identifies the target location in the map and highlights the
vchicle's position.

Figure 18: MATS generates a side view of the first scene showing what the vehicle should expect to
observe and highlights the target in red, which corresponds very well to the location of the target in
the actual images.
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Figure 19. Target location detected in the second experiment with a direction vector overlaid on the
target indicating its traveling course.

Figure 20. Final results of the second experiment which highlight the road segment the target is trav-
eling on.
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The objective of the MATS effort is to demonstrate the practical aspects of target tracking in a real-world
scenario, where scenes are usually highly cluttered, low in contrast, and contain targets at long ranges. MATS has
shown that it can enhance target detection and tracking performance and provide useful outputs such as a target's 3-D
map location and the road it is traveling on. Currently, MATS is still a prototype system which needs further develop-
ment. More experiments are planned to establish the performance c'pabilities of this system.

7. REGION MOTION DETECTION USING COLOR DIFFERENCE PICTURES
When the 3-D world is projected onto a 2-D image, valuable information is lost. Motion information, along with

stereopsis and range maps, is a well known information source for the reconstruction of 3-D representations from 2-D
images. Since motion information is useful for other image processing stages, it is desirable to perform motion
analysis at an early stage of scene understanding. This early stage is referred to as the peripheral process by Jain 14

and the short-range process by Ullman.23 The long range or attentive processes are correspondence schemes in which
high-level, symbolic features are matched and tracked over time. Low-level processing stages for motion interpretation
include gradient-based methods,t 3 cross-correlation methods,1 and spatio-temporal filtering methods. 24

For real-time motion analysis, the algorithms employed are constrained to be efficient as well as dependable.
Jaim14 has experimented with a simple method of using a difference picture accompanied with a simple decision tree to
extract motion information in the peripheral phase. A difference picture is generated by comparing two frames of the
same dynamic scene on a point by point basis. In subsequent experiments, he showed that the difference picture, in
combination with the edge and comer image, could be used effectively to detect motion in the scene.1t41,  Features
such as temporal-edges and interest points are often used in motion detection algorithms. Examples are the edge
features used by Hildreth 12 to compute optical flow and the region images used by Bhanu and Burger4 to compute
disparity vectors. However, one deficiency of the Jain approach is that the interiors of constant intensity level regions
do not generate a difference signal, even if the corresponding surface is moving. Thus, the determination of surface
boundaries requires the observation of longer sequences or the application of more sophisticated, high-level analysis.

We present a similar scheme using color images to obtain a more reliable difference picture for use with standard
region-based motion detection schemes. We have successfully demonstrated the detection of motion for the complex
ALV imagery, where Jain's algorithm normally is not robust enough due to the diverse nature of this imagery.

7.1 COLOR DIFFERENCE PICTURE

Motion analysis techniques use various assumptions about the scene characteristics to decrease the complexity of
the calculations of 3-D features. One such assumption is that the illumination of an object does not change from scene
to scene. For the ALV scenario, this assumption may not hold because the changing location of the imaging system
causes the orientation and location of objects, relative to the ALV, to continually change. Thus, the use of invariant
scene characteristics is necessary. It has been reported that changes in the ambient illumination level does not alter the
human perception of color. By using the individual color components of the image, instead of the luminance com-
ponent, gradient-based motion algorithms will be less sensitive to local changes in average object intensities. For
example, the hue of the image is calculated as a function of a ratio of linear combinations of the three primary image
intensities, red, green, and blue.

lne=cos-l{"  /2[(R-G)+ (R-B)]  (16)
l =(R-G)

2+(R-B)(G-B)

IfB>G,then flue=27t-lHue

Therelore, a change in the average intensity of a specific region does not effect the magnitude of the hue.

The temporal derivative aflx,y,t) in the discrete domain is approximated by the difference operationat
f( x,y,t 2 ) -f( x,y,tl ), where f(x,y,t) is the image intensity at the location ( x,y ), at time t. The entries in the difference
picture are significant only at pixel locations where an object has moved. The difference picture may be used in com-
bination with the edge image to obtain a time-varying edge detector.1 6 When more than two frames are used to approx-
imate the temporal derivative, observation of a time-varying edge permits the detection of moving edges. 16 This dis-
tinction is made since th! motion of an object detected with a Moving Edge Detector results from persistent change in
the sequence of the frames representing the scene. Jain argues that if the change exists only in two frames, then the
change is, most probably, not due to motion. The use of multiple frames helps to resolve the ambiguity problems due
to noise that occur for frame-to-frame differencing techniques.

In the Moving Edge Detection method, the difference picture is refined using a syntactic labeling scheme.
Because the criteria for this scheme are derived for noiseless imagery, they work accurately when there are only minor
changes in the average intensity level of regions and the edges of regions are sharp. We have developed a similar, but
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simpler, method of obtaining a difference picture which uses color images in order to make the algorithm less sensitive

to these inconsistencies.

Our algorithm is comprised of three steps:

(1) The point by point subtraction is done for each primary image, resulting in three conventional difference
pictures.

(2) A symbolic mapping is applied to the red, green, and blue difference values to obtain a single symbolic
difference image. (See Table 1). Only the sign of the difference picture for each primary image is used
to derive the symbolic difference image, because how the region changed is more important than how
much it changed.

(3) The connected components of the symbolic difference image are extracted. Isolated points and small
regions are eliminated. Small regions in the difference picture are either caused by noise or by objects
that are too far from the ALV to be of interest.

The computational complexity of this algorithm is low. Since the change in the region intensity, rather than the
magnitude of the change, for each of the three primary images is used for moving object detection, the scheme is
robust for outdoor imagery, when the camera rotation component is not significant. This procedure effectively removes
most of the noise that often exists in difference pictures. Only those regions which are caused by targets moving at a
significant rate of speed remain. The results obtained with this approach demonstrated far less noise than the
difference pictures obtained from the Jain algorithm alone.

The performance of the Color Difference Picture motion detection algorithm was evaluated for a representative
set of dynamic images. The purpose of the evaluation was to empirically appraise the effects of changing the
algorithm's parameters on the resultant number of false detections, for imagery with varying amounts of sensor-induced
motion. It was found that the approach performs well for sequences of images where the imaging system's motion is
approximately linear (a large forward component, plus a significantly smaller rotational component), with only
moderate sensitivity to the selected parameter values. For image sequences demonstrating more complex motion
(significant rotational components), the algorithm was more dependent on the parameter values selected and it was not
possible to identify a set of parameters for the algorithms which would be optimal for all cases.

7.2 MOVING COLOR EDGE DETECTION

Moving targets can be detected in a series of images on the basis of multiple clues. A few examples are moving
edges, moving comers, and spatio-temporal frequency disparities. For Moving Color Edge Detection, the color
difference picture is coabined with the color edge magnitude image to identify moving color edge points in a sequence
of images. This technique detects image locations where there is a high degree of edginess and a high temporal rate of
change in intensity. Regions that display a large temporal rate of change are those regions of the color difference pic-
ture that remain after small regions are discarded. The edge image is obtained with the DiZenzo color image edge
operator.11 The magnitude of the DiZenzo color image edge operator for a scene where a vehicle is rapidly approach-
ing the ALV is presented in Figure 21. The result of deriving the conjunctive evidence of the multi-image gradient
magnitude and the Color Difference Picture is presented in Figure 21(b). Figure 22 provides another example of Mov-
ing Color Edge Detection.

Class Red Green Blue Meaning

0 0 0 0 No change or changed negatively in all colors
1 0 0 1 changed positively in Blue direction
2 0 1 0 changed positively in Green direction
3 0 1 1 changed positively in Blue and Green directions
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1 positive change in all three colors

Table 1: Symbolic mapping of three color difference images. I in column R, G, and B indicates a
positive change.
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7.3 MOVING REGION DETECTION

For ALV imagery, motion may be detected as a result of either true object motion or apparent (sensor-induced)
motion because the imaging system is constantly translating and rotating due to the undulating road surface. The per-
formance of the Moving Edge Detection operator and other traditional techniques will deteriorate for this variety of
inagery unless a mechanism is used to compensate for the motion of the imaging system.

Conventional background motion compensation techniques match significant image features to obtain an estimate
of the translation and rotation of the imaging system from the previous frame to the current frame. The transformation
must be estimated based on a minimum mean-square error criterion between the observed location of the feature points
and the predicted location, on the basis of the estimated transformation. The calculation of this transformation can be
very expensive. Therefore, motion detection algorithms that are designed for a moving camera and that don't compen-
sate for sensor-induced motion must be very robust.

We derived such an algorithm by modifying Jain's approach for greater resistance to the detection of changes
caused by sensor motion and not by target motion. The Moving Boundary Detection algorithm detects those regions of
the image whose location is changing rapidly with the following principle: Targets seen in an image will demonstrate a
significantly higher rate of translation in proportion to their size than an arbitrary background region will, due to sensor
motion.

We define a rate measure using this principle. First, the input color image is partitioned into a set of connected
regions employing a region-based segmentation algorithm such as the Ohlander-Price-Reddy algorithm. 19 The regions
where significant motion occurs are obtained by masking the regions detected with the Color Difference Picture (CDP).
The criterion function for each region is calculated as the ratio of the number of boundary points which changed loca-
tion to the total number of boundary points:

rate = # pixels of boundary that changed location (17)
total boundary length

This technique will exhibit degraded performance if any one of the following conditions apply: 1) the distance at which
moving objects must be detected is extremely large, in which case the objects appear as part of the background; 2) the
moving objects are small; or 3) the objects are moving at a sufficiently slow rate of speed, so that little or no change in
the object's location is detectable at 30 Hz. Because none of the preceding degenerate cases occurs for the ALV
scenario, the Moving Boundary Detection algorithm is a good algorithm for change detection.

This criterion function is useful for discriminating moving targets from stationary targets and/or the background
for the following reasons: If image disparities for a pair of frames are the result of imaging system rotation only, then
the apparent motion imparted to distant portions of the background will be greater than the apparent motion of station-
ary objects in the near-field. The spatial resolution of the image of an object is inversely proportional to its range from
the imaging system. Thus, because the resolution of the background is low, its segmentation is poorer than the seg-
mentation of nearer portions of the scene. Therefore, these regions of the image will be eliminated by the region size
criteria in the formation of the CDP. The regions of the background that aren't discarded by the preceding step are
normally segmented out by the rate measure, because they translate at a relatively slow rate. The only regions of the
image that remain after these two segmentation phases are the moving objects. The range of interest for object motion
detection will dictate the thresholds for this process. Results obtained with this approach for four frames of the Collage
I database are presented in Figure 23.

A Moving Region Detection algorithm was also implemented. This algorithm is derived from the same concepts
that applied for the derivation of the Moving Boundary Detection algorithm. Its "rate" measure is:

rate = - # pixels that moved (18)
total area of the region

The performance of this algorithm was comparable to the performance of the Moving Boundary Detection algorithm.
The regions which resulted after application of this algorithm to the images are shown in Figure 24.

8. CONCLUSIONS
We have presented our qualitative approach to scene understanding for mobile robots in dynamic environments.

The challenge of understanding unstructured outdoor image sequences is that stationary objects do not appear as sta-
tionary in the image and mobile objects do not necessarily appear to be in motion. Consequently, the detection of 3-D
motion often requires reasoning far beyond simple 2-D change analysis.

The approach taken here clearly departs from related work by following a strategy of qualitative, rather than
quantitative, reasoning and modeling. All the numerical efforts are packed into the computation of the Focus of
Expansion (FOE), which is accomplished entirely in 2-D. To cope with the problems of noise and errors in the
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(a) (b)

(c) (d)

Figure 23: Moving Boundary Detection algorithm results. The boundary of the detected moving tar-
get is shown with a white line. (a) Frame 20. (b) Frame 40. (c) Frame 44. (d) Frame 48.
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(a) (b)

Figure 24: Moving Region Detection algorithm results. The detected moving regions are displayed as
uniform intensity regions, where the intensity of each region is arbitrary. Non-moving regions are
displayed as black. (a) Frame 48. (b) Frame 50.

displacement field, we determine a region of possible FOE-locations, known as the Fuzzy FOE, instead of a single

FOE.

We have shown that even without knowing the exact location of the FOE, conclusions about motion and 3-D
scene structure can be drawn. From these clues, we construct and maintain an internal 3-D representation, termed the
Qualitative Scene Model, in a generate-and-test cycle over extended image sequences. This model also serves as a
platform for other visual processes, such as occlusion analysis, perceptual grouping, and object recognition. To over-
come the ambiguities inherent to dynamic scene analysis, multiple interpretations of the scene are pursued simultane-
ously.

The examples given in this paper show the fundamental operation of our approach on real images produced by
the Autonomous Land Vehicle (ALV). Since the exclusive use of displacement vectors from point features is a limit-
ing factor, we showed our initial experiments on edge and region-based feature tracking. We plan to integrate wave-
front approaches also for region motion detection. 4 Also, to exploit a larger part of the information contained in the
image and to demonstrate the full potential of our approach, lines, regions, and map information need to be fully
integrated within the Qualitative Scene Model.
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ABSTRACT

Usually shape description systems assume that a scene has been segmented into objects and that object boundaries are
given. However, this is not realistic when working with intensity images; the resulting boundaries are fragmented and
also contain surface markings, and shadow and noise boundaries. Our system works with such input and computes
shape descriptions of complex objects. Scene segmentation takes place through the process of shape description. We
use generalized cones, or more precisely, their 2-D analogs of ribbons as the basic shape representation scheme. We
show results on several synthetic and real examples. The output of our system should be useful for object recognition
and for further inference of 3-D shape from the 2-D shape descriptions.

1 INTRODUCTION
Computing descriptions of shapes of objects in a scene is one of the most central problems in machine vision. Good
shape description is needed for object recognition, of course, but also for other tasks requiring geometric reasoning
about the scene, such as grasping or navigation.

Normally, shape description is assumed to be preceded by a scene segmentation process that outlines different
objects in the scene, i.e. the "figure-ground" resolution problem is assumed to be solved. While this is possible
given high quality, dense range data, it is usually not so for realistic intensity images as the image boundaries are
likely to be incomplete and imperfect, containing boundaries arising from markings, shadows and noise in addition
to the object boundaries (see Figure 1 for example.) In such cases, the object shape itself is helpful in achieving good
segmentation, i.e. scene segmentation and shape description are inter-dependent. In our system, we do not assume
that we know the specific shapes that we expect to perceive, but only certain generic classes of shapes as described
below.

We have chosen a segmented, hierarchical representation for our shape descriptions. In this approach, a scene
is represented in terms of component objects; complex objects are represented by decomposing them into simpler
parts and then describing the parts and relations between them. This process can be applied hierarchically. Such
representations can be rich and stable, and represent occlusion and articulation in a natural way.

In this work, we have chosen generalized cones for the basic part representation. A generalized cone (GC) consists
of an arbitrary planar shape, called a cross-section swept along an arbitrary 3-D curve, called an azis. Further, the
size and also the shape of the cross-section may change along the axis; the rule describing the change is called the
cross-section function. We can also define 2-D analogs of GCs, often called ribbons. For a ribbon, the axis is an
arbitrary 2-D curve, the "cross-sections" are simply line segments normal to the axis and the cross-section function
defines how the cross-section width changes along the axis. 2-D ribbons may be viewed as projections of 3-D GCs.
Given only a single intensity image, it is easier to compute the ribbons in the image which may serve as a step
towards computing the 3-D volume descriptions.

GCs have been used for shape description for several years and by several researchers. However, most of that work
assumes that the input consists of a "perfect line drawing", i.e. the scene has been segmented into objects and
that the extremal object contours have been made explicit [9, 6]. Such input can be expected if dense range data

*This research was supported by the Deferse Advanced Research Projects Agency under contract number F33615-87-C-
1436, monitored by the Air Force Wright Aeronautical Laboratories, Darpa Order No. 3119.

tNow with: Image Understanding Branch, Computer Science Center, Texas Instruments, P.O. Box 655474, MS 238, Dallas,
Texas 75265
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is available; even then, the object surfaces aze typically prepared specially, such as being painted mat white. Use
of intensity images invariably gives fragmented boundaries, and we must distinguish object contours from contours
caused by shadows, surface markings and noise. Some typical scene boundaries are given in Figure 1 (note that
all but (b) are from real images). The ACRONYM system does deal with intensity image inputs and fragmented
boundaries but is highly model-directed [31.

In [Ill we described a system that can compute GC descriptions from sparse, imperfect data. This system assumed
that the input consisted of boundary fragments, but that boundaries were given in 3-D (as may be obtained from
stereo, for example). This system is limited to the domain of the "Linear, Straight, Homogeneous, Generalized
Cones" (LSHGCs) (in Shafer's terminology [121).

This paper describes a much more general system. We assume that the scene consists of objects that are well
described as GCs (or as ribbons in the image), but the the GCs can be general, i.e. they may have curved axes and
the cross-sections need not change linearly. Furthermore, the objects may be compound objects, i.e. be composed
of simpler GCs or other compound objects. The system has no a priori knowledge of the specific shapes it expects
to see (other than that they should he well described by GCs). Figure 1 shows typical examples of such a scene.
The scenes are deceptively simple for humans but handling them requires several capabilities: the figure/ground
problem needs to be resolved, the object boundaries need to be made explicit from other boundaries, and finally a
shape description needs to be computed. Note that simple "axis-finding" techniques such as those of Blum '11 and
Brady -2. cannot be applied to such figures as we do not have closed boundaries.

As we use only a single image, our system produces ribbon descriptions only, and not the 3-D GC descriptions.
The 3-D GC description would require an additional step of inferring 3-D structure from the 2-D descriptions, either
from the monocular information itself or from one or more other views. We believe that the ribbon description is
precisely the right one for inferring 3-D shape from 2-D shape kas shown in 113]). Similarly, we also Lls"e that the
ribbon description will aid in stereo analysis (use of high level descriptions in stereo analysis has been demonstrated
in 5. 7, for example).

In the next section, we briefly describe our approach to this problem and then give details in sections 3 and 4.
Several experimental results are shown in section 5.

2 APPROACH AND OVERVIEW
Our approach is based on the following tery basic and fundamental observation:

Finiteness Observation 01:
Objects/object parts are not infinite in eztent, they are terminated either by a boundary or another object part.
This observation is embodied in the following principle:
Principle of Termination Pl:
If the boundaries do define a ribbon, the ribbon must "terminate" somewhere. If the ribbon represents the entire

object, then it nmust be terminated at both extremities by terminator boundaries. If it is part of an object, it may
be "terminated" at either (or both) ends by another part.

This rather obvious observation leads to a paradigm which we hope to show is very powerful. As the system makes
no other assumptions, we need to put no other restrictions on the scene and need no a priori knowledge of the specific
shapes in the scene.

At the top-level, our approach is simply that of "hypothesize and verify" (see Figure 2). Hypotheses generation
consists of finding some group of boundaries that may define an object or parts of it. Verification consists of applying
additional criteria to establish which hypotheses are viable. In our approach, hypotheses formation is essentially that
of finding boundary segments that can define a ribbon. Some ribbons are preferred over others, and the preference is
determined by the shape of the axis and the cross-section function. Verification criterion is based on the Finiteness
Observation 01 and the Principle of Termination P1.

Even though, the conceptual approach is simple, its implementation is not and requires sophisticated geometric
reasoning. The low-level process of finding ribbons can find a very large number of candidates (for the two hammers
example in Figure I (b) there are 7240 axis points, 872 ribbons and 261 super-ribbons or larger ribbons - some of
these terrns are defined accurately later), a vast majority of which we humans would find very unnatural and do not
even seem to consider in our perception (this again shows the pitfalls of introspection as a means of understanding
human perception). We must now determine what the geometric relations between these candidates are and which
candidates are supported by other evidence as being possible objects.

Our verification procedure is based on the following key ideas (to be elaborated on in section 4):
Same-sidedness Observation 02:

Two ribbons connected by a boundary and lying on opposite sides of it cannot u , h be simultaneously acceptable:
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one of the ribbons has to be in the figure and the other in the background. That is, the boundary is an occluding
boundaru between the two ribbons. (This observation is true except for accidental alignments.)

Figure 3 explains this observation. Consider three ribbons RI, R2 and R3 in the picture. Consider the ribK'n-
inbetueen boundary b. joining RI and R2. [It is the list of edgels (or edgelts) joining the extremity points of R1 and
R2 as shown in the figure.' For convenience let b, also be the ribbon-inbetween boundary joining RI to R3. RI and
R2 lie on the same side of b. and are, therefore, acceptable as being together in the figure or in the background. R1
and R3 lie on opposite sides of b- and cannot both be accepted simultaneously: one of them has to be in the figure
and the other in the background.

Non-overlapping Observation 03:
This observation has the following ideas:

I. The joint formed by ribbons does not share area with the composing ribbons. This is illustrated in Figure 4.

2. Two ribbons participating in a joint do not share any area (they may share boundary edges though). (This is
shown schematically in Figure 10 (d).)

Note that in our approach scene segmentation and object description are not separate steps. Traditionally, one
first segments a scene into objects and then derives shape descriptions for the segmented regions. In our approach,
segmentation is a by-product of having found the desired shapes in the scene!

Our approach in this system (SHAPE I1) is similar, conceptually, to that in our earlier system (SHAPE I) for
LSHGCs. However, hypotheses for LSHGCs can be highly constrained; we were able to use the property that the
contour generators are single linear segments and must be co-planar, and the verification process was much simpler.
In the current system, we must accept many more hypotheses, and the verification needs to do much more reasoning.

3 HYPOTHESES GENERATION

Hypotheses generation essentially consists of finding boundary fragments that form acceptable ribbons. A ribbon is
defined by its axis and "cross-sections" which are merely line segments. We require the cross-section to be orthogonal
to the local tangent of the axis. Figure 5 gives the block diagram of the hypotheses generation part of the SHAPE II
svstem.

The first step consists of finding pairings of boundary edges in various directions that could give rise to axis points
of ribbons. The axis points are linked into axis-threads based on contiguity. Then, axis points that do not come from
orthogonal cross-sections are eliminated. We now have fragments of ribbons which are linked into super-ribbons.
Super-ribbons, with associated descriptions, are the output of the hypotheses formation stage. We now describe each
step in a little more detail.

The input to the system is a line drawing or an edgel image, i.e., it has l's where there are edgels and O's elsewhere.
In general, this image may have breaks in the boundaries of the objects and there may be surface marks on the
objects and the background. There may be shadows too. We use linked edgels from such an image.

Finding axis points: The first step is to find potential axis points. We do this by finding potential axes in various
directions. To find axes in the horizontal direction, for example, we "draw" vertical lines (or strips) in this image at
consecutive pixels (or at fixed intervals) and find the edgels on each such vertical line. Axis points are then placed
mid-way between every pair of edgels in the line. Similarly, axis points are found in other directions. This is done
by rotating the image, or merely, the edgel list and drawing the "vertical" lines again. We find axis points in some
equally spaced directions between 0 to 1800. (Our method of finding these axis points is basically the method of
projections suggested by Nevatia and Binford 91.) Figure 6 explains some of the terminology used. (Some of the
terms illustrated in the figure are defined and used later.)

An axis point has a data structure asse-iated with it. It consists of the x (column) and y (row) location of the
axis point, the two edgels defining the axis point (called the boundary points), the distance between the edgels, the
angle of rotation of the image (from which the axis point came) and the intermediate pixels between the boundary
points (if necessary). (We call the axis point wvith its associated data structure a bead. It may daso be uudeistood as
a ribbon puint in the context of the ribbons discussed later.)

Linking the beads: For each direction, we order and group the beads by linking them into "ribbons" or 2-D
generalized cones (alternatively, the axis points are linked into "axis-threads") by a near-neighbor algorithm. The
principle behind the linking and the neighbor checking operation is:

Principle for Linking Beads P2: linked edgels in the image give rise to linked beads.

Filtering out deviations: The above procedure of linking gives us several axis-threads. However, at this stage,
we cannot guarantee that the axis is always orthogonal to the cross-sections it came from. Those points where the
local tangent at the axis is not nearly perpendicular to the vettical strips or verticat lines used to obtain the axis
points are filtered out.
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Making and rating ribbons: Each axis-thread defines a 2-D generalized cone or "ribbon". Ribbons are rated
?c lengtn-to-width ratio, uniformity of width and uniformity of curvature of their axes. These ratings are useful but
'24 critical to the performance of our system.

Foriming and rating super-ribbons: We join ribbons obtained from the previous stage into "'super-ribbons" by
contig uitv. We then rate super-ribbons just as we rate ribbons. (Here again, these ratings are useful but not critical
to the system.) The criteria for contiguity between two ribbons at the extremities being considered are: at those
extremities the ribbons should be nearby: the tangents to their axes and their boundaries at those extremities should
be continuous: the ribbons should have come from neighboring angles of rotation of the image (for obtaining the
aXes' the widths of the ribbons at those extremities should be continuous: and one ribbon should not be completely
contained in the other or zce

We conctlde this section by referring to the result of hypotheses generation on the two hammers example. Figure 18
bi shows the large number of hypotheses (261 super-ribbons) generated, most of them non-intuitive. (For clarity,

we Just show the axes of the super-ribbons rather than their regions.) In the next section we discuss the verification
tagv..which is used to choose from among these large nunber of hypotheses.

4 HYPOTHESES VERIFICATION

The hypotheses generation phase gives rise to a rather large rmnber of hypotheses, most of which do not correspond
to the objects we perceive. We now choose among these based on a rerifi cation phase. The basic concept is that the
h'ypotheses generation stage considered only the boundary fragments that defined the axes. However, if the ribbon
does correspond to an object (or its part!. it must also have ends or attach to another object (part). Figure 7 gives
the block ciiagram of the hypotheeses verification stage.

As the figure shows, the verification module proceeds by first checking extremities of all ribbons for terminator
bomndaries. If a ribbon is terminat,-d (the word terminated will now on be used in the sense of being terminated
b., a boundary) at both extremities, it is completely verified and declared an object. (It is a simple object, with no
parts, as opposed to a compound object.) For the rest of the ribbons, we check if they form possible joints with
o)ne a other and if the joints could themselves be grouped to describe a compound object, which is verified at all its
extremit e'. This method of grouping ribbons into joints is performed by forming a graph of th, ribbons, pruning
o,it the ribbons without a potential to be verified and then looking for cycles in the graph - which are joints in
the object. The ribbons in the cycles are then merged, if possible, by continuity. The cycles are grouped into larger
cvcle; called supercycles) and the extremities of the supercycles are checked if they are verified. This process may
be iuderstood as a method of propagating the verification of a compound object, from one extremity to another.
The subsuming verified supercycles are taken to be the compound objects in the scene (subsumption is by area).

The simpler objects found earlier and these compound objects are further filtered by subsumption. The remaining
larger objects by continuity ofthe outer ribbons. The grouped objects may have missing
--.'s possibly due to occlusions) and these missing part,, rt filld in by interpolation to form merged objects or
s:.perobjects. In subsequent sections we describe each step in greater detail.

4.1 MINDING TERMINATORS

Following are the cases where a ribbon is terminated by a boundary fragment or by a part of itself. The first case
is the most important, the others are really exceptions. (a) Terminator boundary tracing: This is the most
iriiportant case. An extremity of a ribbon is verified if edges can be found such that we can traverse from one side of
the ribbon extremity to the other. We traverse from one side to the other using a backtracking algorithm implemented
as a depth first search. We check if the terminator satisfies the 'in-betueenness" property. which basically says that
the terminator lies completely within the axial contour generators. (Here the axial contour generators are the sides
of the ribbon.) The terminator should also satisfy the termnators-are-extremties property. That is, it should lie
outside the extremal slices of the ribbons (within a tolerailce). (Terminators are at the extremities of a generalized
cone and are not expected to go deep inside it. Little dips may be allowed due to undulations in the terminators.) If
we find several possible terminator boundaries, we pick the best one (shortest, smoothest and with the least number
of gaps). The other cases of finding terminators are: (b) closed curve axis, (c) sharp taper of ribbon and (d)
perpendicularity of extremities-of-sides to axis.

-.2 FINDING JOINTS

After finding terminators for ribbons, we pick out those ribbons that have terminators at both their extremities.
These ribbons are completely verified and are declared objects. (They are simple objects.) They will not participate
in joint formation and are removed from consideration in the subsequent steps in this subsection. Figure 8 gives the
block diagram of the process for finding compound objects.
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Representing a scene as a graph: To find joints we represeut a scene as a graph called a scene graph. Our
objective is to represent the scene so that the joints of objects in the scene are cycles in the graph. To do this, we
make each extremity point of each side of a ribbon, a node in the scene graph. Thus each extremity is represented
by two nodes and each ribbon by two pairs of nodes. (This pair of nodes for a ribbon may be called a super-node,

and may be looked at as an entity in ts own right.) We form nodes for all the ribbons found in the scene. An eligible
node is a node whose corresponding ribbon extremity has not been verified by the above terminator finding process.

Building the scene graph: Our next objective is to form links between the nodes in the scene graph. There are
three types of links, classified by the way we can traverse from one node to another:

Typel links between the nodes at the same extremity of the same ribbon,

Type2 links between nodes at opposite extremities of the same ribbon but the same side of the ribbon, and

Type3 links between the nodes of different ribbons.

See Figure 9 for some simple ribbons and their corresponding nodes. We also illustrate the typel and type2 links
there.

The last kind of link (type3 link) is the difficult one to obtain for a scene. For verification purposes we need to
form these links among only the eligible nodes (defined earlier). The links from each node are obtained by traversing
from it to all other eligible nodes within a certain distance from it. This traversal is like the linking problem for
finding terminator boundaries, except that we are now dealing with the case of several possible goal nodes (the other
eligible nodes in the scene). We do this again by backtracking using a similar depth first search algorithm. This is
clone to negotiate breaks in the boundaries and stray surface marks.

As we traverse along a boundary, we do not establish links with all the ribbons that we find on our path. Only some
of these ribbons are acceptable. The acceptability criteria are based on the following observations (both explained
in section 2): Sarne-sidedness Observation 02 and Non-overlapping Observation 03.

To explain the Non-overlapping Observation 03, we first define the term node-inbetween boundary between
two nodes as the list of edges joining the ribbon extremities corresponding to those nodes. The non-overlapping
observation has three parts:

1. The node-inbetween boundary between the tw'o nodes of two ribbons should not shtre any edgts with the bound-
arzes of the ribbons themselves, except at the extremities of the ribbons.

2. The node-inbetueen boundary should not lie in the area of the two ribbons under consideration (except the
ribbon extremities).

3. The two ribbons should not share any area. (They may share boundary edges.)

Figure 10 explains this observation.
We now explain the formation of the remainder of the graph using type3 links. Consider a node, called current

node, representing a ribbon called current ribbon. Consider another node called other node, representing another
ribbon, called other ribbon. For other node to form a link with the current node, the other ribbon and the current
ribbon should satisfy the constraints set by the above observations. Figures 11 shows a complicated schematic
example with shadows, markings and breaks in the boundaries; for simplicity we consider only some of the ribbons
in the image. Some of the ribbons shown are parts of the object and some are due to shadows and markings. The
problem is to retain those ribbons that are good candidates for parts of the object and to filter out those due to
shadows and marks. We first form the graph with these ribbons and this is shown in Figure 12. Some arcs are shown
light with cross-marks and a note explaining why they are not valid.

Pruning the scene graph: We can prune the scene graph so that the search space becomes smaller when we
look for cycles. We prune the search space by keeping only those nodes corresponding to ribbons that have at each
extremity: either a terminator or connections to other ribbons on each side of that extremity. The other nodes are
pruned and links involving them are removed from the graph. Figure 13 shows the pruned graph. Ribbons R7, RS,
R9, R10. R11 and R12 have extremities without terminators and without connections with other ribbons. Tney are
pruned out and arcs connecting them with the remaining ribbons are removed.

Finding cycles: Our objective is to find cycles in the scene graph because they correspond to joints in the physical
objects.

Depth first traversal: We form cycles by depth first traversal of the pruned graph. For each node we check if we
can traverse back to that node through a path in the graph. For this we require a method to expand from a node
and to obtain children nodes. This is obtained from the typel and type3 links in the graph (and not the type2
links). Note, this process of finding cycles leads to repeated cycles (if the cycle has n nodes, we get n similar cycles).
So we modify the process by not starting with a node that is part of a cycle already found. By forming cycles we
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have found joints in the objects. Forming joints may be considered a first level in the grouping of ribbons. Figure 14

shows the cycles found for the example scene and the ribbons corresponding to those cycles.
Forming supercycles: A supcrcycle is a combination of cycles. A supercycle in the scene graph corresponds to

a group of joints in the physical object. (A compound object may be looked at as a group of joints with the outer

ribbons in the group verified at the outer extremities. The terms used here are defined precisely later.) We thus

form supercycles to take the above process of grouping ribbons one step further. The supercycle formation process

may be understood as a mechanism to propagate the verification check of an object from one extremity to another.

Supercycles are formed by combining cycles in the graph using the type2 links. That is, we combine two cycles that
have a common ribbon the opposite extremities of the ribbon are in the two cycles). The ribbon is a link between
the two cycles. The control strategy we use to combine cycles is iteration.

Iteration. The algorithm for forming supercycles is as follows:

i. Initial condition: Initially all the cycles formed are supercycles.
2. Merging:

(a) For each of these supercycles check if it can be merged with any other supercycle.

(b) If so form a new supercycle.

(c) Keep a list of new supercycles and the old ones that have not been merged.

(d) Do this merging in each iteration and keep a marker indicating whether new supercycles have been formed.

(e) Stop the process when there is no change between successive iterations.

This algorithm returns a list of supercycles found.
For each supercycle returned, we check if the extremities of its outer ribbons (ribbons away from the joints, defined

more precisely below) are verified with a terminator. If so the supercycle is verified. We throw away the supercycles

not verified and keep those that are verified. Of the verified supercycles we take only those whose areas subsume

those of others: these are the subsuming verified supercycles. The subsumed verified supercycles may be understood
as substructures of the subsuming verified supercycles. It may thus be noted that our system is capable of descriptions

at different levels (substructure and superstructure descriptions) of a scene.
Figure 15 explains the process of supercycle formation. It shows a supercycle found in the scene graph of Figure 11

using type2 links to merge the cycles in Figure 14. For convenience of explanation, we introduce some general
terminology for sipercycles. An inner ribbon of a supercycle is a ribbon that has all its nodes connected to other

ribbons in the supercycle and none of whose extremities is verified by a terminator. In this example, R2 is an inner

ribbon. Call the ribbons away from the inner ribbon, the outer ribbons and call their extremities away from the inner
ribbon, the outer extremities. Here ribbons R1, R3, R6, R4 and R5 are the outer ribbons. (The outer extremities

are taken as the --end" extremities for convenience of illustration in this example.) These outer extremities need to
be verified for the supercycle to be verit-ed. They are indeed verified for this supercycle.

4.3 FINDING OBJECTS AND MERGING OBJECTS

Objects are the subsuming verified supercycles (compound objects) and those ribbons that were verified earlier by
terminators at both their extremities (simple objects). From these we filter out the objects subsumed by others
in area. (Note that we again have substructure descriptions available.) We then group the subsuming objects by

continuity of the axes and the widths of the outer ribbons. (The outer ribbon of a simple object is the single ribbon

itself, describing the object.) The grouping of objects is done by an iteration process very similar to that of finding
supercycles. The grouped objects may have missing parts (possibly due to occlusion) and these missing parts are

filled in by interpolation of the ribbons hypothesized to be joined. The merged objects or superobjects are the final
object-level descriptions of the scene. Figure 16 gives the block diagram of this stage. The method is explained by

parts (d), (e) and (f) of Figure 18, the scene of two hammers with occlusion.

5 RESULTS AND CONCLUSION

The system described above has been implemented in Common Lisp on a Symbolics 3600 series machine under

Genera 7.2. It has been tested on a number of scenes with good results. We show some of the examples here, more
results can be found in "10]. For each case we show the input edge data and the final descriptions obtained by our
system. All the examples show compound objects. In all the examples we have breaks in the boundaries and marking
on the object and background. (In some cases the marks on the background are shadows.) In these examples the
breaks are non-trivial, because mere linking of the edges does not generate closed boundaries - due to the markings

being closer to the boundary fragments. The first example (Figure 17, synthetic data) shows results on a plane (a

407



compound object). Here we have supercycles being formed by combining two cycles. Figure 18 (synthetic data)
demonstrates the capability of our system in describing compound objects with occlusion. Figures 19 show results
on a complex real image with occlusion and considerable texture in the background and on the objects. We show the
Canny edges '4] for these images. A large number of hypotheses are generated for these examples and the ribbons
verified among them are displayed. These examples demonstrate that our system can obtain good descriptions from
complex real scenes with occluding objects and a lot of texture.

To give an idea of the detailed running of the system we give in Table 1 specific numbers at various stages of
the program on the two hammers example (Figure 18). The image has 181 columns and 111 rows; it has 1034
edgels. 7240 axis points are found, which give 872 ribbons and then 261 super-ribbons. These super-ribbons form
1044 possible nodes in the graph, which is pruned to 32 nodes corresponding to ribbons that have a potential to be
verified. From these nodes 4 cycles are found; these are also the supercycles found (as there is no merging of several
cycles in this example, unlike in the plane and ship cases). All these supercycles are verified at their extremities.
From these we get only 2 supercycles that subsume the others. These are the subsuming verified supercycles and are
the compound objects in the scene. In this example, one simple object is found; the total number of objects found
(simple and compound) is 3. These are also the subsuming objects found. Two of these objects are grouped together
and merged to form one superobject. The number of superobjects found is 2.

We hope that these examples suffice to show the power of our approach for computing structured, symbolic
descriptions from realistic input which consists of fragmented boundaries including those caused by shadows, markings
and noise. We do not claim that our system will describe every scene presented to it in the same way that humans
will. The scenes we can handle are those that consist of objects well described by GCs. We would also like to reiterate
that a strength of our system is that our results are very stable with respect to the weights for ratings of ribbons and
the preference heuristics based on ribbon attributes.

The descriptions generated by our systems can be used for a variety of purposes. They should suffice for recognition
in most cases. It has been observed elsewhere (see, for example [8]) that the axes of objects are often sufficient for
their recognition. We compute only the 2-D projections of 3-D axes, but their connectivity structure may be distinct
enough for recognition in many cases. Of course, one can find instances where the full 3-D description is needed. In
such cases, we believe that our descriptions provide a good intermediate step. We believe that symmetry descriptions
play a key role in inferring 3-D shape from 2-D. We also believe that good monocular descriptions greatly aid in the
process of stereo analysis and that the descriptions generated by our system are of the right level.
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FIGURE 16: BLOCK DIAGRAM FOR FINDING SUBSUMING SUPEROBJECTS
IN THE VERIFICATION STAGE

Image name two hammers

Figure number Fig. 18

Image dimension 181 by 111
# of pixels 20091
# of edges 1034

# of axis points 7240
# of linked lists of axis points 872

# of super-ribbons 261
# of nodes in the graph (all super-ribbons) 1044

# of nodes after pruning 32
# of ribbons after pruning 8

# of cycles 4
of super-cycles 4

# of verified super-cycles 4
# of subsuming verified super-cycles (compound objects) 2

# of simple objects 1
# of objects (simple and compound) 3

#of subsuming objects 3
# of superobjects 2

Table 1: the values of some variables at various stages of processing for the two hammers example
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(a) (b)

(c) (d)

Figure 17: (a) input edge data for plane, (b) all hypotheses generated, (c) supercycle found (grouping of two cycles),
(d) final result (superobject)
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Figure 18: (a) input edge data for two hammers with occlusion, (b) all hypotheses generated, (c) supercycles found
(just one cycle each), (d) all objects found, (e) grouped objects, (f) superobjects, (g) final result (superposition of
superobjects found)
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Figure 19: (a) original image with a lot of texture of a screw driver and hammer, (b) input edge data, (c) final result
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PERCEPTUAL ORGANIZATION FOR SEGMENTATION AND DESCRIPTION*
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ABSTRACT

Visual perception involves a representational framework for the visual percept and visual processes that operate
on the descriptions in this framework. We present a description framework, motivated by perceptual organization,
which consists of representations of the geometrical organizations of intensity discontinuities. The descriptors in
this framework are called collated features, and are groupings identified by perceptual organization. We describe the
processes that operate on the image to obtain these descriptors, and the visual processes that utilize them. The
detection of collated features is robust to local problems. The structural information encoded in them aids various
visual tasks such as object segmentation, correspondence processes (stereo, motion and model matching) and shape
inferences.

We identify two primary grouping processes, co-curvilinearity and symmetry, which are applied to intensity edge-
contours to generate the collated features, including curves, symmetries and ribbons. We sh- w that these eollationg
can be used to segment scenes into visible surfaces of objects and to describe the 2-D shapes of those surfaces. We
also propose various zpplications for these collated features.

1 INTRODUCTION

The task of visual perception involves evolving stages of description of the percept. As a vision system processes
data, it generates better and richer descriptions which are used for making various interpretations about the the
scene. The problem we address here is one of extracting suitable visual descriptors from a scene. WNe believe that
the descriptors should meet the following requirements:

Structure: Since structure plays a crucial role in vision, the descriptors obtained from a scene should describe the
structural properties and relationships in it.

Visual Invariance: Features should be visual invariants, i.e. descriptors of the visual data that do not change with
changes in the parameters of observation, such as illumination and viewpoint.

Physical Significance: Features should correspond to some important physical characteristics of the objects being
viewed.

Description: The visual descriptors should be useful in helping the visual system generate a spatial description of
the environment.

Let us examine the commonly used features, namely regions and edge contours, in the context of these requirements.
Regions are based on intensity (or color) distributions, edge-contours on local edgel contiguity, thus neither address
the issue of describing the structural properties of a scene. Their detection processes are local and are sensitive
to local variations. Intensity similarity and edgel contiguity have low physical significance, in that they do not
correspond directly to structural properties of the objects being viewed; they are based on irLtensity rather than
structure. Most importantly, region segmentation and contour tracing do not provide any shape description of the
entity segmented, making them useless for purposes of reasoning about cbject shapes or formation of their shape
descriptions.

In this paper we present as an alternative, a new visual representational framework, motivated by perceptual organi-
zation, which better meets the above requirements. The descriptors in this framework are curves, points, contours,

*This research was supported by the Defense Advanced Research Projects Agency under contract number F 33615-87-C-
1436 monitored by the Air Force Wright Aeronautical Laboratories, DARPA order no. 3119
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symmetries and ribbons (section 2). These features are obtained in the following way. First edges are detected and
linked into contours. Co-curvilinearity is used to join contour-segments into curves (section 3). Possible symmetry
relationships between these curves are hypothesized and the best symmetries selected using a neural-network (section
4). The area bounded by each pair of symmetric curves is a ribbon. To show an application for these descriptors, we
use them to segment scenes into the visible surfaces of objects. A 2-D shape description of the surfaces, in terms of
ribbons, is automatically obtained (section 5). We propose some other applications for these representations (section
6) and finally present our conclusions (section 7).

2 PERCEPTUAL ORGANIZATION

It has been shown that our visual system can immediately detect such feature relationships as collinearity, parallelism,
connectivity and repetitive patterns among image elements [1]. This phenomenon is called perceptual organization.
We propose that perceptual organization takes primitive image elements typically generated by low-level segmentation
processes, and generates representations of feature groupings which encode the structural interrelationships between
the component elements. We term these representations collated features.

2.1 NON-ACCIDENTALNESS

The principle of non-accidentalness [2, 1] states that regular geometric relationships are so unlikely to arise by accident
that when detected, they almost certainly reflect some underlying causal relationship. If we detect viewpoint-invariant
structural relationships that are common in the objects of interest, then using the non-accidentalness principle we can
reason that the detected geometric organizations were caused by the structure of the objects in the scene. We will,
therefore, design collated features such that they identify those structural relationships that are most common among
objects of our visual domain and remain invariant in 2D projections over most viewpoints, i.e. collated features that
identify structural arrangements of image tokens that have a high probability of corresponding to object structures.

The work on collated features, in computer vision, has been limited. The authors have used collated features in
a system to detect buildings in aerial images [3]. In this system, the collated features are used to perform stereo
matching and to generate 3D models and shape descriptions of the buildings. Simple collations have also been used
to limit the computational complexity in image to model matching [1, 4].

2.2 THE DESCRIPTION HIERARCHY

While a number of geometrical ielationships have been proposed as detected by perceptual organization, we believe
that two primary relationships, that of co-curvilinearity and symmetry, when applied repeatedly to image tokens
(or their simple representations such as end-points or axes) can account for most of the groupings. Some of the
geometric relationships are particular cases of these two primary relationships; for example, collinearity is a special
case of co-curvilinearity and parallelism of symmetry. Other geometrical relationships are encompassed by them, for
example proximity and connectivity are parts of co-curviinearity'.

The collated features generated by application of these two geometric orgenizations on intensity edges are:

Curves: A smooth curve through contiguous edgels (with possibly some gaps) with no tangent discontinuities
or extremas of curvature.

Points: Terminations and junctions of curves.

Contours: A contour is an ordered set of contiguous curves.

Symmetries: Pairs of mutually symmetric curves.

Ribbons: A ribbon is the area enclosed by two symmetric curves, and is described by a symmetry azis and a
sweeping rule. The sweeping rule gives, for each point on the axis, the corresponding pair of symmetric points
on the two curves.

The geometrical relationships chosen are viewpoint-invariant. Co-terminations (junctions) and co-curvilinearity
among 3D curves project with the same relationship in 2D [5, 1]. While we will also consider curvature-extremas

'In this paper we are interested in developing structural descriptors from edges. We will, therefore, ignore geometrical

organizations, such as repetitive patterns which are more suitable for handling textures. We will also, for simplicity, ignore
effects of intensity and color on grouping.
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Figure 1: Image I Figure 2: Edge contours and corners

The geometrical relationships chosen are viewpoint-invariant. Co-terminations (junctions) and co-curvilinearity
among 3D curves project with the same relationship in 2D [5, 1]. While we will also consider curvature-extremas
as junctions or corners, they may change specially in foreshortened views. However, people have been shown to
be sensitive to curvature-extremas [6]. The symmetry relationship we detect is also largely viewpoint-invariant,
and is discussed in more detail in section 4. Surface boundaries of most objects are composed of smooth curves
(co-curvilinearity), and animal shapes and man-made objects exhibit symmetry.

3 CO-CURVILINEARITY

Indvidu.-J curves are grouped into curvilinear structures on the relationship of co-curvilinearity. Co-curvilinearity of
curves can be broken into two components: continuity and prozimity of similarly oriented curves.

3.1 CONTINUITY

Collations of continuous curves are detected by a local, non-iterative process that selects the most collinear, or
least bent, joins among neighboring curves. Our formulation of the continuity based organization is influenced by
experiments [7] that indicate that the grouping process (at least for point like tokens) can be modeled by local
selection of most collinear pairings.

Edges are detected using a Canny edge-detector [8] and are linked into contours using a simple algorithm based
on eight-neighbor connectivity. See figure 2 for edge contours obtained for an image. The edge-contours contain
mistakes caused by wrong linking at forks (which can not be seen by a visual inspection of figure 2), linking errors
caused by edge displacement at junctions (for example, the junction of the wedge and the cylinder inside the cup in
figure 2), and edge dropouts due to poor contrast.

The edge-contours so obtained are segmented into curves at curvature extremas. We use adaptive smoothing [9] to
detect curvature extremas (marked in figure 2 by points). We then apply the continuity based grouping process on
these curves. The neighborhood searched for possible joining curves is constrained to a small area at the end of each
curve (about 10 pixels) and the smooth joins are made as outlined above. The gaps are filled by approximating the
curve in the gap by a straight line.

3.2 PROXIMITY

We also group overlapping, proximate, similarly oriented curves into curvilinear structures. This grouping is moti-
vated by issues of scale; proximate parallel curves are interpreted as boundaries of surfaces (or ribbons) rather than as
representing multiple, very thin ribbons, which would have indicated multiple, narrow surfaces. Also, in performing
this grouping, we avoid the problem of multiple symmetries being detected between two groups of parallel, proximate
curves, for a single surface bounded by the two curve-groups.
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the symmetry axis between them (the complete axis is not required, it is sufficient to have a few points on the axis),
and check that the orthogonal distance from the axis to each curve is roughly the same at various positions along
the axis.

Next we form equivalence sets of curves based on the relationship of proximate-parallelism. Each set is a grouping of
co-curvilinear curves (on the basis of proximity). For reasons we shall not go in here, the various techniques we have
considered, such as least squares fitting of parametric curves, of finding a curvilinear representation of these groups,
are too expensive and/or unsuitable. We have found representing a grouping by the longest curve in it, a simple yet
cff..+ctive solution. Proximate co-curvilinear groupings found in Figure 2, nd so represented, are shown in figure 3.

4 SYMMETRY

We define the symmetry relationship as a one-to-one mapping (if the curves are considered infinitesimally divisible)
between the points of two curves with the symmetry axis defined as the locus of the mid-point of the straight lines
(or for generality, some curve) joining points on one curve to their image in the other.

4.1 PREVIOUS WORK

A good survey and analysis of symmetry axes 2, specially in the context of ribbons, can be found in [101. The types
of axes defined, and the literature on their properties and their detection is vast; we will not attempt to present an
account of them. We will, however, like to point out two important deficiencies in a broad class of these axes.

Firstly, most of the axes have been defined in the context of generalized cones [11, 12, 13], and are suitable for
symmetry relationships between limb or extremal boundaries of (straight homogeneous) generalized cones [13, 14,
15, 16, 17]; not for boundaries arising from orientation discontinuities. The line joining symmetric points is restricted
to being orthogonal to the symmetry axis, thus cases of skew symmetry [18] are not handled.

Secondly the detection techniques for these axes are based on matching points on the contours, i.e. for each point
on a contour, possible matches to all the points on the other contour have to be considered. Thus these detection
techniques have a computational complexity of 0(n 2 ) where n is the number of edgels on a contour (this can be
reduced to 0(nk), k constant, by quantizing the search space, as proposed by Nevatia [14]). Point by point matching
means utilizing some measure, such as tangent direction, at each point to evaluate the match. Not only are such
measures noisy along real edge-contours, they usually do not vary much along a contour, making the localization of
matches difficult. A better scheme would require matches at well localized positions, namely curvature extremas and
tangent discontinuities, along the contours.

4.2 TRANSFORMATIONALLY INVARIANT SYMMETRIES

We define the symmetry axis between two curves as the locus of the mid-points of the lines joining points at equal
length ratios along the curves. Consider figure 4. Let the length of curve AB be s, and that of CD be s2 . A point z
on AB is mapped to a point y on CD iff, given that the length of curve section Ax is a and that of Cy is b, a/s = b/s 2.

For the detection of this axis between two contours, we need only match the curvature extremas of the contours,
as the match for the points between curvature extremas is automatically defined. Thus, detection of this symmetry
axis involves matching of curves (recall that curves are sections of contours bounded by corners and terminations)
rather than edges.

This axis is also invariant to viewpoint transformations for important classes of curves and for specific symmetry
relationships. Consider imaging situations with linear transformations such as orthographic projections and "limited
perspective":

T y aix +/ 3 y + 7tz

z J x + =
32Y + r2Z

Mid-points map to mid-points in the projection:

2we will use the term "symmetry axes" for the various representational axes employed in vision literature, even when the
author(s) may not have termed the representation as that of symmetry.
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Figure 3: Curves obtained after grouping on proximity Figure 4: Transformationally Invariant Symmetry Axis(TISA)
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1 (ai (XI + X2)) + (P6(Yx +Y22))± +( ZI + Z2))1
[ (a2(X1 + X2)) + (132(YI + Y2)) + 1 (-Y2(Z + Z2 )) J

Therefore, the mid-points of the lines joining symmetric points are invariant under linear transformations. If in
addition, the length ratios of curves are maintained under the transformation, then the axis would b. invariant to
these transformations. In general, the length ratios of curves are not maintained under all linear transformations.
However, for the special case of straight lines, the length ratios are maintained under these linear transformations
(for a proof, replace 1 by any fraction in the above equations). Thus, for straight lines this symmetry axis is invariant
to viewpoint transformations.

The axis is also invariant to viewpoint transformations for curves for some restricted, but important, types of
symmetries. For example, Ulupinar and Nevatia [19] have proposed two specific symmetries, namely mirror and
parallel symmetries, which are useful for determining shapes of surfaces (shape-from-contour). In case two curves
have either of these symmetry relationships, then the symmetry axis defined here corresponds to the mirror or parallel
symmetry, as the case may be, for all viewpoints.

For each curve in the image (rather for each curvilinear grouping, found as explained in the previous section), we check
all other curves in the image for possible symmetry relationships. To limit the number of symmetries investigated
we use these hueristics: First, the shorter of the two curves should be no less than one third the length of the longer
curve. Second, there should be certain minimum overlap between the two curves. Curve pairs which meet these
two requirements are hypothesized as possibly being symmetric. However, the symmetry axes between them is not
calculated (as measurements for evaluating the symmetries can be made by just knowing a few positions along each
axis), and the axes are provisionally represented by their simpler straght line counterparts. Figure 5 shows all the
symmetry axes hypothesized for the curves in figure 3.

Next we evaluate the symmetry hypoth ;es and select the (few) best symmetries from their alternates.

4.3 EVALUATION AND SELECTION OF SYMMETRIES

Each side of a curve can bound at most one surface. We would, therefore, ideally like to pick at most one symmetry
axis for each side of a curve. As any quantitative measure of symmetry is not guarantied to select only those
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Figure 5: All the symmetry axes hypothesized Figure 6: Axes selected

symmetries that are between curves bounding the same surface, it is preferable to allow more than one symmetry
axis to be selected for each curve-side.

The selection of the best collations (symmetries) given a set of constraints (namely conflict between various symme-
tries for the same curve-side, and evaluation of each symmetry on the basis of geometry) on them, is modeled as a
constraint satisfaction problem [3]. We use Hopfield networks [201 to implement a constraint satisfaction network.
In this network, each axis is represent by a node (or a neuron). Each of its competitor is connected to it by a
negatively weighted link. The value of each axis is compilted as a weighted sum of a numerical representation of
certain measures on it, and is fed as input to the node corresponding to that axis. This input is computed using the
following measures: cover (the cover of an axis is the sum of the lengths of the curves it is the axis for), aspect ratio
(the ratio of the axis length to the distance between the two symmetric curves), the similarity between the length
of the two symmetric curves, amount of skew between the curves, amount of skew between the ends of the curves
(estimated as the amount of skew between straight-sides closing the ends of the ribbon formed by the symmetry
relationship), parallelism between the two curves, and parallelism between the ends of the curves. The network con-
verges after a few iterations (about 5 iterations, with one iteration representing one time constant and each iteration
itself implemented as 10 sub-iterations), and the nodes with high output (> 0.8) are considered selected while the
rest are rejected.

In addition to the axes selected by the constraint satisfaction network, we also select those axes where the symmetric
curves are joined, at least at one end, by a single curve. This structural relationship is used to ensure that symmetry-
axes which have low input (due to low aspect-ratios or high skew) but high chances of corresponding to surfaces (due
to simple closure at one end) also get considered for forming ribbons. Figure 6 shows the axes selected from figure 5.
Note that the selected axes have been completely computed.

5 SEGMENTATION AND DESCRIPTION

Each selected symmetry axis describes a ribbon, or the area enclosed by the pair of symmetric curves and the
edge-contours closing the ends of the ribbon. Our next step is to close the ends of the ribbons with the contours
composed of the curves detected in the image. These ribbons are useful for segmenting scenes into visible surfaces.
Some surfaces may have complex shapes, and may be segmented into more than one ribbon. For each surface, the
component ribbons automatically provide a shape description for the surface.

The search for contours closing the two ends of a ribbon proceeds in the following order:

1. If the two curves share a point then that junction forms the closed end (alternatively, a curve of zero length
can be assumed to close that end).

2. The curves in a 2D scene can be represented as a graph structure. The curves act as arcs, and the points (curve
terminations and junctiuns) act as nodes of the graph. In practice, we represent all curve terminations within
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Figure 7: Ribbon Figure 8: Initial ribbons formed

Figure 9: Selected Ribbons Figure 10: Ribbons after removing those forming false T-
junctions

a certain neighborhood by a single node. A best-first search is done on this graph structure, between the two
nodes corresponding to the t wo terminations of the symmetric curves bounding a ribbon, for a path. The path
is represented as the contour closing that ribbon end.

3. In cases of poor contrast differences between adjoining surfaces there may be no candidate found in the above
search. The next step is to look at curves that lie in the areas between the two points. If some curves are
detected in this area, we apply the continuity grouping process on these curves, (as described in section 3) with
relaxed constraints on the continuity. The allowable gap is increased to the size of the gap in the ribbon end,
and more "bend" is allowed in the joins. The shortest contour so formed is selected.

4. If no contours are found by the above techniques (this may be due to either missing edges or complex shaped
surfaces, where a single surface may be represented by more than one ribbon) a straight line join between the
two curve ends is proposed as the closure for that ribbon end.

Ribbons so formed are show in figure 8.
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5.1 REASONING ON MONOCULAR STRUCTURAL RELATIONSHIPS

In the above process, for those ribbon-ends where no candidate edge-contours were found for closure, we may have
proposed straight-lines as closures. If we assume that the scene is composed of opaque surfaces, those ribbons for
which the proposed straight-line closures cross over edge boundaries of other ribbons, are potentially wrong. For
these ribbons, we try to find an alternate path along the curves (now augmented by proposed joins) which does not
cross over existing ribbons. If for a ribbon, no such suitable path is found to replace the wrong straight-line closures,
it is rejected. Further, we may reject those ribbons which have a substantial portion of their boundaries represented
by proposed straight-lines which neither have edge-support, nor form shared boundaries with another viable ribbon.
The ribbons so obtained are shown in figure 9.

Assuming general viewpoint and low probability of accidental alignments, a T-junctions indicates occlusion, with
the stem of the T being occluded by a surface whose boundary includes the top of the T (the stem of T obviously
does not lie in this occluding surface). Therefore, if we have a ribbon A enclosed inside a bigger ribbon B with at
least one boundary of A (not shared by B) terminating at a T-junction with B's boundary, then (unless B is found
to be occluded along the boundary section contributing to the T-junction), this configuration does not support the
occlusion interpretation. Thus we can reject ribbon A as it forms a false T-junction (the ribbon A most probably
resulted due to surface markings on the surface enclosed by ribbon B). Ribbons that remain after removing those
that form false T-junctions are displayed in figure 10.

6 APPLICATIONS

As demonstrated in the previous section, collated features are excellent for object segmentation and for generating
shape descriptions. Monocular interpretations of shape from contour depend on obtaining both good contours in the
image (i.e. connected contours, corresponding to surface boundaries and not texture or markings) and a good axis
finding algorithm (for those based on concepts related to skew symmetry [18]). The system presented finds connected
contours (ribbon boundaries) which, due to the non-accidentalness principle, have a high probability corresponding
to surface-boundaries rather than texture. Also the axes obtained often corresponds to the skew symmetry axes
(always for straight lines). In cases of parallel and mirror symmetries [19], the axes detected can be used directly for

monocular shape analysis.

The collated features detected, specially curves and ribbons, are invarant to viewpoint-transformations, and are
thus excellent tokens for correspondence when images containing objects viewed from different viewpoints have to be
matched, for example in stereo and motion matching. We will demonstrate the utility of ribbons for correspondence
by using them as match primitives for stereo images which have large vertical disparity.

A ribbon has two axes describing it; the primary axis between the symmetric curves and the secondary axis between
the contours closing the ribbon ends. For each ribbon we select the axis with the maximum vertical extent. We
define an augmented epipolar window for each vertical axis as a rectangle in the other image of the stereo pair with
its vertical dimension equal the vertical extent of the axis plus twice 5% (the allowed vertical disparity) of the height
of the image, and its horizontal dimension twice 25% (the allowed disparity) of the image width and centered at the
center of the axis when projected on the other image. A match is postulated if at least half of the matched ribbon
lies in this window, and the corresponding axes (both primary and secondary) of the two matching ribbons do not
differ in length by more than 100%, and the difference in orientation of the two axes is no more than 30 degrees.

These three constraints, epipolar overlap, length and orientation similarity, are sufficient to assign unique matches
to most of the ribbons in the stereo pair. In case of ambiguous matching (i.e. if some ribbons in the left and/or right

image have multiple matches) we pick the best match using a constraint satisfaction network.

7 CONCLUSIONS

We have proposed a representation framework using collated features as the representations computed by the process

of perceptual organization applied to the primitive image elements. These collations represent structural relationships
between the arrangement of their tokens. We have identified the structural relationships so represented, in terms
of their significance for the shapes in our visual domain and their utility to other visual processes. Further we have
shown that collated features are useful for the generation of shape descriptions and object segmentation.

For segmentation, one main advantage of our system, that we see over previous systems, is that it provides a shape
description of the segmentations. This allows a much more systematic application of the segmented features.
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CONSTRAINT-BASED MODELING

J.L. Mundy, P. Vrobel, and R. Joynson
GE Corporate R&D Center

Schenectady NY 12301

ABSTRACT

An approach which combines symbolic and numerical methods for the solution of systems of geometric
constraints is described. Such constraints arise from the description of parameterized object models as
well as the geometric relationships between objects, cameras and light sources. Typical applications are
environmental modeling for photointerpretation and autonomous navigation. A series of intial experiments to
investigate the effect of symbolic variable elimination on numerical convergence with a commercial nonlinear
programming package available in the IMSL library are described. Experimental issues such as the limit on
problem complexity and machine architecture are also presented. A symbolic method for determining an
appropriate choice for the independent parameters of a geometric configuration is discussed. Some initial
theoretical results on the detection of singularities in the constraint system are also presented.

INTRODUCTION

Geometric models provide an effective representation for the recognition of objects and for the descrip-
tion of their environment [Lowe], [Huttenlocher and Ullman], [Lamdan et al], [Grimson and Lozano-Perez],
[Thompson and Mundy]. The basic approach is to form a correct set of assignments between image features
and model features. The feasibility of such assignments is typically determined by viewpoint consistency
which means that all features of an object must project into an image with the same coordinate transfor-
mation. Thus, feature assignments are inconsistent if they produce different model-to-image transformation
parameters. The location and orientation of objects in the environment is specified by the transformations
determined from this model-matching process.

Much of the work cited above has focussed on polyhedral object models. A different model is constructed
for each object to be recognized. This approach is reasonable for a small number of models, but some
form of generalization is necessary in order to effectively represent a large library of objects. One approach
to generalization is the parameterized object model such as the generalized cylinder [Brooks]. Another
example is the super-quadric [Pentland]. With both of these schemes, a large number of object shapes can
be represented with relatively few parameters.

In this paper we focus on the representation of object classes in terms of parameterized polyhedra. In
our opinion, there are a number of potential advantages to be realized from this choice:

* Many applications, such as recognition, graphics and simulation, utilize polyhedral models. Recognition
methods are much more advanced for polyhedral structures. Most engineering applications rely on
polyhedral (finite element) structural models.

• Operations on polyhedral models, such as intersection and attachment, produce polyhedra as the result.
Thus, a uniform topological representation can be maintained.

e The same representation can be used to represent geometric relationships between objects in the scene.
For example, the relative orientations between buildings and between buildings and the ground plane
can be incorporated within the model description as geometric relations on polyhedral faces and edges.

'Work at GE was supported in part by the DARPA Strategic Computing Vision Program in conjunction with the Army
Engineer Topographic Laboratories under Contract No. DACA76-86-C-0007 and the Airforce Office of Scientific Research under
contract No. F49620-89-C-003.
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A major motivation for this work is acquisition of object models from image data and in particular,
to acquire models for use in computer-assisted photointerpretation [Corby et al]. Parameterized poly-
hedra have already been used in modeling the environment for cartographic and navigational purposes
[Hanson and Quam]. In SRI's Cartographic Workstation, various parameterized building shapes are avail-
able. The model parameters are determined manually by interactive parameter adjustment in the context
of various image views of the site. The model parameters are adjusted so that the model image projections
are consistent with the actual image data as well as with ground elevation data.

From a slightly more general viewpoint, it is desirable to determine an appropriate set of model parameters
which are consistent with available image data and also consistent with a priori information about the scene.
Examples of other constraints are:

" The relationship between buildings defined by map information.

" The relationship between objects and their shadows.

" Functional relationships. For example, aircraft are usually parked in a standard location and orienta-
tion.

Thus, the goal of the work to be presented here is the automatic determination of model parameters, or
more generally the parameters defining the entire scene environment, in the context of multiple image views
as well as other environmental constraints. Initially, we focus on the problem of automatically determining
model parameters, given an arbitrary set of empirical constraints on the model components. We are taking
both a theoretical and experimental approach.

PARAMETER DETERMINATION

REPRESENTATION FOR LINES AND PLANES
The first step is to define a representation for the model entities that is suitable for symbolic manipulation
and requires a minimum number of parameters. In addition, we want to introduce the parameters in such
a manner that we avoid the possibility of degenerate geometric configurations. For example, if a line is
represented in terms of two points, the line is only defined when the points are unequal. Similarly, a plane
becomes degenerate when defined in terms of three collinear points. Such conditions introduce inconvenient
inequalities that must be maintained during parameter determination. We have been making investigations
with three different parameterization schemes each of which have their own advantages and disadvantages
for representing a model.

Point-Based Scheme Most constraint-based modeling systems use characteristic points on the model to
constrain the geometry [Lin Gossard Light]. For a polygonal model, these characteristic points are
the vertices. A model with N number of vertices requires 3N independent variables- an X, Y, and Z
parameter for each point in space. All higher dimensioned entities are represented in terms of point
parameters. The representation of a line is a vector in terms of six parameters- three parameters for
each endpoint. The representation of a plane requires three non-colinear points which results in nine
parameters.

Plane-Based Scheme In contrast to a point-based scheme, a plane-based scheme represents all lower
dimensioned geometric elements in terms of plane parameters. A plane is represented in this param-
eterization with four independent variables. The variables include three components of the plane's
normal vector and a parameter specifying the distance along the normal from the origin to the plane.
Thus, a model with N number of faces requires 4N independent parameters. With this representation,
a line is represented as the intersection of two non-parallel planes, and a vertex is represented as the
intersection of three planes. In order to experiment with this scheme, we have limited our model test
cases to a class of 2-manifold models with trihedral vertices. This restriction allows for a clean and
consistent intersection representation.
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Hierarchical Plane-Based Scheme The hierarchical plane-based scheme represents entities of lower
dimension in terms of the next higher dimensional entity on which it lies. We proceed with an ordered
hierarchy of definition for geometric entities: 7r >- A >-, p; where ir, A and p denote the classes of planes,
lines and points, respectively. The ordering indicates that at least one plane surface is defined. Any
line or point definition is made with respect so an existing planar coordinate system. Were appropriate,
any point is defined with reference to an existing plane and a line lying in that plane.

A total of six parameters are required when a point is defined by first defining a plane and then a line
and then the point. When a point is defined directly, only three parameters are needed. However, in
the first case, a plane and a line are defined in addition to the point of interest and these extra entities
are frequently used in other entity definitions. In any case, any extra parameters can be eliminated by
solving incidence equations. This representation scheme always minimizes the number of parameters
needed overall.

EMPIRICAL CONSTRAINTS

The central problem is to determine a set of numerical parameter assignments which are consistent with
the constraints defined for the object model and its environment model, as well as empirical data such as
image features that correspond to projections of the model. We wish to maintain all of the model geometric
relationships, while at the same time approximating as closely as possible the observed image features and
other empirical constraints.

The standard approach to this problem is to define a cost function which measures the mean square error
between the measured model projections and the predicted values. The problem then becomes one of mini-
mizing this cost function by adjusting the model parameters, subject to the model constraint equations. For
example, consider the projection and image of a cube where the image features are not perfectly segmented.
The parameters of the cube are adjusted to give the minimum error between the projected cube image and
the empirical image features. The problem of minimizing a cost function subject to a nonlinear system of
constraints is known as nonlinear programming (Luenberger].

The observation that model parameter determination is equivalent to nonlinear programming is hardly a
solution to the problem. i. is will known, that this problem is ill-behaved in general [Gill 1985]. For example,
the application of these methods to the determination of camera parameters is not successful unless a good
initial guess for the unknown camera parameters is available [Tsai]. Our goal here is to develop methods
which are well behaved in the context of specific model configurations.

NONLINEAR PROGRAMMING
We consider that the parameter set of the object model is partitioned into independent and dependent pa-
rameters. The formal problem of parameter determination can be described within a nonlinear programming
framework. We assume that a cost function, f(u,x), is defined. The variable set u represents the indepen-
dent or free parameters of the system of constraints, h(u,x). These independent variables are determined
by minimizing the cost function subject to the system of constraints. x can be determined by solving the
system of constraints.

The constraints are established algebraically by, h = 0. That is,

hi(ul,u2,...u..m,X1,,...xm) = 0

h2 (ul,u 2 ,.. U,. ,nX1, X2, ... X) = 0

hm(ul,U2,Un...-m, XL,X2,...Z) = 0

There are numerous algorithms for determining the solution to this constrained minimization problem
[Luenberger] [Gill et al]. The general approach is to find the gradient, Vf(u,x), and then incrementally
move in the direction of decreasing f(u,x). A solution is declared when the cost function is at a local
minimum and the constraints are satisfied.

In addition to the set of equality constraints, h = 0, there can he constraints in the form of inequalities,
b(u, x) > 0. These inequalities naturally arise as geometric constraints which express relations such as,
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betbeen and above. Fur example if the position of points, Pi, on a line are parameterized by ti, then the
inequalities,

b1 : t)-ti >0
b2: t3 -t2 > 0

express the relation, Between(Pi, P2 , P3 ).
The inequalities are treated as a filter on the possible solutioiz of the minimization problem. That is,

suppose that there are a number of solutions ui which minimize f(u, x). The feasible solutions are those
which also satisfy b(ui,x) > 0 An alternative approach to dealing with inequalities is described elsewhere
in these proceedings [Cyrluk and Kapur].

Many nonlinear programming algorithms treat all of the parameters on an equal basis. For example, the
method of Lagrange multipliers introduces the Lagrangian:

L = f(u,x) + At. h(u,x)

where A is a set of m multipliers.
Then (n + n) equations are generated for (n + rm) unknowns as follows:

VuL = 0 : (n - m) equations

VxL = 0 : m equations

VL = 0 : m equations, the original constraints.

There is no distinction among the (n + r) variables. Many different partitions of the variables may be
produced by pivoting operations during the numerical solution process.

However, we choose to form a fixed partition of the variable set into a set of parameters attached to
the constraint specification, the dependent parameters, and a set of degrees of freedom for the object. We
conjecture that there is an advantage to be gained in convergence reliability by carefully selecting the degrees
of freedom of the model configuration. By specifying the independent parameters, it becomes possible to
analyze the convergence properties of the resulting constraint problem without reference to specific empirical
data values.

The distinction between dependent and independent parameters is somewhat arbitrary, but the choice
of u ideally satisfies the following requirements:

e u is consistent - the independent parameters are selected subject to the consistency of h.

* u leads to convergence - the choice of independent parameters produces a reliable, convergent numerical
minimization process.

The set of independent variables is considered to form a constraint surface, a(u) with dimension equal to
the number of independent variables. The numerical minimization process is confined to this surface which
is a subspace of the space of model parameters. The search for a minimum of f(u, x) on or(u) is known as
the reduced gradient method [Luenberger]. One can view the constrained minimization process as equivalent
to an unconstrained minimization in the subspace a(u). That is, the constraint equations can be used to
determine x(u) and then the problem becomes one of unconstrained minimization with respect to u.

In the case of nonlinear constraint equations, it is not easy to perform the elimination of the dependent
variables. No closed form symbolic solution is possible for a single equation of greater than degree four.
Equations of second degree and higher have multiple solutions, many of wL, hi may not correspond to feasible
geometric configurations. Only real solutions to const,'aint equations can correspond to valid geometric
configurations.

A method does exist to generate the real solutions for general symbolic polynomial systems, cylindrical al-
gebraic decomposition [Arnon et all. However, the algorithm involves computationally expensive polynomial
resultant and root isolation procedures and so far has not solved any examples of prac,:cal interest.

However, it is straightforward to symbolically eliminate dependent parameters from linear constraint
equations corresponding to the incidence between model elements. We have carried out experiments with
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this idea, as well as eliminating parameters from certain quadratic equations, and the results are discussed
in a later section.

An alternative approach to variable elimination is to algebraically characterize the constraint surface
in terms of singularities and specify well behaved paths for attaining the global minimum. The constraint
surface can be complex, with folds and cusps. The goal is to reach the global minimum of f(u,x) while
maintaining the set of inequalities.

In the next section we consider the problem of determining a consistent set of independent parameters,
followed by a section describing a symbolic method for analyzing the constraint surface.

DETERMINING THE INDEPENDENT PARAMETERS

The parameters associated with a particular geometric configuration are defined by the plane, line and
point representations previously discussed. There is nothing in the representation that defines which param-
eters are to be considered dependent and which are independent. In fact, one must be careful in selecting
independent parameters since it is easy to make a selection which is inconsistent with the model constraints.
For example, if two lines are parallel, then the direction parameters of each line cannot be both independent.

The set of independent parameters should be such that the remaining dependent parameters can be con-
sistently determined from the constraint equations. In most cases, m constraints on n unknown parameters
leaves n - m independent parameters. For nonlinear constraints, this relationship is not always valid, since
some constraint equations may only serve to eliminate solutions of the remaining constraint set rather than
reducing the number of independent parameters.

Fortunately, the general problem can be avoided since we are mainly interested in geometric constraints
of incidence, orientation and distance. One can characterize these relationships and thus define a specific
procedure for selecting a valid set of independent parameters. The reduction in the number of independent
parameters for various relations on model entities is shown in Figure

I lIi Jlari, hte entities are assumed to be defined in a three dimensional coordinate frame. For
example, the equality of two planes in space reduces the total number of parameters from 6 to 3. Likewise
the intersection of a point and a plane reduces the total number of parameters by one. A perpendicular
constraint between two lines reduces the number of independent parameters by one.

The effect of geometric relations on the model parameters can be represented as a network which we refer
to as the dependence network. The elements of this network are defined in Figure . The nodes of the network
represent parameters associated with the point, line and plane. These nodes are grouped about icons which
represent each entity; a triangle for the plane, a square for the line and a circle for the point.

The directed edges of the network represent dependency between parameters. The edge orientation
function, yij, is defined by:

-y(eij) = +1 if parameter i depends on parameter j
7(i)= -1 if parameter j depends on parameteri

The edge direction is indicated by an arrow pointing away from the dependent parameter. We also define,

d i = i + ij

2

There are three possible states for a node, i,

1) di  1 - determined, the value of parameter i depends on other parameters.

2) di = 0 - the node is undetermined.

3) di > 0 - inconsistent, parameter i is defined in two or more ways.

Each entity and relation defines a disjoint subset, Nk, of the nodes. Associated with each Nk is an integer, Ok,
which corresponds to the number of parameters needed to exactly determine the model entity or geometric
relation. For the plane, line and point, 0 = 3,4 and 3, respectively. Each entity can also have a number of
independent parameters, nk. The sum of determined and independent parameters for each entity is always
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PARALLEL PERPENDICULAR

Figure 1: The effect of various geometric relations on the degrees of freedom of model entities.

Ok. The examples in Figure illustrate several incidence constraints. The dependency network can be
generated directly from the model specification.

The consistent assignment of edge directions can be achieved by the following linear program,
Minimize the number of independent parameters, Nind, subject to:

1 > di 0

nk + Z d, - Ok = 0
iENjc

This form is a special case of the network flow problem which can be efficiently solved [Sugihara][Luenberger].
There can be multiple solutions, all with the same number of independent parameters. In order to select
among these solutions, the numerical convergence properties of a particular choice of independent parameters
must be considered. This issue is discussed in the next section. More network examples are illustrated in
Figure . A consistent assignment of edge directions is shown for the case of two perpendicular lines with
equidistant constraints.

SYMBOLIC ANALX SIS OF CONVERGENCE

THE REDUCED GRADIENT METHOD

In the reduced gradient method of solving the nonlinear programming problem, the variable set is partitioned
into independent and dependent variables, u and x, respectively [Luenberger]. One can view the constrained
minimization process as equivalent to an unconstrained minimization in the subspace a(u). The reduced
gradient in a(u) is given by,

V =Vuf(u, x)+ A'Vuh(u, x)
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where Vu indicates the gradient with respect to u. A solution for the minimization of f is given by,

h(u, x) = 0

The Lagrange multipliers, A satisfy the following equation,

Vxxf(u,x) + At 1xh(u, x) = 0

So.

A' -Vxf(u,x)Jh 1

where Jh is the Jacobian of the constraints with respect to the dependent variables. That is, Jh = Vxh(u, x).
Thus, in order for a solution to exist at a point, a(u*), the Jacobian matrix must be nonsingular and
h(u x) = 0.

The method for selecting the independent variables is as described in the previous section, so that
tie constraints are consistent. There is no guarantee, however, that the Jacobian matrix is everywhere
nonsingular on or(u). Thus, we describe a method for determining the singularities of the constraint Jacobian,
given a particular selection of independent variables.

THE TRIANGULATION METHOD

The singular points of Jh correspond to the vanishing of the determinant of Jh, or IPh I = 0. The constraints,
h(u.x). can be put into triangular form by a symbolic procedure introduced by Ritt [Kapur and Mundy].
The triangulation process produces a new set of constraints, g(u, x), of the form,

g1 (ut, U2,"', un-r, Xi) = 0

g2(u], u2," Un-m,X1,X')) = 0

gnz(U),U2,"',Un-n ,x1,x '),'",n) = 0

With this triangular form, J. = Vxg(u, x), is a lower trianglar matrix. The determinant of Jg is simply
the product of the diagonal elements of Jg,

Iohl = 1-Ip
i

Thus, the singularities of Jg on o(u) correspond to the zeros of the diagonal elements. This singularity condi-
tion is conservative, since the common zeroes of h are a subset of the common zeroes ofg [Kapur and Mundy].
That is. Oah(u) C o(u). Thus, singularities found in the triangulated constraints may not be singularities
of the actual constraints, but the converse will always hold. The advantage of the triangulated form is that
the singularity conditions are directly represented as a product of factors.

To illustrate the process, consider two perpendicular line segments with equal length constraints. This
configuration was shown earlier in Figure and the parameters are defined there. The line directions and
point coordinates are representcd in the plane coordinate space (U,V). The con5traint equations are,

hi B,,2 + B 2 V2j B +B 1 -1
/12: B,,2 +B 2 -1

13 B , 1 B, + B,, 1B, 2

h4  (ui - uo)Btl + (v1 - vo)13B

h5 (ul - UO)
2 + (I -_ )2 _ 12

h r, (U2 - uo)B, 2 + (v 2 - vo)B,.

h7 : (u 2 - 110)2 + (V2 - v0)2 - 12
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A set of independent parameters [B,,1 , 1, uo, vo] is selected, as well as an ordering on the dependent parameters
[Bol < B,2 < B, 2 < V1 < u 1 < v 2 < u2 ]. The equations are triangulated using an algorithm implemented
within the GEOMETER[GEOMETER] system with the following result,

92 2B1 B22 + B 1 B22 - B 2

g3 Bi Bu 2 + Bvi B 2

94 B B21(Vl - vo)
2 + Bv21 (Vl - 0o)

2 - B2112

g5 :(u 1 - uo)Bl + (v1 - vo)Bul
gs:B2(2 _ vo)2 + 2 _ vo)2 2 Bv12
96 ~ B o)

2 +I BV2 (V2  - -V

g7 (U2 - uo)Bv2 + (v2 - vo)B.2

The determinant of J. is,
IJgl = 6Bs 2 1B4 202 + "2,

16B,1 BUlB 2 (B , + BV 1)(BU2 + B 2)(vl - vo)(v 2 - vo)

The critical singularities, [(ux = uo), (vl = vo)] and [(ul = uo), (vi = vo)], are contained in the zeroes of 1Jg.
As another example, consider two planes at right angles and with the surface normal of one plane

constrained to be at an angle, 0, with the positive z axis. The constraint equations are,
2 2 2

h, n.1 +t n.2 -+ n., -1
h 2 :n 2 2 + + (Cs 2() - 1)

h3  n1 lnx2 + nylny2 + Cos(9)n~l

Selecting independent variables, [nx,, nyl], and with ordering on dependent variables, [nzl < n.2 < n. 2], the
triangulated form is,

gi n 2 2 n2
2 2 2  

-

g9: nyn, 2 + (n., n. 2 + COS + (Cos() 2  1)nyl
g3 nxlnx2 + nylny2 + Cos(9)ni

The determinant of Jg is,

4ny nz1(n r2n + nxx(nxlnx2 + Cos(O)nz))

The geometric significance of the last factor may be seen by
substituting for Cos(O)nl from g3. The factor becomes,

l%1(n2nyl - n~iny2)

Thus, the jacobian becomes singular when the projections of the surface normal of each plane onto the x-y
plane are collinear.

We are currently investigating similar symbolic methods for determining the eigenvalues of the hessian
matrices of the cost function and constraint equations. This second order information is needed to char-
acterize the convergence rate. The singularities of the jacobian and the loss of positive definiteness of the
hessian must be avoided in order to guarantee rapid and stable convergence.

EXPERIMENTS

Because the behavior of sophisticated numerical methods for nonlinear progran.. ig cannot be analyzed
theoretically to a degree that convergence may be predicted [Ecker and Kupferschmid], we have been inves-
tigating the convergence of typical 3D mod ing problems by taking an experimental approach. The following
section:, describe the approach and result- ..' testing.
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TEST METHOD

The general approach to experimentation is the production of a number of test cases from which one may
make comparisons and speculations. For our work, the process of producing a test case consists of building
an arbitrary model topology and specifying 3D geometrical constraints on its structure. For the most part,
these constraints are dimensional constraints between faces, edges, and vertices. Equations representing the
constraining relationships are produced from the symbolic representations of the entities. The constraints
which (efine the model are compiled into a system of equations and the unknown parameters to the equations
are solved for numerically. The solution is then propagated back through the equations to create a specific
geometry for the model. The basic steps of the testing procedure follow in detail.

Parameterization and Creation of Model Topology

For each test, a parameterization scheme is selected and a model of the structure being constrained is created.
There are many different schemes for parameterizing a polygonal model each with its own advantages and
disadvantages. The difference between the schemes is in the selection of parameters that represent the
model. We have concentrated our efforts on comparing the three schemes discussed earlier: point-based,
plane-based, and hierarchical plane-based

Regardless of the parameterization scheme used, an actual 3D model topology is created for the test
structure. The modeled structure provides initial value data for the independent parameters. It also serves
as a vehicle for validating the resulting numerical solution of the nonlinear program constraining the geometry
of the model. Test structures are created by specifying a sequence of incremental Euler operations [Mantyla]
that construct the model. A specification file in the form of Lisp functions is then compiled to create an
object instance.

Constraint Specification

Once a test structure is created, the geometry of the structure is constrained. For our experiments thus
far. we have been working with three different types of constraints: orientation, distance, and incident. At
the present time, the ability to assign constraints to the geometry of a test structure is accomplished by
a language specification in the same manner that an object topology is created. In addition, the language
provides the mechanisms for construction of the symbolic representations for face, edge and vertex entities.
Compilation of the constraints produces a file of equations that are in the form needed for input to the
constraint solver.

Numerical Constraint Solving

Each test case is in the form of a nonlinear programming problem. For each constrained model problem, we
would like a solution to be found that is close as possible to the initial unconstrained model geometry. To
accomplish this, we use a cost function that is the sum of squared error between the independent parameters
and their initial values computed from the unconstrained model. This objective function is then minimized
subject to satisfying the geometrical constraints imposed on the structure.

Many commercial mathematical libraries exist today which contain functions for solving non-linear op-
timization problems. The algorithms represent years of research in numerical analysis and development
experience in the behavior of ill-conditioning, degeneracy, and inconsistent constraints. Well constructed
mathematical software is designed to deal with these types of problems [Gill 19851. For the experiments
discussed in this paper, the DNCONF function of the IMSL Math Library was utilized- This function uses a
quadratic programming method to solve a general nonlinear programming problem posed in standard form.
The algorithm is based on an iterative formulation and solution of quadratic programming subproblems.
The subproblems are obtained by using a quadratic approximation of the Lagrangian and by linearizing the
constraints [IMSL]. This algorithm uses a double precision finite difference method to compute gradients.

For each experiment, a constrained model is specified in mathematical format in a Fortran file and
processed through the constraint solver of the IMSL library. The robustness of the constraint solving process
has been explored using the IMSL routines on a CONVEX vector processor and a VAX 11/785. A speed
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Scheme Parameters Equations Iterations F(x) Acc
Point-Level 12 3 8 0.409436 10
Plane-Level 9 3 9 0.212425 10- °

Hier-Plane 6 3 5 0.022291 10- 13

Table 1: Convergence Results of Corner: Model A

Scheme Parameters Equations Iterations F(x) Acc
Point-Level 12 6 6 36.9956 10-

Plane-Level 16 6 10 0.26570 10- "
Hier-Plane 26 13 NC - -

Table 2: Convergence Results of Regular Tetrahedron: Model B

algorithm performed a gradient search before converging to a solution. The last two columns in the tables
represent the value of the objective function, F(x), and the order of the least accurate constraint evaluation.
NC in the Iterations column corresponds to No Convergence of the problem was obtained.

In each case, the parameter. -ation with the least number of parameters resulted in the best convergence
in terms of least number of gradient search iterations to the final solution. However, by comparing the values
of the objective function and the order of accuracy, the fastest convergence does not necessarily guarantee the
best quality solution. One might conclude that the reduction in the number of parameters helps to reduce
the complexity of the nonlinear programming problem and it is a consideration in formulating the problem,
but minimization of parameters is not a critical issue for insuring convergence. The non-convergence of the
hierarchical plane-based testing in this experiment is believed to be related to issues involved with elimination
of variables discussed in the next section.

Elimination of Variables The hierarchical plane-based parameterization scheme was developed as a
minimal representation for a model. The representation makes wide use of eliminating parameters which
would otherwise be independent variables in a problem set. This is accomplished by substituting into the
constraint equations an equivalent form for the dependent parameters in terms of independent parameters.
For example, the representation of the n, component of a plane normal is substituted as 1 - n -n

This form eliminates the use of n, as an independent parameter. The B, line direction parameter in plane
coordinate space can be represented in the same manner as V'T -B2 thus eliminating it from the free
parameter set.

Consider the following model structure illustrated in Figure 5. This structure is constrained with three
plane perpendicular constraints and one edge perpendicular constraint. The independent parameters asso-
ciated with each constrained entity are shown. A sequence of experiments have been conducted with this
model parameterized in the hierarchical plane-based scheme to determine whether elimination of variables
using the assumptions of the representation is advantageous. Table 4 shows the results of some of the tests
performed. Test 1 was conducted using all the dependent variable substitutions possible to eliminate pa-
rameters. In this case, nO, n1,, n2z,n4,, BOO, and B01, are made to be dependent variables. With this
formulation, the numerical algorithm failed after 4 iterations claiming the gradient search was going uphill.
A number of errors from taking the square root of a negative descriminent were also propagated during the
process. The convergence problems encountered in Test 1 are conjectured to be a result of the square root
form representing n. The n, and n. parameters iterate during the numerical process to values which result

Scheme Parameters Equations Iterations F(x) Acc
Point-Level 12 5 8 0.419828 I10- g
Plane-Level 16 5 11 0.318751 10-7
Hier-Plane 18 10 NC -

Table 3: Convergence Results of Corner: Model C
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EO: (BOOu)-
F4: (N4x, N4Y) FO: (NOx, NOy)

E l: (B O u ) -

F:: (Nlx, NNy)

lF2.. (Nm, .2

Figure 5: Constrained model structure of square pyramid.

Test Parameters Equations Iterations F(z) Acc
1 10 10 NC

2 14 10 11 0.0263397 F -

3 16 i0 31 0.017330059 10-T
4 16 14 7 0.015637081 10- 9

Table 4: Convergence Results of Square Pyramid Tests.

in a negative descriminent of the square root term. In other words, the gradient search is following a path
of convergence which goes through a problem area.

In order to eliminate the square root errors, the problem setups for Test 2 and Test 3 progressively added
the n, plane components as free variables and the B line components as free variables respectively. In order
to represent line parameters in plane coordinate space, it is imperative that the normals of the planes be
unit vectors. This constraint was previously implicit in the representation of n,. In Test 2 the normals are
explicitly normalized before being used to transform a line. In Test 3, the components of the line direction
are explicitly normalized. in each case, the nonlinear program successfully converges and convergence is
more accurate as more of the variables become independent.

Test 4 was conducted to determine whether the normalization of vectors would best be accomplished by
constra;nts. In this case, four additional constraint equations for normalizing the plane normals were added
to the ?,oblem set. As seen in Table 4, the overall convergence was not only dramatically faster, but more
accurate than those cases where the normal was explicitly normalized.

Placement of Constraints In any interactive modeling environment, placement of constraints on the
geometric entities of a model is dependent on the user's discretion. A few experiments were conducted with
the tetrahedron model to observe any effects of constraint placement on convergence characteristics. The
tetrahedron is specified with 5 Equi-length constraints. Figure 6 illustrates the two different constraint
configurations considered. Model A illustrates the constraints being evenly distributed over all the edges of
the model. Model B corresponds to focusing on a single edge to be involved with all constraints. Point-based
parameterization tests consistently required 6 iterations to converge to a solution regardless of variations in
configuration A or configuration B. Likewise,plane-based parameterization tests also showed consistent con-
vergence characteristics requiring I I iterations regardless of the configuration. In addition, each perturbation
of the constraint configuration converged to the same solution.

Scaling Scaling of parameters is one of the common problem areas in solving nonlinear programming
problems [Rice]. Using the tetrahedron model again, we have conducted scaling experiments where this
problem becomes apparent. This test consisted of incrementally increasing the length specification of an
edge in the problem for point-based and plane-based parameterization schemes. Some of the results are
shown in Table 5.
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Model A Model B

Figure 6: Two constraint distributions over a tetrahedron model.

Point-Based Plane-Based
Edge Length Iterations Edge Length Iterations
0.01 12 0.01 15
1.414 6 1.414 11
- - 5.477 21

10 28
- - 11.18 467
22.36 6 22.36 NC
316.22 14 316.22 NC

Table 5: Results of iterative scaling examples.

The plane-based parameterization scheme includes plane normal components and a distance component
in its independent parameter set. The normal component values are bounded within the range [-1,1] while
the distance parameter can vary from [-oo, oo]. This difference in scale becomes a factor very quickly as can
be seen with the sharp increasing trend in convergence of the plane-based tests. In contrast, the point-based
scheme utilizes point parameters-all of which have identical value ranges. A point-based scheme would be
the best representation for model structures which have dimension specifications that are of order 10 or
greater.

Accuracy The output of an object recognition and positioning program sometimes generates inferred
matches producing object orientations that are slightly askew. It was the purpose of this experiment to
examine a means of "rectifying" the object by aligning it with other boundaries or surfaces whose positions
and orientations are already known. A simple test involved orienting a misaligned cube into a particular
position on a specified plane.

In order to construct a cube object, the vertices of the cube were constrained to fixed points by springs.
The constraints, in this case, involved relations between he normals of the planes, i.e., the dot products
of the normals of adjacent sides of the cube were zero. These, along with constraints setting the edge
lengths, constituted the geometrical description of the object. Using just the geometrical constraints, the
convergence was such that the resulting structure was a cube with vertices pointed toward their respective
fixed points thus satisfying the minimizing function. Further testing with random perturbations of the fixed
point locations demonstrated robust convergence behavior.

A positioning constraint is one which orients the cube with respect to its environment. This was applied
by making the normals of two adjacent planes perpendicular to fixed directions. One may now rotate the cube
by some rotation, say, tipping it. The initial alignment trials were often plagued by apparent convergence
to a valid answer, by ending with either a "too many iterations in line search" error or an "attempting to
climb uphill" error. A variant of the original IMSL routine allowed a convergence accuracy parameter to be
set, rather than defaulted to an IMSL internal value. Pertubation of this parameter allowed the alignment
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Single Precision Double Precision
Rods Parameters VAX CONVEX VAX CONVEX

1 6 0.13 0.02 0.20 0.03
10 60 10.3 1.3 17.7 1.5
20 120 64.7 7.2 112.8 8.5

30 180 184.2 19.3 335.2 22.5

36 216 338.8 34.8 657.9 40.8

Table 6: Results of timing tests in cpu seconds for rod experiments.

test to converge.
In general, most tests have converged when the constraint equations are solved to the order of 10-6 or

better. We have had many experiences where the order of accuracy is better than 10-6, but the convergence

test within the numerical process does not stop the iteration. This experiment showed that by adjusting the

accuracy threshold, a higher success rate in convergence is possible.

Performance Experiments

A few experiments have been conducted to explore the practical aspects of solving a system of constraints.

When the decision was made to explore the use of numerical methods to solve the nonlinear optimization
problems of 3D modeling, a number of questions arose:

1. What is the mechanism of entering a problem, i.e., the formulation of the problem?

2. Is there a limit to the number of variables that can be handled by the available software?

3. What times are involved in the solution of a problem of some complexity?

4. What strategies, i.e., use of double rather than single precision, might have to be employed to ensure

convergence?

The Fortran routines of IMSL were available on two machines as explained above. In doing comparison
testing, a simple problem that could easily be expanded to cover a wide range of variables was selected to

help answer these practical concerns. The problem chosen was to simulate the suspension of a rod in 3-space
with springs attached from the ends of the rod to fixed points in space. The cost function, or the function
to be minimized, becomes:

6

f(x) = (X- Xg
i=1

where xi, i = 1,2,3 are the coordinates of a rod end, and xi, i = 4,5,6 are the coordinates of the other end.

Xgi are the coordinates of the corresponding fixed points, or 'guesses at a solution'.
The constraint consists of specifying the length ( = len) of the rod, and takes the form:

g(x) = (XI - X4 )
2 + (X 2 - X5) + (X 3 - X6 )

2 - len

With a single rod, the result is very simple. The rod extends to be of length len, and it is aligned along a
line joining the fixed points with its mid-point coincident with the mid-point of the line. Convergence was
obtained for all fixed point locations tried.

This model is very easily extended to a multiplicity of rods by respecifying the indices of the x's and xg's
so that the evaluation of the constraints can be done in a loop, and supplying the appropriate limits. It does
not matter that the rods are all in the same place. They are independent of one another in the formulation.

Using timing tunctions available in IMSL, the times of execution for the number of rods varying from 1

to 36, or 6 to 216 variables, were determined. Exerpts from the data are given in Table
For a given machine and precision, the time varies as the cube of the number of variables. Running in

single precision the times for the VAX are about, 10 times that of the CONVEX, and in double precision,
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the factor is more like 16. A further observation is that the penalty for using double precision on the VAX
doubles the time, whereas on the CONVEX a small increase of time is experienced. All subsequent use of
IMSL was done on the CONVEX using double precision.
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Abstract

\Ve propose and evaluate a class of objective functions that rank hypotheses for feature labels. Our approach
takes into account the representation cost and quality of the shapes themselves, and balances the geometric
requirements against the photometric evidence. This balance is essential for any system using underconstrained
or generic feature models. We introduce examples of specific models allowing the actual computation of the terms
in the objective function, and show how this framework leads naturally to control parameters that have a clear
semantic meaning. We illustrate the properties of our objective functions on synthetic and real images. More
details of the applications of the method are given in a companion paper.

Introduction

All approaches to the problem of extracting features from images can in principle be phrased in terms of decision
theory; however, the concepts of decision theory are very hard to put into practice because of the difficulty of
evaluating the required probability measures. Therefore, most practical approaches to model-based vision for both
specific models [2,3,4,27] and generic models [8,21,20,18,19] rely on heuristic measures to select among competing
scene parses. These methods, although they may be effective in the context for which they were designed, are
extremely hard to extend and require the use of many parameters whose significance is not clearly understood.

On the other hand, approaches such as those of Feldman and Yakimovsky [7], Georgeff and Wallace [11], and
Rissanen [22,23] provide a sound theoretical basis for the decision problem but offer few practical computational
methods for dealing with complex scenes in real images.

In this paper, we draw a clear distinction between the generation of scene-labeling hypotheses and the mechanism
by which the hypotheses are ranked; we focus on an objective function approach for the ranking task alone. We define
a class of objective functions based upon theoretical arguments similar to those of Georgeff, Wallace and Rissanen
[11,22,23], and show that the required probability estimates can actually be computed in the context of a few natural
assumptions.

'he approach suggests the definition of a minimal set of two parameters balancing the contributions of area pho-
tometry, edge photometry, and geometry. This balance allows us to establish a general context in which to understand
generic edge-based methods such as those of Huertas and Nevatia [19], the region-based work of investigators such
as Ohta, et al. [20], and hybrid approaches like that of McKeown and Denlinger [18].

A companion paper in these proceedings [10] illustrates the application of the objective function approach to
both an operator-guided shape-refinement problem and a fully automated system for the extraction of buildings
from aerial imagery. The interactive system deforms the contour of a user-supplied rough sketch to maximize the
objective function of a specific model following the general paradigm proposed by Terzopoulos, Kass, and Witkin
[28]. The automated system uses the basic tools of the interactive system, combined with heuristic rules that exploit
appropriate components of the objective functions to generate a selected set of model hypotheses; the total objective
function is applied to obtain a ranking of the resultant hypotheses.

-This research was supported in part by the Defense Advanced Research Projects Agcncy tinder Contract Nos. NIDA903-86-C-0084
and DACA76-85-C-0004.
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Our formulation has many desirable features, but is not, by itself a complete solution to the feature extraction
problem. To be effective it must be coupled with a robust hypothesis generation mechanism and an efficient op-
timization procedure. Furthermore, the simple examples of geometric quality analysis given below would benefit
greatly from a comprehensive cognitive theory of shape perception. It should come as no surprise that modeling is
the most difficult aspect of a system atten.pting to pc'rforin shape perception. Nevertheless, our approach provides
a unified framework that clearly exposes the critical components and characteristics of model-based vision systems.

Derivation of the Objective Function

The goal of feature extraction is to parse a scene in ternis of objects conforming to particular models. 'lb
discriminate among competing parses, an objective function must be able to measure the goodness of fit to feature
models that include such characteristics as area photometry, edge photometry, shape, and semantic relationships. II
this section, we define a basic class of models, discuss the parameters we expect to control our objective functions,
derive the theoretical forms of the objective functions themselves, and provide an interpretation of the resulting
functions in terms of information encoding theory.

Object Modeling

For the purposes of this work, we define a model to be a geometric description of an object in the world charac-
terized by its geometric constraints and its photometric signature; we define the evidence for such objects in digital
images to be a collection of delin eatable areas corresponding to major object parts, together with associated quantities
directly derivable from the pixel values in such areas.

\Ve interpret the photometric signature of any object model in terms of the expected signal from anr idcal objcct
in odel plus a noise model [22,23,15]. The object's evidence can then be encoded in terms of these models. Ve will
use length of the shortest encoding to measure the quality of the fit between the data and the model.

This division of the model language into object model plus noise is potentially task-dependent and semantic in
nature. For example, if we are interested in roofs, we may consider the precise distribution of shingles on the roof
to be irrelevant statistical noise; if we are interested in shingles, the position of each shingle on the roof becomes
critical information. Textured object surfaces may similarly be either important in every detail or irrelevant except
for their statistical character.

Essential Parameters of the Objective Function

Our approach introduces two fundamental parameters, the scale and the shape coeflicient:
Scale. The scale is interpretable as the unavoidable dimensional factor that converts dimensional quantities such
as area or length into dimensionless probabilities. Area units are thus scaled down by two powers of the dimensional
unit, while length terms such as edges are scaled down by a single power. The scale parameter thus controls whether
the area sigiature dominates edge signature.

The scale parameter may also be understood by observing that when an image is resampled or zoomed, the
area A of a patch will change, but the complexity of the patch, as reflected in its minimal encoding, should remain
invariant. Thus there should be some intrinsic zoom factor s that relates the area A to the area A 0 = .4/s 2 in the
zoomed image that has exactly the resolution needed to encode the model complexity without oversampling. The
formulas presented later in the paper may thus be alternatively interpreted as expressing the patch encoding cost in
terms of the sampling-invariant quantity A 0 instead of A itself.

In Appendix C, we suggest yet another way of understanding the scale in terms ot the minimal sampling rate
needed to describe the image and its relationship to the Nyquist frequency.

Shape Coefficient. An objective function with a shape quality term alone will simply hallucinate its best model
wherever it looks. An objective function with only a photometric model is equivalent to a segmentation algorithn
[15]. The shape coefficient balances the possibly conflicting requirements of ti geometry and photometry; tlie point
where this balance lies must be determind by the context of the application.
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The scale and shape coefficients characterize the fundamental balance of influences that must be semantically
specified for each application. Within a particular model domain, it seems possible in principle to estimate the scale
by usini, measures of local complexitv. Our approach to feature-hypothesis evaluation provides a clear way to justify
and understand the essential role of these two parameters in feature extraction, regardless of the other details of a
particular system.

The Probability of a Scene Parse

We choose to describe the problem of determining the best image interpretation as the need to maximize the
probability P = p(mo,i ... -. mIel,.e, 0 ) that, given the evidence E = {ei; i = 1... n}, parsing the scene
in terms of a particular set of model instances AM = {rni; i = I ... n} and a backround Ina is in fact correct.1

Each mi is taken to be a geometric object model, while ei is the measurable evidence for the object, typically a
collection of associated pixel intensities. Since we are interested in feature extraction, we do not explicitly represent
the background and collect no evidence for it.

It is essentially impossible to evaluate the conditional probability P in its most general form, so we make a crucial
independence assumption: the probability of a particular model hypothesis is infl;ienced only by its corresponding
body of evidence and the other model instances. For example, in an aerial image, whether or not a patch of pixels
can be identified as a road may depend on its own photometry and on the presence or absence of neighboring houses,
but not on the particular photometry of those houses.

Formally, this assumption can be written as follows: If I, J, K denote sets of indices referring to model instances
and their corresponding bodies of evidence, we assume VI, J, K such that J n I = 0 and J fl IA = 0, P(ijeI( let)
P(jeK ), and VI, J, P(mj 171, el) = P(in Irn.).

The assumption may break (]own when one object's expected photometry is strongly modified by another object,
as when a superstructure or a separate building oc-ludes or cLst- a shadow on a roof. In practice, one can partially
compensate for such phenomena by discounting small anomalies.

Combining o,,r assumnption with Bayes' rule, it is straightforward to express the probability of the parse as:

P = 10,7, nlei, . .., e,) = p(m 0 , , ) I -p(e ) (1)
i p(ei)

This ,exp~r,'si, cl,'arly separates the contribution of the photometry, in the evidence-dependent terms, from the
abstract cnt ribmti,:,n of the geometric and semantic component in p(ino, 1 _ .... , 7n) under the stated assumption.
We furthir ext,,l this term as:

p(,no, 7n1, . . .,n,1) = p(?nolrnl,..., m,)p(71, .... ,nn) (2)

= Pop(mi,...,In), (3)

where p(mi,.... In,,) is the probability that these n models appear in the scene, and PO is the probability that no
other modt-s appear. Since we do not take the background explicitly into account in this work, we consider PO to
be constant. The dotails of the derivation are given in Appendices A and B.

Mininial Encoding Length and Model Effectiveness

We choose to express the quality of a parse as the (base 2) logarithm 2 of Eq. (1). As discussed in Appendix C,
classical information theory [26,121 !eads us to interpret the resulting score S in terms of encoding length:

P
S = +log - = F-G, (4)

where we define

F EFi = E {-logp(ei)+logp(eilmi)) (5)

= -logp(r7 ., M,). (6)

For example, in terms of a human analyst's )erception, or in terms of ground truth.
2All logarithins in this paper are lase 2 logarithrs.4 4 5
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tlere V is what we call the ,ncoding-effectiveness of the set of models. The first term in F is the number of bits
needed to describe the evidence in the absence of the model, while the second term gives the number of bits needed
to describe the evidence in terms of the inodel. The term effectiveness is thus motivated by the fact that F represents
the numbcr of bits savtd by representing the evidence using the model, and that F increases as the fit improves.

G is the number of bits needed to encode the evidence-free model representation information, and quantifies the
elegance of the chosen set of model instances as well as their dependencies.

Remarks

Feature Extraction Viewed as an Optimization Problem. The problem of finding the best parse of a scene
can now be rephrased as the problem of optimizing over sets of hypotheses evaluate(] by Eq. (4). Global optimization
corresponds to a blind search procedure, which searches all possibilities without attempting to determine which
candidates are more likely than others. In practice, the search space may be far too large for this type of search.
Since intelligent heuristics can overcome this drawback, a natural way to design an application system is to incorporate
hypothesis-generation algorithms that project from the space of all possible hypotheses onto a subspace of very likely
hypotheses 1101. Such projections have the side effect of reducing the discriminatory burden placed upon the objective
function.

Equation (4), in cont rast to formulations that attempt an exhaustive explanation of each pixel in a scene in terms
of a minimal encoding framework [15], includes only features in the image, and thus describes a class of optimization
problemn that is better adapted to the feature extraction domain. In the examples presented, we do not attempt to
encode the background, but only the foreground; the edge signature, discussed below, substitutes for the background
by measuring local foreground-background contrast.

Balancing the Evidence. When we consider {ei} to consist only of photometric evidence, Eq. (4) expresses
the sought-for balance between the photometric and the geometric evidence supporting a model hypothesis. When
the geometric information reflected in G is irrelevant or absent, the objective function reduces to a computation of
inaxinmunm likelihood in the presence of the image-based information. When the evidence reflected in F is absent, the
objective function evaluates the abstract geometric elegance of a particular parse.

Geieric Models Require Photometric/Geometric Balance. When a model's geometry is completely deter-
mined beforehand, as it is for template-matching approaches to automatic shape recognition, there is no need for
the geometric information component of the objective function, since it is constant and maximum likelihood analysis
alone will do. The geometric terms in the model evaluation function begin to play a critical role when we utilize
models defined by a general set of geometric constraints in place of a specific shape template. Such generic mod-
cls, wit Ii arbitrarily large nuni.bers of parameters, require objective functions like ours that balance their geometric
aspects against their pliotometry.

Photometric Measures: Computing F

Two of the main characteristics of an object in an image are its interior photometry and its contrast with the
background, which produces edges. Here we explore simple models for the area and for the edges of an obj-:ct
that have proven useful in analyzing imagery. When working with stereo pairs of images, we also incorporate a
stere oscopic model, and compute the depth parameters of an ohject in the scene by optimizing the corresponding
stereo effectiveness.

We have seen that the off-ctiveness F is computed as - log p(c) + logp(elm) where e represents the grey level
values of the pixels that are enclosed by the contour 7n. For the sake of exposition, let us distinguish the evidence
r.1 r,'lative to the iterior of the patch and the evidence CE relative to the boundary. Formally, we can write:

p(elnn,) =~AIn~~c~Tt A

p(e) = ,(eA)p(ejlA)

IV,, assunme that contrast, with the background can be measured by using local image derivatives, while ig-mring the
grey levels of the boundary pixels. This contrast, depends on tIn grey level of background pixels that do not appear
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I ii I l I )hjt-c t a nd&r lt c> i o a ni O l , [ t I'tt co ii>IdtI c tltt i i i el J (iile t. o f th e i n te rio r 01)je'c t lhtl i i l't r . ' hil s
I"I writ.. , III Eqt. (5) aS. I lit, S1iu1 of at' i ld edge m'oa i 'i ts:

V- .og +ot~ I log p(Ceajl)
I -- I.g: +) - g ,( e T'I1m71)

I his joresckript loll mullst he iiioditied whieni dealinig withI objects that share edges, since the contrast of (t(i shared
d",s i comlpletelydeternmnd by thel phtlom~iet ry of' the regions onl hoth sidIes of the edge. Ini this case, the shared

Ioo~lidaries do not tomtribute to the edgt-eltieci ivelitss tfrill.

W\ 1 1'i sdlt olst imlagets are, aVailable amod iii is a thlree-d'inensional model, additional evucc c., can he li t hered
iimg tli, projct ion of ti (onto1 each iiage. We write:

spm) I ple)p(es; 1m, C)

.5 MO) - )CP(eSIC)

Ili lie ca;st' of a pair of stereo inulages', IIs O1w tv idlnc mieasured in the left Imiage and es the corresponding evidence
inl the -iIht imge relative to the mnodel projected into that imiage. For a stereo pair, w"e therefore add to the

IF,." I Ive lIess a s!I( -CC) (jfCc( t a i cs s tern i

Are-a Mt.odel foi- Hoiiiogeii'us 15lb'ittis

Wo mod- the interior intensities of animag region byv a smooth itutensitv surface with a Gausian dist ribiti
dvil fotis fl'ran t surface. Since objects in real images ty'pically have anomalies which (10 notr lie 0i) tie(

sOp ii sirface. we- eii(oolt, snil ation lalolls pixelIs as oult heors. As we shall see later, this can critic-Ilve ianct, t lit'
dIIit i i iiai orv pow~er of th Ir '1 arenco d Iii effect i veiitss.

Alt .500 aton

('I. ...... c.

I ~i~ Iia)liog' nt leieael oelistiie ()hhsogai f lvitolsfrn Ia
o20r hi t ,liio ein t) Pxl ili n iae a sin pa r'w it'

Ii w(~.\ i_-ina sIo ma,- anti,aiI i oit IddI itis(t) lie (l)iistogra of viaos from tlt'lla-i i t

iii l-'iv tifa tii, fit toii I 0 itart gon ic Ptixtiigtel wia o the pnicaes Gausian t pit' ain waiisatea Il:
or';.~ 'itlojo i lo l ot~lli~t ixc. oiiolt , I. j ,k ,ati ,it( btila'k. uttialis
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Is I lWie mt rop. i.. Ilte c'-I ol* slwclk it, %%lhot her a pi xel i ors not anioma~lous. T is the variance of' tie Gaussiain
dlis rihiitioiit nis tiwnumbiiiier o, pixels ill the auissiaii, and1 i = A - it, and c log(2-,,. Note that inl the
roI'litit at iou itlie, eiicodiii cost, We e not iincliided t lie cost oh, eiicodiig filie s;x internial paramueters of' the

110 It-: 3 for thle plane. 2 h ,r t lie, 6aisian and one( f'or th liprolhablt i' t a i ~ )Ik tI li ./A h iatI pixel lie in the maain pek.Itcl
K i n(see A ppend~ix D)) [*2z."J t hat t liese;t cost,. are approxiunat ely equal to 11log A hits per internal p~aranmeter

-t he stat istical dist ribuition, and aret, liereh'ore [-'gIg~ ia!c~~ae ok 1 .

We we"ight all areas and lei-t us using tlin, scale parameter s (see tliesection i5 tilParaiieters ofthle Objective
iiiiction-). so that the area-enlcodiuig elh-~ctiveuiess becoMiis:

hits(area w~ithlout mnodl) - hit s(area with miodlel)

((8 - c - loga-)n - K(71, 1)) .(10)

Optiiziat ion of this score is it nitiveiv appropriate b~ecauise it fiinds the( best comupromnise aunoiig the( following":

*large area A,.

* low standard deviation 17,

* silill nnumher of auiolitalies T.

Ef~ect of Autotualy Discoiftiig. Ini thle graphs onl the left in Figuire 2, we plot the area-enicodling effectivenless
FA as a f mn onl of thle raditis of a square p~atchi cejitereil at the center of the images shown in t he left, column: a1
,cood but noisy svnt hetic Image ot a Su, th same ina, with ed ite, an with. gross area n -ile.W n

wecompare tie( results ob~tain(-( after disco a tig ai11111alles (solid lines) with those results foutad without anomaly
dIisconiting (dotted linies), we see that anomaly discounting imuist be includ~ed to make the objective function reliably
select the same shape a humian observer perceives. This is potentially a critical factor in the practical application of
his "pproach because, as we see [in Figure 1, real imnageS nearly' always have signlificant anlomalous components.

Note that we only have local maxima of the area-encoding effectiveness appearing in Figure 1; for large radii, a
bet ter parse of tile scene would he in terms of two modhel hypotheses, one square and one squtiare-sh aped ring covering
tine rest of the imiage, ralAier than one square plus ranloin backgrouind. From this example, we see that high score
alone is; not an adleqiiate criterion: we must also require local miaxitnality w hen dealing with a partial description of

Ih-scene as op)posed to a global one. For this reason it, is important in practice to measure wvhethber a canididate
oiq ct passes, this inlaxinliaiitvtest. Wec have fouind that tisl- requirement is effectively en forced by reqtiiring a iminal
edget quality, and we nlow tiu.ni to the explikit form of tite edge terni usedl.

Edg,( Nmdel

We ;iklol thle definition [24, 13,6] of edge, pixels as iiaxinvi of t lie local Inmage dlerivative, an(l we classify edges
,e~rdiig to wlit her or not an b~gelounda~ry pixel Coliformis to t his defiiiit ion. Ili 1".e absenice of-a model, it would

;k.- I it per pixel to t-tico'ie this, ifortuat ion. If we now use tin' I-parameter riiod'-l that takes into account the(
' p qf 1il '1f limillrial eoie ixls the r'iost efficlint hhiihl'iiianluf [2' code i for t his iiiforniation wouldi require

I,

iii- jrI. iiiiar pxel. where, I is til li t of atch l"ioiiiidarv ill ixrs, ii is tIi- niuiiber of loinidary 1lixeis I hat

sr inixijic1 illth local image grajito ;m sito i I , it.
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hlurt, 3: A seopair of imges cointaininig a large building

Let iis ccns ider the stereo pair of imiages, sliowvii in Figuire 3 anid time rooftop outlined Ii Figure .1(a). Assmumi'l
t t I . orizonital., we plot inl Figure -1( b) I lie, value of I-; as a function of I lie assunmed(l isparit v beten t-ime ouI( (t linle

in! I li t tung and thle outline inl thle rig lit inac. W\e note I hat Fs presenits a shamrp peak for thle correct nat ch

0 5 0 1

4 ~F(Oispat)

(a) Wb c

i guire 4:. (a) The main i ooftop Ii thle left, image of Figure :3 ( b) FEs function Of thle
assumed disparity between left and right image. (c) Theoio hecntu

inl the right image using thle best disparity value.

Geomnetric Measures: Comnputing(.

h, licoorir n cost G lefi ned by Elt-( t(6) is a um(aS orc of quality of a set of Object hiypothIeses. T 'limiipleti way
t') hmnm(l dependenicies atiiomig objects is to require that there be no conflicts withii a particular set ofhlypot heses;
f-rti;dllv we write:

mu, u~ (it' I, n ml o (r ini, C minj. 1) ot lierwvist H Il

pm .. 11m10 f p1 m,) if m1e r' uillict . 0 t lrwise. 17
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w here (G, .x - log 1, in, ) is a ii o do quality iiieasure that increases a-s lhe shape degradles, and -isthle Arbitrary shape

Now we call deduct, a inecliaini for deciding whether or not the adldition of oiie more feature object is advan-
a~noiis or det rimient al to thle overall parse. If we write the overall score in tie fori

we Coneclud~e ti at wve Shou1ld accept only model inst ances with (Pi - GCi) > 0, siniice thlese are tlie only ones that

improve the likeliho'od ol the full scene, parse.

G' is thle cost of eiecodhiiig an object. In this work we take G, to be the stun of thle cost, of chali-enicoding the
boundary of the area plus1 a conist ant cost for introdtucing a new object; this gives a geometric cost

Gi + Li (17)
S
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Figuire 5: (a) Ratio of single-square to double-rectangle score as a function of noise variance
(.10, 20, 10). (b) Similar plot comparing the score of the square interpretation tro

lie "U" interpretation.

In Figure 5(a), we show how the length term (17), which gives preference to compact objects, influences the parse

when a split square is interpretedh alternately as a single compact square or two adjacent rectangles. The bottom

graph takes three limages, with noise variance 40, 20 and 10, and plots the ratios (two-rectangle score)/(square score)

as a funct ion of scale for fixed -y1. Note that increasing the scale in t his examplo amoutits to looking at a reduced

liage inl which fineo (if tails are no longer visible. The interesting point is tHie value of scale for which the scores are

cqeual i.e.. the, ratio is one. Thins we plot in the upper graphs the locuis of points where the ratio is unity as a function

of -f as well as Scale. lIi Figure 5(b), we carry out a similar plot for an limage of a square with a missing portion that
matkes it *1-haed eSee that the ratio ("U" score)/(square score) behaves so that the Sqtuare interpretation is

preferred at a large scale in the best image, and at a much lower scale in the noisier itmages.

Examples

\\hay' ;ipll ill priniciple of ohjective-functionl optimi:'atifan to operator-Hilt iatede shape ext ractioni anid to
aeit(,hee1ifh dX xrari one 'f g',nerir rartograpduir features such as buildings frouin aerial iagor\, b-thI described eVAwlie're
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in these Proceedings [10]. In the automjiated application, we use an hypothesis generator that carries out the following

steps: (1) extract linked edges; (2) find edges obeying geometric constraints (such its rectilinearity) that define
enclosed regions in the iniage; (3) compute the score of each enclosed area using the objective function; (4) find the
subset of nonconflicting shape candidates maximizing the total score.

The objective function plays a crucial role in this application because the hypothesis generator will always produce
conil it ing sets 4 candidates, and a means of (listiiiguishing among these is absolutely essential. In the remainder of
this section. we chvw how the output of tisif s.St ill depends on the choice of the scale parameter for a fixed shape
coefficient.

(a) (b) (c)

F[igu'" 6: (a) A complex building. (b) Interpretation in terms of a single polygon. (c) Inter-
pretation in terms of two polygons.

The automated systei produces two conflicting interpretations of the building in Figure 6(a): one in terms of
a single polygon enclosing both wings as in Figure 6(b) the other in terms of two polygons, one for each wing as

in Figure 6(c). At low scale the latter will be preferred because of its better fit to the photometric data, while at
high scale the former will dominate clue to its lower geometric cost. In the top row of Figure 7, we present the best
subset of candidate object models selected for various values of the scale. Note that at high scale, only objects that
conform best to the model are retained, regardless of their size. Conversely, at low scale, objects that only marginally
conform to the model are retained. In the bottom row of Figure 7, we show a similar example in which hypotheses
generaled by the system are ranked by the objective function as a function of the scale. The scale effectively acts as
a quality filter, determining the minimal characteristics of the features one wishes to accept.

[rom the exanlples shown in this Section, combined with the knowledge in Appendix C, we can begin to under-
.taild the iinportant qualitative properties of the scale parameter: s tunes the scale not of the physical size of the
object, but tiie scale of its quu Th. Objects with close fits to the strict model are selected first as we ramp the scale
down from a high value.

Conclusion

In this work. we have shown how an information theoretic approach to the feature extraction problen can be
formulated in such a way as to permit realistic computational techniques for the required probability estimates. Our
afpproach provides a firm theoretical basis for understanding complex feature extraction problems that require a
Ialan c," betweln phiotonetric evidence and geomnetric quality. Of course, the objective function approach given here
calnot by itself lead to good solut iois to the feature extraction problem, but must be teamed with a compi)etent

(hIoiian or autoinat ed) hypothesis generator. Applications of the objective function approach to anl iuteractive systmll
and to an aatoii at e hypothesis generator for extracting buildings from aerial imagery are described in [10. A mong
11w goals of f5iture work will be the extension of the range of our models and the treatment of complex semnanti

inl ternis of their information-theoreti- context.
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S(calfe G Scale 7 Scale 8

Fop0; rowv: an aerial image of subluirb~an bumngs parscd at scalcs 6, 7, and 8.
Bot tomi row: a similar irniage at scales G. 7, and 8.
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Appendix A: Derivation of the Objective Function

In this app, iidix, we prove lq. (1) given tie assunipt ions stated in the text.
We reiterate the definit ion of P as tie probability that, given the evidence

E = { ei i = ... n}, parsing the scene in terms of a particular set of model instances Al {=11; i = . . . }
is in fact correct.

Our assumptions can be stated mathematically as follows: Let 1, J, K denote sets of indices referring to model
instances and their corresponding bo'Iies of evidence. Then we can assume the following:

Assumption 1: Evidence has no bearing on any proposition that does not include knowledge of the geometric
location of the evidence. That is, when J l I = 0 and J n K = 0,

P(maeK lei) = P(mneK).

Assumption 2: Conditioning on a model proposition in conjunction with the evidence supporting it is the same
as conditioning on the model proposition alone; the evidence is irrelevant, since the conditional probability already
presumes complete validity of the proposition 7ni being conditioned upon. Thus for any J,

P(InjlmI,e,) = P(milin).

From theze assumptions and Bayes' theorem, we prove the following:

Corollary 1: When I f J = 0, for any set of propositions X with no indices in common with J,

P(mn, X lei)
P(XIej)

P(mI, X)
P(X)

= P(m; X) (18)

where the second line follows from Assumption 1.

Corollary 2: For an.y set of propositions X with no indices in common with J,

P(niJNmj,?IJJ) P(?ni, XIrni, ej)
P(Xlmj, ej)

P(mn, Xlmj)
P(Xlmj)

P(mi IX, 7nj) (19)

where the second line follows from Assumption 2.

Corollary 3: For any set of propositions X with no indices in common with I,

p(X, e) p(Xlel)p(el)

p(X)p(el), (20)

where the second line follows from Assumption 1.
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Corollary 4: [or anu- set of propositions X wvith no indices in commnoni withI I,

p(X, e inmi) =p(Xirni,,ei)p(ci 17111

= p(XlYII,)p(e i~nj) (21)

Nv here thle second line follows from Assumption 2.

T'he proof of E'q. (1) thus proceeds from applying the conditional probability decomposition formula p(a, bjc)=

1'(ajb.c')P(bje-), andI the corollaries listed:

1))(1110, 7711 . . -, rn,,1e1 . e,,)
fl, p(rnmimi, 7n. 1 , el, .,) (Recia-siveDecomnpositioni)
Hi p(MiJ1, ni-1, el,. ei-1, e, ) (Clorollaryl )

Hi -(ni 111i -mi , ei ~p) (C'orollary2).

I h fial te isto se ays'-uleagin to egrou)p( thees Remunoligo ljeldn

-plonin .  m) , p(Coln) fl

which~~ ~ .. isou fjil eslt ie )(i

Teflia st lep ei to iscuyss thle agipicton gofp the ine nvndence y a.ssitioi staedinApndxA

p 71, 17,) rip(eI 1711

sIn thes aollowig ag iscustheipiain:fteidpnec supin ttdi pedxA

When I nl.]

p~rn~e~mj) p(rn., mI, e I) pAm;, elr)

p(m7j)

p(rzjm)

-p(rnr lmj)p(e; I II)

where the, second l]ie follows fromn Assumption 2, Appendix A. By Bayes' rule,

p(e, Im;, mj) = p(ei, m I I nj)
P(771 IJ)

V6,' iitcrfiret this rt sult to mean that, when our assumptions are valid, the photometry of an object is not influenced
l'V other olbjects in the imiage. Our assumptions are therefore reasonable in1 itnages with moderate feature density to
lie- ext ent that f,;i tijres aire not occluded or shadowed by other features.

Appendix C: Computing Encoding Costs

455



luev olwigLelr [41, aes37-3i]we dlefine thle probilemi of comutin lg encodling costs of a body of
a1(~ III t eriii of ain encoder, whose input is thle set, of observations inI li form of a bit string, and whose output is

>11 I ied to a decoder, which uses this to produce the output.
Wh len thle out put of the decoder is identical to the input of the encoder, then the output of the encoder is called

;I Informnat ion preserving description of the input, denoted T~j(input), writ ten in the descrip/ice language Li of the
1 ele(Ir. Thew superscript j indicates that there may, in general, be mnore than one possible (description for a given

Thet '1w(iference betwveen the number of bits in a trivial dlescription and the dlescrip~tioni in terms of L is what
deine tin this paper -as the effectiveness of the description.

'hlm most efficient description, 'P*(input), is the mninial-leiigth informiation-preserving dlescription of the input
\%r~ienl ini the descriptive language of the decoder.

Miniial-Length Descriptionis of Ergodic Processes

'oisidler thle case when the input string is generated by a known ergodic p~rocess _T, that is,

input= ()

Mi, ir X ={xo. .r. },-I is drawn from a known unchanging dlistribution; the lenigthi of the vector, n, may also a
1random variable. Plinput) is therefore defined for every input striiig and the pair (F. X) constitutes a description

of ' input. When the function is not uniquely Invertible, i.e., when a given Input !ztring can be produced by many
diffIrtt X's. thle prob.lem of bow to choose a single X for a given input arises.

I['li inininial-length (lescription solution to the problem of chioosing a single description is based on the observation
li1t t is1 always possible to design an optimal (descriptive language Lj, for anI ergodic process T such that the shortest

d, -rpion of' thle input has the length

V-)(input)l -log,, P(inpiit )(22)
i[ 1 2]. Such a, descriptive language is optinmal In the sense t hat i i( otlier dest-i'ipt ive language can expect to

C'i 'a short er description than this, on the average." A consequence of this optinialityvi that there exists a
liiii'short est dhescript ion for every input strinig, ' because otherwise thlore wouild exist "wasted" descriptions, those

t;1ILInap to thle samne Input, that could have been used for other iiiputs but were not: hence, one could have (devised
:I iii''' 'litirir descriptive language that mnade use of these "wastedI" dlescript ions. Note, however, that there are

*dwi~ inany different optimal descriptive languages for a given ergodic process, but, they are equivalent to each
(1h r11 110sense tht there exist one-to-onle mappings betw'eu thiem, as a consequieiice of thle uniqueness of the

Lxim ipie 1: Iiidepemideiit Symibols

I 1 Uirp,'# Of t his example is to illustrate the design of an optimal descriptive lan~guage for input strings
:1,4syimbols indhependently drawn from a known (list ributt cii. lII this examiple, thle input string is written

.x, .wI ere xi is one of the three symbols in the set X ={la, b. r}, independently dIrawn from a distribution
-11 '1tit a occurs withI probability 0.5, and( b and c each occur wvit Ii probabili ty 0.25. They are encoded in a

>1 rwi ', rwa oir fashion for input to the encoder as, say, a ='00,' b ='0J1,' anid c =10;' thusisa string of ii symbols will
1) C nhIts as input. Iromn Eq. (22) above, we can design a dlescripitive lan'ua, LI such that, the description

I') 1 (ipt) - log, PI {Xo, xI .... X711

- -log., J7J (Xi)

i=

i-r sor, (list l,1,111 ions, one( would fred to eyi,:oue all infinitely long input st ring in irder to ac'hieve ,xac,'V this elfticwn,'. A more
pr I ' inc nut is ti hat we ca.,n ac:hieve an efficiency as (--lose io thiis opt inrinini as we like by elcii'niig si ffi'ciii I y large chuin ks oif t fe

mui llg at a li ne.
"Iohi is liot to say' that no' ,,ther dIesc riptive languiag,' cain ito) bettier on any giveni finite input, siring, ut onilY ihiat no othefir language

anti (]f, 1titfr i t the average, or. c-'qiiivalu'ntly, ino oifr lgulage- :All (ift) ber for arfbinraz'ilv long input striings.
In u~It- ra-u ''fr "crv ninui string'' uised lfore arid elsewlnuif is shit for '',1 T'e'r' inputi String thfat has 4iu-liojrfah~
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Since - lo. P) =I and - log., I'( ) -lo-g, P( c) -z2, a code devoting exactly one lbjt for syimiol i aind t wo
bits each for 6 aind c, such as; tithe instantancous code (I =',' b =10,' and c =11,' is an optliiial codle. So, for example,
,lie Iti-syibol in put st iIn g a a buebabacabca a would be encoded as '001011111000100110101100,' requniring 24 bits
(1.5 bits per symbol ) Instecad of the 32 hits that a fixed-length input code (2 bits per symbol ) Wouldl reqluire. In
general, - log-, P'( x-) is not an integer, so wve miust eincode several symbols at once (called lblock encodlinig) in order
to achieve solnet hilng close to the op~timal encoding length; however, thle principle remains the same.

III tile conluput at ion of edge, and area encoding elfectivenesses of Eq. (12) and Eq. (10), we dlirectly us Eq. (2:3) to
estlimate thle cost ot encoding whet her or not boundary pixels satisfy our edge criterion andl whether or not iiiterior
pixels are outliers. Similarly, wve mnodel the deviations fromt the planar fit of the Interior area photometry by a normal
dlist ribut ion .V(0. T 2). These deviations a~c rounded and represented within the histogram with a precision of I.
Assuiiung t ha t they are drawni frorii the normial 4 isti b ution , the probability of an ejement with di(evia tion Vi thlen

P(Ir) I exp x (Ix

2tJ 2m'- 2aj

asu ig that aT > 1. The total cost of encoding the it pixels within the gaussian peak thenis

(c s log exp I~~
v12-wa 2  [ "I

lug 2-r + I,- lrg 2o

- 71 1

lt is easy to see that (is mo11iiimzed when a- Is equal to the( variance 1' 2'/7 of the deviatilons, and is ,Jven 1w:

C> =:( 1)log,(2-,c) +log a)

Alt bough thle firs t order sta istics of ant inlput, st ring (the probab~ility of occurrence of aI symbhol) catu res' Aine
aspect of the struct inr of thle iiipuit, and in'led, captures it entirely when the symbols are iiidel)eil1(leilt al Id it icallv
(list ribu tedl as iin thIiis exai ple. t11 lixt, exaiiil)le Illust rates that much more is needed.

Example 2: Cor-relatedl Symibols

(lonsider a simuilar case to the one above where thle three symbols a, b, and c also occur with probabhility 0 .5, 0.25,
ad~ 0.25, but such that they only occur ats sequences aabc or bcaa, wvith equal probability. Clearly, we need omilv I
bit to (list ingu isli one sequence from the ot her, so t hat, an optimal descriptive language L, would be: a abc='0' ail(l
braa='1.' So, for example. the( Iiiput string aa1bccbaacbaaaabc Nvould be encoded as '0110,' requiring 4 bits.- (0.25 bits
per symbol) Instead of the 21 bits requtiredl for T), (1.5 bits per symnbol) or the 32 bits (2 hits p~er symbol) used as
input to thle eiicoder.

'fTe above is anl exaniple of the more general case of a Markov Random Process (MIRP), where P(xi) depeiids
Onl { Xi-, Xz2. Xiru, but Is Ind~ependemnt of the ot her input symbols. The optimal descriptive Ianu i ag-e for a,
M RP is no ]In em a st raighitforwardl mappiiig of each symbol (or group of symbols) to a unique bit string. Th'le
technical details are not. Important here, but, the basic idea is that the coding scheme for xi becomles a funct ion of
fXv.., Xi2.xj-,,,). Noinet heless, the code Is still unique andh the number of bits requiredl to encode xci is still
- lo 2 P(Xi ), bu't now "( Xi) (lepeildSls on .r - 1, Xi - 2, Xj..,, I instead of being fixed a priori. Thus, one( encodes,
lie first rnosymnbols in thle straighltforward fashion of Example 1 to start things off, then one( encodes the( next symbol

using the code- (hefi ie1 by thiese in symbols, thlen the next symbol using the code (defined by the previous ?n symbols,
and so onl. T]huts, the( (decodler must know the( encoding schemne for, or, equivaletntly, the(. probability dist ribuit ion of.
(eh possible conmbi nat ion of Io symbols. Thiis makes the decoder more compilex, of course, liiit alIlows for tie( op timll i
einCodling of M RP's,

Ile-re N&w s- th at Iiighier order statistics ( thle conditional p~rob~ability of occurrence of alit in put symbol, givenI a
suihs-t, of the( others) allowed ts to captuire more of the struictuire of the( input than simple first order statist ics, at
],least for MIH Ps.

Examiiple 3: Enceodiing i mnagw s usinmg a Laplacian Pyianjidh
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A's Iiote~ III t it, prevls txviiiple, )t, kcl ('xI)IOit 10p'idi~e to 'licteritIN eiicode dat a. Ili il( (case of" 1111ii s

Bulrt -tal. iay'. 'r oj-''d ;I ahlta C0flessITSi1 stclieiiie that aclevcs th la elb'ct .1T enlcode all liage, pixel-to-pixel

-m'lr' tolls, ;ir. til~t Itlli'e lvsth actii a low-pass, filtered copy of' the imaeroml tite limage Itself. 'Ilie nect
r,',iilt is that th ih Lt a is collpr''ssed. sinice lite difI'eretice, or error, imiage has low variance and( entropy, arid tiec

l-aslilt, 'Ic il11ig' lway be represeitted at reduced sariiple btiisitv. Thim, steps :ire thlen repieatedf to reciir.,avefv
mid '1 tvalb lw , ach Low- pass ilage. I tera tli 511the fsrooes. ss eiratess a pyvramiid data structunre.

Ini !his j'vr~lliI.d the upbor levels, whlich are very cheiapi to enicodle, describe litie low frequencies, while the lowver

levisk, which aret lure, expen11sive. represenit the ilgh f'reiprencies. Using this schiemie t.takes about 2 bit~s per pixel
to1 'u e ani'-l Hmwwt large-scale st ructuires typical of aeia;l imlages. W\e canl also reconstruict an

bi:g'1 li'Ill' 'tIhe' upper levels of the( pyramid whlil'' i-norin' the( lowe r onesz. 'I'lie resuiling iin~age can he onicosled

iligfar !zss I hall 9 bit., per pixel, hut lacks I tle high Frequoi-cies of t lie orinalizl 'iwge ind appears to he a bilirresi
vt "ol of, it. I lovsr, it, wt, are oily Interested ]in large scns t ructutres Ii liet Imiage, thre blurred irriag miav. hzove
aIll thle ioll";i lo we ltred. Consider once againl tite examiple' of a shiingledl roof. 'FTe general shiape of the( roof

mi ay he adeui at ely dlescribhed ili t lit- low firequency intiageo whl e thle shingles are iiot, since they correspond to higher
!r'irit'lcies. InI a s ysteoll like ours, we art, interested iii thre global description of thne roof hint, niot of tile Inidividulal
sinlgles': ti, reiilormiat ionl encoded intli ll( ow frequency iniage is thlerefore perfect iy adequate for our puirpose.

Ill this context, wve canl better undi~erst and the role of the scuilc pitiounict'7 s initrodunced Ii the main text. Ini tie(
a~~~sel~~~~~ce~ ofai'lltl rfrotiniia -i mg aib rcd( sig .S2 bits per pixel. Increasing S alirollilts

to decscribinag tie( imiage using m'we iao fewer hits of itFOrniatioll, whlich,. in the pyraiiid encoding schemec, call be doneo
1,% ,lairt ilg lhe lower level(,s of tie( jyrailid arid ignoring the igh- frequencies inl th linage. The scale cain thIerefore

I-r-,arsld ais a mieasuire of thle miaximnal ( Nvquist ) frequency of interest ini liet imiage, the higher frequencies bein
rej_ zrled as, irrolevitt noise. Thne relevanit dlata ill tw lieniage, cani be faithlfuilly represenIted by Sampilling tine signal ait
1%%ce this f' lil'

Appendix D: Internal Parameter Encoding Cost

I a;ihl' Iiii - ca;ll have ;it arilt rarv set of interred parameters {0j, stich as tlie three paranieters nleedhed to specify

iic, il,)- rI p((iu 0).

:h'v.is ~h'iIli referelicis [22,251, log 1)(ci mi ) estimated by fiiidii'' tie( optimal 0 arid using

log /'(( i I uu2) log 1(10 p(cj oIl, 0)

k
uix lgp( ci iii, 0) - - log N. (23)

ii 2

Ir'A- is Ili, lilil)'r of paramieters ii {0} andl 1 is the total nlirniber of' data satlples used to evaluate this model.

I Ill. i )III, obh'ct i' functions, we need( riot, explicitly dleal wvithI the internal paramieters {00i at h oaihi
irirIois Ilorllallv so sliaal relative to thle other terris that, we can clilt this term Ii practice. For fuirtheisr

.0ils. twe rfs'Ir tith reader to the( original literature.
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ON RECOGNIZING AND POSITIONING CURVED 3D OBJECTS
FROM IMAGE CONTOURS

Jean Ponce and David J. Kriegman

Robotics Laboratory
Department of Computer Science
Stanford University, CA 94305

ABSTRACT

A new approach is presented for explicitly relating the shape of image contours to models of curved
three-dimensional objects. This relationship is used for object recognition and positioning. Object mod-
els consist of collections of algebraic surface patches and their intersection curves; this includes nearly all
representations used in computer aided design and computer vision. The image contours considered are
the projections of surface discontinuities and occluding contours. Elimination theory provides a method for
constructing the implicit equation of the image contours of an object observed under orthographic or per-
spective projection. This equation is parameterized by the object's position and orientation with respect to
the observer. Determining these parameters is reduced to a fitting problem between the theoretical contour
and the observed data points. The proposed approach readily extends to parameterized models. It has been
implemented for a simple world composed of tori of different sizes and successfully tested on several real
images. Other new applications of elimination theory to computer vision and graphics are briefly discussed.

1. INTRODUCTION

This paper addresses the recognition and positioning of curved three-dimensional objects from their
monocular image contours under the following assumptions: Precise geometric models of the observed objects
(and/or object classes) are available. The data consists of imperfect edge-maps; in particular, knowledge of
high level features such as junctions or corners is not required. No additional information such as shading,
surface normals, or range is available.

Solving this problem is important for several reasons: The world around us is not piecewise planar, but
composed of curved objects. People can, after all, recognize familiar (and not so familiar) objects from line
drawings, and intelligent robots should be able to mimic this ability. From a more pragmatic point of view,
databases of CAD models are now available for a wide range of manufactured objects; opportunities are bet-
ter than ever for computer vision systems to exploit these models in industrial environments. Furthermore,
recognizing three-dimensional curved objects from their contours remains one of the most challenging prob-
lems in computer vision, and, as noted by Besl: "No one has yet demonstrated a solution to the occluding
curve to surface (or volume) model matching problem for arbitrary objects with smooth surfaces.." [4].

Why is this so difficult? Solving this problem involves comparing the shape of the two-dimensional
surfaces that bound the observed objects to the one-dimensional curves that form their image contours. For
polyhedra, this is relatively easy, since the contour generators (edges) of these objects are view-independent.
Indeed, some success in recognizing and positioning polyhedra has been achieved, not only from range data
[20,23], but also from image contours [26,28,36,52]. The situation is quite different for curved objects, whose
contour generators move and deform over the surface according to the observer's position. Very little success
has been obtained, even when additional information, such as range, is available (7,18,41]. Acronym [9]
probably remains the only working vision system to have successfully recognized three-dimensional curved
objects from their image contours. Despite its achievements, even Acronym has severe limitations, such
as a limited scope (the primitives are essentially cylinders and cones), and a limited range of admissible
viewing directions (essentially overhead views). Other model-based approaches rely on view-independent,
features, such as vertices, or global shape descriptors such as moments. See [5] for a review of many of these
approaches.

To make real progress, it is necessary to understand the geometry of image contours and to explicitly relate
their shape to the shape of the observed objects and to the viewing parameters. Most of the related research
is in the area of line-drawing interpretation and shape from contour. Line-drawing interpretation algorithms
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attempt to label image curves as different types of occluding contours and surface discontinuities. Although
rigorous schemes have been developed for labelling the line-drawings of objects with planar [14,27,52] and
even curved [38] faces, these approaches rely on perfect segmentations and are too brittle to cope with real-
world images. Shape from contour approaches attempt to determine constraints on tlree-dimensional scene
structure based oil different assumptions about, shape. Very few general results are available [32], and shape
froin contour met hods usually rely on heuristics, such as smoothness [31 or compactness (8] measures, or are
only applicable for certain object shapes such as planar [31,43] or curved [51,53] skewed symmetries, solids
of revolution [40]. or generalized cylinders [39,44,45,50].

Figure 1. A real image of three tori. The recognized models are overlaid in the 31) position and orientation found
by the algorithm described in section 5. The data used for recognition consists of an imperfect edge-map.

This paper proposes a new approach for explicitly relating the shape of image contours to models of
curved three-dimensional objects. Object models consist of collections of algebraic surface patches and their
intersection curves; this includes nearly all representations used in computer aided design and computer
vision, such as CSG models, generalized cylinders, and superquadrics [35]. The image contours considered
are the projections of surface discontinuities and occluding contours. Elimination th,,ory [16,22,37,48,49]
provides a method for constructing the implicit equation of the image contours of an object observed under
orthographic, weak perspective, or perspective projection. This equation is parameterized by the position
and orientation of the object with respect to the ohserver. Determining these parameters is reduced to
a fitting problem between the theoretical contour and the observed data points. Two measures of fit are
proposed: The implicit equation can be directly fitted to the data points. Alternatively, elimination theory
can be used to construct a closed-form expression for the distance between an image point and the theoretical
contour. Position and orientation are then determined by minimizing the average distance over the data
points. The proposed approach readily extends to parameterized models, whose comtour equation simply
includes additional shape parameters. A simple recognition and positioning systeiri has been implemented
for a world composed of tori of different sizes and flavors, and it has been successfully tested on several real
images of objects such as plastic rings, doughnuts, and bagels (figures 1,3,4).

2. ELIMINATION, PARAMETRIC PATCHES, AND IMPLICITIZATION

Elimination theory [16,22,37,48,49] is a classical branch of mathematics which has been "rediscovered"
recently in the context of computer graphics [30], computer aided design [22,49], robot inverse kinematics
[10], and robot, inotion planning [12]. Curiously, it does not seem to have been applied to computer vision yet.,
although relatred algebraic approaches have been used for recognition of polyhedra [15,52]. it this section,
we briefly introduce elimination theory, then define parametric surface patches, and, following [22,49], show
how to construct their implicit equations and represent their intersection curves using elimination.

The basic idea of elimination theory is that it is possible to express a necessary and sufficient condition
for a system of algebraic equations to have common roots as the vanishing of a single polynomial called their
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resultant. The original variables are elininated, and do not appear in the resultant, which is a polynomial
in the coefficients of the original equations. Sylvester resultants [48] can be readily used to eliminate one
variable between two polynomials. Elimination of n - I variables between n polynomials can be achieved by
eliminating these variables one by one with Sylvester resultants. Other elimination methods are available,
and are sometimes more efficient: Bezout and Caylay resultants [16,48], Gr6bner bases [10], multivariate
resultants and resolvants [12,37]. In this paper, we mostly consider elimination theory as a "black box", and
suppose that it is always possible to eliminate any number of variables between given equations. Limitations
of the method and efficiency considerations are briefly discussed in the conclusion.

In the rest of the paper, objects are modelled by collections of parametric patches and their intersection
curves. A parametric patch in standard position is defined by rational splines, i.e.,

X(S, t) = 1" J , silixij, (s,t) E x J, (1)
E dis'V
ij

where the dij are scalar coefficients, and the xij are vectors of coefficients. Bicubic patches are the most
prominent type of surfaces in computer aided geometric design [19,49], and are given by the above equation
with a maximum degree of 3 for s and t. As suggested in [22,49], it is possible to compute an implicit
algebraic equation for any parametric rational patch. By multiplying the coordinates (x, y, z) of x by their
common denominator, a system of three polynomial equations in s and t is obtained:

E(dijx - xjs'1 = 0, (diy - yij)stJ = 0, E(dijz - zii)s't'= 0, (2)
i~j i~j itj

where (xij, yij, zij) are the coordinates of xij. By eliminating s and t between these three equations, a single
polynomial equation in x, y, and z is obtained:

SaijkxiyJz k = 0, (3)
i,j,k

which is the implicit equation of the parametric patch. Moreover, if y(u,v) is another parametric patch,
then the intersection curves of the two patches can be obtained by computing the implicit equation of y,
substituting the parametric coordinates of x in this equation, and multiplying by the denominators. The
intersection curves are then given by:

E b,,s't'= 0 (4)
ij

which is an implicit equation of these curves in the parameter space of x; bij is a polynomial in the coefficients
of x and y.

3. CONTOUR EQUATION

Image contours are generated from first order discontinuities in intensity. In turn these discontinuities are
generically formed by an object surface normal discontinuity (a crease, edge or corner), depth discontinuity
(occluding contours or limbs), reflectivity discontinuity (pigmentation or material changes), and lighting
discontinuities (shadows) [6]. Below we show how to obtain implicit equations for the image contours formed
by the projections of edges and occluding contours.

3.1 PROJECTION GEOMETRY

Different projection models are possible: orthography, weak perspective, perspective. Pure orthography
is not very useful without a priori knowledge of the position of the camera, so we concentrate on weak
perspective and perspective in the rest of the paper.

Let R be the rotation that maps the camera coordinate frame onto the world coordinate frame. and let
t be the vector joining the origin of the camera frame to the origin of the world frame. The patch x is then
given in the camera coordinate system by:

*= Rx + t. (5)
Consider a pin-hole camera model (figure 2.a) with a coordinate system (o, i, j, k) attached to the camera

such that the origin o is at the center of the image plane, (i,j) is a basis of that plane, and the focal point f
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Figure 2. Projection geometry: (a). The pin-hole camera model. (b). Contour generators: occluding contours
and edges.

is on the positive k axis, at a distance f from the origin. From now on, a point in the image plane is denoted
by :i, with image coordinates (1, ). The image coordinates of a point on a patch in perspective projection
are given by:

f - __f__
(,)= (-~ f f_ ). (6)

In the case of weak perspective projection (also called scaled orthography), all points on the same object
are considered to have the same nominal depth, io, so the above equation becomes:

(i, W) = (c, C0), (7)
where the constant c is given by f/(f - io).

Notice that in both cases, the projection is completely determined by six parameters: The rotation R
can be parameterized by three angles (e.g., Euler angles), and its coefficients can be written as low degree
polynomials in the cosines and sines of these angles. The translation t is given by its three coordinates.
These six parameters completely determine the perspective projection. In the case of weak perspective, we
have added an additional parameter c. Notice however that the third component of t is not used anymore,
so the weak perspective projection can also be parameterized by six independent parameters. In the sequel,
the viewing parameters will be denoted in both cases by p = (PI, ..,P 6 )t. It is trivial that equations 6 and 7
can both be rewritten after substituting equations 5 and 1 and multiplying by the appropriate denominators
as:

P1(s,t, i,p) = 0, P2(s,t, 9,p) = 0, (8)
where P and P 2 are polynomials in s, t, 1, g, in the translation components of p, and in the cosines and
sines of the rotation components of p.

3.2 CONTOUR GENERATORS

The following two types of contour generators are considered: edges, wh .,- surface normal is dis-
continuous, and occluding contours, where the viewing direction is tangent to ,' face (figure 2.b). The
image contours are the projections of these two types of generators. In this sectioii, .plicit equations for the
contour generators in the parameter space of a patch are obtained. Edges on a surface are view-independent
contour generators. A given parametric patch may, a priori, have cusps where the surface normal is discon-
tinuous [2]. However, in the context of CAD models, patches are usually built so that they do not have cusps
[191, and the only edges are the intersection curves between different parametric patches. These curves are
given by eq. 4, independently from the rigid transformation applied to the observed object.

Occluding contours are more complex, since they depend on the viewing direction. Trivially, the normal
to, rvtirnaI parametric patch is itself a parametric patch, given by:

fi(s t) = S (S't) X (9)
where "x" denotes the cross-product. If v is the viewing direction, i.e., the lirection of the line joining a
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point on the surface to the eye, occluding contours are given by:

fi. v = 0. (10)

Under weak perspective, the viewing direction is a constant v = (0,0, 1)t. Under perspective, the viewing
direction depends on the point observed, and is given by v = i-f. By multiplying the edge or the occluding
contour equation by the appropriate denominators, we obtain one more polynomial equation:

C(s,t, i, p, p) =0 (11)

3.3 ELIMINATION

We can finally regroup the projection equations (eq. 8) and the contour equation (eq. 11) into a system
of three equations:

{ C(s,t, 1, ,p) = 0

P(s,t, i,p) 0 (12)
P2 (s,t,D,p) =0

By eliminating s and t between these three equations, we finally obtain an expression of the form:
F (., .0, p) = 0, (13)

which is the implicit equation of the contours in the image. This equation is a polynomial in i and .V, in the
translation parameters, and in the cosines and sines of the rotation parameters.

4. DETERMINING PARAMETERS FROM IMAGE DATA

Our goal is to find the set of parameters, pa which best describes the location of the object from a
monocular image. A measure of the error of fit for a particular set of parameter values and the image data
must be minimized. The function F, obtained in eq. 13, defines an image curve and is zero for all contour
points. Without any error in the edgels' location due to noise, edge detector bias, or precision, F would be
zero. Computing the viewing parameters can therefore be reduced to the least squares problem of minimizing

SFr2(r, "Y, p) (14)

with respect to p, where the (i, i) are the observed contour points. However, the function F is not a
measure of the distance between the theoretical contour and the data points, so direct minimization of the
above sum can introduce some bias.

4.1 EXACT DISTANCE FUNCTION

Elimination can once again be used to obtain a closed-form expression of the distance between a point
and a contour. Remember that the distance between a point ii and a curve is defined as the minimum of
the distance between this point and the curve points; this minimum is reached at a point x on the curve
where the curve's normal and the line joining * and i are aligned, The distance is therefore given by the
following system of equations:

d2 (, _ )2 2( ) =0
F( , ,p) -0 (15)

- OF - - 8F ,, -),
p +, j- ) -L E , P ) -( ) 2 y) (j , P ) = 0

This time, th variables 1 and D are eliminated between these three equations leading to a new equation:

n(d,.ii, i, p) = 0, (16)
where D is a polynomial in the distance, d, and the parameters pi. For a given transformation p, the distance
d is the minimum positive root of this polynomial, and can be found by some numerical root-finding algorithm
[46]. Also, note that since d is given by an implicit equation, it is possible to compute its derivatives with
respect to the viewing parameters, which is useful for numerical minimization.

4.2 APPROXIMATE DISTANCE FUNCTION

Computing the exact distance function is expensive, since it involves the elimination of two variables
between t:' - equations, two of which are of high degree, followed by numerical root finding. On the other
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Figure 3. The result of minimizing the mean square error of the implicit contour equation: (a). The contours at
each iteration of the minimization are shown overlaid on the edge points used in the minimization; the Canny edgels
are drawn as little circles. (b). The resilt of recognition for the white torus.

hand, using only the function F to estimate the goodness of fit between data points and the computed
silhouette can be biased. Because of this, we now propose another method to estimate the goodness of fit
once the optimal parameters have been computed. As noticed before, the minimum distance between ii and
the contour is reached at a contour point i where the contour's normal is aligned with the line joining ki
and k. If we suppose that the data points are a close fit to the curve, then the normal to the contour found
in the image at fci is approximately the normal to the corresponding theoretical contour. A reasonable edge
detector [13] returns not only edgel location to subpixel accuracy but edgel direction as well. Let ix be the
normal to the edgel direction at xi, the minimum distance is reached at a point k = *i + Afii such that
F(., 9, p) = 0. This can be rewritten as an equation in A:

F(ij + A ii,, , + A iy,,p) = 0. (17)
Since a good initial estimate of A is available from fitting (i.e. A = 0), a Newton-Raphson algorithm is

used to find the first zero of this equation, and the distance is readily obtained. This method has been used
in the experiments reported in the next section.

5. IMPLEMENTATION AND RESULTS

To demonstrate the feasibility of our approach, we chose to implement a simple recognition algorithm for
a limited world made of tori of different sizes and flavors (five plastic rings from a baby's toy, a doughnut, and
a bagel) observed under weak perspective projection. Why such a choice? Tori are obtained by sweeping a
circle of radius r along another circle of radius R; they are at the same time simple enough (smooth surfaces
of revolution that can be parameterized by a single biquadratic parametric patch) and complicated enough
(non-convex surfaces with non-planar occluding contours) to qualify as initial test objects. In addition, tori
can be characterized under weak perspective projection by a single shape parameter R/r, which allowed us
to use a very simple matching algorithm, and yet to experiment with parameterized recognition.

5.1 IMPLEMENTATION

The approach described in this paper has been implemented as a three-step process. Implicit equations
for the image contours of the models are first computed off-line; they are then fitted on-line to the measured
contour points; finally models are recognized by comparing the errors of fit obtained. The derivation of the
contour equation in the case of tori is detailed in [35]. Using the fact that a torus is a surface of revolution, it
is possible to replace the elimination, as described in section 3.3, by the elimination of a single variable. This
elimination step is done on a Symbolics lisp machine by using the Reduce implementation of the resultant of
two polynomials. Note that several other algebraic manipulation systems are commercially available (e.g.,
Macsyma, Mathematica), and that they all offer some version of the resultant of two polynomials. An imple-
mentation of the Canny edge detector [13] is used to find contours. Because of shadows, surface markings,
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and irregularities in the surface and background, extraneous contours are found. They are eliminated by
hand, Pnd the remaining edgels are manually grouped into clusters corresponding to single tori. Better,
automated segmentation is left for future work. A variety of numerical algorithms are needed for fitting the
implicit contour equation to the data points and measuring the error of fit: we use the Levenberg-Marquardt
algorithm to solve the nonlinear least squares minimization of eq. 14, and the safe Newton-Raphson algo-
rithm to solve eq. 17 [46]. The Levenberg-Marquardt algorithm only finds a local minimum and requires a
set of initial conditions. From a set of contours, global measures, such as center of gravity and moments
along with extrema in the principal directions, are used to automatically determine a reasonable set of initial
conditions. From a catalog of tori, it is possible to recognize which torus (or tori) is in an image. Two trivial
approaches have been implemented: For a set of data points, try to fit all the possible models in the catalog;
the recognized object is the model minimizing the image distance. Alternatively, the distinguishing feature
of different tori is the ratio R/r. Parameterized recognition has been implemented, for a single "generic
torus" model that contains this additional parameter. The parameterized torus is fit to the edges, and the
resulting ratio is compared ko thube in the catalog.

5.2 RESULTS

The models used in our first set of experiments are five plastic rings, that will he referred to by their
colors: red (R), white (W), blue (B), orange (0), and yellow (Y), even though they are really distinguished
in our black and white images by their R/r ratios: 2.31, 2.44, 2.62, 2.67, and 2.83.

........... :: .. ........:::

.. ... . . .. : . . . . . ..... . ,

a. b.

Figure 4. More recognition results: (a). Another image of three tori and the results of recognition. In this figure
as in figures 1, 3, the recognized models are drawn as transparent objects without hidden-line removal (e.g., the lower
portion of the yellow torus should actually be hidden in this view). (b). Generic recognition and positioning in the
context of soft goodies: bagel vs. doughnut.

Figure 3.a shows the successive steps of the fitting of the W model for an image of that torus. Note
that the five viewing parameters vary simultaneously. In our recognition tests, all five models are fitted,
and the correct model (W) is recognized (figure 3). Figures 1 and 4.a show more complicated examples,
with three different tori and occlusion. Again, the correct tori are recognized. The total computing times
on a Symbolics lisp machine for these three examples are respectively 15, 33, and 32 seconds. Table L.a
summarizes the errors of fit obtained. Note that the average distance between the theoretical contours and
the data points varies between 0.57 and 1.08 pixel for the recognized models.

Generic recognition, where the ratio R/r is also determined, has been performed for the three images.
Visually, the results appear similar to those obtained by the first method, so their drawings are omitted.
Quantitative results are summarized in table 1.b. The precision is slightly better using this method in the
examples of figures 1 and 3, and slightly worse in the case of figure 4.a. Even though six parameters instead
of five are estimated, this method is faster than the first one, because only one liodel is fitted to each set of
data. The total computing times for our three examples are respectively 5, 14, and 15 seconds.

Generic recognition has been applied to distinguish a bagel from a doughnut (figure 4.a). These objects are
rathor poorly approximated by tori due to bumps, bruises, and other irregularities. Ilowever, the algorithm
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performs successfully and recognizes them, with an average error of about 1.5 pixel for both objects. The
computing time is 10 seconds in this case.

Scene Torus R W B 0 Y Scene Torus Th. R/i Exp. R/r Dist.
0 4.29 2.96 1.12 0.72 0.95 0 2.67 2.71 0.29

Fig. I Y 4.70 3.87 2.16 1.69 0.57 Fig. 1 Y 2.83 2.83 028
W 1.39 0.84 1.56 1.85 3.15 W 2.44 2.40 0.83

Fig. 3 W 2.67 1.08 1.90 2.49 4.32 Fig. 3 W 2.44 2.48 0.57
B 2.38 1.44 0.97 0.98 1.73 B 2.62 2.53 1.54

Fig. 4 Y 4.47 3.57 2.21 1.98 1.01 1 Fig. 4 Y 2.83 2.92 0.82
1R .0 .02 1.50 3.04 3.59 4.75 _ R 2.31 2.37 1.18

a. b.
Table 1. (a). Summary of the recognition results. The leftmost column is the scene cousiderd, the second column
indicates which torus is observed in the scene, and the other columns give the average distances between the edge
points and the model contours. The underlined distance in each row is the smallest distance, corresponding to the
recognized model. (b). Summary of the results of generic recognition. The theoretical ratio, experimental ratio, and
average image distance (ii pixels) are given for the tori recognized in the different scenes.

6. CONCLUSIONS AND FUTURE RESEARCH

Elimination theory has been used to determine the implicit equation of the image contours of parametric
patches. In turn, this equation has been used in an implemented algorithm for recognizing and positioning
parameterized three-dimensional curved objects from their image contours. Although it has proven reliable
and computationally efficient., the current implementation is limited to the world of tori, edge groups are
hand-selected, and the matching algorithm is trivial. As shown in [35], the scope of the method proposed in
this paper extends to most representations used in computer aided geometric design and computer vision. In
practice, computing the implicit equation of the contours requires the elimination of two variables between
three equations for general parametric patches, and the elimination of three variables between four equations
for algebraic surfaces defined implicitly. This can, in principle, be done by recursive elimination of a single
variable, but at the cost of adding extraneous terms. In addition, the degree of the resulting equations
quickly becomes unwieldy [22], Part of the problem is that elimination theory has mainly been considered
a "black box" in this paper. To handle complex object classes as modelled in [34], it will be necessary to
investigate other elimination techniques, such as resolvants [37] and multivariate resultants [12]. We have
not really addressed the issue of control of the recognition process, and this is why we have had to rely
on hand segmentation and very simple recognition strategies in our implementation. Future research will
be dedicated to designing segmentation and recognition strategies suited to our positioning approach, in
the same way a.s interpretation trees have been used in conjunction with rigidity constraints in the case of
polyhedra [20,23,26,28,36,52].

Let us conclude by sketching a few other new applications of elimination theory to computer vision
and graphics that we are currently investigating. Superquadrics are a popular representation for three-
dimensional objects in computer graphics [2] and computer vision [1,24,42]. Segmentation of range images
which contain superquadrics involves fitting the superquadrics parameters to the range data. As noted
recently in [24], no good distance measure is known. Elimination can be used to solve that problem, as
previously proposed by Buchberger [10], who was advocating the use of Grbbner bases for computing the
distance between two superquadrics.

A fundamental problem in computer graphics is the generation of line-drawings of CAD models, with
or without hidden-line removal. It is not possible to directly use the implicit, equations of contours for
that purpose. Ilowever, the contours can be drawn by finding the extremal and singular points, and using
numerical marching techniques between them. This has been done in CAl) systems for building trimmed
surface patches [19], but not, as far as we know, for actually drawing solid mo(lels. The singular points are
given by the following set of equations:

f ) = 0, = 0, -( 0, (18)
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and they can be found by eliminating 1 and between these equations. Moreover, the visibility of the
contours only changes at cusps and T-junctions, which are exactly the singular points, so hidden lines can
be removed for no additional cost.

Aspect graphs, introduced a decade ago by Koenderink and Van Doorn [33], are back in fashion (see, for
example, [21,25,29]). Visual events have been described for smooth objects [11,47], but very few attempts
have been made at actually computing the aspect graphs of these objects [17]. Once again, the aspects can
be characterizcd by the singular points of the contours. Approximate aspect graphs can then be found by
tessellating the Gaussian sphere and grouping identical aspects. Future research will be concerned with the
construction of exact, aspect graphs by similar methods.
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Abstract

We will describe the research activities in the Exploratory Computer Vision Group at the IBM T. J. Watson Research
Center. The current research is summarized and the future directions are outlined.
The main focus of the ongoing work is the development of an experimental vision system for recognition of 3D objects.
A homogeneous architecture is proposed that supports recognition of simple partial features to complex feature
assemblies and 3D objects. At all levels of recognition, the same techniques are used, namely, parameter transforms
and recognition networks. Parameter transforms generate hypotheses in recognition networks, motivated by connec-
tionist systems, which fuse evidence from various sources and insure global consistency. Within this framework, we
have implemented a system which extracts surface patches and surface intersection curves from a depth map. These
reconstructed features index into an object database to find consistent interpretations.

Introduction
Work at the Exploratory Computer Vision Group has centered around a system intended to recognize complex 3D
objects in cluttered environments. To support this wxrk, we have proposed a
homogeneous framework for recognition. Objet Space

Figure I represents an overview of our approach. The recognition task is structured
as a hierarchy of layered and concurrent parameter transforms [1] for feature
extraction. Features that are structurally independent, for instance, planes and
linear 3D edges, form concurrent paths of recognition. Features that depend upon
other lower-level features, for instance, boxes and planar patches, are placed in
hierarchical layers within a path. Parameter transforms generate votes for
hypotheses in parameter spaces. Evidence from various sources is fused in a

manner motivated by work in connectionist vision systems [6,9]. The result is a
highly parallel, highly modular architecture using a uniform control structure.

The most important aspect of our approach is the homogeneity that allows different
feature types (such as, surfaces and curves) and potentially different input sources tcal Characteristics

(range data, intensity data, tactile data, ...) to be easily integrated. A global T T
interpretation of the scene is arrived at through the fusion of diverse sources of Depth Map

evidence. This homogeneity is obtained with the introduction of a generalized F
concept offeature which allows features at any level to be treated uniformly. Fig. 1 System Architecture

Generalized features
The Generalized Feature Concept imposes a uniformity on the features in a system, allowing them to interact. This, in
combination with the control strategy to be discussed, makes possible the integration of evidence from diverse features.
The concept states that each feature type is defined by a parameterization and a set of relationships to other features.

t This paper discusses only the work done at the Computer Science Department of the IBM T. J. Watson Research Center. In addition to this
work, there is computer vision research done at the Manufacturing Research Center of the lab. See, for example, 17,8,121.
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In order to define a feature, we establish the particular parameterization, along with procedures to reach this
parameterization from lower level features ,parameter transforms), and to establish evidential relationships with other
features at any level of any path (compatibility relations). A given feature can be introduced into the system simply by
specifying these three types of knowledge.

To aid discussion of the feature hierarchy in the system, we subdivide the term feature into local, partial, primitive and
assembly features, in order of increasing level of abstraction from tie original data. For an example consider lines in
three-space. The line is a primitive feature contained in many higher level feature assemblies such as parallelpipeds.
But it is also formed from partial features such as orientation and position, which, in turn, are extracted from local
features such as the output of an edge detector.

Organization of recognition
The generalized feature concept allows a homogeneous, feature independent control structure. This takes the form of
a recognition network [6,9] where nodes represent feature hypotheses and links represent the evidential relationships
between features. Parameter hypotheses for a feature are collected in a parameter space associated with that feature
type. Each parameter space is a subnet of the recognition network. Parameter transforms map from some input
parameter space into some other parameter spice [ 1] and accumulate evidence for feature hypotheses in a manner similar
to the Hough transform. Iterative refinement, similar to that used in connectionist systems, allows the network to
determine which hypotheses are actually present.

The links in the network are (1) bottom-up connections between local features and the nodes, and (2) links between
nodes themselves. The latter links can be inhibitory, in case the hypotheses are conflicting, or excitatory, in case the
hypotheses are supporting one another. Hypotheses and links are generated dynamically from the results of the
parameter transforms and compatibility relations.

Each node computes an activation level representing the confidence in the existence of the corresponding feature or
object in the input. At each iterative step i, the activation level of a node, denoted by ALoae(i), is computed as

AL,,,,(O) =0
ALnoad(i) =AL,,(i - 1) + BU,,, + LE,,,,(i - 1) - LI,,,(i - 1) - D,

where BUnode represents bottom-up reinforcement, that is, a measure of confidence that the corresponding hypothesis
exists based only on data measurements (see [10]). LEnoa and LJ,ko, represent lateral excitation or inhibition from
other hypotheses. D is a decay term that helps suppress spurious hypotheses. If a unit in a space survives, i, votes for
hypotheses in higher level spaces via the associated parameter transform.

This approach provides several advantages for a recognition system.
Because of the uniform nature of the architecture, the parameter transforms for a feature can be defined so that evidence
can be gathered from different input sources while the control paradigm remains unchanged. This creates a natural
environment for evidence fusion.

The ability of the system to accept data from a variety of sources, and to utilize a rich set of features, creates a beneficial
redundancy. For instance, a planar surface and its bounding edges supply redundant information that allows for more
robust recognition of bounded planar patches than either feature alone. In combination with the highly parallel
architecture, this implies that failure or removal of any one fe. ture extraction path need not imply failure of the
recognition process as a whole.

Inhibition links perform several useful functions. Inhibition within i small parametric neighborhood sharpens the
response of the transforms. Only the strongest unit in any neighboring cluster will survive. This reduces the problem
of votes for a hypothesis being split between several buckets in parameter space. Inhibition links between hypotheses
which are supported by common image pixels provide an implicit segmentation of the image Only those hypotheses
which do not share support from portions of the image will survive iteration. These will represent a spatial segmentation
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of the image. LI links can also be used to ensure that hypotheses which are inconsistent, for example, for geometric
reasons, will compete.

The evidence integration process is inherently noise resistant. Most hypotheses receive support from many sources of
evidence. Therefore missing or inaccurate evidence will only cause a small change in the total amount of support for
a hypothesis.

A vision system
Using these techniques we have developed a system capable of recognizing objects in depth maps of complex scenes.
This section will describe the features we use and the parameter transforms used to extract them. For a more complete
description sec [31.

System features
Our surface feature set consists of planes, spheres and quadrics of revolution, specifically cylinders, and cones. To
increase coverage we also include curves in three-space, namely lines and conic-sections. These correspond to
intersections and boundaries of surface patches.

It is important to note that our system has no dependency on any specific choice of features. Thanks to the generalized
feature concept, as we expand the system's scope, features can be incrementally added or the feature set substantially
changed with little effort.

Multiple window parameter extraction
To extract the parameters of complex geometric entities, one would like to devise
an M x M operator that computes some parametric description of the curves and
surfaces. To avoid interference from nearby local features, the size M of the
operator should be small-but this will make estimates of higher-order properties of
the curve and surfaces inaccurate.

To solve these problems, we use the correlated information embedded in different
windows that contain portions of a feature. For both curve and surface extraction, Fig. 2: Multiple windows for finding

we use a set of nearby range points or windows to examine a more global eipses.
neighborhood and extract the parameters of our primitive features. Specifically, for PS

each range point q, we use all possible combinations of n windows (within some radius of coherence) to generate
hypotheses about the presence of features in the scene. Though many spurious hypotheses are generated, only those
actually present collect sufficient evidence to survive. Hence, we extend the pure local parameter extraction to a
somewhat more global process of parameter estimation. This is illustrated in Fig. 2 for the case of ellipse finding using
multiple windows. (The multiple window approach is described in detail in [4,5].)

Feature reconstruction
Local surface features are extracted from smooth surface approximations to the depth map. That is, least. squares second
order polynomial approximation [21 are made within M x N areas about range point q. From these approximations,
the principal curvatures, lemax and Kmin, and the associated principal directions in three-space, Xmax and Xmin, for
each range point q are computed.
We define 3D points that lie on dept' , k' -itinuities as local curve features. Well-known edge detectors are used to
generate discontinuity maps; thl.: giv. inge points q on, or near zero and first order depth discontinuities.

These local features are used as inpt. to the i... level parameter transforms in the recognition hierarchy. For example,
consider two range points qa and (Ob that . .. 1 a quadric of revolution (not an oblate ellipsoid). Then, the plane Pa

containing qa and spanned by Xminaic! the normal Na contains the axis of revolution. Similarly, for plane Pb spanned
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by the normal at point qb and the direction of minimum curvature. Hence, the intersection of these two planes gives
us a hypothesis for the axis of revolution.

When a first level hypothesis survives in its winner-take-all subnetwork, it is used as input to a parameter transform to
determine higher level feature hypotheses. These transforms generally reexamine the image points, (qn], which support
the hypothesis. For example, the radius R associated with each point in {qn} of a sphere center hypothesis p is given
by R = ip - q11.

Object recognition
The homogeneous approach of the system is maintained for object recognition as well. The parameter transform from
the feature spaces to object space uses the reconstructed features to index into a database of object models to determine
which it suggests.

We have no need to determine which features belong to a single object before recognition. Just as the refinement step
provides an implicit segmentation of the image during feature extraction, it also provides a partitioning of the features
during object recognition. We specify that hypotheses which share support from common features compete, thus
assembly hypotheses which survive evidence integration will not share features, anl a partition on the feature set is
created.

Object models
Object models in the database are represented by a feature T2 3 K
graph (see, for example, Fig. 3). Nodes in the graph Line Circle
represent the primitive features of the object; surfaces and . . . .

their intersection curves. Arcs represent coordinate-free -
geometric relationships between features, for example, the Sphere C yie Cone
relative size of the radii of a sphere and cylinder.

Features of a model are sorted into layers, which represent
the resolution at which we expect them to be reconstructed.
The first layers contain those features likely to be found at
a coarse resolution and successively later layers contain Fig. 3: Feature graph of an object.
progressively finer features. This "multiple resolution"
representation prunes the search for matching features as
will be described below.

Each hypothesis in object space represents an instantiation of an object model from the database. It is identified by the
set of hireiings {B(Fi,fj), ...I between features Fi of the object model and featuresfj found in the image.

Indexing
Indexing consists of two steps, checking for a match with unbound model features of existing object hypotheses and
checking features of models in the database. If a match is found we extend or create a hypothesis to include the new
evidence.

In either case, we only need to check for matches between image features and features in active layers of an object
model. For uninstantiated models in thc database, only the first (coarsest resolution) layer is active. Instances of models
in object hypotheses can have one or more active layers. Layers are activated whenever sufficient features of the
previous layer have been bound to image features. To avoid an explosion in hypotheses with very little evidence, only
models with sufficient matches in the first layer are instantiated. Matching an image feature to a feature in a model
requires checking two pieces of information, intrinsic feature characteristics (e.g., feature type) and position relative to
other features.
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Fig. 4: Complex real-world scene. I ig. 5: Depth map. F. 6: Recstced Features

Experiments
Experiments have been run on some twenty images of varying complexity. Early images were artificially generated
and relatively simple (see, e.g., [21). More recently, we have been using images generated with a laser range finder
I 1]. Images have varied from 32 x 32 to 256 x 256.

We present an experiment using a 64 x 64 depth map generated from the scene in Fig. 4. It contains four simple objects;
a pencil sharpener, a battery, a tape box, and a half golf ball. One end of the pencil sharper.er and the golf ball are
resting on the box. Figure 5 shows the depth map.
Low level processing includes finding the zero and first-orderdiscontinuities in the original data, and computing quadric
smooth surface approximations about each point. With this size image, these take about two minutes on a Symbolics
3650. Feature extraction takes on the order of 12 iterations and 15 minutes real time. Most surface and discontinuity
features present in the image were successfully reconstructed, cf. Fig. 6.

Evidence integration causes a dramatic implosion in the number of hypotheses, as can be seen in Fig. 7, which shows
the number of hypotheses in each parameter space over time. As an example, 17 axis orientation hypotheses (partial
features of axes of quadrics of revolution) were generated in the first-level quadric of revolution reconstruction process.
Of these two survived and generated 89 hypotheses for axes of revolution. Only the two correct axes survived to
reconstruct the solids of revolution, i.e., hypotheses for cylinders and cones.

For this experiment, there were II object models in the database, each containing from two to 20 features (averaging
12) and from one to 110 relationships (averaging 34). Model features were divided into two layers. The models of the
objects in the image were a simple sphere (two features, spherical surface and a circular limb), a cylinder segment (7
features and 8 relationships), and a box (18 features and 63 relationships), Other models in the database included a
bottle, an L-bracket and two different computer mice.

The four objacts were -11 successfully iden6fied. The large cylinder segment was identified on the basis of five features,
the cylindrical surface, the bounding end plane, the limbs
and the circle formed by the intersection of the bounding
plane and the cylinder. The smaller cylinder, sphere and
box hypotheses were similarly bound to all their
reconstructed features. The total indexing time for all
features was on the order of four minutes.

AL I~ In an attempt to demonstrate noise resistance, we in-
crementally added noise to the image of the previous

-. ----- -- experiment and, without changing any control
parameters, observed the behavior of the system. With
white Gaussian noise of standard deviation a = 0.3 pixels

Vig. 1: Number of active hypotheses over time. (or 1% of the dynamic range of the image) we began to
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fail to recognize some features. Performance then degraded gracefully till, with noise of standard deviation a = 0.6
pixels (2% of the dynamic range) (Fig. 8) roughly half the features in the image were no longer reconstructed and only
two of the objects were recognized. In separate tests we were able to improve performance in noisy images substantially
by adjusting the control parameters.

Research directions
A number of areas have been identified as current and future research topics for extending the system. The general
thrust is to scale system performance with input scenes of increasing complexity and size, as well as object model
databases containing more, and more complex objects.

Object modeling
Building object models and organizing these models in an object model database is a difficult and important problem;
this becomes more of an issue when the catalogue of objects is large. Additionally, efficient schemes for indexing into
the database become important as image complexity increases.

Often an object can be modeled as the composition of subobjects which suggests hierarchical modeling. However, for
large object domains, an hierarchical organization of the database is not enough. The presence of a particular feature
in the scene will still generate an object hypothesis for every possible object or subobject in the database that has that
feature as a composing part. Therefore, we need a scheme that limits the explosion of interpretations. A commonly
suggested solution to this is an multiple resolution approach to object modeling and matching. For example, one could
introduce an ordering of the features and describe an object by adding more and more detail. We have generalized this
concept and propose to use any ordering of the features. To be more precise, an object is described in terms of layers
of sets of features and the layers are ordered. Matching and indexing is achieved starting at the first layer, progressing
to the next layer, and so on. Examples of layering criteria are:

* Ordering the features according to how "well they describe" an object. If the modeling is done in terms of surface
and curve patches, this would be multiresolution modeling, describing the objects in a coarse to fine manner.

" An ordering of the features in terms of those features that "best distinguish" the object from other objects in the
database.

Of course, many other criteria for layering the object features are possible. We propose to use several different layerings
of the object features. It is conceivable that in the early stages of the recognition process, prominent objects in a scene
are ,-ecognized by their coarse features, while in later stages other salient features are important. Note that each layer
of features in an object model describes a subassembly which not necessarily corresponds to a physical object. Hence,
objects are described in terms of subobjects and subassemblies. Each subobject can be part of many objects, while on
the other hand, each subassembly can compose many objects, that is, many objects can share the same layers.

One has to specify how the features within the subobjects and subassemblies are related and how these constructs are
related to one another. Here we consider two choices, the use of an
object-centered coordinate system and the use of coordinate-free
relationships between the primitive features and constructs. Most
relationships can be described using either of these methods. However,
some relationships are more naturally described with one than with the
other. The advantage of coordinate-free relationships is that they can
be checked very efficiently but defining unique and exhaustive relation-
ships between all pairs of features of a construct requires large amounts
of storage (the number of relationships grows exponentionally with the
number of features). On the other hand, the use of object-centered
coordinate systems is computationally more expensive but allows for a
complete specification of all geometric relations between (geometric)

Fig. 8: Degraded depth map.
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features and constructs relatively easily. Therefore, we
propose a compromise:

All features in all constructs and all constructs of an
object are related to each other in terms of an object- 0bect en
centered coordinate system. Hence, once the transfor- AFeatur
mation between the object-centered coordinate system

and a reference frame defined v. ith respect image ,____
features is known, all other (geometric) features can
be matched to the object in terms of this transforma-
tion.

" Some features, typically, but not necessarily features Object . . .
in the first layers (subassemblies), of an object are
related in a graph structure as described above. This
allows for very fast indexing into the database since Fig. 9: Expded object modeling scheme.
only simple geometric relations have to be checked
during this process, as opposed to computing rigid
transformations.

Figure 9 gives an example of an object model. Object A is described in terms of a subobject (object B) and a number
of features. The features, including the subobject, are ordered in layers; some of the features are related by
coordinate-free relationships while all the features are described within an object-centered reference frame.

Of course, with such complicated models, automatic model acquisition becomes a challenging task.

Multiresolution
We are investigating techniques to reduce overall data processing requirements. Our approach will involve a
progression from coarse to fine image resolution. The cues for going to a finer resolution (and hence more data) will
be derived from the lower level data or data descriptions, and from the higher level model description spaces. By
organizing the models themselves into a multiresolution representation, we will be able to implement model-driven
feedback to the sensing stages, to perform a foveation-type search for salient features. Similarly, lower level information
will produce a more data-driven feedback to the sensing stage.

Our model database contains information on which object components are fine features, and which are coarse features.
An initial search of a low resolution image will instantiate a set of object model hypotheses based on coarse features.
The models themselves can then be examined fordistinctive fine features, and more data may be examined in appropriate
regions to try and detect this information. Thus, for example, a bolt and a battery might be essentially cylinders at
coarse resolution, but a model-driven search at the ends of the cylinder would yield additional fine planar features in
the case of the bolt (its head).

Resolution changes driven by lower level information are a more ad hoc process, since we are generally trying to infer
where we are missing information. Reasonable paradigms are to increase resolution to achieve more accurate
localization of discontinuities, and to improve surface parameter estimation. We are investigating two techniques:

" The limitations of the fitted surface can be used as the driving source for resampling. For example, in case of
local least-squares surface fitting, if the error is excessive compared to the expected image noise level, then a
finer resolution may be appropriate.

" Guided by the above technique, we start processing and image at a certain coarse resolution. Regions of the
image that contain coarse surface patches, will quickly converge to a solution. Regions that contain surface
discontinuities or fine surface detail will not converge or converge much slower. These latter regions can be
resampled and processed at a finer resolution.
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Let us give an example of the second approach. Parameter reconstruction of, for example, the cylinders in the depth
map of Fig. 8 fails because the signal to noise ratio in the cylindrical areas is too high. There are no curve or surface
hypotheses associated with these (known!) areas and processing these areas at twice the resolution will help the system
to identify the surfaces.

Fusion
We wish to add more features to the system to increase the range of objects that can be recognized. As with any
differentiation and identification task, the more orthogonal the descriptors are, the better the result. Various types of
features would be reasonable and interesting to add to the system. Of particular interest is the class of features that can
be obtained from intensity imagery. These may include texture and color. Also current features, such as discontinuities,
could be augmented by intensity data analysis. Because of the nature of our architecture, such diverse features can
easily be added to the system.
An additional data-driven path would let intensity image analysis drive the more expensive range imaging process,
where local analysis would call for finer resolution to resolve ambiguous surface regions.

Discussion
We have described a framework for visual recognition. Within this framework we have implemented a vision system
that recognizes objects bounded by planar and curved surfaces using a depth map as input. The experiments show that
the proposed techniques are potentially very powerful.

We intend to further develop this system to determine whether the approach scales with the complexity of the problem.
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Abstract

The automatic recognition of targets is an important and difficult problem. The targets to be
recognized may appear in a variety of conformations and they may appear against a variety of
backgrounds. We have developed a model-based experimental target recognition system to process
laser radar range and intensity imagery and to recognize targets automatically. This system is
a laboratory research tool; it allows us to try alternative algorithms and vary parameters while
evaluating their effect on the overall recognition performance of the system. In the course of our
research we have exercised the system on several hundred images to obtain the performance results
discussed in this paper.

1 The ATR Problem

The goal of an automatic target recognition (ATR) system is to detect and recognize various objects
of interest in a particula" area using imagery or other measurements from one or more sensors. In
addition the ATR system may have (and will probably need) access to other information such as map
data, navigation data, suspected target locations, suspected target types, and meteorological data. Ide-
ally, the output of the ATR system would be a prioritized list of targets, their locations, orientations,
configurations, and important attributes.

The ATR problem is unquestionably difficult. An object of interest may appear different when
viewed from different viewing angles, in different states of articulation, when surrounded by different
backgrounds, at different times of day, under different weather conditions, when imaged by different
sensors, when partially obscured, and when camouflaged. Backgrounds can vary dramatically, making
it difficult to build a system that gives an acceptably low false alarm rate under all conditions. On its
surface, the ATR problem is "simply" one of detecting and classifying signals in noise. However, the
signals and noise have widely varying characteristics, and the signal, when it is present, is not simply
added to the noise.

The Department of Defense is very interested in ATR systems for a number of applications. Some
of these applications, such as the tactical battlefield, involve areas containing a relatively large number
of targets. and others, such as holding mobile missile launchers at risk, are akin to looking for a needle
in a haystack. The use of a reliable, robust ATR system will reduce the workload of the pilot and
crew in a manned aircraft and will reduce the bandwidth of data links needed by remotely piloted or

* rhis works was supported by the DARPA Tactical Technology Office. The views expressed are those of the authors
and do not reflect the official policy or position of the U.S. Government.
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autonomous reconnaissance aircraft. There is also interest in developing "smart" weapons, which can
be launched from stand-off positions and which will search and engage certain targets in specified areas.
We are interested in the tactical air-to-ground situation, where an aircraft must detect, identify, and
prioritize the targets it encounters. (In spite of this interest, the bulk of our initial work has been done
using ground-based imagery because of its availability.) The problem of how the disparate pieces of
sensed and a priori information are represented in the computer is central to the solution of the ATR
problem. It. is the ability of the recognition system to apply the right information to the problem at the
right time that will make its solution possible. Numerical data are easily represented and manipulated
by computers. Other forms of information, which are less precise, less clearly related, less prone to
mathematical analysis, must also be represented and manipulated to solve the ATR problem. The
symbolic representation of information and transformations between various symbolic representations
are fundamental issues in the development of ATR systems.

2 Model-Based Recognition

In addressing the ATR problem, we have concentrated on a model-based approach to object recognition.
This approach generally consists of four major elements, as indicated in Figure 1. In the image event

CONTROL
STRTEGY

IMAGERY MODELS

CHARACTERIZATION LIBRARY

RECOGNIZED
TARGETS

Figure 1: Block diagram of a general model-based recognition system.

characterization subsystem, imagery from sensors is analyzed by one or more algorithms to detect, extract
and represent information about the objects in th scene. This operation is often referred to as "feature
extraction," but that name is somewhat misleading and limiting. This subsystem is more like a set of
image analysis tools that can be applied selectively to parts of an image or the entire image as dictated
by the ATR control subsystem. The event characterization subsystem not only performs the image
processing computations necessary for analysis, but it represents the results of the analysis in a form
that is suitable for the matching operation to follow. Ideally, the output of the event characterization
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subsystem would be a list of interesting areas of the image (detections) and a characterization of each
of these areas using both symbolic and numeric data representations.

The model library contains explicit models of objects and backgrounds organized to facilitate the
recognition process. Here lies a great challenge, to encode the diversity of a priori information known
about objects, the environment in which they exist, and their relationships to one another in a way
that can be used to match the information obtained by the image event characterization subsystem.
The contents of the model library also depend on the capabilities of the sensors, because it makes no
sense to model what cannot be measured. Having this knowledge in an easily accessible form facilitates
development and makes it easier to understand what the system is doing when it recognizes an object.

Currently models are built "by hand," that is, an analyst studies the imagery and the blueprints of
the objects to be recognized and encodes the relevant information in a data structure that forms part
of the model library. Some simple software tools are currently used in this task, but there is much more
that could be done to develop an efficient computer-aided library building system. It is also possible, at
least in some cases, to develop a program that can generate a model library automatically from many
examples of objects in imagery. A simple version of automatic library generation has been demonstrated
in a companion recognition project [Aull 88].

Between the image event characterization subsystem and the model library lies the matching subsys-
tern. It attempts to match the characterizations of events detected in the image to the various object
models. In essence it attempts to generate hypotheses for the identification of objects found in the
image, discard those hypotheses found to be inconsistent with the imagery, compute a figure of merit for
the strength of the match between the extracted features and the model for each consistent hypothesis,
and make a decision based on the figures of merit.

Indexing is an important task for the matching subsystem. In this context, indexing refers to gener-
ating a set of working hypotheses based on partial characterizations of an object detected in the imagery.
To recognize an object with a unique and persistent feature, often called a "signature," it is sufficient
to detect that feature in the imagery. The feature is a strong index into the library of possible object
hypotheses. More generally, however, any particular feature will be exhibited by several types of object.
The feature is a weaker index in this case, but nevertheless it serves to reduce the number of hypotheses
that are consistent with the observed imagery.

Development of a practical matching subsystem is a challenge. Conceptually it is straightforward to
conceive of a matching subsystem that examines all models (from a finite library of models) for each
object detected in the image and then attempts to evaluate the strength of the match for each possibility.
This corresponds to mapping out all points in a space of possible solutions and exhaustively testing each
one for each unknown object. Computationally, however, this strategy is generally impractical. It is
more desirable to structure the matching operation so that many hypotheses can be eliminated with
a relatively small amount of computation. We shall examine one approach for doing this later in this
article.

The final major subsystem in a generic model-based recognition system is the control subsystem.
Its primary job is to apply computational resources to the recognition problem to reduce the overall
amount of computation needed to reach a reasonable decision. If computational resources, memory, and
execution time were not limited, the control subsystem could simply conduct an exhaustive search of the
solution space for every object detected in the image. Unfortunately, this highly structured, inflexible
approach is impractical for all but the simplest problems.

To reduce the amount of computation expended, the control subsystem must embody strategies
about when various analysis operations should be applied to the imagery and under which conditions
various matching procedures should be invoked. The "intelligence" of the recognition system, which is
still very much mechanical, depends on the variety, sophistication, and effectiveness of this procedural
knowledge.

Two major control strategies, data-driven and model-driven, are usually present in a model-based
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recognition system. The data-driven control strategy starts from the bottom up by analyzing the input
imagery, extracting features from it, grouping features into higher-level features, and attempting to
associatc the high-level features together to form objects. In the model-driven control strategy, an
object model is used to guide the processing by dictating what specific features should be searched for in
the image to determine the presence and location of that kind of object. Model-driven control is often
called "top-down."

The conventional wisdom is that a robust ATR system will need to use both control strategies. Data-
driven control is appropriate for detecting image events and extracting features from the imagery for
forming hypotheses from extracted features. Model-driven control is appropriate for finding evidence to
support or refute a hypothesis. The challenge becomes one of developing a mixed st rategy that is able
to distinguish between the situations appropriate for data-driven control and model-driven control and
to embed this procedural knowledge into the control subsystem.

3 Experimental Target Recognition System

Over the past several years we have developed a model-based ATR system for recognizing tanks, how-
itzers, and armored personnel carriers (APCs) in laser radar imagery. Our goal was to create an end-
to-end system, one that accepted laser radar range and intensity images as its input and produced a
recognition decision as its output. We did not require that each piece of the system be optimal or state-of-
the-art, but we did want to have enough pieces in place to comprise a complete system. With a complete
system, we are able to conduct experiments with different subsystems, algorithms, and parameters to
c'aiuate their impact on the end-to-end recognition performance.

We have been working primarily with imagery taken from a ground-based infrared laser radar system
developed by the Opto-Radar Group at Lincoln Laboratory[Gschwendtner 83]. Laser energy is trans-
mitted out into the environment using a pulse waveform. Reflected energy returns to the sensor and is
detected to give a waveform such as the one shown in Figure 2. The peak intensity is a measure of the
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Figure 2: Typical laser radar returned waveform.

reflectivity of the object encountered by the laser radiation, and the peak location in time is a measure
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of the range to the reflecting object. These two measurements are made for each picture element (pixel)
in an image by scanning the laser beam across the scene.

Other measurements may also be made with a laser radar sensor. By using a continuous waveform,
Doppler shift may be measured to indicate the degree of radial motion in each pixel. Passive infrared
detectors have also been installed using the same optics to provide a thermal image that is pixel-registered
with the range and intensity images. A detailed discussion of laser radar technology, however, is outside
the scope of this article.

Typical intensity and range images are shown in Figures 3 and 4 respectively.
In Figure 3 the top row of three intensity images shows three views of a tank, the middle row three

views of an APC, and the bottom row three views of a howitzer. A bright pixel in an intensity image
indicates a strong reflector of laser radiation, and a dark pixel indicates that very little energy was
returned to the sensor from that area of the scene. Figure 4 shows the corresponding, pixel-registered
range images. In range images, pixel brightness corresponds to distance from the sensor. Bright pixels
are far away; dark pixels are close.

Note that these range images contain numerous "noise" pixels which appear blacked out. These
"dropouts" correspond to areas of the scene that reflect very little radiation. This situation causes
the returned signal to remain below the detection threshold. The sensor cannot reliably make a range
estimate, and it records that fact.

Another type of noise is also present. Range pixels called "outliers" result when noise causes the
wrong peak to be picked in the returned signal. Of course, in this case the sensor is not aware that the
wrong peak was picked and records an erroneous range value for the pixel. Some outliers are visible
in Figure 4 as white dots on the black area at the bottom of the images. Dropouts and outliers are
collectively called missing values.

Our primary data base consists of 200 such intensity-range image pairs. Each image is 60 pixels
high by 128 pixels wide. The images are zoomed vertically by a factor of two so that objects appear
with the correct aspect ratio. Each image pair exhibits a tank, a howitzer, or an APC at one of four
ranges: 700, 1000, 1400, and 1800 meters. The orientation of the vehicle, and in the case of tanks and
howitzers the body-turret angle, may vary from one image pair to the next. Various subsets of the images
have different background characteristics, including distant uncluttered backgrounds, near uncluttered
backgrounds, and near cluttered backgrounds.

The sensor used to acquire our primary data base has a range accuracy of approximately 6 meters.
Because of this, most pixels on an object fall into a single range bin or straddle the boundary between
two adjacent range bins. In addition to this imagery, airborne laser radar imagery acquired with the
Opto-Radar Group's improved range-accuracy sensor is also being examined.

We have also augmented the image database by developing a synthetic image generator. Using it,
we can construct scenes and situations for which we do not have real imagery. It also allows us to know
exactly the contents of the scenes we process and to vary sensor parameters, such as range accuracy,
angular resolution, and percentage of outliers.

Our real laser radar imagery is characterized by coarse range resolution and a significant amount of
dropout and outlier noise. The objects that appear in the imagery are often not known precisely; they
may be partially occluded, have articulated parts rotated to various orientations, or have missing or
extraneous parts.

The problem of recognizing 3-D objects from range imagery has received a lot of attention in the
last few years [Kanade 87]. However, many published approaches assume high angular-resolution and
high range-resolution range images in well controlled situations. Furthermore, the objects that are to
be recognized are generally known precisely and rigid (as opposed to articulated). In our application,
however, we need to perform recognition of imprecisely known and articulated targets using a 2-D
silhouettes. Thus, most of the above approches are not well adapted to our problem.

The problem of recognizing 3-D objects from 2-D silhouettes extracted from the range imagery has
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Figure 3: Laser radar intensity images.
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Figure 4: Laser radar range images.
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not been widely studied. Recently Van Hove [Van Hove 87,Van Hove 88] developed a constraint-based
approach to recognizing 3-D objects from edge segments of their 2-D silhouettes. However, detailed
models and relatively clean silhouettes are required in his current recognition system. Work remains to
test an" extend his system to actual laser radar imagery.

The distinguishing features of XTRS are its ability to recognize possibly articulated, imprecisely
known objects viewed from a variety of vantage points.

A block diagram of the experimental target recognition system (XTRS), shown in Figure 5, reflects
the general block diagram discussed earlier, with a few variations. There are actually two distinct

COTRLMODEL I
HIERACHY

LASERIMAGE C O I EVET JRECOGNIZED
RADAR EVENT I CHARACTERIZATION DESCRIONS MATCHING _ OBJECT AND

IMAGERY INTENSITY EXTRACTION REGIONS DESCRIPTION

Figure 5: XTRS block diagram

recognition systems within XTRS. Both extract range silhouettes from laser radar imagery and make
recognition decisions automatically, but they differ in their processing approaches. The contour-based
system (XTRS-C) attempts to extract range discontinuities corresponding to object boundaries while
the region-based system (XTRS-R) attempts to extract regions having constant range. XTRS-C and
XTRS-R differ only in their event characterization subsystems and model libraries; they use the same
matching subsystem.

The model libraries of XTRS use appearance models (AMs) to store information about each type
of object that the system is to be able to identify. An AM, rather thaan being a full 3-D model, is a
description of the expected appearance of an object in a 2-D image produced by a given sensor. A single
AM describes the appearance of an object over a range of aspects and articulation conditions. An AM
is also designed to allow missing and extraneous parts as well as some degree of occlusion. Each AM is a
data structure, similar to a semantic network, that describes an object in terms of the sizes and shapes
of its parts and the relations among them. The concept of an AM was first introduced by Selfridge
[Selfridge 82], but our definition, implementation, and use of AMs differs from his.

In both the contour-based and region-based systems, the recognition step consists of matching the
symbolic silhouette characterization against AMs of known objects and t n deciding among the alter-
native objects (including the null hypothesis) using scores computed in the matching process.

In the following sections we shall discuss in greater detail the mechanisms by which the various
subsystems are implemented in XTRS.
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4 Image Event Characterization

The first step in processing the laser radar imagery is to detect, extract and characterize various image
events. An image event is some particular characteristic that occurs in the imagery and may indicate
the presence of an object. In XTRS-C. we attempt to find long contours representing range disconti-
nuities. In XTRS-R. we try to extract regions with constant range values. In both cases the image
events ( .. , contours and regions) are characterized and stored as symbolic image-event descriptions.
(The description is called symbolic though the characterization contains both symbolic and numeric
attributes.)

An image event is also decomposed into primitive features. For XTRS-C these primitives are corners
and arcs: for XTRS-R these primitives are subregions. A symbolic primitive description of each primitive
is created to be used in matching against the symbolic descriptions embodied in the AMs. The image-
event description and the primitive descriptions comprise the characterization needed for matching.

The primitive descriptions corresponding to an image event are stored in a data structure called an
attributed relational graph, or ARG [Eshera 86]. An ARG is similar to a semantic network; it is a graph
whose nodes contain symbolic and numeric attributes describing the primitive features and whose links
between nodes indicate relationships between the features.

In the following subsections we shall describe in turn the event characterization procedures for XTRS-
C and XTRS-R.

4.1 Contour Extraction and Characterization

The XTRS-C relies exclusively on the raw range images produced by the laser radar; the intensity images
are not used. The first step is to remove as many "noise" pixels as possible. Each dropout is reported
automatically by the sensor; outliers must be detected by computation. They are subsequently replaced
with "locally reasonable" range values. (The detailed procedure for detecting and replacing missing
values is described in [Verly 86].) The finai cleaned range image is obtained by removing remaining
isolated "black" pLxels using function (gray-scale) mathematical morphology [Serra 82]. (The procedure
is based on the noise removal techniques of [Esselman 87a,Esselman 87b].)

A difference-of-Gausssians (DOG) edge detection algorithm [Marr 82] is used to extract contour
information from the cleaned range image. The zero-crossings (ZCs) of the resulting image correspond
in theory to the edges in the cleaned range image. The zero-crossing contours of the DOG image are
formed by linking small ZC elements obtained by interpolating between positively valued and negatively
valued pixels. Each of these contours has a number of associated attributes such as length, average
strength, complete lists of range values on the near/far side (low/high range values) of the contour, as
well as an indication of the position of the near side with respect to the contour.

Since the number of resulting _ontours is large and since the object of interest may yield several
disjoint contours, a heuristic method was devised to merge contours into potential object silhouettes.
We retain only the N contours with the largest average ZC strength. (We generally use N = 20.)
Most of the pieces of the desired silhouette are generally present in this reduced set of contours. The
complete silhouette contour can often be obtained by starting with the longest of these strongest contours,
splitting some of the remaining open contours at places where the associated list of low range values shows
significant discontinuities, splicing the resulting open contours to the longest contour (or each other),
and finally reconnecting selected closed contours. (The details of these contour merging operations are
complex and beyond the scope of this article.) The median value of the elements in the corresponding
list of low range values is used as the object range value.

At this point in the processing we have selected a contour to be analyzed; the extraction part of
the processing is complete. Now we must characterize the shape of the contour by decomposing it
into its primitives. A condensed representation of the silhouette is obtained by computing a polygonal
approximation (PA) to its contour. To do this, we have implemented Ramer's algorithm [Ramer 72].
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The aim in computing this PA is to reduce the number of points used to represent the contour while
retaining the essential shape of the silhouette. Each line segment in the PA corresponds to a subcontour
of the silhouette and this correspondence information is kept as one of the attributes of the PA for
subsequent use.

The PA is smoothed by removing vertices corresponding to small shears and small angular deviations.
This step is called PA editing. The resulting edited PA can in some cases be identical to the original
PA.

The edited PA is decomposed into concave and convex parts, and each of these edited-PA subcontours
is further decomposed into corners and arcs (contour primitives). The decomposition procedure is similar,
but not identical, to that of Pavlidis [Pavlidis 79], and its complete description is beyond the scope of
this article. Since each corner or arc consists of two or more edited-PA segments, it is straighforward to
find what part of the original silhouette corresponds to any given primitive. This ability to "backproject"
cuntour primitives onto the extracted silhouette contour can be exploited in the recognition process, for
example, to measure the median width of an elongated appendage using the extracted contour rather
than its edited PA. The bounding rectangle of the edited PA is the frame of reference used during
recognition.

Finally symbolic descriptions are constructed for the extracted silhouette contour and each of the
primitives. In the case of the primitives, the descriptions include information such as length and orien-
tation. The descriptions of the silhouette and the primitives are later matched against object contour
AMs to make recognition decisions.

4.2 Region Extraction and Characterization

The XTRS-R processes simultaneous, spatially-registered raw intensity and range images. Except for
omitting the final morphological processing, the raw range image is cleaned by the procedure described
in the previous subsection. (See [Delanoy 89] for a detailed discussion of region extraction and charac-
terization.)

Once cleaned, a range image is analyzed to identify those range bins containing high concentrations
of features that are "interesting." For our purposes, "interest" is treated as a quantifiable attribute
of an image; the higher the interest value for an area of the image, the greater the probability that it
contains a target being sought. We construct interest images based on measured quantities to detect
object regions.

Currently XTRS-R uses four interest images: the raw intensity image (the objects of interest should
have one or more areas that produce strong laser radar returns), an image whose values indicate the
presence of height-limited vertical surfaces (the sides of military vehicles are usually vertical surfaces no
more than 3 meters in height), a "rod" image indicating the presence of rod-like objects (such as gun
barrels and antennas), and a "body" image favoring objects with lengths between 2 and 8 meters. Other
features, for example passive infrared signatures or motion, might also be useful in detecting object
regions.

Interest values are summed for each range bin, forming a histogram. Local maxima in the histogram
are used to form image segments. The segment with the largest combined interest sum is selected for
further analysis. If the range to the selected segment is so large that the target will fill only a small
portion of the image, a window (subimage) containing the highest concentration of interest values in the
selected range interval is created.

At this point a trinary image is constructed. In over-simplified terms, a value of 1 is assigned to
each pixel location that has a range value in the range interval defining the segment. A value of 0 to
pixels with a greater range, and a value of 2 is assigned to pixels with a smaller range. Then pixels of
value 2 are reset to 0 or 1 using a nearest neighbor algorithm. The resulting binary image generally
consists of a number of disconnected 1-valued regions containing the object of interest, the ground, and
some noise above the object. Noise is removed by complementing each 4-connected region of C-valued
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elements which is entirely contained within a region of 1-valued elements. Set (binary) mathematical
morphology [Serra 82] is then used to remove ground clutter and to reconnect vertical and horizontal
appendages (the procedure used is similar to those described in [Esselman 87a,Esselman 87b]). All 8-
connected regions of 1-valued elements are labeled to distinguish any distinct regions, and the distinct
region with the largest area satisfying the constraints of the object class "military vehicle" is chosen as
the object silhouette candidate. The median range value of the elements in the silhouette region is used
as the object range value.

At this point in the processing, we have selected a region to be analyzed (the image event); we have
completed the detection task. Now we must characterize the shape of the region by decomposing it into
its major subregions. The region decomposition algorithm works on the outline of the silhouette region to
obtain a contour. As beftre, a polygonal approximation to the contour is computed using the algorithm
of Ramer [Rmer 72]. The PA is edited by removing small intrusions and extrusions corresponding to
surface rregularities; vertices corresponding to small angular deviations are also removed in a way similar
to that described in the previous subsection.

The edited PA is then decomposed into subpolygons by selecting a set of line segments called "base-
lines." Baseline candidates that connect any concave vertices, or convex vertices that form nearly
horizontal line segments, are collected. From these, a final set of baselines are selected using two se-
quentially applied rule bases. The first isolates rod-shaped extensions from the silhouette. Once these
have been removed, a second set of rules identifies long, nearly horizontal baselines such as those at the
junction of turret and body.

Finally, symbolic descriptions are constructed for the extracted silhouette region and each of the
primitives. Attributes such as length, width, and orientation are calculated for each subregion. Symbolic
and numeric descriptions of each subregion are arranged in an attributed relational graph (ARG) that
represents the spatial relationships between subregions. Figure 6 shows a simple example of a region
ARG.

This information is used by the matching subsystem to recognize the target.

5 Appearance Models

Appearance models (AMs) describe the expected appearances of objects in images. (See [Verly 89a] for
a full description of the concept and construction of appearance models.) AMs are not full 3-D models;
instead, they are an attempt to describe all possible appearances of an object over a limited range of
viewing angles. In the present system, each AM describes an object in terms of its parts and the relations
among them. The parts chosen for description in the model are those believed to be identifiable given
the type of imagery and the means of extracting objects and their parts from images. These models are
represented using data structures that are similar to semantic networks.

The description of a given part must take into account the range of possible viewpoints. For example,
an appendage that sticks straight out from the front of an object will appear longest when the object is
viewed from the side. As the viewpoint changes in moving around the object, the apparent length of such
an appendage will change. When the object is viewed from the back, the appendage may not even be
visible. An AM's description of such an appendage must take those different appearances into account;
it must include (among other things) a specification of the range of lengths the appendage can appear
to have. Spatial relations among parts may also vary with perspective. For example, an appendage may
appear to jut out from the left side of an object from one perspective and to jut out from the right side
from another perspective. These variations must be captured in the model. Other perspective-dependent
relations may also hold. For example, the sizP of an appendage should be consistent with the apparent
size of the rest of the object; if the length of an appendage suggests an object is being viewed from the
side, the sizes of other object parts should be consistent with such a viewpoint.

Consider the simple object shown in Figure 7-A. Its silhouette will take the form of Figure 7-B when
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Figure 6: A notional attributed relational graph (ARG) for representing region information extracted
from a range image

it is viewed from any one of a number of directions. Figure 7-C depicts an AM which describes the
expected appearances of this object. This model is appropriate only for those types of imagery that lend
themselves to the extraction of object silhouettes. The model assumes that the object will be viewed
only from points at roughly the same elevation as the center of the object, and that the object is roughly
horizontal in the image. For these viewpoints, the silhouette region of Figure 7-B should always consist
of two parts. The corresponding appearance model is a part hierarchy in which an OBJECT is defined
to be comprised of the two parts, BODY and APPENDAGE. Each of these parts is described by a set of
property functjions collectively termed a propery set. A property function is a fuzzy predicate [Ohta 851
defined over the values of some region attribute(s). The value returned by a property function P for
a given attribute a is a value in the closed range [0, 1] indicating the degree to which the attribute a
satisfies the property defined by P.

For example, consider the property function defined over the measured quantity f determining the
expected length of the part BODY. As shown in Figure 8, this function returns a value of 1.0 for regions
whose length is between B and V/ 2 ±C, and a value between 0.0 and 1.0 for regions whose length

lies just outside this interval, and 0.0 for regions of any other length. The definition of this function
reflects the fact that the projected length of the body is expected to vary between B and 'B + C 2 for
the assumed range of viewpoints. The rising and falling ramps on either side of this expected length
interval are meant to allow for variations in measured region length due to sources of error such as
image noise, inaccurate silhouette extraction, and inaccurate computation of region length. In a similar
fashion, property functions are also defined for body height, appendage diameter, appendage height, and
appendage major-axis orientation.

In addition to descriptions of the object's body and appendage, the model includes a constraint

AI3OVE on the spatial relationship between the two parts. This constraint is defined by a fuzzy predicate
defined over values of g, which is the signed distance between the appendage region's apparent center-
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Figure 7: A simple object, its silhouette, and its appearance model

Figure 8: The property function for the expected length of the part BODY

of-gravity and the top of the body region.
In the present system, each AM is defined as a part hierarchy. In every AM, the root node represents

an object and the children of each node represent the parts which comprise the object represented by
that node. Parts may be defined in terms of their own parts, and so on; a part hierarchy may therefore
extend to several levels. The terminal nodes of this hierarchy (the "atomic" parts) contain descriptions
that can be matched against image-derived primitives to determine whether the atomic parts are present
in an image.

Within a non-terminal AM node, constraints on the relationships between the node's parts may also
be defined. These constraints typically include expected spatial relationships, the expected relative sizes
of parts, and the ways in which parts are expected to appear joined to one another in the image. The
constraints, together with the part hierarchy, define the expected possible appearances of an object in
an image.

6 AM Hierarchies
The system's complement of AMs is organized into a hierarchy that comprises the system's knowledge
about the kinds of objects it will be able to identify. The AM hierarchy acts as the model library for
XTRS. It consists of a specialization hierarchy and the AMs themselves. The specialization hierarchy is
a hierarchy of categories; the children of a given node represent subcategories of the category represented
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by that node. As discussed in the previous subsection, the AMs in an AM hierarchy describe objects in
terms of their parts. To allow matching against these descriptions, an object characterization derived

from the imagery must include a decomposition into primitive features. Since the kinds of image event
and primitive descriptions derived in the contour-based approach differ from those derived in the region-
based approach and since AM hierarchies are defined in terms of these descriptions, independent contour-
based and regon-based AM hierarchies are used to model targets of interest in XTRS-C and XTRS-R
respectively.

Figure 9 depicts the AM hierarchy used in XTRS-C to describe the expected appearance of silhouette
,cntours i", the ringe inmagerv for three types of vehicles (V) - tank(T), howitzer(H). and amored

personnel carrier (A).

NODESS IS COSRIT

T H A~
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P
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V VEHICLE X-Ai =ANTENNA #i S =SPECIALIZATION L =LEFT-OF
T zTANK X-G =GUN P = PART
H - HOWITZER X-A&G =ANT. & GUN
A zAPC

Figure 9: The appearance model hierarchy for the contour-based XTRX-C

The problem considered in XTRS-C is that of recognizing the type (A, H, T, or none of these)
of a vehicle present in a range image solely on the basis of the presence or absence of characteristic
appendages, such as gun barrels and antennas. These appendage-like parts are used here because they
can easily be extracted using contour-based methods and because they are very useful in distinguishing
the vehicles in the primary data base.

For category nodes such as T, 11, and A, the definitions of the property sets relate to the characteri-
zation contained in the symbolic image-event description discussed in Section 4.1. The property sets of
the terminal nodes relate to the symbolic primitive descriptions that contain attributes such as length
and orientation. Composite nodes (that is, nodes that have subparts) do not possess a property set.
Finally, constraints between nodes in the AM hierarchy express relationships between parts.

In the current version of the contour-based hierarchy the nodes V, T, II, and A do not include any

property set, making the specialization hierarchy extremely simple. Each of the object nodes T, II, and
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A is the root of an AM. For instance, the AM for the object T is comprised of the object node T; the
three part nodes T-G, T-A1, and T-A2: and the corstraint L. (This constraint is actually defined in
the node T, but is shown separately here in order to indicate its presence). Each of the three nodes
representing a part contains a property set which describes the ranges of shapes, sizes, and orientations
expected for contour primitives corresponding to the silhouette of that particular part. The constraint L
specifies that the first antenna T-A1 of object T must be to the "left-of" the second antenna T-A2. This
example also illustrates the use of a "shouldn't-be-present" switch. For example, it is used to indicate
that a vehicle with an antenna-like appendage cannot be of type H, at least in the primary data set.

The AMT hierarchy for XTRS-R is shown in Figure 10. The property sets for nodes and the constraints

.A-LGf

NODES LINKS CONSTRAINTS
V =VEHICLE X-A =ANTENNA S --SPECIALIZATION A = ABOVE
T =TANK X-G = GUN P = PART B = BESIDE
H = HOWITZER X-T = TURRET N = NEXT-TO
A =APC X-B =BODY R = AT-REAR-OF

X-LG = LONG GUN W =SAME-WIDTH-AS

Figure 10: The appearance model hierarchy for the region-based XTRS-R

of composite nodes are defined in terms of the region characterizations stored in the symbolic descriptions
discussed in Section 4.2. Thus, the nodes of an AM describe objects in terms of region attributes
such as length, width, and orientation, and the constraints of composite nodes are defined in terms of
relationships among subregions. In this particular hierarchy, the property sets defined within each of

the V, Tr, tl, and A category nodes contain, among other things, the expected range of silhouette area-s
(in square meters) for objects belonging to each particular category.

As in the case of tihe contour-based AM hierarchies, each of these nodes is the root of an AM. For
instance, consider the AM for object T. Each of its four "part" nodes contains a property set which
describes the variety of shapes and orientations expected for the region primitive that corresponds to
the silhouette of that particular part.. The constraints labeled A specify that two parts must be joinedl

to one another with one part being "above" the other. For instance, the part T-A must be joined to andl
ab~ove the part T-T. The relationship "above" is defined in terms of a spatial relationship between two
regions. Similarly, the constraint labeled "B" specifies that thle part, labeled T-G must he joined to and
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"beside" (i.e., left of or right of) the part labeled T-T.

7 Matching

Conceptually, the act of recognition in this narrow context consists of determining which, if any, of the
AMs match the object characterizations extracted from the imagery and stored in symbolic descriptions.
(A full description of the matching algorithm and the procedures that implement it is contained in
[Verly 89a].) The recognition procedure implemented in the matching subsystem is intended to be
general purpose. For some other application the object characterization subsystem and the content of
the appearance model hierarchy may be very different, but it should be possible to use the same matching
subsystem.

The inputs to the matching subsytem are a symbolic description representing the image event of
interest (contour or region), the corresponding symbolic primitive descriptions, and an AM hierarchy.
The output is the identity of the object in the AM hierarchy that best matches the input symbolic
descriptions extracted from the imagery. The processing done by the matching subsystem consists of
three steps: symbolic matching, belief computation, and decision. The first step (symbolic matching)
consists of two phases, referred to as pruning and AM matching. The overall organization of the system
is depicted in Figure 11.

MATCHES
AND DEGREES HYPOTHESES

OF MATCH AND BELIEFS

IMAGE EVENTS
AND PRIMITIVES AM AM BELIEF RECOGNITION

PRUNING MATCHING COMPUTATION DECISION DESCRIPTION
AM DECITO

HIERARCHY | AND BELIEF

Figure 11: Processing steps in the matching subsystem

The first phase of symbolic matching, called the pruning phase, attempts to eliminate whole categories
of AMs from further consideration. This is accomplished by matching the image-event description in a
depth-first manner against the property sets of the nodes in the specialization hierarchy. On reaching a
category node that fails to match the image-event description, the portion of the AM hierarchy rooted at
that node may be "pruned" (i.e., removed from the hierarchy) since the image-element cannot represent
a match to any of that node's subcategories. In this way, whole classes of AMs can be excluded as
possible matches to the image-event description, reducing the number of AM's that must be considered
in the second phase. The AMs that remain as possible matches after the pruning phase are called active
A Ms.

In the second phase of symbolic matching, called the AM-matching phase, the primitive descriptions
are matched against the part descriptions and constraints of the active AMs. This matching is carried out
independently for each AM using a depth-first matching procedure. This procedure matches the input
primitive descriptions against each of the terminal part nodes of the AM and evaluates the constraints
defined among the parts of composite nodes. A degree of match is computed for each match of a primitive
description to the property set of a terminal node and for the evaluation of each constraint with respect
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to a given set of primitive descriptions. (Each element in such a set of primitive descriptions represents
a match for one of the parts involved in the constraint). For composite nodes, a degree of match is
computed for each set of primitive descriptions that represents a possible match for the parts of the
composite node. This is done by combining the degrees of match for that node's parts and constraints
given the set of primitive descriptions. When AM matching is completed, each node of each active AM
will contain a list of possible matches (to the node's property set for terminal nodes, or to the node's
parts for composite nodes) in which each element has an associated degree of match. A simple example
of the symbolic matching step is discussed below, but the details are complex and cannot be covered in
this short article. fhe readur is referred to (Verly 89a] for more information on this subject.

As illustrated in Figure 12, a silhouette region extracted from the laser radar imagery is characterized

DECOMPOSED SILHOUETTE:
AM HIERARCHY:

- 4 P P +

WHOLE SILHOUETTE

SUBREGION 1 goo
SUBREGION 2
SUBREGION 3 3-4

SUBREGION 4 3,4

PRUNING N AM- MATCHING

1. PARTS

2. CONSTRAINTS

Figure 12: Symbolic matching consists of the pruning phase and the AM matching phase. AM matching
embodies both part matching and constraint evaluation.

by its size and other attributes. It is also decomposed into subregions that are characterized by size,
shape, orientation, location, and their spatial relationships to one another.

The matching of the object characterization to the appearance model (AM) hierarchy begins with
tho pruning phase. Pruning attempts to remove from further consideration those object hypotheses that
do not match well with the gross characteristics of the extracted silhouette. We begin with the root node
of the AM hierarchy, labelled V for vehicle. Since the size of the extracted silhouette is consistent with
the property set stored in the V node, we drop to the next level of detail, which in this case contains the
object hypothesis nodes themselves, T for tank, H for howitzer, and A for armored personnel carrier.

The silhouette characterization is compared to the model information stored in the T, H, and A
nodes. In this case, the gross silhouette satisfies the property sets in the nodes T and and H but not
the property set of the A node. Thus 7' and I become the active hypotheses; A has been pruned from
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the tree of hypotheses and is not considered further for this silhouette.
In the second phase, AM matching, the four subregions resulting from the silhouette decomposition

are matched to the various parts contained in the AMs of the active hypotheses. The tank AM, for
example, contains the parts gun (T - G), antenna (T - A), turret (T - T), and body (T - B), as well as
the spatial relationships between the parts (A - above, B - beside, N - next to). Using the property sets
of the various parts, we can match subregion I to the tank gun (Subregion 1 could correspond to the gun
if it were greatly elevated and oriented toward or away from the sensor.) or the tank antenna, subregion
2 to the tank gun or the howitzer gun, subregion 3 to the tank turret or tank body, and subregion 4 to
the tank turret or tank body. (Subregions 3 and 4 do not satisfy the properties for the howitzer turret
or body.) Since the T - T must be above the T - B, the assignment of subregion 3 to the turret and the
assignment of subregion 4 to the body are consistent with this constraint. Finally, matching subregion
1 to part T - A and subregion 2 to part T- G gives a higher degree of match for the tank hypothesis
than the alternative of matching subregion 1 to T- G and leaving subregion 2 unmatched. For the tank
hypothesis then, the assignment of subregions to model parts that gives the best possible matchis:

1- T - A, 2 -T -G, 3 -T -T, 4 -- T - B

For the how,,zer hypothesis, the best possible match is the assignment of subregion 2 to the howitzer
gun; no other subregions satisfy the properties of the other howitzer parts.

In the belief-computation step, degrees of match computed during AM matching are used as support
for the competing object hypotheses. An object hypothesis is either a hypothesis of the form "The image
event under consideration corresponds to the object o," where o is one of the object hypotheses of the
AM hierarchy, or the null hypothesis "The image event being considered does not correspond to any of
the objects described in the AM hierarchy." For each active AM, there will be a combination of primitive
descriptions which comprises the best match to that AM. Each of the primitive descriptions in this best
match will be matched to one of the terminal parts of the AM. The degrees of match for the highest
level parts and constraints in each active AM (given this best combination of primitive descriptions)
are treated as degrees of support for the corresponding object hypothesis. The method provided by the
Dempster-Shafer theory of evidence [ Shafer 76,Gordon 85,Verly 89b] is used to represent and combine
this support. In the Dempster-Shafer formalism, a mapping termed a basic probability assignment (bpa)
is used to assign degrees of support to competing hypotheses on the basis of individual items of evidence.
In the present system, the degrees of match computed during AM matching for the best match to each
active AM are used to define bpas expressing support for that AM's corresponding object hypothesis.
All such bpas defined for active object hypotheses are then combined using Dempster's combination rule
to produce a single bpa. This bpa, which is the output of the belief computation step, quantifies the
support assigned to the various object hypotheses as a result of matching the image-event description
and primitive descriptions against the AM hierarchy.

At this point we have a degree of belief for each active hypothesis. (The degree of belief for hypotheses
that were rejected in the pruning stage is necessarily zero.) A decision rule is needed to translate this
set of beliefs into a recognition decision. XTRS uses a very simple rule: the hypothesis with the largest
degree of belief is chosen. However, in a more sophisticated system a more complex decision rule might
be used. For example, it may make sense to choose the hypothesis with the largest degree of belief only
if it exceeds its competitors by a wide margin. If there are two hypotheses whose degrees of belief are
almost equal, then it may be prudent to select the compound hypothesis that it, may be either possibility
and call for additional processing to distinguish among them.

8 Control

The primary responsibility of the control subsystem is to provide flexibility in solving a recognition
problem. Ultimately the control system should embody a variety of recognition strategies along with
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the means of selecting an appropriate strategy for a given situation. This topic is one of our current
research interests; there is a great deal more work to be done here. We have begun by investigating the
use of high-level feedback to improve our recognition results.

A common means of achieving flexibility is through the use of thresholds and tunable coefficients
that adapt a specific function to a specific image condition or object class. For example, the tolerance
used for creating a polygonal approximation of silhouette contours varies with the range to the target.
We have implemented this kind of flexibility by developing a general procedure which is supplied with a
set of rules describing properties of the object class being sought. However, selection of the rules requires
knowledge of the viewing conditions or of the object being sought.

In our approach then, the development of a control subsystem rests on the machine intelligence
techniques of knowledge management and problem solving. In the area of automated target recognition,
rule-based techniques can be used to select coefficients and algorithms on the basis of image context.
For example, one approach has been to use knowledge of the terrain and map data to select scene areas
as likely sites for target position [McKeown 83a,McKeown 83b]. An alternative approach evaluates such
object parameters as size, contrast, motion, shape and color to establish context and select the most
appropriate processing mode [Wootten 88]. Instead of attempting to characterize image context prior
to scene processing, XTRS includes a rule-based mechanism for feedback.

For our purposes, feedback consists of an evaluation of results (intermediate or final), which is the
basis for deciding what parameters to adjust and where to direct the flow of control. Feedback can be
initiated for a variety of reasons. The most important are as follows:

Algorithni failure: A critical intermediate result is missing.

Dead end detection: An intermediate result has features that contradict the object class being sought.
Consequently, there is no need to finish processing.

Selected target is unknown: Examine primitives for clues indicating poor extraction or inappropri-
ate decomposition. If found, adjust parameters and repeat processing.

Belief for a selected target is indecisive: Once again, check for clues of inappropriate processing.

Figure 13 shows the relationship of the three main processing modules and 4 distinct feedback modules.
Each main processing module has an associated local feedback module that can initiate short-loop
feedback. These feedback modules can be used to correct algorithm failures. For example, the failure to
find a reasonable polygonal approximation usually results in an increase of the tolerance parameter, and
a repeated attempt to find a reasonable polygonal approximation. Alternatively, intermediate results
may indicate that the system is working on a dead end: a silhouette output of the extraction module
that cannot reasonably be a military vehicle causes the rejection of that region. Control returns to the
beginning of the extraction module, where the next likely target region is extracted. If no problems
are detected, flow of control is passed on to the next processing module. Local feedback modules also
have the option of deciding that the most appropriate response is outside of the module it is associated
with. In such a case, flow of control is passed to the global feedback module. Ilere. the decision is

made whether to quit altogether, to return to the extraction module for another target region, or if the
current region is judged salvagable, to change some parameter and return to any of the three processing
modules.

With any closed loop system, infinite loops are a distinct possibility. As a fail-safe mechanism,
each feedback module is equipped with a counter, which is incremented each time that feedback module
issues an instruction, and a pass limit. If a module's counter exceeds its associated pass limit, the module
simply quits issuing feedback instructions. The maximum number of feedback instructions equals the
sum of the pass limits of the 4 feedback modules, thereby ensuring termination.

Although the complete feedback system has been implemented, we are still gaining experience with
how to use it effectively.
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Figure 13: Control Structure. Arrows indicate direction of the flow of information.

9 Results

Because of the difficulty and expense of printing color photographs, we are not able to show examples
of XTRS in operation. Individual examples of automatic target recognition will be shown as part of the
oral presentation of this paper. The entire processing sequence from the input images to recognized and
labeled objects is executed automatically by the system using a single set of processing parameters, and
contour- and region-based processing are completely independent.

Example 1 is a tank at an oblique angle to the sensor. Both XTRS-C and XTRS-R correctly
recognized this object despite failing to extract a perfect silhouette. Because of the noise in the range
image, XTRS-C did not extract all of the gun barrel and XTRS-R failed to extract one of the antennas.
The ojther antenna was not recognized by XTRS-R because it was longer than allowed by the tank
appearance model. Despite these small problems, both systems acquired enough information to make a
correct decision. This example also suggests that an intelligent combination of the XTRS-C and XTRS-R
results might lead to a correct labelling of all parts.

Example 2 is an APC at right angles to the sensor line of sight. Both systems correctly identified
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the vehicle based primarily on its size and lack of other distinguishing features.
Example 3 is a howitzer facing the sensor. The gun is elevated enough so as to be visible above the

howitzer's body. Both systems correctly recognized the vehicle and correctly labelled the gun inspite
of this unu.sual geometry. Tile appearance models for both systems contained enough information to
indicate that the gun could appear in this way. The gun is thicker than an antenna so it was not mistaken
for one.

The present system has been exercised on 40 scenes similar to Examples 1-3. These scenes are views
from various aspects of vehicles of the types T, 11, and A and for various configurations of those which
are articulated (types T and 11). XTRS-C and XTRS-R have each attained an overall recognition rate
of 100% on this limited data set, as indicated in Figure 14.

TARGETS AT 700 m

TANK (21) HOWITZER (15) APC (4)

T 100% 0% 0%

(n

u H 0% 100% 0%
N
z

A 0%/ 0% 100%

NONE 0% 0% 0%

Figure 1,4: A confusion matrix showing how often tanks, howitzers, and APC were correctly recog-
nized arid how often they were confused with one another. The targets were at a 700m range with a
high-cont rast background.

One of the consistent difficulties with constructing vision systems is ensuring robust behavior for a
wide range of viewving conditions. The reader should interpret 100%, recognition in light, of thle fact. that
the '10 teSt images were relatively easy to handle. In these images, the objects of interest were isolated and
filled a large portion of the frame, noise was manageable and object-background contrast was good. In
practice. images wit h excessive noise, distant objects, occlusions, and poor contrast between object, and
background wil be encountered. Adaptive control and goal-driven (top-down) exploration techniques
will he required to handle these more difficult cases.

Exaniples ,1 andI 5 are more diffcult cases handled sucessfiilly by X'IIS-C and XTRS-R. Example
I is a howitzer perpendicular to the sensor line of sight at. a range of about onle kilometer. Because of
lie depression angle at which this vehicle was viewed, the background is relatively close to the vehicle
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causing contrast in tile range image to be reduced, making region extraction and characterization more
difficult. Both systems are able to extract appropriate silhouettes and correctly recognize the vehicle.
Figure 15 shows a confusion matrix for tanks, howitzers and APCs of various orientations in similar
iniagery.

TARGETS AT 1000 m

TANK (21) HOWITZER (16) APC (4)

T 91% 7% 25%

W H 0% 93% 0%
N

0
CL)

A 9% 0% 75%

NONE 0% 0% 0%

Figure 15: A confusion matrix showing how often tanks, howitzers, and APC were correctly recog-
nized and how often they were confused with one another. The targets were at a 1000m range with a
low-contrast background.

Example 5 is a target in clutter at a range of about 1.3 kilometers. In addition to the vehicle, there
are poles and general foliage clutter. XTRS-R was able to extract the correct region and identify it as
a tank based on the size of the turret and body subregions. This particular example was sucessful, but
in general XTR.S has difficulty segmenting out the correct target region in imagery this complicated.
There is clearly room for further work in this area.

One way of acquiring a data set with more objects at a greater variety of viewing angles is to
generate images synthetically. We have developed a synthetic image generation system that uses 3-ID
object information to compose a range image and an angle-of-incidence image. These two images are
then degraded by simple noise models to obtain realistic range and intensity images. Thii' capability
allows us to generate data sets to stildy the performance of XTRS as a function of variables such as
range to target. There are seventeen target models that are currently available to tie synthetic iiage
geierator.

IUsing the synthetic data sets, we can perform experiments to evaluate the performance of XT[HS
quantitatively. Figure 16 shows agraph of the recognition performance of XTRS-C and XTFRS-R as the
range to the vehicle increases out to three kilometers. ('The an-,ular resolution is tIle same as that found
in the real imagery.) Each data point represents twenty trials using eight tanks, eight howitzers and
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Figure 16: Recognition performance as a function of range to target.

four APCs at various orientations and articulations as the target. (This same mix of synthetic targets
is used in all the experiments described below.) Even out to three kilometers there are enough pixels
across the target to recognize its shape.

XTRS can also be used to investigate the effects of altering some of the basic sensor characteristics.
For example we are interested in learning how XTRS performance degrades with increasing levels of noise
and how it improves with better angular and range resolution. Once again we can use the synthetic
image generator to compile appropriate data sets to begin addressing these questions. For example,
Figure 17 shows how performance degrades as the percentage of outliers in the range image is increased.
(The percentage of outliers is related to the laser carrier- to-noise ratio. The real imagery has an outlier
percentage of about 1%.)

A sensor with increased range accuracy will give images with better contrast between target and
background and will begin to convey some measure of the target's third spatial dimension. This be-
comes important in the airborne ATR application where increasing depression angle reduces the range
discontinuity between the top of an object and the background above it. Figure 18 shows how the recog-
nition performance of XTRS-C varies with depression angle for range accuracies of two meters and six
meters. Figure 19 contains a similar graph for XTRS-R. Higher range accuracy can improve recognition
for the low-range-contrast situations that will be found in the airborne target recognition application.

10 The Future
In this paper we have discussed our experimental target recognition system. In XTRS the model library
takes the forrii of an appearance model hierarchy. The input to the matching subsystem consists of
an AM hierarchy and the set of image event characterizations derived from the imagery. Each charac-
terization consists of a symbolic and numeric description of a single image event (in our case, either a
contour or a region) extracted from the imager1 and descriptions of the primitive features resulting from
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Figure 17: Recognition performance as a function of noisy pixels
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Figure 18: Recognition performance for XTRS-C as a function of depression angle with range accuracy

as a parameter.
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Figure 19: Recognition performance for XTRS-R as a function of depression angle with range accuracy
as a parameter.

the decomposition of the extracted event. The procedure that matches the image-derived descriptions
against the AM hierarchy is application-independent. The only system components that change from
one application to another are the AM hierarchy containing the knowledge about the objects of interest
and the algorithms necessary to extract desired image events and to dccompose them into primitives.
Thus, our approach has a wide range of potential applications.

XTRS attempts to recognize vehicles using range silhouettes extracted from coarse-resolution range
imagery. The important steps of silhouette extraction, decomposition, and recognition were discussed
in detail both in the contour- and region-based cases. In both cases, the system operates in a fully
autonomous fashion from raw data to object recognition and has been observed to perform extremely
well for images similar to those of Examples 1-3. We have demonstrated that the concept of AMs
evaluated in an evidential formalism can achieve good object recognition of articulated, imprecisely
defined objects present in real laser radar images with significant noise and coarse range resolution.

There is room for improvement in all the constituent subsystems of the generic model-based recogni-
tion system (Figure 1). We can expect improvements in the detection, extraction, and characterization
of events in the imagery from two sources. New sensors may offer new features and new discriminants
that may be exploited by new characterization algorithms, and new algorithms may be developed that
can combine measurements from different sensors at a very low level. For example, we have used the
pixel-registered intensity and range measurements together in the region-based system to extract target
regions. A more sophisticated region extraction algorithm may use several bands of optical or infrared
imagery in conjuction with laser range and intensity images.

The realization of the model library is crucially important. Robust recognition systems must use
a variety of clues to deduce the identity of an unknown object. That requires using diverse pieces of
information at the right time in the matching process. The information represented in the model library
must be easily accessible to the matching subsystem to keep the computational cost reasonable.
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Building the individual components of a large ATR system may draw on powerful mathematical and
theoretical concepts, but assembling these components into a system is currently more an art than a
science. There does not exist any global theoretical framework for building complete vision systems. The
only guiding principle adopted by virtually all systems is the division of the problem into three stages,
often referred to as low-level vision (silhouette e-+-,tction in XTRS), intermediate-level vision (silhouette
decomposition), and high-level vision (silhouette recognition). However, within each level there are a
variety of well developed techniques that can be applied to particular aspects of the recognition problem.

Our approach to the design of XTRS has been to use established and mathematically well-understood
techniques wherever feasible (e.g., mathematical morphology, difference of gaussian filtering, theory of
evidence). Ad hoc techniques have been used where necessary, most notably in the silhouette decompo-
sition step. When recourse to ad hoc processing has been necessary, a special effort was always made
to create a modular building block, whose operation can be explained in lucid terms, whose behavior is

predictable, and whose domain of applicability can be readily extended. (Examples of ad hoc building
blocks satisfying these requirements are the contour and region decomposition steps.)

The AM hierarchy evaluation system also illustrates our attempt to impose modularity and rigor:
This system is application independent and the calculation of degrees of match has a sound mathematical
foundation. The use of modular, well-understood building block in XTRS allows us to quickly reconfigure
ti' . system and to replace any algcrithm with an alternate processing scheme.

Progress on the general ATR problem has been slow. The performance of an object recognition system
is difficult to analyze mathematically; we are hindered by the lack of a global theoretical framework. It
is also difficult to make progress experimentally because of the large amount of imagery that must be
processed to investigate ATR performance under many conditions. Fortunately, technology continues to
provide us with cheaper and more powerful computational resources, and computer science is beginning
to provide mechanisms for the rapid conversion of ideas into executing algorithms. Our ability to
experiment is improving.

In our work we have tried to address the whole problem. Our goal from the beginning was to build
an end-to-end system, one that takes sensor images as its input and makes a recognition decision as
its output. Having an end-to-end system allows us to experiment with it, augment it, reconfigure it.
and use it to discover and evaluate new approaches to the ATR problem. In a real system, performance
improvements may arise from a synergistic combination of suboptimal processing algorithms. Conversely,
the replacement of a particular algorithm by a more nearly optimal, but computationally more expensive,
alternative may not improve the performance of the end-to-end system significantly. Our experimental
system provides an excellent testbed for observing and understanding such effects.
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UNIFICATION AND INTEGRATION OF VISUAL MODULES:
An Extension of the Marr Paradigm

John Y. Aloimonos
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ABSTRACT
To address the problem of computational vision, a methodology must be followed. There is a general princi-

ple for designing large and complex information systems. First we divide the system into functional components
which break the overall task into autonomous parts, and analyze these components. Then we must choose the
representation of information within the subsystems and the language of communication among them. After this,
the details of the systems are tested individually, in pairs and all together. At least the above principle should be
followed in analyzing a complex information system, such as a visual system.

The Marr paradigm work has called for a deep study of the individual functional autonomous components,
the visual modules. And although such research continues to address several important unexplored issues, it has
become clear that most aspects of passive monocular vision (modules) are problematic in the sense that most
modules are faced with the task of solving ill-posed lroblems.

A problem is ill-posed when its solution does not exist, is not unique or does not depend continuously on the
data. In other words, most early vision modules either do not have a unique solution or, if one can show that they
do, usually the solution is unstable in the presence of noise. Thus, we feel the time is ripe for moving to the next
natural step (extension) in computational vision research according to the above-mentioned general principle, i.e.
to work towards the integration of the modules, in order to achieve unique and robust reconstruction. However,
before this step is attempted, we need to first study the stability of the existing modules in the presence of noise,
i.e. to develop "optimal" modules-modules that optimally estimate what they are supposed to compute, in order
to realize how good the best is-and second to examine the commonalities in the existing modules in order to
understand what are the minimal hardware requirements.

In this paper I attempt to present a broad view of the computational vision field, i.e., to look at it from
several points of view and different perspectives. For that I first needed to describe a classification of existing
works in order to understand why we do what we do and what are some of the ultimate goals of computer vision
research. Then I proceed to describe some examples from our research along the above-mentioned lines. In par-
ticular, in studying individual modules, the celebrated problem of structure from motion is examined from a sta-
bility and complexity point of view. After this, a theory of regularization effective in the presence of discontinui-
ties is presented; the theory can be used for both unifying as well as integrating early vision modules. In other
words, the same theory can be used for developing solutions to early vision modules such as edge detection, inter-
polation, shape from texture, patterns, shading, etc., lightness constancy, image compression, deblurring,
geometric decomposition, model-based vision, and so on, as well as for integrating the abovementioned modules,
i.e. combining information from different cues in order to facilitate robust reconstruction. In the course of the
analysis it is shown how one can basically learn the constraints that relate 3-D characteristics to 2-13 image cues.
Finally, I describe our recent research in high-level vision and in particular some aspects of the problem of visual
learning. This paper could be considered as a methodological summary of our forthcoming book2 by Academic
Press.

'The help or Barbara Burnett and Sandy German in preparing this paper is grateril~y acknowledged.
2j. Aloimonos and D. Shulman, Integration of Visual Aodules: An Ezinsion of the Marr Paradigm, Academic Press, Boston, in press.
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1. INTRODUCTION

There is a standard way to dlesign large and complex information svystems as research in computational fields
has shown. First we divide the system into functional Components which break the overall task into autonomous
parts, and analyze t cheje c )onents. Then we must (hoose the representation of information within the subsys-
tems and the language of communication among them. After this, the details of the systems are tested individu-
ally, in pairs, and all together IFeldman, 19851. At least the above principle should be used in analyzing a com-
plex inforrnation -,ystecia. such as a visual svstem. With respect to research in vision (computer and human), this
principle was apparently lirst realized in the mid-70's at the Massachusetts Institute of Technology (MIT) through
pioneerinrig reearchl under the leadership of David Nlarr Nlarr, 19821. It was then that the foundations of modern
conputer vision \%cre set with attention shifting from restrictions on the domain of application of a vision system
to iestrictions on visual abilities (autonomous l)arts). The focus of current research is defined more in terms of
topics that corre.-pond to identifiable modtiles in the ht, man visual systen: and although it is not clear what such
modules in the humai visual svsteni are. research in neurobiology. neuroanatomy, psychophysics and psychology

\Vi:krant z et :1.. 197 1: Stevens, 1981: Marshall et at.. 1973: Gibson. 1950: Land et al.. 1971 has provided strong
evidence that cues such as shading (iniage intensity variations), texture (distribution of surface markings), con-
tours and line drawings. motion and stereo are very helpful in undel'standihg properties of 3-D r urfaces from their
visual images.

The changc . foei us in research front a narrowly specified domain to a specific module (not necessarily
pr'esent in the lii!um:il vi>tal systeiii) had several conscquences ofi tile way research il1 underst andi g vislon is con-
ducted. One such ,i'onseqewnce has been tile declille in the const ruct ion of entire vision systems, i.e.. systems that
exhibit some vur1i c:, integration and use knowledge at all levels including domain specific information. "In order
to complete the construction of such systems, it is almost inevitable that corners be cut and many overly
itmplified assuiniplions be made", as described in {I3rady. 1982. This will result in a system capable of carrying

out a lInited number of applications (which might be beneficial to indu~trial systems), that (o not enhance our
tinder.tanding of vision iii general.

As we have suggested in tile past Aloimonos et al., 19881, there are basically two schools of thought, in the
way research in ConIputer vision is performed today, as shown in Figure 1.

The reconstruction school worries about the reconstruction of the )hysical parameters of the visual world.
such as the depth or orientation of surfaces, the boundaries of objects, the direction of light sources and the like.
The recognition school worries about the recognition or description of objects that we see and involves processes
whose end product is some piece of behavior like a decision or a motion. The recognition school is goal directed,
and from this point of view it might be classified, in a sense, as a bottom-up Marr paradigm school, while the
reconstruction school can be considered as top-down in the Nlarr paradigm.

As used here, a top-down methodology (top-down in the Marr paradigm) refers to an approach which starts
with the development of a general theory for some visual process. The hope is that the theory will provide useful
insights into a number of specific applications. This approach has the advantage that it is not tied to any particu-
lar application. The corresponding disadvantage is that. because the framework within which the theory is
developed is always a simplification of the real world, theoretical development may not, always lead to p)ractically
usable techniques.

Top-down Bottom-upS Marr Paradigm A

Reconstruction Computational theory Recognition
School Algorithms School

Implementation

F~rnnng a specific solution to a general problem, using Finding a general solution to a specific problem,

specific assumptions (e.g., structure from motion without using specific assumptions (e.g., obstacle

a 3 S.-ning rigidity or smoothness) avoidance without specific assumptions)

Figure 1.

For example, one rich source of evidence for the existence of modules in the human visual system is apparent from the study of patients

with disabilities that come from brain lesions. On the other band, psychophysicists perform experiments where a particular module of the hu-

man visual system is seemingly isolated, sach as Julesz's experiment on stereoscopie fusion without morio,'lar cues. Land's demonstration on

the computation of lightness, Gibson's experiments on the tereition of bhape from texture. etc.
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.- botton-up approach (bottom-up in the Marr paradigm), oil the other hand, starts by developing systems
which actually perform certain practical tasks. Here the hope is that. commonalities observed among several such
s.tenis will allow the eventual formulation of more general principles. This approach has been criticized on the
grounds that it will produce results of too narrow a scope, and without adequate theoretical foundation. On the
other hand, if it produces anything at all, it is guaranteed to produce results which can actually be applied. More-
over, a solution to a specific problem can certainly have a solid theoretical foundation within the domain of its
applicability. The success of such an approach depends on the appropriate selection of the specific problems. In
particular. the problems must have a kind of environmental invariance which makes their solution applicable in a
wide range of sit uations.

'he situation can be viewed in terms of the well known paradigm described by David Marr lMarr, 19821.
The paradigm states that a machine performing all information processing task must be understood on three lev-
els: the level of computatinal theory, the level of representation and algorithms, and the level of the hardware
implementation. A top down approach thus corresponds to starting with the computational theory and developing
software and hardware to match, whereas a bottom-up approach starts with working software and hardware and

attempts to devise an appropriate theory. 4

Research in the reconstruction school (top-down in the Marr paradigm) can be considered as research for
finding a .speeijic solution to a general problem. Working on visual modules, such as shape from shading (or shape
from r in general), structure from motion and the like. someone trying to develop a computational theory for the
perceptual process at. hand has to make specific assumptions (for example, knowledge of the reflectance map in
shape from shading, rigidity in structure from motion, knowledge of 3-D texel distribution in shape from texture
and the like). On the other hand, if one works bott om-up in the Marr paradigm, i.e., wishes to develop a system
for a specific task, then she should perceive her problem as one of finding a general solution to a specific problem.
Let us consider an example in order to clarify matters, in particular the problem of obstacle avoidance (visually).
If in the reconstruction school of thought (top-down in the Nlarr paradigm) the modules of stereo, structure from
motion, etc., are highly developed, then the solution to the obstacle avoidance problem comes as a simple applica-
tion. flowever. one might not need any of these modules in order to avoid obstacles. One might be able to solve
this specific problem (obstacle avoidance) by developing a general solution that, does not use any specific assump-
tions (for such an approach see Nelson and Aloimonos, 1988a).

Before we proceed with an outline of the paper, in order to avoid leaving the reader with a sense of dissatis-
faction, we present some examples of recent work that fit in the previously introduced classification.

Top-down in the Marr paradigm includes the works of Horn on shape from shading and passive navigation; the
works of Poggio and his colleagues on stereo, motion and zero crossings; the works of Witkin, Bajcsy, Stevens,
Kanatani and Gibson on shape from texture; Brady's, I-anade's and INender's work on shape from contour; the
works of Binford and his colleagues on stereo, edge detection and specularities; the works of Shafer and Kanade on
shadows and color; the regularization and segmentation works of Poggio, Mumford. Blake, Terzopoulos, Nagel,
Pavlidis, Lee, Grimson, Marroquin, Geman and Geman; tile works on computing optic flow; Huang's work on
estimating 3-D motion; Ullman's and Faugeras' work on structure and motion estimation; Rosenfeld's work on
relaxation, etc.

Bottom-up in the A1arr paradigm includes the works of Brooks on achieving Al through building robots, the works
of Grimson and Lozano-Perz on robotics applications, the works of Nelson and Aloirnonos on navigation, the
work of Solinia and Bajcsy on recognition. the work of Nevatia on recognizing runways from aerial images of air-
ports, the work of IKanade anti his colleagues on navigation in constrained domains, Ikeuchi and Horn's work on
bin picking, and in general works concentrating on a specific application, such as problems involved in automated
assembly, fault recognition of specific machine parts. etc.

At this point it is worth noting that due to the inability of the general theories developed ill the Marr para-

4One might ask: how can you have software and hardware without some form of eoml-utational theory? \Vhat is actually meant here is
that you have sore very simple and intuitive computational theory, which is promising but very hard to analyze in a rigorous way. Experi-
menting and hoping that software based on this idea might he successful, you might end up with a working mechanism. Then, you will have
to prove why it works and this will be the computational theory. An example here will help clarify the bottom-up approach. Consider the
problem of visual homing, i.e. finding a specific position in an environment from any arbitrary position in this environment, on the basis of
visual information. A simple idea would be to store several views of this environment (actually some pattern from the view, in order to reduce
sparce requirements) and associate with each one a motion toward the home point (that has zero motion associated with it). Then while per-
forming homing, the automaton would have to match (approximately) sensorel images (patterns) with the best one in the memory and take
the appropriate motion. Nelson (log) experimented with this simple idea and it turned out that it was very successful. Then, Nelson created
a ,omputational theory that, given the environment, will determine how many views are necessary to store, and give,, statistics from the en-
vironment, what i. the probability of successful homing, what is the optimal threshold for approximate matching, what are the optimal pat-
ter"nS. etc.
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digm (top-down) 5 to find applications in practical systems (navigation and object recognition-two problems in

vision that almost any published research paper addresses directly or idi iectly) some researchers call for system
development, even if we don't understand the individual components. Such an approach, if attempted, should be

done bottom-up in the Marr paradigm. 7 The reason for the limited success of the theories developed in the Marr
paradigm is that most modules are confronted with the task of solving ill-posed problems. The ill-posedness
comes from either the lack of stability or from the lack of information necessary to guarantee a unique solution.
In the sequel some of these problems are addressed. First, an example from our research is presented in the study
of structure from motion (Section 2), and emphasis is placed on the analysis of robustness of proposed algorithms.
Section 3 is devoted to the description of a theory of discontinuous regularization that can serve both for unifying
and for integrating visual modules. The paper concludes with a list of future research problems.

2. STRUCTURE FROM MOTION: FACT OR FICTION?

The problem of structure from motion8 (sfm) has been extensively studied in the recent literature. A
plethora of algorithms for solving the problem has been suggested and with the exception of very few that solve
part of the problem in specific domains and using specialized sensors, none of the techniques has found any realis-
tic applications. Why? I do not, intend to present here a treatise on sfm and analyze previous work. Instead, I
will concentrate on the approaches whose first step is to establish retinal correspondence and whose second step is
to use this correspondence in order to recover structure and 3-D motion, and describe parts of a complexity and
stability analysis.

2.1. ESTABLISHING CORRESPONDENCE

This is a hard problem. Several techniques have been proposed that work only when the assumptions
employed are true in the real world. The basic problem is that, all approaches (implicitly or explicitly) assume
that the motion field is smooth (with the exception of the ones working in specific domains). But motion fields in
real scenes are full of discontinuities, and reconstruction of nondifferentiable (or discontinuous) functions is a
mathematical question whose answer is not completely known. The theory of discontinuous regularization that we
are developing can be used for establishing correspondence and I will postpone such an exposition until Section 3,
in order to avoid duplication. Here, I would like to touch on the complexity of the problem, and show that it is
intrinsically connected to segmentation. 9 Since the goal is a negative result, it will suffice to assume knowledge of
the 3-D motion, i.e. to consider stereo correspondence, in a piecewise planar world.

We use the following notation: given two finite two-dimensional images Ii and I,, and two 9nite sets of
feature points in the two images, P, and P,, a correspondence is defined as discrete mapping 6 ,n : P - P,. Since
the two sets of features points are finite, each point can be considered an ordered pair (x, y) with integer or
rational coordinates. Let I P, I = n and IP, I = ni. We also assume the images are registered with horizontal

epipolar lines, so that the disparity 6 of a match 6,,, (x1 , yi)) = (x, y,) can be defined as 6(x,, y,) x - x, and

,Y1 = Y'.

A surface covering is defined as a set covering S = {S 1, 8 2..... sk.} of the feature points P in the left
image. A surface covering is interpreted as the segmentation of the feature points into surfaces. Given a
correspondence 6, , a planar suirface cot,ering over that matching is defined as a surface covering where every sub-
set of points s has matches which can be fit, exactly by a plane in three-space. This implies that for each 8j, the

disparity data { X, y1, 6 (.r, y1 )) can be fit exactly by a li'ear disparity futit,'onal 6, (xi, yt) = a + bxl + cy.0

5Siceh as shape from z, structure from motion, optic flow. etc.

OSPe Proreedinqs of Image Underslandinq WlorkAshop I98G. 1087. 1988.

7 One might maintain that building systems even if we don't understand co lonents contributes to our understanding of vision (from
t. experience gained from repeated failed attempts). That is true, loit such a methodology is very expensive.

'Recovering the structure and 3-D motion of a iloving object froIll a seq,11ene of its images.

QEstman. private communication.

I°Note that some intuitively reasonable restrictiouis amve not been placed on ,orrspondences or surface coverings. Correspondences

could be required to be 1-1, so each feature point has only one match; and surface coverings could be required to be eliminate transparent
planes. Ttiese simplifications allow us to avoid kssues like poinits %vithout matches ,JdIi to occIlusion.
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C'ons-ider now three problems of interest.

Plane matching problem. Given feature point sets P,, P, from images I, ,, and a surface covering S,, find a
crr ,'pondetce c,,, over which S is a planar surface covering; or, determine that there is no such correspondence.

'lanar point cove.ring problm. Given feature point sets .P1 , P, from images 1., 1, and a correspondence b,,,, find
a planar surface covering Sm such that the cardinality K of the covering is minimized.

P'lane matching covering problem. Given feature points sets P,, P, from images I,, I, find a correspondence 6o,
with a planar surface covering q,,, over b such that the cardinality K of the covering is minimized.

In the first problem, we know a covering and wish to find a correspondence; in the second, we know a
correspondence and wish to find a covering; in the third, we know nothing in advance and wish to find both a cov-
ering and a correspondence. The first problem is polynomial in complexity,'' while the second 12 and third are
NP-hard. hiowever, the second and third are polynomial if we know the number of planar surfaces, K, in
advance. This implies that segmentation into an unknown number of surfaces, not matching, is the expensive
part of corresl)ondence.

The significance of results such as the above is that the "segmentation" part of the correspondence process is
the expensive one. Clearly then, one has two choices in attacking the correspondence problem: to either develop
retinal motion algorithnis that at the same time attempt to couple discontinuities in the flow field with discon-
tinuities in the world (i.e. work like that of Poggio 1988j, Geman and Geman 19861, Mumford and Shah, Shul-
man and Aloimonos, Blake and Zisserman, Nagel and Enkelman), or devise good heuristics for solving the problem
in specific domains.

2.2. COMPUTING STRUCTURE AND MOTION IN THE PRESENCE OF NOISE

Several algorithms dealing with structure and motion estimation from discrete frames have been published.
The imaging geometry is the usual one: Coordinate system OXYZ; image plane Z = 1; 0 is the nodal point. A
point P in 3-D is Trepresented by its position sector [X Y ZjT and its image on the image plane by

P , - I in 3-D coordinates and 1 7 in image plane coordinates (Figure 2).

"Simple proof.
2Planar point covering with unknown K is NP-hard. The proof follows by reduction of linear point covering to planar point covering.

Linear point covering was defined and proved NP-hard in Negiddo and Tamir, 19821. Their definition follows, with rational or integer coordi-
nates understood. "(Linearl point covering problem. A set of points (z,, ). ,(x,, y.) is given. Find a collection of straight lines
11 .... 1} of minimum cardinality, such that (x,. y,) lies on at least one 1,.11

A direct reduction is possible by extending each line in the two-dimensional linear covering problem into a plane in the three-dimensional
planar covering problem. Let P2 be the set of points in an instance of linear point covering. Transform P 2 to the set P3 by embedding each
original point (z,. y,) in three dimensions a.s the point (x,, y., 0). Now construct the sets P.- and P3+ with points (x,, y,, zi-) and (x,, y,,
a:'), respectively, such that, P = P -P3  meets the following condition: any four distinct points from P are coplanar only if the four origi-
nal points from P are collinear. A set of collinear points in P, will transform into a set of coplanar points in P U P 3 that can be covered by
a vertical plane parallel to the z-axis. If K lines can cover the points in the original set P0 , then the same lines transform, d into K vertical
planes will cover the points i, P U P3 . Conversely, P '. P 3 cannot be covered in less than K planes; in fact, P cannot be covered in less than
K planes. The possible planes fall into two groups-vertical and non-vertical. Less than K vertical planes cannot cover P. for then less than
K lines would cover P2 , a contradiction. Less than K non-vertical planes cannot cover P, for every non-vertical plane covers only three
points o 2n 3 would Ibe required to cover all points in P; but K must be less than n,12. Less than K vertical and non-vertical planes cannot
,over P. for either the two classes of planes are disjoint, in which case the previous argument applies to the subset of non-vertical planes; or
the two ubsets are not disjoint, in which case any non-vertical plane which shares a point with a vertical plane can b. replaced by a vertical
plane that rovers the one or two points not shared with the first vertical plane.

To finish the reduction, we need to show that the coordinates z+ and z-, satisfying the condition above, can be computed in polynomial
time. The computation can be done by selecting the points from P2 one at a time, and assigning first z and then z+ to each point such that
the ,'onditio.n is still satisfied. First, order the points in P., in any order as long as the first three points are not collinear. If there are not
three non-collinear points froio P. then P, ,an be covered by a single line and any assignment of non-zero coordinates to the z coordinates
will do. It there are three such points. then assign non-zero values to the z coordinates of the three so the six new points satisfy the non-
coplanar requirement. Now. take the remaining points from P., in order and assign first z- and then z+ to each point, comparing each new
,.oordinate to all previously existing 'ts of three points in P to avoid creating a coplanar set. For each new coordinate, this creates up to

0 ( n4) fortid-len values, whlere i ks lhp iinibei of pievioiusly assigned coordinates: t his lrite force approach would take

_,_= O(n'l) time to generatp all the forbidden values. However, a set of three points may Ie collinear in P.,with the current point, and

in this case" the four new points will be uinavoidatly coplanar so the set pla.es no constraint on the new coordinate values. Choosing three
non-collinear points to start the process avoided the possilility of' creating three or more points ,!ollinear in both P., and P which th, n forces a
sPt of four or more coplanar points when any new, non-collinear point, is added to P.
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P,image point

p Pp

PP

IPI

Y

Figure 2. A point P in the 3-D rotates and translates to P' Its image then moves from p to p' The image sur-

face is a patch of a sphere so the image point vectors have length one
P1

The vector p = contains as much information as P - -I and has the advantage of constant length. A
l Ip I1

point P in 3-D that projects on p translates by T and then rotates by R (R is a rotation matrix) to P' which
projects to p'. The following relation then holds:

P-= R(P + T) => RT .P' P + T => T x (RT . P')= T x P -> P "T x (RT .P,) =0

or (P, T, R T P') = 0 where (- , )is the triple product. Dividing bylI P 11 IIP'II we get
(p,T,RT'pl)O or

p -Ep'=O (1)

where E = Ts" R

t'3 0t-,0

-t2 ti

Eq. (1) is a linear equation with unknowns the elements of E. If we take at least 8 such equations we can
almost always recover the motion parameters [Tsai and Huang, 19841. To increase the stability we can take more
than eight points and do least squares to minimize a quadratic of the form

ST -A "x -min (2)

where x is a nine-dimensional vector each element of which is an element of E (its colunis one on top of the
other form z) and A is a matrix that depends on the various pairs of points Pi, P',.

Least squares is the easiest method we can use. But it requires the variables (the elements of the vector z)
to be independent. Here this is not the case; the solution that, least squares finds, without taking into considera-
tion the dependency, does not represent a matrix E that is decomposable into TS and RT . Even if from the solu-
tion that minimizes (2) we find a matrix E that is nearest to being decomposable. this might be far from minimiz-
ing (2) in the sense of finding R, T that do this. Another problem is the physical interpretation of what we
minimize. Unless x is decomposable to R, T then there is no physical interpretation of the quantity we minimize.

So two things need to be done: First, use constraint minimization for (2), and second, find what the quan-
tity we minimize stands for. Let us now introduce the error in correspondence in our calculations. A point P1

moves to P 2 with rigid motion, P2 = R (PI -f- T). The correspondence algorithm matches it incorrectly with
P'2 = P 2 

+ " or P' 2 - R (P 1 + T) + n where n is the error vector. Proceeding as before we get finally
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1)1- P2 p. r(Pi1, TI? ' /1 ) or p._.- * p',-, (p, '. ni')(3

I I(

The II.s. of (3) is what we minimize in (2). -o this iniiimization p)roces ininimizes a function of the correspon-
dence error. The rh.s, of (3) equals

(iu )< "r ) -,' (5)

First notice that we minifnize the component of the error that is parallel to p, X T. The other component is
irrelevant to the estimation of 3-D motion and alfects only the estimation of the structure of each point; hence
depth e~t imation for each of these points is at the mercy of the error in the pair of its projections (see Figure 3).
Needless to say, trying to mininize both components of the error is impossible. Second, far-away points have less
weight because in (4) 11P.. is in the denominator. What we can actually minimize is one component of the

image of the noise vector. 13 The true corresponding point

-- ------ of p belongs in this line I
which depends on the
motion parameters.

Image noise
vector

/" ' Noise vector
that can be
minimized.

i I -

I

Figure 3. We have to find a set of motion parameters that minimize the distance of the points p" from their
corresponding lines I This distance is the component of the noise we can minimize.

One of the difficulties inherent in estimating the motion is related to the size of the object observed. When
the object is both small and almost planar then pure translation and pure rotation may create very similar flow
patterns or correspondence pairs. This phenomenon appears here too. In (5) the error is multiplied by the sine of
the angle between Pi and T. When the field of view is small then the vectors pi of the points form a tight bun-
dle. Then a choice of T somewhere between them makes the sine of the angle between T and the points very
small. Since this sine is multiplied by the error the result is a small number (Figure 4). If the noise is sufficiently
large then the solution of T is biased towards being pointed to the object. Part of the blame here goes to the sine
that appears in (5).

As a conclusion we can say the following.

* No matter how many points we use we cannot, reduce the error in structure estimation using two frames.
This problem cannot be cured with two frames.

* \When the field of view is small and there is noise, the translation is biased towards the observed object.
Ultimately, this means high error in the output. because our estimator is biased.

Ilaving established the fact. that computing structure using two fraines in the presence of noise is completely

at the mercy of the error in retinal correspondence in such a Way that reducing the error is simply impossible in
general, we describe our approach to answering the following question:

(a) flow can we optimally estimate 3-D motion using two fraies? (i.e., what is the best we can do, using two
frames?)

"3The above two things are natural and both of theni are to be exfe'te.
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T This T might be a good estimate but the
other one minimizes the quadratic

ThisT' forms small
angles with the image
point vectors.

Figure 4. An estimate of translation T that min,mizes the quadratic just, because it forms small angles with the im-
age point vectors might be preferred over one that minimizes the overall image error if a non-optimai
technique is used

(b) How could we cure the problematic case of structure estimation from motion sequences?

The forthcming analysis follows [Spetsakis and Aloimonos, 1988, 19891.

2.3. OPTIMAL MOTION ESTIMATION FROM TWO FRAMES

We present the existing approach to the problem of motion estimation with some comments on the
difficulties associated with it, and then the solution (to those difficulties not inherent in the problem itself) which
is optimal in the sense that it finds the absolute minimum of a function of the overall detectable error in the
correspondence.

Definition: We define the vector of a 3 X 3 matrix E to be V(E), a vector of dimension 9 whose elements
are the same as the elements of the matrix E and ordered so that they are the columns of E one on top of the
other..

Tsai and Huang 119841 developed an algorithm that finds T and R, given a matrix E for which there exist a
vector T and a matrix R such that

E =TsRT

where 0s [ .1 t2 ] K:]
TS= -t3 0 ,j T= t2,

t 2  -tj t ,

They proved that there are two solutions and the algorithm can find both. Furthermore the algorithm is very
stable in presence of noise, partly making tip for the extreme instability of the process of finding the matrix E
(overall, though, the algorithm behaved poorly due to the difficulties in finding E [Tsai and Huang, 19841).

Below we rephrase the algorithm in our notation and we prove that, the R, T their algorithm finds are such
that 11 V(E) -V(Af) mI mmnwhere .1= T s ' R

Algorithm: Let E be a 3 X 3 matrix. We find T, R as follows:
If the SVD (singular value decomposition) of E is
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E=U f .2 j'  , O<cr1 <L. <a3

then T is parallel to the first colunn U, of U and II T I o., Matrix T has two degeterate singular vec-

tors and one paralMle to U, . So one of its possible SID's is T. [- (T T T jVT Then R is

u 
T  

v
r  S 1 I t  w here q det( 1 ).d et( V)  and .s -- 1

81

Theorem: The R, T computed above satisfy 11 V(E) -V(AI) fin ihere Af T5 R w

Proof: (see 'Spetsakis and Aloinronos, 1988 ).

2.3.1. Solving the Constraint Minimization Problem

The mathematical problem at hand is to find a nine-dimensional vector x such that, x T -A x-min and
the matrix whose vector .r is to be decomposable to R, T as described above. The constraint is clearly non-linear
and very difficult to be written down analytically. \Ve describe here two methods to treat the problem: one is a
variation of Newton's method and the other is a decomposition of the problem into two parts, thus reducing the
dimensionality. Both of them are efficient.

2.3.1.1. First method. We present the method along with a sketch of a proof of convergence. Let, x =V(E)

t -to frI r. r7 3 r- tar 3  t3rs - t.r6 t3rg- tor

E = -R
r  4 0 t I r . 5  r 8 I r 3- t3rI tr 8- t3r7  tir t3r7

-t, 0 r r. r. i trj-t r, t.,r7-t 1r. t5tr7-t, r i

t3 r 2-t2)r 3  r1 0 O r- 0 0 r3 o 0 0

t1r 3 -t 3 rl 0 r 1 0 0 r2 0 0 r3 0 -t3

t12?' i-IIr 0 0 r 1 0 0 r0 0 0 r3 to

t 3r.5-tr 6  r4 0 0 r., 0 0 r0 0 0 t 3

x= t 1r 8 -t 3 ' 7 = 0 r 4 0 0 r, 0 0 re 0 0

t.2r 7-tr 5  0 0 r4 0 0 r.5 0 0 r6  -ti

t 3r 8-t 2 r9  r7 0 0 ro 0 0 r- 0 0 to

t 11,9 t31'.7  0 r 7  0 0 r 8  0 0 rq 0 [ I

tr 7_t1r 8  0 0 r 7 0 0 r8 0 o r9  0

or .r Rb Tb, where Rb and 7"b are the above matrix and vector respectively. Tb depends on the three transla-
tion paralneters. R6 depe(nds on the rotation matrix R which in turnl depends on the three Rodrigues parameters
I3ot t ema and Roth, 19791 b ,b2, b3 of the rotatioi,. So x is a function of a six-dimensional vector

b -- b .b.-,. b, t. t.. t ie Taytoi- series expansion of .r is

.r ( +- A z . (.) + A (s) A-+ O(A b 2) O(Ab 2)+ 4O(A t.)

Mlatrix A (,) is easy to construct. It has as cohuinll the derivatives of .r with respect to the elements of ¢.
The dleri vat ives wit hi respect to . t,c, t3 are obvious. The derivatives with respect to bi, 2, b3 are
Xi (Wh - 1) Bi (Rb " I- T i 1,2.1 where the B 's are
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0
0 m-

0 +1

-1 0

-1 0

-4 0

Similarly for B0 , B 3. Tile way to achieve convergence is to move in the column space of A(s-) so that the qua-
dratic is decreasing in value. This, in general, will lead to values of x that do not satisfy the non-linear condition.
But if I is the distance we moved in the coluni space of A( ) then the distance of the nearest, vector x that

satisfies the non-linear condition is of order 0(12)." If we are not at a local extremium, the quadratic decreases by
0(l) and then increases by 0(1 2) and for sufficiently small 1 decreases overall. It is easy to prove that unless this
process goes to a local extremum it eventually converges to a minimum.

2.3.1.2. Second method

This is a method that involves gradient descent in a 3-dimensional :space. If there is a good guess for the
solution, and in this case there is, then we need to move around only locally.

We have 0
0 0 0

-t 0 0 -1
0 1 0

t3 0 0 1

Tb= 0 = 0 0 0 T=KT
-tk -1 0 0
- 0 -1 0

0 0 0

0

Then the quadratic takes the form

XT "A "x TT T "KT "R6TA "Rb "K- T= TTAIT (6)

A' is a 3 X 3 matrix that depends only on the Rodrigues parameters of the rotation.

The value of T that minimizes the quadratic is a vector parallel to the eigenvector of A' that has the smal-
lest eigenvalue. The value the quadratic assumes then is the smallest eigenvalue of A'. (There is a factor of two

missing here: when x I then the corresponding T = . When we minimize x -A x we silently

assume 11 1 and when we minimize T' A' T, T 1. This causes no problem, though.)

Now the problem is really broken into two: One, computing the rotation parameters that minimize the smal-
lest eigenvalue of the matrix A' , and the other, minimizing a quadratic. The second is just an application of
Rayleigh's principle, so there is an easy solution. For the first it is easy to use a modified Newton's method,
because we can derive the analytic expression for the derivative. Recall that the minimal value of (6) is the smal-
lest eigenvalue of A'. The derivative of A' with respect to the Rodrigues parameters of Rb is

db I K'T . R .Ab + )(Rb + I)B1 (Rb + 1) + (Rb + I)T BiT(Rb +I) T 'A R6 1K
dbi 2 L J

This is an unnecessarily complicated expression and can be simplified as follows: Form the matrix Ar RT.A .Rb
and fix the value of Rb at the current guess. To do gradient descent we can perturb A, by pre- and post-
multiplying by the matrix R,,(b',b2,b 3) which is a function of bVi's that now serve as unknowns. The initial
guess for RP is the identity matrix (e.g. all the Rodrigiies parameters b 1 ,bP',,b' 3 , are zero). The expression for the
derivative is simplified because we take the derivative at the zero point of the parameters. So A' is now a func-
tion of three new parameters that we can perturb around zero. Thus

14This is why we needed to prove that the Tsai-fluang algorithm inIs the nearest vector.
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dbjI " " ir,A, -. B,j. K

The derivative of the smallest eigenvalue witl respect to the i"s paamieter is
W T . & -I ' . T.) I 6 -K

-o o db' ...t K 13,.r'A,

where o is the eigenvector of the smallest eigenvalue. Using the modified Newton's method we can find the
minimunm. This method results in an algoritil that has a quite large basin of attraction so it works well if the
mintial guess is not that good. The main advantage though is that it. can be modifiel to work with many frames.

2.3.2. Optimality

This is the most important question about tile mo tion problem. First, because we want to do things as
efficiently and robustly as possible: second, because we want to know how bad the best is! If the best is unstable,
this is bad news, and a new direction of research should be look-d for. If the best is stable, it is no news until an
etfficient way to conmptite it is developed. lere we are interested in optimal estimation techniques that lead to
results that call be studied analyN tically. The inaxi iouin likelihoed estimator is tie best from this point of view.
Assuming a Gaussian dist ribut ion it leads to a least squares formulation on which there is a lot of published work.

The mnaximunm likelihood estimator is formulated as follows: Let f (pl, p.; R. T) be the probability density
that p p. are a correspon dence pair when R, T are the motion )arameters. Then

[f(pi 1! pj::, ;T )

is the probability that { (Pil. Pi) I i==l... } are the correspondence pairs. So if we find R, T that maximize this
probability we have found the most typical solution.

Let now p I be an image unit vector in the first frame and P2 in the second frame. If P 1, P2 is a correspon-
dence pair with R . T as motion parameters then R TP2 should lie on the plane defined by T and Pt- The error
vector on the inage has two orthogonal components which are assumed identically distributed. If P2 is corrupted

by an error n ' its distance from the plane of T. pI is

117' X Pl)-P2] (I iT ,') = (7' )< 1 P~
IT X p, 7 I , I I T X p i I T X p, I

TX PI
As we see, only the component parallel to the unit vector T X i affects the distance from the T,p l

plane. (The direction of this unit vector does not make any difference to the probability distribution because n' is
uniformly distributed on the image.) So

f (p, p2;R, T)oe 2a2

where a and a are constants and depend only on the noise distribution.

By using tile standard procedure for maximun likelihood we lind that we have to minimize the quantity[ 2
EiT , l (7)

Nvhere i are the different poits on the image. In the previous paragraphs we discussed the minimization of Z .

(8) or to be more precise. we explicitly incorporated the restriction that I 1

,.IITIK"-- ' -

and now we see that the optimini has some "weight" factor of in the minimization function.

This has two consequences: First, there is some weight in the equations different from 1. This has some
small efftt on the result. The second consequence is more important. Imagine the following situation: A small
object on the : axis translates parallel to the .r axis without rotation. Then the translation vector T that
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minimizes e in the presence of noise is parallel to the z axis because most of the p i's of the object points are
very close to the translation vector T so (Pi, P2, T) is very close to zero no matter what the error is.

This way the solution tends to be parallel to the center of gravity of the pil's when the noise level is rather
high. This happens because we pick the eigenvector with the smallest eigenvalue which minimizes (8) but not (7).

To incorporate the factor 1 T X p,; 11 2 in the computation without increasing the complexity enormously we

assume that the factor is uniform on the object and try to minimize the function

TT .4' T

I7 x C 11
where C is the center of gravity of the points that constitute the object. This takes the form

TTAT (9)

where C' - C'CT, C'C;,r is the outer product of C with itself and C is a unit vector. The Rayleigh princi-
ple would apply here too if C' were invertible, which it is not. To overcome this we use an approximate technique

described in Tsai and Iluang, 1984. 1"5

2.3.3. Relation to Other Approaches

One proposed approach for motion estimation Prazdny, 1981j by Prazdny was based on the following obser-
vation: Since we know that the flow pattern of a pure translation is a set of lines converging to a point we can test
different rotation matrices to derotate with until we find a flow pattern that looks like a pure translation.
Prazdny, though, used an overly simplistic measure of similarity to the pure flow pattern. Here we choose the
sum of the squares of the distances of the unit vector T from the planes defined by pj, P 'i. ( P'2i is P2j dero-
tated and corrupted by noise.)

In order to find this distance k we find k such that T + k P1 X P2 is coplanar with P , P'2. We have
1i PI X P'2 II

o0 p,-p'-.T -k P1XP'2  Pi =(pi-p-,-T)+I 1 ,p 2 ,k -,, =p+ k p' p1, XP 2)=E+k llpxp'211I I Pi P211 1 I Pi PI I IlP , P'2 11

Sok=
ll Pi X P'21

Although minimization of k as defined above is intuitively a good idea, it is better once again to use a maximum
likelihood argument. The variance of k is approximately

2 lIT XpmlI_IPiI X P'2 I2

where -h is proportional to the variance of the error in the image. Proceeding as before we find that the quantity
we want to minimize is

E2

IT x p1, II 2

Not surprisingly, it is the same as before.

We experimented with the above techniques using real images. For our experiments with real images we
used an American Robot Merlin robot arm (having six rotational joints) in order to control the 3-D motion with
high accuracy (in this experiment the camera is moving in a stationary environment). A Sony DC-37 CC'D minia-
ture television camera with a 16m focal length lens was attached to the arm. The robot arm imaged the scene
shown in Figure 5 (frane before the motion). Then, we moved the robot arm three inches in the horizontal direc-
tion only (translation along the other two axes was zero and rotation zero around all axes). The image after the
motion is shown in Figure 6. We computed the correspondence of 1-4 points manually, using a cursor in the
display, and these 1-1 vectors were the input to our algorithn for- computing tile three dimensional motion. It, has
to be noted, however, that although we computed the correspondence manually, there was error in the displace-
ment vectors due to discretization. The algorithm recovered the direction of translation with an error of 3.6%.

'5This approximation gives very ae'urate results in the ease of a small objeet (small viewing angle). In the case of a larger viewing angle
one has to use one of the standard routines that minimize non-linear functions. The prohlom with these is that one has to deal with each
point in each iteration, which is expensive compared to the niethods diseussel above that just construct a 9 , 9 matrix and iterate on that.
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Fre.5

Figure 5.

The rotation was recovered very accurately. The reader can compare these results with results of similar experi-
ments by Tsai and Huang where the correspondence was again computed manually and the translation was
incorrectly recovered. 18

leConsequences ror camera calibrations are obvious.
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2.4. A MULTI-FRAME APPROACH

The previous sections make the limitations of the two-frame approaches obvious. The sensitivity of such
approaches seems to be inherent in the problem itself; in order to overcome it one has to use redundant informa-
tion (more feature correspondences and more frames) and use it optimally. Work on more frames has been done
by Shariat [1986], Matthies et al. [1988] and Young and Chellappa [1988] but they used restrictive assumptions.
\Ve present here an algorithm that does not employ any assumptions beyond rigidity. The analysis follows [Spet-
sakis and Aloimonos, 1988b[.

From a first, look it seems that the main advantage of multi-frame approaches is the increase of robustness of
structure estimation, because, for each point such that we want to estimate its 3-D location, we have more infor-
mation, while it has a minor effect on the estimation of interframe motion. This is not true, though. It has a very
positive effect on both the structure and motion estimation. The reason for the latter is, simply stated, that one
can get more constraints on the motion parameters using many frames than using a two-frame approach for every
pair of frames.

We use the pinhole camera model and with the term image point vector we mean the position vector of the
image point.

We assume the camera moves in a stationary environment and the motion between frames i and i+1 is
described by a rotation matrix R7.,, and a translation vector -T+ 1 . These are the motion parameters we want
to recover (and subsequently the object structure using them). We can equivalently assune that a rigid object
moves in front of the camera with motion parameters Rj.i+1 and Ti,i+. The input to the algorithm is the set of
image points p,, - [p,- ;,pjij,p. T (preferably of unit length) where i refers to the frame number and j to a point
number in the i" frame. Also the correspondence of the points is given, e.g. for every point in each frame all its
corresponding ones in the other frames are given (in the ones where corresponding points exist). The output of the
algorithm is the set of the motion parameters and the 3-D locations of the points, or to be more accurate the set of
motion parameters and the set of 3-D points that projected onto successive frames moving according to these
motion parameters, give images that are closest to the input image.s.

Previous approaches employed assumptions that were either unrealistic or very restrictive for most applica-
tions. These included smooth, or even steady motion between successive frames, partially known structure or
something equivalent like stereo, fixed number of frames or points etc. The approach here has many advantages
that one would like to see in a motion algorithm. Among them are minimum assumptions, no requirement of a
priori knowledge other than rigidity and flexibility (no restriction on the number of frames and the number of
points in the frames).

2.4.1. Loaded Spring Model

The input data consist of N sets of image points that correspond to the N frames; each set contains a
number of these points (the number of points may be different from set to set). An image point pij in the i"h

frame or set is defined with respect to the coordinate system of the i t h frame, so within the set, the points have
known relative position. By p," we can denote either the vector itself or the line that forms the extension of the
vector, in other words the line of sight. One way to visualize the set, of image point vectors with known relative
positions is to imagine that the image vectors of the points form a rigid bundle of vectors passing through the
same point, the origin. Each frame has a bundle, so there are N bundles whose relative positions are the unknown

motion parameters. 17 Suppose now that we have a candidate set of motion parameters and we place the bundles in
the corresponding relative positions. Suppose further that pij and Pi'j' correspond. Then the extensions of the
image point vectors of pij and pji'j must meet each other at the actual 3-D point whose projections are pij and
Pi' (Figure 7). If they don't meet then there is some error involved either in the pinpointing of the corresponding
points or in the guess of the motion parameters, and most probably the error involves a combination of both. A
good measure of the error is the length of the common normal of these two lines, and of course a good estimate of
the position of that point is somewhere in the vicinity of the common normal. In case the point has corresponding
points in other frames as well then all the extensions of the position vectors of the image points must, meet at, the
3-D point that created the images. If the lines do not pass through the same point then the ".(Y -. common nor-

2
reals formed, under some mild condition, are of overall length greater than zero. This overall length represents
the error introduced by the candidate solution. A good way to combine error functions in one minimization pro-
cess is the mean square, so it is desirable to use the sum of the squares of the lengths of the common normals as
the measure of their overall length. This quantity, as described above, measures the error associated with one

"7The translation vector is the vector that spans the origins of the two frames and the rotation matrix is the matrix by which each vec-
tor in the one frame must be multiplied so that it becomes parallel to the same vector in the other system.

520



The three lines do not meet
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gues$ of motion parameters
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Figure 7. The springs tend to pull the frames in a position that minimizes their energy. In a noise free case they
force all the lines to meet at, their corresponding 3-D point.

point only. To include the rest of the points we just sum over all frames and all points. The error associated with
the candidate solution is then a double summation of squared quantities. This summation has several very nice
properties one of which is its resemblance to well studied expressions in other fields of science.

It is very typical in the physical sciences to have expressions that give the energy of a system as a function
of its state that are quadratic with respect to the quantity that expresses this state; e.g. kinetic energy is propor-
tional to the square of the velocity, elastic energy is proportional to the square of the increase of the length of the
spring, electric energy is proportional to the square of the voltage across the capacitor, etc. Of course, if the sys-
tem is more complicated, these expressions become sums of squares. Our choice to use sums of squares has the
advantage of being related to the vast literature of physics, and indeed, as we can show, the minimization takes
the form of a minimization of an eigenvalue of a matrix that depends on the rotation parameters. In addition,
this gives us an idea of how to visualize the minimization process by considering a physical system that has the
same mathematical model and as a consequence the same behavior. The physical model that best resembles this
minimization process and is easy to visualize is the spring model.

The image point vectors in the same frame have known relative positions, so one call imagine them as a
solid bundle of lines meeting at the origin of the frame. Along the length of each line in this solid bundle are
freely sliding springs that tie the lines to other lines that correspond to the same point. The natural length of the
springs is zero, which means that a spring left without external force would have zero length. The bundles are not
tied together directly but only through the springs to the lines of the image point vectors, are free to move rela-
tive to each other, and initially are positioned according to the first guess of the motion parameters. The springs
pull together lines that were supposed to pass through the same point, thus exerting a force on the bundles which
will eventually come to rest at the state of minimum energy of the springs. The relative positions where the
frames come to rest are the unknown motion parameters.

2.4.2. Description of the Computational Model

In this section we elaborate on the computational aspects of minimization and show how to reduce it to an
eigenvalue minimization problem. As will become evident, this reduction decreases the dimensionality of the
problem to half and at the same time simplifies it significantly. Before we present the derivations, there are two
important things we should address: The first one is what the weights should be in taking the mean square error.
The natural answer is that we want the points nearby to be heavily weighted and the far-away ones to be less
heavily weighted. This is easy to handle. The other is that the measure of the error as described is proportional
to the square of the scale factor, and unless we make it independent we will have trivial solutions of zero scale fac-
tor. We again have an easy solution, this time just by dividing by a quantity that is proportional to the square of
the scale factor; the most handy choice is, of course, a quadratic in the translation vectors.
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Let Pi and P,"'1 be two corresponding points inI frames i, i anrd let the motion between these two frames be
Rii,. Ti. i, (rotation and translation, respectively), Then tie length of the common normal of the lines that are
the extensions of the image point vectors Pj and Pij' is given by

(R, Pi) X Pi',") Tvj, (10)

II (AR Pj) x P'i, II

The quantity in the denominator of (10) takes small -,allies when tile 3-D point is far away from the camera in
those two positions and larger values wlen the point is closei'. If we multiply the length of the common normal
by this sine then we get the effect we wanted on the weighting of the points: far-away points have less weight
than close-by ones. This also simplifies expression (10). since the denominator is cancelled. (This is not the
optimum as described in iSpetsakis and Aloimonos, 19881 but is very close to it and much simpler.) After eliminat-
ing the denominator, (10) becomes ((Ri., PO') X Pi'i') " Ti.,-, or (T,..i,, Ri.,, Pij, Pi'i'), which leads to tie well

known formula in Tsai and luang, 1984

where 0 t ]

E-j, , R i, 0 t r 8 t - r 5 1.3  ret.- 1stl rstl - r 2 t0 _

-t 0 i [
'9
t 

1 *6d3 t A 3t - r9 tl r 6 t, - r:3t0-i,

and tI, t., 13 are the .r, y and z axis components of the translation vector T;.i, ; ri, r2  r9 are similarly the
components of the R; , rotation matrix

Ri, i,= r4 r r

r 7  r 8  r9  i,

Expression (11) gives the error introduced by two corresponding points in the different frames due to either a bad
guess or an error in correspondence. The mean square error can be given in a nice form if we write the square of
(11) as

e,, p,,j .,,, < ,(1 a

where the e 's and a 's are nine-dimensional vectors. Vector ej.i, is constructed by stacking columns of the matrix
Eli, one on top of the other and ai jj, is constructed by stacking the elements of the matrix pi'i'' p7, one on top of
the other. Then the mean square error associated with all the points in two frames is

e7' ,  Aj, i,* ej, (12)

where Ai, i, a ' l,a ar' is a 9 X 9 matrix with its elements being known quantities. Vector ej, f, is a 9 X 1 vec-

tor whose elements are the functions of the unknown quantities (the motion parameters) which substituted in (12)
should minimize it.

The obvious solution to this problem, namely the eigenvector of A.i , that corresponds to the smallest eigen-
value, is not the answer. The reason is that the elements of vector e ,;, are not, independent because they consti-
tute nine non-linear functions of six motion parameters. Thu-s this is a non-linear constraint, minimization prob-
lem a,-: when noize is prcscil w ,: wl,' cll ,.c't Ii CC!1 'I i;tllmt. 'he practical reason for this being that the solu-
tion to the vector e,., we find corresponds to a matrix Ej,-,, that cannot be decomposed into a rotation matrix
Ri.i, and a translation vector Ti.-,, and if we find the closest decomposition to a set of motion parameters it can-
not be guaranteed that this is a minimum for expression (12).

Since our goal is non-linear constraint minimization, let's treat, it as such and carry out all the possible
siniplifications. The expression for which the minimum has to be found is

eik " Ai.k "e-i.k (13)

which is a measure of the error involved in our correspondence process for frames i and k. As mentioned above.
vector ei.k is not just any vector but has a special form and can be written as
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rT712-rT43 r, r, r 7  0 0 0 0

rot,- r 613  r2 rb r8  -t3 0 0 -1

rTt 2 - rGT 3  r
3  

rb r. 0 1 0

rtt 3 -T 7 t r, r
4  

r7 t3 0 0 1

i.k r 2t 3 -r 8 tI r3  rb r8  0 =Rbik 0 0 0 Ti.k R6 "K - i.Tk

r 3t 3 -r 91I r 3  re rg -ti  -1 0 0

r 4 t1 -r t 2  
rT rT4  r7 t 0 -1 0

rStI-r4 2  
r 2  rb r 8  ti 1 0 0

rot,- r 3 t 2  i.k r 3  ra rT 6 ,t 0 i

Now we can write expression (13) as

k r  K r b i,k " A,k -Rb i,k " TkT A Ti k (14)

Matrix A ',k is a 3 X 3 matrix, each element of which is a function of the rotation parameters. Expression (14)
has to be minimal and has the form of a quadratic in terms of vector Ti~k. The translation vector Ti,k that

minimizes the quadratic (14) is the eigenvector of A'i,k that has the smallest eigenvalue. The actual minimal
value of (14) is this eigenvalue which, since A',.,k is a function of the rotation parameters, is also a function of the
rotation parameters. This way the six-dimensional problem of minimizing (13) is reduced to a three-dimensional

problem of minimizing the smallest eigenvalue of A'i,k which depends on three parameters.

2.4.3. Introducing More Frames
It is easier, now that we have slashed the dimensionality of the two-frame problem, to proceed to the many-

frame case.

We define the overall translation vector T 1 that is composed from the vectors Ti,i,±, i 1 N - 1 one on
top of the other,

T = [T, 2,., Ti,2,, Tl,.2,,, T2,3.,, T2.3.,, T,3, .. . , TN-1,,Nz

which alternatively we can write as
T, = [Ti2 o. T2, .  .. TNiN] 7

meaning a 3 (N - 1)-dimensional vector.

In the same way the matrix R, can be defined as a 3(N - 1) X 3(N - 1) matrix of the form

R 2,3

RN-j

where the entries R 1 2 , R 2,3 ••.are 3 X 3 blocks filled by the corresponding matrices. Finally we define the shift

matrix S as

0 1
01I

0

0

where I is a 3 X 3 identity matrix and the blocks are filled in as before. As before, S is a 3(N - 1) X 3(N - 1)
matrix. Of course, S N-1 0.

As can be seen from the previous definitions R1, T, represent the rotations and translations between each of
the N - I frames and its next frame, e.g. between the first and the second, between the second and the third, etc.
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This is enough information to describe the whole motion because using it we can express the motion between any
pair of frames.

Since we have Rij+k -Ri+k-li+k "Ri,i+k-i and Ti.,+ k  -Rj+-lI+k ' Tj+k-1 + Ti+k-l,i+k, it is trivial to
prove that

Tk=S k A 1  (RST) i -T,=Lk -T, (15)
i=0

and Rk = s k -I (RST)k-1 • R, (16)

The same way we constructed the R 's, we can construct the Aj's so that
A Iii~

A '2,i 2
.

A'NIN1

A j A =j + A N i .N

0

0

Since for i >1 we have less than N - 1 of these matrices A, is supplemented by i - 1 3 X 3 blocks of zeros.

The expression TiT A1 T, (17)

represents the sum over all points of the squares of the common normals of pairs of lines from consecutive frames.
In Figure 8 there is an example for four frames. The image point, vectors p13, P23, P33, P43 all meet at (or rather
pass close to) P3. In the circle in the right of the figure the common normals of the pairs of lines in consecutive
frames are represented by single lines. The sum of squares of these normals for all points is given by (17). The
reason for this is that

N-iTif
T

" A, • T,= Til T • Ai,i,'l " Ti l

i=1

N-1
As we showed in the previous section, TilT Ajj+• Til is the sum of the squares of the length of one com-

i=1

mon normal per point, for all points. This is N - 1 terms, one for each pair of consecutive frames. The expression

............................................ ..
pl,'

P z Frame e Extensio or P23

• .Fram e 4 Extension of P43

Figure 8. An example with four frames. Single lines show the first term of summation (19), double lines indicate the
second, etc
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T" A, T,(8)

gives (N - k) terms that represent the sum of the squares of the common normals of pairs of lines from frames
(1. 1 k). (2. 2 - k) ... etc. In Figure 8. for k 2, 3 these normals are the double and triple lines. The reason
is the same as before. Making use of (16) we see that (18) can be written as

E, "r -1,T- A, -L4 -"r, = T"'T- B -T, (19)

B is a 3(N - 1) X 3(N 1) matrix: otherwise the same holds as for A 1ik of eq. (1-1) in the previous section, It is a
function of a set of motion parameters and its smallest eigenvalue, which is also a function of the same parame-
ters. is the smallest value expression (19) can take. So the same comments apply about minimizing this eigen-
value, and this can be done efficiently.

One technique we can use to speed up evaluation is to "align" all the frames so that the guesses for the
rotation matrices are identity matrices. \Ve can do that, by rotating the axes of A-,.k defined in eq. (13) so every-
thing is aligned to the last frame. Matrix A, depends on the set of correspondence pairs that belong to frames i
and j and aligning it to the last frame requires rotation of every image point vector in friame i by RiN and every
image point vector in frame j by Rj.v \Ve describe how one can rotate them all at. once. thus saving computa-
tion time.

We define the 9 X 9 rotation matrix I?,, (a is not an index: the same for b in the next definition)

r 0 o rQ 0 0 r3 0 0 r i r4 r 7

0 r, 0 0 r 2 0 0 r3 0 r2 r r.

0 0 r, 0 0 ro 0 0 r3  r r ro

r,0 0 r 0 0 re 0 0 r, r 4 r7

R,== 0 r4 0 0 r6 0 0 r, 0 and R, r, rb r8

0 0 r4 0 0 r s 0 0 re r3 r e rp

r7 0 0 rs 0 0 ro 0 0 r, r4 r7

0 r7 0 0 r 8 0 0 r9 0 r2 r8 r9
0 0 r7 0 0 r 0 o roU3 g

Notice that Aij = aik" aTj and aikj is a 9 X 1 vector that depends on the images of the 0iA point projected on
k

frames i, j. Then 1?aiN  aiki is the same vector as aijk but with frame i aligned with the last frame. Similarly,
Rbj,v ak is the same vector as ajk but with frame j aligned with the last frame. Taking into account that
RbjN "RaiN " aiki Rai*N RbjN " aiki it is easy to see that

RaiN R5 N "Aft" Rb-;N • RayiN (20)

is Aij aligned with the last, frame. This alignment depends on N - I rotation matrices RIN, R 2 N., N
which are the building blocks for R/0 i and RbjN i, j i L.N-1. If we treat these as unknowns, then taking the
first derivative becomes easy. First we show how to take the derivative of the matrix B and then from this the
derivative of its smallest eigenvalue.

N-I
Matrix B is a sum of matrices as indicated by (19): B E LkT - Ak -Lk But, matrices Lk are constant

k=1

matrices now because they are functions of the rotation matrix R, which is now set equal to identity matrix.
Only Ak is a function of the rotation l)arameters as seen from expressions (20), (14) and the definition of Ak.

Now we are ready to find the derivative of B. The derivative with respect to each one of the 3(N - 1)
Rodrigues parameters 8 (three for every R1N, ''' ,RN-1N) is a 3(N - 1) X 3(N - 1) matrix. To find it first, we
have to find the derivatives of the rotation matrices RiN. For a rotation matrix R its derivative with respect to

its j'4 (j = 1,2,3) Rodrigues parameter is RW) =4 I) Bi (I? + I) where

B, - 11, 0 - 1

After computing the derivatives of RiN, i-"I N-I we can trivially find the derivatives RaiV, Rb N

'8 r the rotation matrix R -orresponds to qilaternion q :- (I, b ,, b 2, b 3) then the Rodrigues parameters are 6 . b 2
, 6 ,.
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i~j = L.N -I. Which is just shifting and replicating the elements of thle corresponding matrices. Fromn this we can
find thle derivatives of expression (20) and from thlen onl thle procedure is thle samne as for evaluating the matrix B.
If W1 1 is the derivative of' B -withI respect. to thle ilh parameter thlen the derivative of the smallest eigenvalue is

where c), is the eigenvector of B that corresponds to t lie sm11allest eigenvalue. If we find the derivatives with
respect to all the p~aramiet ems wve can formn the vector VB which is the direct ion of the steepest increase of the
eigenvalue. If' B' and B" are thle first andl secondl derivatives of B along this direction then the second (derivative
of the eigenvaluie along the samne d iiec tion is

7' N-4 B1Y B'

where 6i andl Xj are the eigenvector eigen value pairs of B."9

2.4.4. Experiments

We ran a set of comparative experiments oil synthetic imiages to test this algorithm. A synthetic ''object'',
20 f 's awvay and 5 f 's iii its, bigger dlimension. wvas p~rojected onto the imiage plane. (f is the focal length; it. is
one unit of length.) WVe used five frames and random motion betwveen the frames. We passed the data through
two two-framie algorithms [Tsai and Hluang, 1981] and fSpetsakis and Aloimonios, 1988j and then through the
algorithm just described. The results are shown inl Figures 9, 10, and 11. The xr-axis is the error in the input.
The dlistance b)etween the actual imiage point and the One used as input is expressed as a percentage of f . The
outp~ut is expressed for the translation as the sine of the angle between the actuial translation and the estimated
one and the average over the four interframe motions is displayed. For rotation the sine of the angle between the
two axes of rotation (actual and estimated) is displayed in the same way. The (difference in rotation angles follows
a pattern similar to the sine of thle angle of the two axes and it. is not. displayed (it would make the diagram
messy). It is ob~vious from the diagrams that there is an improvement of almost two orders of magnitude.

Fronm the precedinlg analysis, that was basically an example fromn our research on the stability of visual Corn-

putations, the following conclusions canl be drawvn:

1.00 00 -

13 Square for Tsai-Huaorg (i.,o frames~) 1 5 points
2 50.-Or * D ~ piornr a Sp -tsakir-Al roo (t-o framesr)

o Crcle for Soetsois-Aoimon" (muoltiple frames.)

6,25e-02Z

1 .56e-02

3 90.-03 ---- E

9. 77-04

2,44e-04

6.100-05

3.82e. -0----

--- -- Dahe Ine o fa r rror ,n rotoiro,,
954.-07 Sold Ur,. for th.ero -c, rooor,

9. 9-6 g'5 3 9. 5 78.-5 1.6.-4 3. e4 6 2s-4 1.21*-. 2 5.-3 5 O0-3 1.0.'-?

i gure 9.

10frh second directional djerivative of B can he found the same wa iv tt it costs 31 N -1 times more computation time than the first

derivative Since we have the first derivative accurately it is mucht cheaper to find it numerically.
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I W0e 00

* Sq.- for Ifol-Hoog (to Nron*.) 60 points
2 0-i - * Olaonr for SpetsoIis-Al~cono (t"o fr-ne)

* Circle for Spetsaki-Aorloals (mnrifple frorvr..)

6 25e-02

1,56.-02

3 90.-O3

9.77e-04

2.4e-04

6.10.-05-- 
-- a

.5.3-05 -

3.82-06----

9 54e-07 - 5-- ---- -- cse ,.f re rr,'.o, t'.Wan

94l-6 1 9-5 .39.-5 76.e-S 1.6.-' 3 le-4 6 2e-4 1,2e-3 25.-3 5 0.-S 1 Oe-2

Figure 10.
1,00e00-____________________ __

Response to Noisy Input
*0-O Square fo Tso-Huang (to frorrre) 240 points

o Circle for Statso614-Aliorlos (mulftiple franese)

6 250-02

1.56.-02

3,90e -03

9 77e-04

2.44e-04

6, 10.-OS0

1.53.-05

--- -- --- -- ----- *0

-----O- Dashred Line for fthe error in rotation
9~~~ 5,.e-0 -. foidLi e re error i r ... 1.6..

9 E-6 1 9.-5 3.9e5 7.4-5 1,64-4 111-41 6 2e-4 1 .e-3 2.6.-3 5.0.-S f.0e-2

Figure 11.

0 Opftic flow (correspondence in two frames) cannot. accurately estimate structure in the presence of noise, due
to difficultries iiiherent in the problem itself.

* Redundancy (use of multiple frames), which is a well understood technique, used in several engineering prob-
lems for dealing with noise, seems to be vecry promising in increasing the stability of structure and motion
estimation from dynamic imagery.

This concludes the description of our research in the analysis of specific visual modules. For analysis of vari-
ous different modules the interested reader is referred to [Aloinionos, 1988]. The next section proceeds with the
prolblems of module unification and integrationl.
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3. MODULE UNIFICATION AND INTEGRATION

While our research on individual modules continues (for the discovery of optimal estimators and stability
analyses), it has become clear that most modules are faced with the solution of ill-posed problems. So, we should
proceed with the integration step, i.e., combine information from various cues in order to make the reconstruction
problems well-posed and their solutions robust. But what should our methodology be in trying to understand how
to combine information from different cues (coupling of modules)?

Not surprisingly, the general principles of top-down and bottom-up discussed in the first section apply here
as well. A top-down approach would consist of a general theory of combining information from different visual
cues and then if we wish to combine texture and contour, motion and stereo, shading and motion, and so on, in
order to achieve unique and robust solutions to visual reconstruct ions, we would just have to apply this general
fiamework to the specific coupling at hand.

A bottom-up approach would consist of considering several individual problems, i.e. combining shading and
notion. contour and motion, texture and motion, shading and stereo, contour-texture and motion, and so on, and
solving them individually and separately, with the hope that if we consider all possible combinations of cues, then
we will have a complete theory of integrating visual modules. At this stage there is no evidence for preferring one
approach over the other.

In Aloimonos and Basu, 1988: A!oiinonos, 1986 we presented an outline of the bottom-up approach. Here I
describe a top-down approach, a general theory for combining information in vision. This is the theory of regular-
ization auigIented in order to efficiently deal with discontinuities, and hereafter called discontinuous regulariza-
tion. The analysis follows Shulman and Aloimonos, 19881.

This theory of discontinuous regularization can be used not only for module integration but it can also serve
as a unified theory for solving early vision problems such as edge detection, interpolation, surface reconstruction,
stereo, optic flow computation, shape from shading, shape from texture, patterns, motion, etc. It has been Sug-
gested Poggio et al., 19841 that standard regularization [Tichonov and Arsenin, 1977 can serve as a unifying
theory for early vision processes. Ilowever, some of the characteristics of the algorithms that result from standard

regula ization are the following:

(a) The algorithms are based on models that describe the relationship between the desired variables and the
image measurements. These mn'lels contain parameters which are usually determined in an ad hoc way or
through experimentation. In other words, the modeling process needs to make some assumptions which both
restrict the applicability of the model and result in parameters whose value is to be determined before the
algorithm can be used: and no systematic way of computing these parameters has been described.

(b) The algorithms do not improve with experience. That is, the algorithms are not equipped with the necessary
machinery so that they can improve themselves automatically (learn) from examples of past work.

(c) The algorithms fail when the quantity to be computed is a discontinuous function (or nondifferentiable, i.e.,
has corners).

3.1. UNIFICATION

Poggio et al. j1984] showed that the theory of regularization can serve as the basis for the computational
theories behind early vision processes. Indeed, in all the above processes, we have to deal with noisy data and the
constraints relating data with real world variables ar only approximately correct. Poggio et al. 19861 has sug-
gested using the theory of Tikhonov stabilizers to regularize ill-posed vision problems such as the above. That
means we use a priori information about the smoothness of the solution to determine a unique numerically stable
solution. If L(P)= 0 is the constraint relating image data to the value of the solution w at point P, we define a
smoothness measure S (P). which is usually a linear combination of derivatives of the real-world variable w and
our solution is the w that minimizes 11 L 11,i + X .', where the [ N, ar norms and X is a parameter
measuring relative importance of consistency with the constraint = 0 and the smoothness condition S - 0. The

uthe L2 iorii [f f 21. This approach to regular-ization we will call the standard theory.

Another procedture is to minimize II L ]j . subject to a limit, on the total amount of snoothness. 11S11,
which must be less than or equal to some number S,, X, or to minimize 11S ]1,N su)ject to 11 L 11 ,, < L,,,.. Both
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tecliniqutes are, equiivalent to inninilziig 1 L 111. f appropriately Chosen, X.20 IHowever, the difficuiltv
W.it I regulahrizat loll Is that it t eiids to smulothI over lisconititjnjes and the visuial world is rich Ii discontinuilties. If
we redlice the valuie of X, we (10 less smoothing over (liscolit inulit ies but we obtain a less noise-robuist solution. If
We ulse a 'second (derivat ive sinloot huess t erii. there canl be I'smsioothling over discontinulities hill we introduce
oscillation riot presenlt in thle real w~orld or- dat a.

To stiniularize. regidarizat ion call serve as a. unifying theory for early vision processes, if it cat) di-al
efficientlyv with di(isconil muties and if' there is a systenmat ic way for finding what the smoothiness t eri shouild be or
what thle v al tie of the pa ra filet emrs iiivok iel (for example X) should be.

For a clear (desc ript ion of thle ill-posed nattire of early vison problems,. see PIoggio et al ., 1986'. The next
set il dkictisses Itreviotis work onl tiscontinuious regularizat ion; we (denot e the constraint, of a particuilar prob~lenm
b\ L (,) 0. where -, is thle vector of fle diesired p~aramfetecrs.

3.1.2. Previous Work on Discontinuous Regularization

One approach to riscontiiiuouis regularization is to first segment the image into homiogenouis regions and
hen to reguilarize wxitlhin each region. Yachida ]1983' 51 tidying op~tical flow dhoes not smnoothI over regions where
he variance of the first derivative of intensity (i.e. the data. d ie coefficients inl the constraint

L A - Bit C -0 onl flow it . v) is large. Schutnk 19831 itii'at ieysegments the flow hield and regularizes
Withbin eaCh re'gionl. I loweVer, segment at ion is not a sovdpioblemn. One of tie ptirposes of' knowing W is facilit a-

ionl of segmen't at ion.

ci(all ako proceed by (dividling the set of points. into boundary and non-boundary lpoints. Assume there is
a knowii probability that a random point Ise a bouindary'N point andi at stich points all valuies of .5 are equially
likely. At other points. the uisual variational condlit ion is, accepstabtle bult we (10 not excessively penalize large S

large S', means probable discontinluity). Thuls wve niiiii mie f [L 2 g~Nq'. ('S, whelre gT (S ) mni mum~n (.q2, T 2 ).

7' is a Ii rc.liold depending oil the frac tion of points that are (liscont inii ities. C eman and C.e man 198-1] st uilied
lie Case where W hias tIic retv e ange, (e.g. is a binary fuinction) and tilie domain Is a dhiscret e bittice. Nfarroqutin
1989 1. 1985 ,ext end., to thle case where ~'is real-valuied and Mu mliford and Shahi 119851 allow for a continuious

dilmain. Th'e variational condlit ions obt aiined ai'e solved uising N onte-Carlo techiniqueIs or by deterministic approxi-
mat ions to themi suich as the mean-field approximation. Blake a11( Zimmerman 1 1987] solve the condition by a
conii tna tion met hod known as "graduiated noni-com,,vexit x-'. Thiesou ion101 is generally nor uniqune. All methods
sul ggest etl for finid ing thle sol ttion eit her are riot, guiaranti"edl to coinvei'ge to a global mninii tim or cannot he prov en
reasonlably efficient. Ftlirt hermlore thle assu ilption01 that all1 ' 2 ,'f'2 are equtally good is also quiest iona ble.2 i

Aniot her d iscontin ious rgti lai'iz ation thleor'y thIaot i nihplicitlv segments hias been p~ropose(] by 'Terzopotilos
AfQI 98 In Is theory. S Is a flnear coiub'iiat lon., X, S1 -,, X S 2 of first and second~ order' dei'ivat-ives an-I N1 2 are

~tteearcerswho to not exp~licitly regularize ill- posed prolems usually comipu te somec sort of weighted average of the raw solution or
sillpiy do not 'ono it the solution in regions of large noise. Instead of weighted averages. somse form or non-!ipar smooXthing may be used.
Ili this c.ase reguillirizat ion is tolwitly b 1eing perfor-ed.

"i1t is %North noiting at this point the theory of convex regularizuition developed in our laboratory IShulnian an. IlIerv, igg9(J. As em-
pha,,Lize-l, t ie ldea that all large values of' S are equially Lad is qetoste We have comin te l many h istogratiis of di fferen'e plot ients of in-

I risity; the tails are niot particularly flat. In a crowded room, depth distances between oceliiling objects are niot uniformly ' is.tribltp. Too)
1 rea lita".i itillk'V Ibe there- is blinl to I-e sooi' ot her ob~ject in l,ei weeti two objects that are too, far apart. '[lie eqlual goodintess

a14su illtoll IS sayiuig in the catse or a second derivaitive srtootliness 'oustrFaint on leptlt that then world roughly speaking "onsists of planarstir-
fa--s anid Tharp corners (discontinuities in orietntationi I liloors., tlti, 'issiiiptiiin is efteni true, bu~t anl outtdloir scene calt often have more
rounded than shiarp -orners. Atially veesiriilv do niot. know what fte lest penalty, finlrioli is, what PT. shlold be( chosen. Ike do0 not KtIiw
the- irolathilitv distrillitions of the S. L Iet is assuiie that (1) the listrilitioi is symmioetric abouit 0I: so for .r, it is e-jually likely that So

'Pial)I Z ;Int 'that it e(asi 2) thf' distribution is % tiixtire so w%, sar write S (I - I; ' 1 11 wlie're If isa binryv ratidjors vairiable
,;,king the Value- I 0lld I (niot bad point, bad poitnt ). G is a Ci:im niatt ranot vairiable. id /1 is a randlomi vairi;ille with iinknown prolalilit '
dIensitrv 'I'lli-e " t we can do is. ,Iioo.se a leilty fumtiiot that iniiiiiiies solitioii error oiler the wvorst pwsible 11 rhits we want tire penal-

tvfution PI' P -tliitP a ptsnalty ruiistisii TaXn1 *instrilmt~ x1ucsluin error (11, 1l). Lookintg for tlie tiioix i-nalty' fiiti-oii is the saiiie
as in-hing the worst, least informtative 11 and rhoosing tire P' -orrespsiidiiig to tlit 11. This lea:st inforitiat iv' /I is pritalY too, litinformta.

tive. Wie ire ottlY given that 11 is qsyimlTietric; othlir. it is ent rely itviliitel. Iti pratic we sa learn adlitiotil conistrairits on If that are
r-i,-ttally -rtaitn to hold. Fuirther, lore we are a-iiiiig we ktiow i lie expem te, valiv of' P. we kiow the- e le t el fraction uof bal points,
This is eqiivalent tm, knowing the'- thre.shold., 7. Ili rinal*' -, fininig a good T is iitttiviail.

Ililer litf-er, shiows that the hleast favorable di.trikiiiion, tie otie ,aii~inig thle greate~t mexjec telj iean symrm' error, is the ditrilutioni

,orrespuiting to the petnalty funm'ion gr hx I -~ x ' for i - T - 7 , 2 7' z T ifor x T. 'Ihis fiii'timn is o neex; thius all local mninma
-ir" gloihal tmitnima if we adll a srriall quadtratic- to g7 , we oltaimi a -stric-tly convex function qT,(X I' I z for x 7'

T 2 '27' z T~ - r r T Vfo~r r- 7'.
,'o), we are giaratitecd uniil m-il moinitma to, mur vir6(imitil .mlllition provided we hiave etumigh -ita points. Ii prac-tice.v doe nmtot seem

to need the extra term involving esln If we use the xp r',s im.slimt slomill Ibe any smiall positive iuniilr. Il'his alprma'i gives reasoit.
abl' results ;L- Figuires 12-13 idic ate.
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position dependent. Terzopoulos is primarily concerned with the case where X, X2 are constant except at a small
number of points where one or both are zero. A complex iterative procedure is used to determine these points.
The regularization theories discussed above can be augmented to incorporate knowledge that boundary curves are
smooth except at a few corner points or other knowledge about boundary shape. The basic difficulties with these
techniques are not changed. Lee and Pavlidis [1987] use a discretized standard regularization to obtain an initial
cstimate of the solution. Then X is set equal to 0 at points where L 2 + \S

2 is large and standard regularization is
performed once more.

Figure 12. The lab scene used for the experiemnt It represents the image before the motion of the camera. The
motion is horizontal.

I~ NK.~

Figure 13. Discontinuity flow map Dark areas represent discontinuities in the flow. The reader can observe edges
in Fig 12 (discontinuities in image intensity) that. do not correspond to flow discontinuities in Fig 13

Theories that do not make a rigid binary distinction between boundary and non-boundary have been applied
to optical flow estimation. Such theories are needed because there may be points where flow is not particularly
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smooth but jumps in flow are not sharp enough to be true discontinuities. We do not wish to oversinooth the
values of ) in such a region. Ilaralick Illaralick and Lee, 1983 in applying the facet model (i.e. piecewise polyno-
mial model) to optical flow suggests that in addition to the flow equation L =dE/Ox
ax ot -OE Dy ay rOt--OE Ot = 0, we also require the derivatives of L be zero.

Nagel and Enkelmann 1986! used "oriented smoothness" to insure that more smoothing is done in the direc-
tion of the gradient WE , OE / 0Y) of intensity than in the orthogonal direction and that we smooth more
where the gradient is small and the flow equation most vulnerable to noise. \Vriting V = (Dx / Dt, Dy / ot) for

Ox Dy
the flow vector and V.A D.42 V.4A2 for the gradient of vector A' = (A,, A 2 ), they use the smoothness meas-

ax Dy

ireXtrace f [ Vu-(E (7E)T b (vE)T) V I instead of the measure f X trace [ (vf)T] sug-
gested by Horn-Schunk. Here b is a constant that needs to be determined. The resulting Euler-Lagrange equa-
tion is linear in the unknowns. No rigid binary distinction of boundary from non-boundary is made. But the vari-
ational condition is not completely motivated (several similar conditions are suggested under the name "oriented
smoothness"). The theory is only applied to flow and not to other problems such as finding derivatives like
DE, Ox. Furthermore, should not the value of E,, E, or even E ,, if we can estimate these derivatives accu-
rately, influence the amount of smoothing we do?

\e propose a general theory of linear discontinuous regularization to address these issues. We retain the
preservation of sharp changes in w that are not boundaries. The basic insight of the theory is that errors and
smoothness measures of nearby points are correlated so we need to add terms involving the derivatives of S and L

to tile variational condition. In addition, the parameters of the theory are learned through adaptive estimation. 2 2

Also, this theory does not make a rigid binary distinction between discontinuity and non-discontinuity points.

3.1.3. Colored Noise

Something strange happens at discontinuities when we apply standard regularization theory. For simplicity
consider the problem Aw - B + noise where A = I at a small number of points (at these points we have data)

and 0 elsewhere. The variable w is one-dimensional and the preferred smoothness measure is Xf (dw/dx) 2 where x
is the coordinate of a one-dimensional image. Examine Figure 14.

0 0 0 00

0
0

Figure 14.

The original signal is an edge at point P, the circles are data points, the curved line is the usual regularized solu-
tion. We note that immediately to the left of P there is a large positive difference between solution and data and
to the right there is a large negative difference. Now if we consider a signal with many discontinuities or many
signals with discontinuities, we find that there is a negative correlation between the errors of points each of which
is a short distance 5 friom a discontinuity and which are on opposite sides of the discontinuity. The errors of
nearby points can have negative correlation just, by chance. But it is curious that this should happen just, where
the discontinuities are if these discontinuities are genuine discontinuities resulting from material change or other
abrupt. transitions in the nature of the object being viewed. Thus it seems it might be worthwhile to study the
correlation matrix of the errors. Negative correlation is a sign that, discontinuities are being smoothed. We can
ty to alleviate this using a different smoothness measure such as Xf(d2/2) 2 b

tw x but this just gives us a Gibbs

phenomenon-oscillations not found in the original signal are found in the solution. We can try to reduce X but

'There are various other ways with which the parameters can be estimated. but we have only implemented learning.
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this makes our solution more vulnerable to noise. \re could try to let X vary with position but how do we do this?

The basic problem is this: the regularization is an example of a least squares solution. Least squares can be
justified if we are dealing with Gaussian probability distributions, i.e. if the distribution of dw/dz is Gaussian.
But a quick look at a diagram in Feller [1966] will show that a Gaussian random walk almost certainly has no
discontinuities while the random walk based on the Cauchy distribution has many discontinuities. A quadratic
smoothness measure does not believe in discontinuities. It overpenalizes big jumps in w. The only remedy is to
overpenalize a proposed solution Z that does not reflect evidence in the data that a jump exists. This suggests it
might be interesting to study the derivatives of the error. A similar derivation will show the relation between
correlation and the derivative of the error. Variance (error at P - error at R ) - variance (error at P) + vari-

ance (error at Q) -2 (covariance of error at P with error at, Q). This is just because E ((a - b)2) = E (a2 ) 4_

E ( b
2) - 2 E (ab ) where E means expectation. Thus if nearby points have correlated errors, the size of the

difference between these errors tends to be small and in fact derivatives of the error tend to be small.

3.1.4. Discontinuous regularization

In this section we show that we can recover real world variables (or intrinsic ones), i.e. solve ill-posed early
vision problems, by minimizing an expression involving not only the constraint plus smoothness but, a combination
of the derivatives of the constraint and the derivatives of the smoothness.

The usual regularization theory has a simple statistical interpretation. Minimizing "energy" -f(U 4-xS 2) is the same as maximizing ek ener " The expression ek energy can be regarded as a probability if k is

chosen correctly. The constant, k is essentially an irrelevant normalizing factor. Standard regularization theory
maximizes the likelihood of the solution w if' XS and L are Gaussian, equal variance, independent random vari-
ables and the "smoothness". S, of distinct points and the "error", L of distinct, points are independent also. If S
and L are not Gaussian, standard regularization theory provides the best linear equation for jt if the XS, L are

equal variance, uncorrelated and errors23 and smoothness of different points are uncorrelated. This is essentially
the Gauss-Markov theorem 'Rao, 1973i. But the uncorrelatedness assumption is often false. If var, covar
represent variance, covariance respectively, then var(A - B) = var(A) ± var(B) - 2covar(A ,B). If L (P) and

L (P , dP) are highly correlated, dL will tend to be small. So instead of minimizing f {L 2 4 X S21, we minimize

(in the 1-dimensional case) f E al +(D L E 6i(D 1'5')2  D' means i'h derivative and the parameters aj, bi
1 0 0

need to be determined. The generalization to two or more dimensions should be clear.

Let us now mention two additional justifications for our discontinuous regularization theory. two additional
reasons D L should be small. One reason is that we may care more about discontinuities in w than about the
value of co. So we really want to know the values of D'w. If L =A w-B then DL =(DA)w+A(DW) -DB. If
DA is small, then A (Dw) - DB 0 is a simple direct relation between data and the derivative of the solution. In
general the relation is more complex, but DL =0 directly relates jumps in the data with jumps in Lo. The other
reason for constraining derivatives of the error is that a quadratic smoothness measure such as S2 overpenalizes

large jumps in . We need the quadratic smoothness measure to guarantee the Euler-Lagrange equations obtained
are linear in S. So to compensate for an incorrect, smoothness measure, we need to use an incorrect data con-

sistency mea.sure L"-. The crucial advantage of this theory is that if L, S are linear in W, then the Euler-Lagrange
equations we need to solve are linear in Li and the coefficients are locally computable.

Another way to think of discontinuous regularization is that not only must the solution be consistent with
the data but the derivatives of the solution must also be consistent with the derivatives of the data. Of course.
there' is a trade off: if we want to increase our sensitivity to shape discontinuities, for example, we have to
decrease the accuracy with which we satisfy one (or both) of the other two constraints (i.e. that L be small and
that the surface be smooth). So our determination of shape will be somewhat less accurat.e and since L' -- 0 is not
a perfect constraint. we risk preserving discontinuities in shape for which the data provide strong evidence even

thotigh these (liscontinuitis are spurious and the data discontinuities really represent noise.2

"'By error, wN moan deviation from the ,onstraint.

2"'Ihere is another jlistifi,:ition also. Lit dule to la.k of si,ace we oinit it. Stanlard ri.gularization theory used ordinary least

squares. Ordinary least, squares ain 1,. jist iied i n,Jer the assunption that we are dealing with inilp)endent Gaussian errors. But even
if the e'rrors are non-Ga ssian, we ,in seek the best linear unIiasel estimate of the real world variable Y. The best estimate means the

estimate that rutinimizes t he expected value of I s., , where 1;.is the estimated value of ,and is the true value of-, antI 11 is

th uua I 12 norm. N\e want our estimate to be unhiased so tie expectel value of (©-w,) is 0. Linear means we ,an ol,tain .,from a
A , =? error

linear equliation. More roe:isply s,e have eluations of the form . =0-uerror where .,I is a linear oplerator, A. B, P is oilr data on-
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In the sequel, in order to be able to explain things in a clear way, we concentrate on the shape from X prob-
lems. i.e. for every point (x, y) on the image plane (a unit square), we have a constraint L (f , g, x, y)-= 0 that
relates the shape (f, g) of the surface patch whose image is the point (x, y), with data measurements. The rest

of the problems are addressed in a similar or analogous way.2 5 Thus, in general a variational condition in discon-
tinuous regularization theory takes the form:

minimize f .(a")L/la'ay,) d + ,',P(P'cI/lO;+ C(a,+j g laa,.

0 0+a(~~z~ 1 0 0 0 0

Here the aij, bii, cij are constant parameters. The first integral involves a summation from 0 to oo because it is
arbitrars" to require only the first order derivatives of L to be small and not to impose a requirement on the higher
order derivatives. Similarly, the smoothness condition (i.e. the second and third integrals) must also involve a
summation from 0 to oc. Some of the coefficients aij, bij, cl can be 0. Because of the noisiness of higher-order
derivative estimates, the coefficients ai2 should rapidly approach 0 as i,j -cc. Clearly, a problem that remains is
to find the values of the coefficients ait, bi. and cij.

Discretizing the problem and having assumed that the image is a unit square (for simplicity and without loss
of generality) and considering grid side 1i/k we have as the unknown shape the vector

S(f , f 12... fk,fkk,gllg 2  .  9k. gk)T

We further assume that we know how to compute derivatives of intensity (data).26 Once we know how to do that
we know how to compute the derivatives of the coefficients that appear in the formula for L and thus we can
compute derivatives of L. We will obtain an Euler-Lagrange equation of the form

A4(L) DA (L__.) =_<>,

AO(L 0.4(L) _ _ (,._

Og

where 4), 4), are matrices and A (L) is a matrix obtained by applying a possibly non-linear functional to the

matrix L . In fact, A(L) is a sum of the form Eai 1jA'(L) where the ai are constant coefficients and the A"(L)
are approximations to the derivatives 0"1 iL/8x'dyl. Thus finally we obtain

EaY A J(L )dA '(L )/f - 111

Zaj4A 'f(L )OA "'(L )lag = (P,

with the A'J(L) being functions that we know how to compute. Write %() for the known function

A ?(L )0.4 "(L ),,OfJ Itheii we have

2

sisten'y oonstraint, S is a linear operator that incorporates the smoothness constrainit (so if the smoothness measure is X - then

X0a
S -) and "error measures the inexactness of the constraints. W\e want an estimate L, of a that is of the form L.= C( B) + D (0) for0~z
some linear operators C. D . According to the Gauss-Markov theorem Rao, 19731, the least squares solution is the best linear unbiased
estimate if the errors are uncorrelated and have equal variances. But in general noise is not white; it is colored. We have to decorrelate
the error in order to apply least squares. Decorrelation, in general, is a complex task. So we will have to make special assumptions in
order to be able to decorrelate quickly. Under special assurrptions about the blurring kernel we can show that standard regularization
applied to the decorrelated signal results in a minimization of the above form. For details see IShulman and Aloimonos, 19881.

2 5They are actually simpler.

Comptiting derivatives of intensity is an ill-posed probleii itself. TFhe theory presented in this paper can be used to regularize it.
So we assume that this step has been completed (we have learned how to ,ompute derivatives of intensity). Or we can use Poggio's
method for approximating derivatives of intensity. If we assunie that we are able to do linear learning this is simple. OEi/8 , aE/Oy ,
etc. are linear functions of E so we have equations su:h as Edx - AE and we have to learn the matrix A that approximates the
derivative. That means a teacher gives us a set of examples (OEIlOx , ElI ) (E/Ox, E, .. (DE,,, lax, E, ) - • - and we have to
[carp the 4 t it best approximates a solution to the system of equations o9E, lix AE, for all i. A priori, we expect that .4 will be
obtainel by applying a smoothing filter (such as a Gaussian) to a weighted sum of difference coeffliients AE/AX, A E /AX.
- 3E/.A'3 . etc. In other words, we approximate E by a. pieceewise polynoriiial fiuntion. sij,,ot h this function with a Gaussian and then
take the derivative.
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a 20 ( C,) =_4

where the aj' and 4> have to be learned. Again we will impose additional constraints to insure that the values of
(ai*24) are unique.

To summarize this section, the theory of discontinuois regulIarization requires us to impose constraints on

the derivatives of the "error" L .2 This leads to equa tions of the loriii E__jj-)j(,) = < where we need to learn2a 2' ,

a,., ,I. More generally, we could let the aj . be matrices rather than constants (thus aij is a function of position

and the constraints that the derivatives of L be small could be relaxed at certain points). We must describe a
procedure for learning the matrices al , 4 that is simple, robust, and leads to a unique solution.

3.1.5. Learning the Parameters

Techniques for learning the solutions to equations have been developed by ,researchers in stochastic approxi-

mation.29 Many of these techniques apply to linear as well as nonlinear equations. There are special characteris-
tics that low-level vision problems have that make it possible for us to accelerate the convergence of these tech-
niques. This is because we have a priori knowledge that the solution must lie in a restricted subset of all possible
solutions. We are also obliged to find the solution within a constricted subspace, because we must represent the
solution by a neural network of limited size with a limited number of connections, which cannot represent an arbi-
trary function or even an arbitrary matrix. Techniques have been developed for finding the best solution within a
restricted subspace.

First, we must discuss what exactly we want to learn and why. W\"hat does it, mean to learn a solution to

r (2 = - (21)

when there may be not a unique c that satisfies (2)? What does it mean to have learned <P from examples when
the examples might not suffice to determine 4) (even under the assumption that, we know the matrices a; ), or
when they give contradictory evidence as to what (1 is? What additional constraints need we impose to insure

uniqueness of aj, V.

To answer the iast question first, we are biased in favor of sparseness. Thus we want a. to be near zero if

I j are large in order to avoid computing noisy higher order derivatives and a00 to be nearly the identity matrix.
The problet here is we could multiply both sides of (2) by an arbitrary matrix G. If we want to insure unique-
ness we have to put a constraint on one of the aij or on (P. The constraint aji is small or the least squares con-
straint minimize ) leads us to the result = 0, al i,j and ( = 0 which make (2) useless. So

we fix a 00 to be close as possible to the identity matrix. This also tends to make a00 sparse and save space. If
aco = I and aiq= 0 for i + j > 0 then we obtain the equation

LJL /g =-- (b,

LOL/ag = - ¢2

which is the usual nondiscontinuous regularization condition. Rewrite E-ai 2i( ) =-D as

where aij = a 1 - Identity Matrix if i j-0 and ai2 aij otherwise. Thus the first term in the equation
represents the discontinuous correction to the usual regularization condition and we want this term to be as small
as possible. To make it easier to work with. rewrite (21 A) in the form

1" E = - 0(e) (21 B)

where E is the vector

ln~teed. if we are given the valhie of a fnction h at a finite niiiier o' points P1, P, F "" P and we know these values are

corrupted by noise, then the optimalat, iroximation to the terra tile'of h need not be a linenr fu etion of the vdues hWI). hiP2) ..
h(P,). This is true despite the fat that 9h /Orx is a linear funat ional of h.

2L should be zero. When it deviates from zero it reresen t what we 'all "rror".

'IKushner and Clark, 1978; Wasan. 10691. statistics trornberg. 185; Albert. 1972'. tnathermati,'al learning theory Tsypkin. 1973:

Hlerkenrath etl., . 19831, corlputer scienc, 1<ohonpn. 1977'. anil eletrieal engineering comintinities Kathnan; Ljung. 1077: Maybe'k.
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and F is a matrix to be learned. The same questions we ask about P, we now ask about F: what do we do if the
examples give incomplete information or inconsistent information about F?

The 1' we choose is the least squares solution. Under reasonable and quite general statistical assumptions,
the least squares solution is the most probable value for r. Computing the least squares solution involves calculat-
ing the Moore-Penrose inverse. This procedure is optimal in the sense that it. produces as accurate an estimate of
I' as we can obtain from our limited set of examples, but it requires a neural net to store large matrices and make
very complex calculations. So instead of searching for the optimal solution of (21 B) we can calculate the best
sohluion within a restricted subspace. The procedure for calcu]ating this restricted subspace solution is very simi-
lar to that for calculating the full space solution but, the computational complexity is much less and the speed of
convergence is Imuch greater. Another technique is the Robbins-Nlonro procedure. This results in slower conver-
gence but the calculations are very easy to implement on a neural net, because the number of long-distance con-
nections is minimal. Whatever procedure we use, it may take too many examples to learn F. We use a priori
knowledge to accelerate convergence. For example, we know that F varies smoothly as a function of position.
The F we use is partly determined by examples and partly by a priori knowledge. It is a weighted sum of the a
priori term and a term learned from examples. The weight of the a priori term gradually lessens. As we acquire
more examples. the inlluence of a priori knowledge on our estimate of F decreases.

Let us review what learning (rather than stipulating a priori) the value of F will accomplish for us. F hides
the regularization parameter X. This parameter might be allowed to vary from place to place. (We might require
a different amount of smoothing near the boundary than at. the center of the visual field.) Our smoothing condi-
tion might involve first, second, or higher-order derivatives or some linear combination of derivatives of different
orders. F weights the relative importance of the derivatives of L being small. This can vary with position. By
varying F. we can take into account all these possibilities. \Ve do not know which of these possibilities is correct.
That is wly we want. a general learning theory to lhelp us find the proper F (to find tle least squares solution to
(21 13)).

3.1.6. Solution

As far as ftinding F is concerned, it is irrelevant that 0o(,) and S are functions of W. \\e j-st t et (21 B) as
a linear equation to be solved for F. WVe will also ignore the minus sign in equation (21 B) in order to simplify

notation. We are given a set of learning examples ( =i, (ci)) and we want to solve the system of equations

'=; = o(,) (22)

Even if a teacher tells us the exact value of the shape vector, cj, and of the image data that determine
poQ(,Z) and E-, we cannot expect (22) to be a strict equality because the model we used to determine F was an
oversimplification. Ve cannot possibly take all factors into account. If the error is a zero-mean, normally distri-
buted variable, it makes sense to seek a solution in the sense of least squares:

minimize y jj F - o(sC) 12 (23)

Assutnitg normality of the error, then the least-squares solution to (23) is the most. likely value for F. Even if the
error F= -- 001,{) is not Gaussian we can under reasonable assumptions such as that the errors I-Ef - 001(s,) have
bounded variance and the errors of examples i and i - N are statistically independent for large N. obtain a cen-
tral limit theorem which says that if there are a large enou, gh number of examples the least, square solution will be
the best.

Ii case there are many least-squares solutions, choose the F of minimum norm, 1I 112. This will help to
make F sparse. The minitum-norm, least, squares solution to AX = I is called the Nloore-Penrose pseudo-inverse,
A,.

Nlhnv techniques exist for computing pseudo-inverses: not all of them are suited to the case where the data
arrive ii a stream (a temillporal succession of example.s.) One method that is suitable is Greville's 'Albert, 1972; Ben
1, ra, l, 1978 .

.\nother technique we can use is the 1obbi ns-N.orIi'o procedure. The Robbins-.Motro procedure can be shown
to converge withl probability one to the least-squares solution to F 6(-) under assumptions much weaker than
the re(niiicment that the errors be Gaussiian. For example we can require only that the errors have identical,
indepetidV'tn di tributions and then we can obtain a convergence proof. These conditions are still somewhat res-
trictiv.. There are exlen-ions to cases where the errors are a moving average of exogenous variables or where the
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error depends on S.30

Even if we have convergence, we need not have convergence to the correct solution if our sample examples
are not representative of the naturally occurring shapes. The solution will instead converge to the least-squares
solution to the artificial problem presented by the atypical examples. What we require is that the vector spaces of
naturally occurring possible examples be spanned infinitely often. Thus, for every in, the rank of the matrix
(i ..s,. n) must be n . And we also require that we can choose a function f (i) such that for all
small i, the shape vectors E . . . .. . .. . E . (i )- 1 span the vector space and Z af (j) = oo.

Even if we use the optimal formula for estimation of the least squares solution, convergence can be quite
slow. The variance of our estimates depends on the trace of the gain matrix. Thus, our rate of learning is
inversely proportional to a large number n Tsypkin, 19731.

The result of this ,slow convergence is that our estimate F may not be as sparse as it should be. Another
possibility is that some of tile values of I' -- -F ,F .> might be mi-.leading. We might have a reasonably accurate
estimate of each I', but a bad estimate of the high frequency components such as P ij+l - Fij. The estimate of
these components might simply reflect noise. This nay mnean that although we can compute shape accurately, we
cannot acecurateclv compute the difference in orientation of two nearby points.

In other \word,. we till have to deal wit 11 the regularization problem. Each element of F = <Fii > reflects
the relation between tie value of some component of o,b( c ) (or Ic itself) at some point P0 (J) and the value of
some conIpmineilt of o(C) at sonic point P J(i). We say some component because, for example, ¢)ab(o) at P(J) has

SO Com poonents
.4 b( L )dA.- (L ) 0f and

.-I (1 )(0.-10 (L} idy where .",b (L

is the approximation used for 0 a '6L 0~a'x0y. Thus the matrix F has four parts: F I, F10 , FIV , F00 . rf1
relates informuat ion about f to inf'rniation .,bout f; FPl relates information about f to information about g, etc.
\We :'xpCct all tile difference quotients of tile F will usually be small. That, these difference quotients are small just
a.vs that the influence of the s-hape at sonic point P on the data at Q should be a smooth function of P and Q.
'o. regarding F as a continuous function, we will have a condition of the form2 2]

mmnitnze - -F,. ),2- V [P1(i), PWJ) FAriAP 1 (i)l + [Ar/AP. (j)) (24)

where Fi, is the value given by the recursive least-squares estimation of F. The sum is taken over all points in thegrid. The subscri')t k means that if Fij is a part of Ff, then the difference quotient only compares

F',, that relates PI(i) to P,(j) with other components of F/0 that relates points near to Pi(i) to the point, P2 (j).
We do not subtract components of F01 from components of Fv in coinptiting these difference quotients. The
parameter X is a position dependent parameter which reflects our a priori knowledge about how F varies as a func-
tion of Pl, P, (i.e. our a priori probability distribution for AL/API, AL/AP,). This might seem ad hoc. The
ad hocness here is riot as bad as the ad hocness in assuming that the shape is smooth. Here we are only assuming
that tile function relating the shape to the data is smooth almost everywhere. Furthermore as we learn more and
more examples, we can let X - 0. So, the influence of the ad hoc smoothing condition lessens. Polyak and Tsyp-

kin 11980. 1979, Tsypkin, 10731 show that the choice X, 1X is optimal where X, is the parameter to use on the
Sth example and X is the a priori value of X. Of course, we could have chosen some other smoothing condition.

As long as this other condition is (Juadlratic, we will obtain a linear constraint in F. In general we will have a sta-
bilizing family of smoothing condition,:

i iniunize --., E(rj',. - F,.)2 -- L, (F,6) (25)
II -

where the L, are bilinear forms and L,- -0 (see Nhlorozov 198. 1).

Do we want to learn L,! That is do we want to lear:, the linear condi(ion (23) gives rise to? We (o not. really want
to learn tlie value of the huge matrix corresnidins to condition L, unless we can a priori constrain the matrix
(the matrix in the linear condition corresponding to (23)) to a small sulbspace. The only reason we needed the
additional constraint (23) is that we need a large number of examples to accurately learn the value of F particu-
larly if tile data are noisy. which will be true if the examples are given by nature. \e have to make temporary ad
hoc assumptions somewhere. It is not clear where we should make theim. One thing. though. is clear. We should

"%or more complet e i4musihon of whon tHi R ol-bins-Motro I,ro,-,urf " v.g.s. ,.' N1ishner and Clark. Ii78: Nfilye,:k. 1979:
llerkenrath et al.. 1J8X3
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not make ad hoc assumptions of smoothness of shape. 3' \Ve can eventually -learn the right variational condition.
It is safer to make the assumption in (23) because eventually L, -0 as we accumulate more example. For a con-
nectionist implementation of this theory, see Aloinmonos and Shulman, 19 891.

3.1.7. Retrospection

tip to this point we have described ways by which we rrin basic- Jy learn what are the constraints that
govern the problems of shape from shading, texture, patterns, etc., as weil as several other problems, using some a
priori knowledge. Two important issues have to be emphasized: We regularized a large part of early vision ill-
posed problems (especially shape from X) without making any assumptions about explicit variational conditions;
so. smoothness here is very general. A system based on this theory will learn what smoothness is.3 We have cou-

pled learning with discontinuous regularization, i.e. handling discontinuities that appear all the time in nature is
an essential part of our learning scheme. Learning I' means that we learn the regularized constraint FE =-000( ),
i.e.. all we have shown is how to obtain the "correct" constraint. After we have the correct constraint solving for
the unknown is straightforward if L is linear. If L is nonlinear, some techniques might be applicable but in gen-
eral a unique solution cannot be guaranteed 'lorn. 1986!.

3.1.8. Empirical analysis

low can one empirically validate the proposed theory? Clearly, if one had to pick the shape from X prob-
lems. he she would have the problem of getting accurate examples and for real images this is highly nontrivial.
On the other hand, synthetic image use would require a long time. Thus, we chose to use the problem of surface
interpolation.

We have made some tests of our theory on the problem of surface interpolation. Here the constraint is
L = .4 (.' - observed depth). At points where there is no data .4 0. Where there is data, A = 1. More gen-
erally A might vary between 0 and 1 depending on the reliability of the observed. This would result in an equa-
tion similar to a one-dimension optical-flow equation. In our simulations, we have always assumed A = 0 or I at
all points. We have ignored the positivity constraint that depth must be non-negative; implicitly we are assuming
an origin a positive distance from the viewer. We generated one-dimensioual piecewise polynomial curves of
degree < 3 (examples). The degree is chosen randomly.

Some discontinuities are discontinuities in the value, some are discontinuities in the derivatives but not in
the value. Some are just discontinuities in the higher derivatives but not in the first derivative. The nature of
the discontinuity and tile location of discontinuities as well as the amount of the discontinuities in each derivative
is determined randonly. Thus we have constructed the actual depth map. The observed map is obtained by
adding noise (which may or may not be correlated) and blurring the observations. Finally we sample the points at.
a predefined sampling ratio p (p should be > .5 to avoid problems of sparse data). The sampling ratio is the pr-
bability that any given point will be sampled.

First we perform data independent learning and we apply the discontinuous regularization theory under the
assumption aj =: bi = 0 for i > 2; thus our variational condition ignores derivatives of L and S greater than 2.
We compare the discontinuous regularization theory with ti:e standard theory ol interpolation via regularization
with S being a second derivative estimator. We have varied the parameters used to generate the simulations; in
general the best discontinuous regularization is 7-30% better than the standard theory as measured by the
squared (lifference between recovered and actual depth. We illustrate an example in Figures (15-18).

Second. we l)erforni data dependent learning, i.e. we (to not learn the best coefficients but the best function
from data to coefficients. Actually we do not learn the best function but the best function in a parameterized sub-

sl)ace.~ Figures (19-22) show results from this data dependent learning. In general, we get results up to 80%
better than standard regularization (in the mean square error).

3 '()r ally oi fer 1timntity w,. wih to

,' rsew' arr re.trwt-I to qiia.rati, Iuitiona I'r the 'iinI'e.r f In tihit l e'i o ,ies not exit any satisfa-,tory theory for

nrIoin'ar learning to late. So we restrit otlr.elve, to linear leariing.
0

()ne ha to iasiimp of olire the form of the fumn'tioi that rat+es l:ila ,lliir:tri' h the ,'oeffiient.. In oir expPrinients we as-

-imo ,I a Iinear form for simpli,:ity.
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Figure 15. Xmj1n=-4.5, rnx=O0; ymn0 y 1 vx= 100).

Figure 10. Observed noisified function. Points at the top row correspond to the ones not observed

Figure 17. Recovered function based on standard regularization
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Figure 18. Recovered function based on this discontinuous regularization In this case a, =-0 for i > 0 but
b2 -b , b= -Lb2. The function recovered here is 17%o better (in the sum of the squared error)

than the function recovered by standard regularization

Figure 19. Original function (sampled).

Figure 20. Function noisified
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Figure 21. Recovered function based on standard regularization.

Figure 22.Recovered function based on discontinuous regularization and data dependent learning.

This discontinuous regularization theory applied to the shape from patterns problem gives results as in Fig-
ures 23, 2'4. Note however that the coefficients in this problem were determined in an ad-hoc way.

We are currently implementing the theory on the Connection Machine, that is we develop a general program
that can be used for solving early vision problems. Our goal is to observe commonalities among the various
modules, and basically learn the actual constraint. A drawback of this work is that in order for the system to
learn correctly, it needs to see examples that need to span the whole space of all possible examples. As a conse-
quence, the learning time is large. Alternatively, one might use it for industrial applications, where the example
set is a restricted subspace of all possible shapes (or whatever other quantity we wish to compute).

Another goal is to use this same program for module integration. This brings us to the next section.

Figure 23. Image
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Figure 24. Reconstructed shape

3.2. INTEGRATION

What if we want to combine shape from shading and shape from contour? Then we have two constraints
relating the real world to image data: L 1 =0, L2 =o0 but both constraints are noisy. We need to use a priori
information such as information that solutions tend to be smooth. There are three possible forms of regularization
we can use: (1) Minimize 11L I + JIL 2 fl IS H a where D, D2 , D3 are norms and S is a smoothness
measure such as a derivative of the real world variable w. The simplest norms to use are proportional to the L 2

norm: If fl f If I by definition. So we are really solving the equation systems LI= 0, L 2  0, S 0 by
weighted least squares where the weights are the proportionality constants relating the Di norms to the L 2 norm.
If the unkn-)wn w is a vector function such as optic flow and w is the vector (wl, w 2, .. .. , wn) and each component
is a function of in coordinates, then if we are using a first, derivative smoothness measure, we have n times m
first derivatives S0. that have to tend to be small; now we need to minimize 11 L 1 112+ 1I L2 11 '+ some quadratic
function of the S'i. If we use a second derivative smoothness measure we have to uie a quadratic function of m 2n
second derivatives ,-- etc. (2) We can minimize 11 L + II Lo 112 subject to a limit on the size of the

49X , CX
smoothness norm II S II . This approach is useful if we do not know the statistics of S but we do know reasonable
bounds on 11 S f1 . (3) We minimize (f S 11 subject to a limit on the size of L 112 + 11 L2112; thus we are finding
the smoothest solution consistent with the constraints. We might apply this method if we do not know error
statistics for the Li but we can bound their norm. Methods (2) and (3) can be reduced to method (1) but there is
no simple way to choose appropriate constants to do the reduction. These three regularization approaches ignore
the possibility that L1, L 2 may not be independent constraints, in which case we must define a norm on the pair
of constraints L 1, L, rather than a norm on each constraint separately: the simplest norm will take the form

[a L1
2 + b L 2 

2 + c L 1 L2]J where a, b , c are proportionality constants and a, b > 0; c depends on the corre-
lation between the errors of the two constraints. There still remains the difficult problem of how to determine the
proportionality constant, (how to determine the relative importance of smoothing and constraint, satisfaction and
how to determine the relative importance of and the correlation between the constraints).

We will return to the issue of how to determine the proportionality constant, but however they are deter-
mined the regularization theory described above will not work near discontinuities if we use a quadratic norm. If
the proportionality constant of the smoothing term is too small, we will not smooth enough to maintain robustness
in the presence of noise; if we smooth too much, we will smooth over discontinuities. The problem is the theory
we have described, the usual regularization theory, as al'eady emphasized, implicitly assumes (1) the smoothness
function S is a Gauzssian random variable; (2) the S's of different, points are independent, identically distributed;
(3) the Li's of different points are identically distributed, independent Gaussian random variables. We have
allowed for correlation between th- different constraints at the same point but not for the natural tendency of
errors of nearby points to be correlated. If we adopt the second or third methods of regularization, minimize
inconsistency with the data (or smoothness) constraints subject to an absolute limit on violation of smoothness (or
data) constraints, we will still obtain a solution that, over all is reasonable adequate but either oversmooths discon-
tinuities or undersinooths noisy data.
The basic idea behind discontinuous regularization is the same whether we are dealing with one or many sources
of information. In the simplest case, we are dealing with one real-valued function w in one dimension and we have
many sources of information that provide many constraints L i -- 0 where L i are functions relating data with the
real world function w. The simplest quadratic variational condition we could impose would be to minimize
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f[ z i2- X S] where S is a smoothness measure such as the first derivative. The theory of linear discon-

tinuous regularizat ion instead sas lmli imize f C- Di Lj -+- >_Xj (D i S) " where the Di operator means

deriNvative. Tile Cij. Xj are contants that need to be determined. If we allow for statistical dependency among

the const raiits we would instead minimize N Z ' D' L. D' L - smoothness term.

The justification for this condition is that if L and S are linear, then this variational condition leads to a
linear Euler-Lagrange equation. The additional terms constrain derivatives of the constraints L. and derivatives
o, the sinoothnness measure S to be small. Derivatives arp locally computable. If the error, Lj, of nearby points
is correlated, the derivative terms allow for this correlation. But it is important to keep in mind that we are not
working with arbitrary decorrelation formulae. Derivatives are quantities of genuine interest. Their peaks inform
us about boundaries. We also usually need to require that the coefficients Cj or Cj.kl be a simple function of the
subscripts and this is easier to do if we use a derivative expansion of the decorrelation term. Strictly speaking, the
idea here is that we first decorrelate each of the errors and then we apply regularization. Ignoring correlation
between Lj's. and considering only correlations at different, points of each Li this means we need to work with the

uncorrelated >. ai . D j Lj rather than the correlated Lj and thus we should minimize f(, aij Di Li )2 +I 3/

smoothne'ss. If we allow for correlation among the Lj, we should minimize f [E aij D i Li 2 4- smoothness term.

Provided w choose the correct values for X. aij, we can obtain substantially better solutions at, places where error
correlation is significant or where there is much information in the high frequency components of the solution.
Our estimation of these high frequency components is more accurate and thus we can estimate derivatives of the
solution much better and better localize discontinuities.

Even if the L i of nearby points are not correlated, we may need to use an incorrect data consistency term
(an incorrect L-term) to compensate for the fact that a quadratic S-term incor'-ectly overpenalizes large S. But
in that case we should be very careful how we obtain the ai and X. lest we lose accuracy in the non-discontinuous
part of the solution. Care need be taken how we estimate the derivatives of the data that are used in formulating
the equation. \%e are interested in jumps in the real world variable w. If a constraint L4 is of the form w-B.
then we can use estimates of the derivatives of B to provide cities as to the value of derivatives of w. If these
estimates are nonlinear (but local) functions of the data B, we can obtain information about the derivatives of W
which we can use to lesser the amount of smoothing over discontinuities. If the estimates are linear, we can easily
incorporate information about w and its derivatives that is more difficult to incorporate using the smoothness
term. The ideal procedure turns out to be (and note this procedure is also useful when errors are correlated but
correcting for an incorrect S-term is more important):

(1) We have a statistical model of the data and the unknowns and their relatio,,s. We can use this model to
answer the question: what is the best, local estimate of the derivative, in other words, what is the best, simple
estimate of the derivative at P given data at P and a small number of nearby points? Often this simple
estimate will t.L obtained from a linear estimate followed by equating to zero all derivative estimates below a
certain threshold. The best simple estimate depends on the details of the problem, however.

t2) Now we can use linear operations to improve our local non-linear estimates. At this point we might smooth
our initial estimates. A purely linear derivative eslimation is obtained if we regard numerical derivation asxi

an ill-posed problem that needs to be regularized, lere the typical constraint L is of the form f Ddata
DX

data (',) - data (Ao)) - 0. Poggio et al. h98-1} suggests a second derivative smoothness measure S. But

how do we handle D' L in this problem? We again need to (iffeventiate data. We can use a simple approxi-
mation like smoothed difference quotielit s or use the a)pproach suggested in tile (1). (2), (3) of which this is
paragraph (2).

(3) l'ie coefficients of the trims involving derivatives of' the data should depend on the reliability of these
deriv atives. \We also take into account the reliability of the constraint DJ Li -0 under assumptions of per-
fectly accurate data deriv tiyes when choosing coefficients.

l'lw general formalism we have described also helps n.s view in a new way traditional smoothing techniques
sch a.s convolution with a Gaussian: that is the special case where we do not constrain derivatives of L (ai.k 0

unle-ss i j - k -I - 0) but the smoot hnss terii is of the forl 13,. D" where / , (2 X"
i!
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matter). We generally represent conjunctive terms in vector form, with inputs that don't matter replaced by a
"-".~Assuming that the inputs correspond to the variables in alphabetical order, the vector form of (A, B) and
(C. D) would be (1, 0, -, -) and (-, -, 0, 1) (see Figure 25). In a corresponding neural network there would be one
processor set up to detect (A , B) and another to detect (C, D). If either of these were found by a processor, that
processor would activate the output.

4.1. CHOOSING A SEED VECTOR FOR THE SYSTEM

The simplest way for a processor to choose a seed vector is to simply wait until it is presented with an input
ve. tor that 7eceives positive feedback indicating that the output should be active, and use the state of the inputs
at that time. For example, the possible seed vectors of (A and B) or (C and D) are:

(1, 1, 0, 0) (0, 0, 1, 1)
(1, 1, 0. 1) (0, 1,1, 1)
(1, 1, 1, 0) (1, 0, 1. 1)

(1, 1, 1, 1)

Having more than one processor with the same conjunctive term would not be an efficient allocation of
resources. Accordingly, we will want, to avoid choosing vectors for which the system already activates the correct
outputs, as we can assume that those cases are already covered by conjunctive terms detected by other processors.
In addition, we will probably want to add a bit of nondeterminism to the selection of vectors in order to keep all
of the free processors from simultaneously choosing the first vector available. When a vector receives positive
feedback, it, will have a certain probability of being chosen as a seed vector. If there is a large degree of feedback
error in the environment, then a processor could choose a "negative" vector instead of a "positive" one.

4.2. LEARNING CONSTRAINTS

4.2.1. Constraints

Once a seed vector is chosen, we must determine which inputs are essential to the positive feedback and
which are not. To be clearer, we may consider each member of the seed vector to be a constraint. We already
know that when all of the constraints are met-that is, when each of the inputs are in the state that they are in
the seed vector-the output should be activated. From this we could set the processor to detect that particular
seed vector and activate the appropriate outputs when it is found.

Of course, to devote an entire processor to a single input vector would be extremely wasteful. We want to
expand the set of input vectors that the processor detects by eliminating as many constraints as possible. As elim-
inating a constrmint allows the processor to accept vectors with that input in both the state of the constraint and
in the opposite state, it effectively doubles the number of vectors that the processor can accept. A processor with
k constraints deleted can accept up to 2 k input vectors. This kind of exponential increase may allow a polyno-
mial number of processors to cover an exponential number of possible input vectors.

A

B

D

Figure 25.
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4.2.2. Motion in constraint space

The core of the OlACLE system is the addition and sulbtraction of constraints in order to minimize the
difference between the ex)ected and the actual input-output behaviors. In this section we describe the criteria
used to change the constraints, that is, the constraint motion. For each possible constraint (ie. for the state of
each input in the processor's seed vector) there are four different types of constraint motion data. At any point in
time, some of those inputs will be enforced constraints while the rest will be potential constraints not enforced.
Adding a constraint at an input means that the processor will no longer accept input vectors that have a different
value from the seed vector at that input. Conversely. removing a constraint means that the processor will now
accept input vectors that differ from the seed vector at the input. If the constraint is not currently enforced, the
environment may present data indicating that the constraint should be added and data indicating that it should
not be added. If the constraint currently is enforced, there is data indicating that. it should be removed and data
indicating that it should not be removed. Simply put, we will add constraints that cause the network to reject
more negative vectors than positiX e vectors and we will remove constraints that cause the network to reject more
positive vectors than negativ 3 vect rs.

4.2.2.1. Adding constraints. Generally speaking, constraints should be added to processors that accept too
many in)ut vectors receiving negative feedback. Because of the DNF structure of the network, a vector
incoriectly accepted by any processor is also incorrectly accepted by the entire network. A negative vector must
differ from a processor's seed vector in the value of one or more inputs (otherwise, that seed vector would not have
received positive feedback). Each of those inputs is a potential constraint, that would prevent the negative vector
from being accepted in the future, so each of these potential constraints receives a positive vote for change at that
processor.

On the other hand, we do not wish to add a constraint to a processor if the constraint would prevent too
many positive vectors from being accepted, specifically those positive vectors not accepted by any other processor.
If that processor were no longer able to accept such "uniquely accepted" input vectors, then the entire network
would incorrectly reject them as well. For all positive input vectors uniquely accepted by the processor, each
input that has a different value from that of the seed vector (and thus would cause the positive vector to be
rejected if it were to become a constraint) receives a negative ote for change. Positive and negative votes are col-
lected for each potential constraint over a sampling of the input vectors. At the end of that time, potential con-
straints with significantly more positive than negative votes are added to the processor.

4.2.2.2. Removing constraints. One might expect that the removal of constraints would be somewhat sym-
metrical to the addition of them, removing constraints that prevent l)ositive vectors from being accepted and not
removing those that prevent negative vectors from being accepted. The conjunctive structure of the processors
forces us to modify this idea, however. \Vhile a negative vector can be prevented by adding a single constraint to
the processor that the vector fails to meet, removing a single constraint might not enable a processor to accept a
particular positive vector. A positive vector might not, meet litany existing constraints of a processor. We want to
remove constraints when doing so would cause more positive vectors to be accepted, but, for most positive vectors
removing a single constraint will not make any difference. For the (A and B) or (C and D) example. if A, B,
C', and D are all constraints then removing either C or D will not cause (.4 and B) to be accepted. Both of
them must, be removed. The only time that removing a single constraint would allow a positive vector to be
accepted is if the vector met. all but one of the constraints. If there are many' constraints (some of which might
not be correct). such "'near misses" \Winston. 198-li could )e very rare. Keeping track of whether removing com-
binations of two or more const'aints would improve performance is not ant option, either, due to the exponential
number of st a istics that would have to be kept.

system nor'(ds some criteria for voting to remove a constraint, even if (loing so would not cause any more
positive vectors to be accepted. The logical solution is to allow all positive vectors that are not accepted by the
nitwork to influence the retnov al of collstraints, but giving ''near miss" ;ectors more influence than others. If a
po..itive vector is not acceptcd te le network, lhen each colistraint at l)rocessor i that prevented it from being

-n,
w'c ept ed at that proce'or is giv(n a positive vole for reioval lt'oportional to a -

' , where ti is the numuber of con-
tliits tIi l the vi.tor. fliled to meet at Proc. cor i. IT is a nieasiilic of how relevant "near misses" are compared

to otlr tii', ,s. 1"or 1irgt. near ses are the only ones that produce votes. 'hat is, each processor is changed

in proPOrtiot to how clos it alh',ad v is to aceptitg to vector: this helps tl( system to l)roperly distribute the
reltii,ilit y for iwccelt ing v,,ctors Lvy a.suri ng t hat only :a few proe c-o'r. are forced to learn each one.

N .gat oi %0 1t, ;l,;uilIt t,0iuovig ('Oll,tl llt ta lre collected ini a ,. lilar iiiaitueir. I' a colltirlillt helps to

pr., ;t % .'v ctor froll hcilig a ccpted. it ri'('i\k ., a Ieg;tive vote' againil rllnova1l l)il|ottitio al to ( a
'Ih, f,-wtr 'o0 -l 1:1lit, I t I\ Int l, N a i ;gative vi.ctor from I'viti :lcc rl ed . t 1. tnr, diflictult they should III, to
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remove. As in the case of adding constraints, the input, is sampled over a certain period of time. If the number of
positive votes is greater than tile number of negative votes, the constraint. is removed.

4.3. SUMMARY

To summarize the four types of constraint motion:

(1) If the processor accepts a negative vector, then each inactive constraint that the vector fails to meet is given
a positive vote for addition.

(2) If the processor is the only one to accept a positive vector, then each inactive constraint that the vector fails
to meet is given a negative vote against addition.

(3) If the processor rejects a positive vector that no other processor accepts, then each active constraint that the
vec:tor fails to meet is given a positive vote for removal, and the strength of that vote is an exponential func-
tion of the negative of the number of constraints the vector fails to meet.

(4) If the processor rejects a negative vector, then each active constraint that the vector fails to meet, is given a
negative vote against removal, and the strength of that. vote is an exponential function oi' the negative of the
number of constraints the vector fails to meet.

The data is collected for a large sample of the input vectors. This insures that incorrect feedback will have
little effect on the system, as the incorrect data will usually be outvoted by the correct data. Each processor
starts with no constraints and adds or removes them in such a manner that it. eventually learns one of the con-
junctive terms that logically implied its seed vector. Basing the constraints of the processors on the values of
their individual seed vectors helps them to avoid the crosstalk problems of gradient, descent algorithms. Each pro-
cessor learns from those input vectors directly relevant to its seed vector, ignoring those that can be more easily
accepted by another.

In iSullins, 19891 a probabilistic analysis of the performance of the above algorithm is performed and it is
shown, under some assumptions, that the system performs very satisfactorily when the problem at hand can be
expressed in DNF Boolean formula with not an extremely large number of conjunctive terms.

The primary problem used to test ORACLE involved determining whether or not a given 6 by 6 binary pixel
image (that is, 36 inputs) contained active input units in the shape of a square. There were 14 possible squares (9
of size 4, 4 of size 5, 1 of size 6), and an input vector was given a 50% chance of being assigned one of these
squares. Vectors containing squares were given "background noise" of 25%, that is, each non-square input was
active with a probability of 25%. This means that there were on the order of 224 (over 16 million) possible input
vectors containing squares. The inputs of vectors not assigned squares were active with a probability of 50%,
meaning that there were 236 (over 60 billion) of those.

The ideal set of constraints for a processor would clearly be those and only those inputs corresponding to
parts of the square in the processor's seed vector. Since there are 14 different squares, the disjunctive normal form
of this behavior would contain 14 conjunctive terms. These input vectors were presented to a network containing
40 processors, which according to a theoretical analysis should have been a sufficient number to cover the conjunc-
tive terms with a minimum of reassignment.

The learning curves for various levels of feedback error are given in Figure 26. The X-axis represents the
number of examples shown. The Y'-axis represents the percentage of time that the network gave the correct
response to the question of whether or notthe input contained a square. Note that this is not the percentage of
time that the output matched the (possibly incorrect,) feedback; we are interested in how well the system managed
to ignore incorrect feedback, not how well it duplicated it. Each curve is labeled with its level of feedback error,
the percentage of time that the feedback was incorrect.

As the figure shows, ORACLE learns to detcct, squares after seeing only a tiny fr . the possible input
vectors. In fact, the correctness of the network is generally close to 100%, or at least much greater than the
correctness of the feedback. This indicates that the system succeeds in choosing the correct constraint motion in
the long run despite occasional errors. While the learning time increases with the feedback error, the behavior is
still learned quickly for even large amounts of error. The learning does not. begin to deterio,-ate until the feedback
error is greater than 30%.

The individual processors behaved as predicted, quickly acquiring a set of correct constraints that dis-
tinguished it from the others and then going through the slow process of removing the incorrect ones it picked up
along the way. This is reflected in the learning curves, which quickly reach a good level of correctness, and then
slowly continue to improve to higher levels. They do not quite reach 100' correctness hecause incorrect con-
straint. are still added from time to time.
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The next experiment involved reducing the number of processors to 5, far below the minimum needed to
cover all of the 1-1 conjunctive terms. The purpose of this was to force the network to learn features of squares.
With a feedback error of 10%, the constraint sets in Figure 27 were created after 20,000 examples. As can be
seen, ORACLE has discovered the ideas of corners and parallel lines. Both types of templates allow a processor to
accept more than one kind of square. Generalizing to these features did not, increase the error significantly, as it
was unlikely that the features would be generated at random (2-7 for the corners, which is less than the 10% feed-
back error).

ORACLE was also given the more ambiguous problem of detecting fish tails. A set of 26 pictures
('Cousteau, 1953], Cousteau, 19631) of fish tails were translated (by hand) to the 6 by 6 binary format. These
included many different species with greatly dissimilar tails, in order to insure that more than one type of detector
was needed. Background noise was added by activating inputs with probability 0.25, giving 236 possible fish tails.
The network was either presented with one of these with probability .5 (it was presented with random noise other-
wise). Fish tails were given positive feedbaclk and noise was given negative feedback, except for a feedback error
of 10%. The network contained 10 processors.

1-1 --- 1
1 1 -1 ---
1 1- 1 --- 1
1 - 1 --- I
1 1 1 1-

Figure 27.
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The problem va-s made more interesting by also deactivating any input with probability 0.05. This means
that there were no good conjunctive terms for the network to form. as there would always be fish tLils that
violated any set of constraints at the deactivated inputs. Because we allow any of the inputs to be corrupted,
ORACLE was forced to find the most basic prototypes of fish tails. These were far less well-defined than the
features or conjunctive terms of the squares. Some of them are given in Figure 28. The learning curve is shown
in Figure 29.

As can be seen from Figure 28, ORACLE finds widely varied general features of fish tails. During each run,
3 or 4 processors would acquire one of these basic features, but none of them accounted for a majority of the posi-
tive vectors accepted. This shows that the system was able to properly distribute the detection of different types
of fish tails over different processors.

0- 1 -
1 - - - - - - - - -1
1 1 1 1- - 1 1 -- 1 - 1
1 1 - - - - - - -

0.9

1
1- 1 - 1
1 1 1 101- - 11 - -1 1 -1 1-- 1 1

Figure 28.

1.0 -

0.9

05010000 20000

I"igtmre 29.

548



5. CONCLUSIONS

I described here a part of our research in low-, intermediate-, and high-level vision. The theory of discon-
tinuous regularization serves as a unifying theme for describing computational theories behind early vision
processes as well as for integrating the low-level modules. I also showed, motivated by T. Poggio,3 6 how one can
synthesize operators from examples and basically learn the actual constraints that govern inverse visual problems.
We are currently implementing on the Connection Machine the DRM (discontinuous regularization machine)
whose purpose would be to extract object descriptions for the purposes of recognition. Our recognition work could
be characterized as "learning" how to recognize an object from examples. Having laid down the foundations for
2-D recognition we are moving to the direction of recognizing 3-D objects.

Our work on navigation is currently focused on sensory feedback path planning and the design of approxi-

mate algorithms for addressing the intractable problems associated with kineodynamic path planning.3 7
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COLOR IMAGE SEGMENTATION USING
MARKOV RANDOM FIELDS*

Michael J. Daily

Hughes Research Laboratories

3011 Malibu Canyon Road
Malibu, CA. 90265

Abstract: We discuss the use of Markov Random Fields (MRFs) in color image segmentation of natural,
outdoor scenes. MRFs provide an elegant means of specifying a local energy function which embodies the expected
dependencies of neighboring pixels and includes both the prior and posterior probabilistic distributions. This local,
neighborhood-based specification of dependencies avoids ad hoc, brittle methods using global image knowledge. We
present a brief analysis of ongoing research in color differencing methods since they are central to the problem of
color segmentation. We develop and compare the use of three different lattice structures for coupled MRFs with line
and color processes based on squares, hexagons, and triangles and also discuss current efforts in MRF parameter

derstanding.

1. INTRODUCTION

The use of color information can significantly improve discrimination and recognition capability over purely intensity-
based methods. Methods for low-level segmentation of color imagery are numerous. Techniques using recursive
region splitting with histogram analysis [18],[19] and edge and boundary formation [5) have been applied to natural
color imagery with some success. These methods typically suffer from a lack of important spatial knowledge in
histograms and over-dependence on global thresholds and image assumptions. Statistical methods, such as classical
Bayes decision theory, which are based on previous observation have also been quite popular (21,[211. However,
these methods depend on global a priori knowledge about the image content and organization. Until recently,
very little work had used underlying physical models of the color image formation process in developing color
difference metrics. Physically-based algorithms have produced excellent segmentations for color imagery obtained
under controlled conditions [7],[14],[15]. In this paper, we discuss the use of Markov Random Fields (MRFs) in
color image segmentation of natural, outdoor scenes. MRFs provide an elegant means of specifying a local energy
function which embodies the expected dependencies of neighboring pixels and includes both the prior and posterior
probabilistic distributions. This local, neighborhood-based specification of dependencies avoids ad hoc, brittle
methods using global image knowledge. We present a brief analysis of ongoing research in color differencing methods
since they are central to the problem of color segmentation. We develop and compare the use of three different
lattice structures for MRFs based on squares, hexagons, and triangles and discuss current efforts in MRF parameter

understanding.

2. BACKGROUND FOR MARKOV RANDOM FIELDS

Markov Random Fields possess several characteristics which make them useful in color image segmentation. Proper-
ties such as smoothness and continuity of color regions over an entire image can be enforced using only dependencies
among local neighbors. Discontinuities which separate regions of constant color may be computed while smooth
regions are being found. In addition, the inclusion of both the prior and posterior distributions (through Bayes' rule)
establishes a relationship between noisy observed imagery and the color segmentation results.

* This research was supported in part by the Defense Advanced Research Projects Agency under contract. DACA76-

85-C-007.
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Details of NIRF theory can be found in [4] and [17]. Briefly, a Markov Random Field is a lattice of sites; for example,

an image of pixels. Since MRFs are stochastic processes, the pixels in an image may take on any of their allowed

values, which means that all images can be generated. In addition, the conditional probability of a particular pixel

having a certain value is only a function of the neighboring pixels, not of the entire image. The Harnmersley-Clifford

theorem establishes the equivalence between the condition&. probabilities of the local characteristics in the MRF and

local energy potentials in a Gibbs distribution. Therefore, the a priori probability that the MRF is in a particular

state can be calculated by summing the local energies over the entire image. We are interested in obtaining the MRF

state that maximizes the a posteriori probability of the final segmentation given the observed data. From additional

theorems, the a priori energies can be added to an a posteriori energy term involving the difference between the

actual observed data and the current MRF state (or predicted image). Therefore, the Gibbs distribution energy

function consists of two parts, one describing the interaction potential between neighbors, and the other associated
with the difference between the predicted image and the actual observed data. Several methods of minimizing the

energy function over the image (i.e. maximizing the probability) can be used, among them simulated annealing.

deterministic procedures, and network solutions.

NIRFs have been used for a variety of vision tasks from image and surface reconstruction to fusion of multiple low-

level vision modules. Geman and Geman [4] have used the MRF approach ol simple synthetic intensity images

for image reconstruction. They added a useful twist to the standard approach by coupling two MRFs, one for the

intensity process, and ohe for a binary line process. The binary line process marks the location of discontinuities

in the intensity surface, making tle energy non-convex and highly non-linear. Using a method they call the Gibbs

Sampler, they perform the non-convex energy minimization using a Metropolis-like, simulated annealing algorithm.

In the theoretical case, they prove the Gibbs Sampler will produce an annealing schedule which guarantees the global

minimum; however, due to practical limitations, the schedule is sub-optimal. Marroquin [17] was the first to apply

coupled MRFs with line processes to the problem of surface reconstruction from sparse depth data. More recently,

Gamble and Poggio (3],[201 have used coupled MRFs for fusing low-level visual information. The formation of line

process discontinuities and smoothing of processes in depth and motion data, color, and texture are coupled through

separate lattices of MRFs to the intensity edges, which guide their formation. Following Marroquin, they chose

sub-optimal deterministic procedures to minimize the energy functionals. Anot her method for surface reconstruction

using sparse synthetic depth and intensity data is due to Chou and Brown [1]. Using MRFs and a technique called

Highest Confidence First (IICF) to minimize the energy, they chose to update sites with the least stability (highest

confidence for changing states) with respect to the current state before updating sites which were more stable. Kueh,

Marroquin, and Yuille [16] have used the coupled NIRF approach to perform surface recoastruction from sparse

depth data as well. However, they minimize the energy using linear graded neurons, as in the work of Hopfield and

Tank[9]. This method lends itself more readily to implementation in analog VLSI [6],[16]. Our approach using MRFs

to segment color imagery is mathematically similar to the above surface reconstruction problems, with the exception

that there are multiple surfaces representing each spectral component of the color imagery.

3. METHODS FOR COMPUTING COLOR DIFFERENCES

Of primary importance to the process of color segmentation is the use of color differencing methods. The manner

in which significant changes in color are detected must play an important role in the formation of color change

boundaries. The addition of color information holds promise for improving segmentation results since the color of

imaged surfaces is more stable under geometric changes than the image irradiance [8]. Other studies have shown the

usefilness of chromatic information in improving stereo matching alvorithnms [Ill.

Typically, a color image is composed of three spectral components obtained using filters with different sensitivities in

the red, green. and blue wavelengths. In many cases, it is desirable to transform from the resulting red, green, and

blue (B.G13) images to other color spaces which separate intensity from color (hue). Kender's [121 discussion of color

transformations points out that, linear transformations from RGB data (e.g. YIQ) are preferable. Norn-linear trans-

formations such as intensity, hue, and saturation (IIIS) and normalized color stiffer from non-removable singularities

and spurious gaps in lie color distribution. However, with these constraints in min(l, non-linear transforms often
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Figure 1. Graphs of the color difference between neighbors along the yellow line in Color Photo 1. The horizontal

axis corresponds to distance along the yellow line, while the vertical axis signifies the magnitude of the color difference.

provide more useful information by separating intensity and hue information, as in the IllS system. For additional

information on color transforms, see [19] and [23].

By comparing color differences computed using several transformations, we have found that measuring differences

in hue consistently produces larger relative changes than other corresponding color and intensity measures normal-

ized to the same range. The fact that hue tends to produce the difference with highest magnitude suggests the

usefulness of color as a means of segmenting. Hlowever, in many instances, hue is also more susceptible to varia-

tion from noise, and, in practice, may not yield significantly better results (see Section 5.0). Figure 1 and Color

Photo 1 show an experimental analysis of the usefulness of each measure in computing color differences. The graphs

were obtained by normalizing and comparing the magnitude of the difference of each measure from the following
set: Euclidean RGB, intensity, hue, saturation, Maximum IHS, CIELAB, CIELAB hue, CIELAB

chroma, CIELAB intensity, Karhunen-Loeve components, and normalized color. Differences were

computed between neighbors along the yellow line in Color Photo 1. For the Maximum IHS technique, the maxi-

mum difference in each component in Ills space is used as long as the intensity is above 10% (25 where 255 is the

maximum). When the intensity is below 10%, only the intensity difference is considered.The CIELAB color transfor-

mation, dttempts to produce a uniform color space where color differenices a human perceives as equal correspond to

equal Euclidean distances [231. The Karhunen-Loeve component - ,erived using the orthogonal Karhunen-Loeve

expansion which minimizes the mean-square error in basis functions as well as a measure of dispersion (entropy

function) for the three RGB components [22]_

More recent work attempting to quantify the significance of a color change in an image is based on physical models
of the sensors and environment [7],[8]. Briefly, the spectral response of a color sensor F(A ) may be described as the

product of a filter transmission function fl-(A) and the camera response characteristics f,(A ), as shown in Figure

2. The output of the sensor D is then the integrated product of the image irradiance I(A ) and the sensor response

F(A). Any number of color filters may be used to improve color discrimination capability. The image irradiance

at a point, Ir(A), may be approximated by using an orthogonal set of basis functions and the sensor output D, as

in [8]. Color differences between points are then computed by normalizing and calculating a distance between basis

functions integrated over the entire visible spectrum, which gives more reliable results than measures operating at

only one spectral wavelength. We have implemented this color differencing method, and our preliminary results

indicate the use of a physical model for the sensor will greatly improve color differencing capability. Our future plans

include making careful comparisons of the various transformiat ions and differencing techniques and their effect, on

color segmentations using MRFs.
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Figure 2. Physically-based sensor model for color differencing metric. L(A) is the spectral power distribution
of the light. R(A) is the reflectance function of the surface. F(A) is the sensor response, while I(A) is the image

irradiance. D(A) is the sensor output.

4. MRF LATTICES

4.1 Rectangular Lattices

The underlying lattice structure for the color and line processes plays an important role in the quality and structure
of the segmentation. The simplest lattice structure is a rectangular grid, and the line processes are defined over
some neighborhood of a pixel. By adjusting the energy function, larger cliques (neighbors of a site) encompassing

additional directional and topograi-bical structures can be heuristically added [3],[4]. For example, line process
energies which penalize the formation of adjacent parallel discontinuities may be added. For the rectangular case,

the line process can be broken into two components, horizontal and vertical, corresponding to the nearest neighbor,
4-connected system. Each of the four neighbors is of equal distance from the central pixel and is weighted identically.

In this paper, we have chosen to use the Hopfield net approach to minimization of the non-convex energy functionals,

as in [16]. The sum of the following four energy terms, El, Ed, El, and E., must be minimized.

A Z ((fi,j+i f, 2)2 (1 - vi,) + (fi+ij E f,) 2 ( -hij))

where Ei is the interpolation or smoothing term and A controls the degree of smoothness in the interpolation term.

The vector f represents the continuous-valued color process and is composed of red, green, and blue color components,

and v and h correspond to the vertical and horizontal line processes respectively and vary continuously between 0
and 1. The symbol '6' represents a color differencing scheme, such as described in Section 3. Ei is active when the
line process variables v and h are less than one (i.e. the presence of a discontinuity is not yet certain). The energy
data term is defined as

Ed = a Ifi - dijII'
i~j

where the a parameter weights the importance of the input data, and d is a color process vector representing the

observed color input image. This term ties the resulting segmentation to the original input.. The third term, El, is
the cost for introducing a new line process discontinuity and is defined as

E,= f Z(Vj + hi,1 )
i55
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where 3 represents the penalty for formation of a line process discontinuity. When the difference terms in E become

larger than the line process penalty 3, it becomes cheaper to add a discontinuity than to continue smoothing. The

final term forces the line processes to on (1) or off (0) states and is defined as follows:

V), h ,,;

E9 = f Z(J (v) dv + fg-1(h) dh)
'2 0 0

where g- 1 is a standard sigmoid function representing the gain function for the line processes, and -y alters the gain
term. The initial gain is nearly linear from 0 to 1 and, as the gain is increased, eventually becomes a step edge (see

Color Photos 2 and 3), at which time the discontinuities are driven to their final states.

As in Ilopfield's work [9], we chose the following update rule for the iterative minimization:

dfi,_ -DE

dt Ofij

drnij -O)E

dt Ovi,

dnij -OE
dt Ohij

where E = E, + Ed + Ei + E., and m and n are internal state variables corresponding to the vertical and horizontal

line processes respectively (i.e. vij = g(rmjj), and hij = g(nij)). Finally, solving the above equations for the
values of rn 1ij, nij, and fij, we obtain

A(f, +1 E) fi,) 2 _

-Y

A(f+ 1, e fij) 2 _

+!i~ hh

f ) (Lfi,j, + L,.Jf1  + L,jfi+,j + Lhi-.jfi-1 j) + odij
- A(L - + L 1-. I + L "  + a$4 +'j j-~ j + o

where L. (1 - vi 1 ) and L h = (I - hi,). In order to find the minimum energy solution, these coupled systemsS =i,
of equations must be iterated until convergence. In practice, we have found that updating the line prccess once every

10 color process updates is adequate.

Color Photo 3 shows a sequence of steps in the energy minimization for the image of natural terrain in Color Photo
2. The top row of Color Photo 3 is the current state of the segmented image. The second and third rows show the

composite horizontal and vertical line processes and the gain function. From left to right, the gain is increasing,
forcing the choice of discontinuities. The final segmentation is obtained after no change in the live or color process

occurs for several increases in the gain function. For this example, we used a simple automatic method for setting the
line process penalty 0 to the average neighborhood difference in color over the whole image. If fewer discontinuities

and therefore fewer color regions are desired, 03 may be increased relative to the mean and standard deviation of

the differences, while leaving the data weighting parameter oe constant. The color differencing method used the

maximum difference in IllS space, with hue and saturation values corresponding to low intensities being discarded.

Color Photos 4 and 5 show results for different images on 128x128 MRFs using the same methods for parameter
setting and a Euclidean RGB color differencing scheme. In Section 5, we address the difficult problems of choosing

a color difference function and of determining parameter values.
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Figure 3. Structure of hexagonal lattice for MRF. The three line processes are labelled x, y, and z, and fall
between the hexagonal sites. The color process vectors, f, are located at the center of each hexagonal site and are
composed of red, green, and blue components.

4.2 Hexagonal Lattices

Vertical and horizontal line processes on a rectangular lattice suffer from a bias toward rectilinear structures, as
is evident in Color Photos 3, 4, and 5. For natural terrain imagery where 900 angles are rare, the effects are
especially noticeable. In his book, Robot Vision, Horn gives three important advantages of hexagonal grids for
computer vision [10]. Hexagonal grids allow improved sampling and quantization during the image formation process,
markedly improve the understanding of connectivity (since all neighbors touch a center pixel), and allow easy use
of edge detection masks (e.g. Laplacian masks). For our purposes, hexagonal lattices in an MRF allow increased
resolution of the line process and replace the unnatural rectilinear bias with a hexagonal and triangular bias much
more suitable to natural imagery. A given site in the hexagonal lattice has six equally distant neighbors and three
different line process directions, each at 1200 angles, as shown in Figure 3. In addition, modifying the energy terms
used in the rectangular case is straightforward, as discussed below. The major disadvantage to using a hexagonal
lattice is the reduction in resolution required to simulate hexagonal sampling from a rectangularly sampled image.*
Increased accuracy in the hexagonal sampling can be achieved by increasing the size of the hexagons in the lattice
and thus decreasing the effect of the digitization bias of the rectangular grid (see Color Photo 6).

The energy terms for the hexagonal case are similar to those for the rectangular lattice discussed earlier, with the
exception that three line processes must be used, and special indexing for even and odd rows must be included. The
new energy terms are:

Ei = A 1, k fi,j) 2 (1 - ij) - (fi,j+l e fi,j) 2 (1 - Yi,j) + (fi+l,k 0 fij) 2 (1 -Zij))

ij

Ed = Ifij - d, II2

i,j

E, E (Xj "+ Yi, + zi,)
ij

=g f g-'(x) dx + J g1 '(y) dy + ] g-(z) dz)
1,3 0 o 0

where x, y, and z are the line processes labelled in Figure 3. The subscript k is set based on whether the current
site is on an even or odd row as follows:

k =j+ i (i even)

* This problem is purely an artifact of the rectangular grid CCD cameras used. A camera properly designed for

computer vision research would use a hexagonal tesselation of photoreceptors.
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k=j (iodd)

As in the rectangular case, using Hopfield's update rule df,/dt = -0E/8f.,, da,,i/dt = -MEax,
dbi,j/dt = - lE/Oyj, and dci,j/dt = -OE/8zi, we can solve for the values of ai,, bij, cij,, and fj, which
correspond to the three line processes, xij, y,.j, and zij and the color process, respectively. Let L,= (1 -xi,j),

L . = (1 - yi,j), and Li,j = (I - zi,j). Then the update rule for fij is

fj (1 + L'+rs2fi+1,12 + L.f.+ + L jf + Lzjfi+,,8  + L'-,2fi-1,2) + adi,fij =  i 1, , ++ L SJ L L .fi ),,
,+ ,,f 1 , 2 + L ,- + V,-_1 + L,,j + LS.L 82 ) + a

6(fi-lk 9 f,,,) 2 - 3
ai, =

7

A(fjj+, E ft,) 2 
- /3

A(fi+,k e f,,j) 2 -ci,j =
7

where sl and s2 are defined as

sl=j+1, s2=j (ieven)

sl = j, s2 =j-1 (i odd)

and k is defined as above. Again, the symbol '6' represents a color differencing scheme. Color Photo 7 shows a
comparison of the results for the rectangular and hexagonal grids applied to the same image with identical line process

penalty values and using the maximum IHS difference, as mentioned in Section 3. Both MRFs were computed on
35x40 lattices (so hexagons have approximately 14 pixel width) sub-sampled from the original 512x512 image and,

using a Symbolics 3650, required approximately 15 and 20 minutes respectively to converge. The discontinuities for
the hexagonal method fit the natural terrain much better than the rectangular method. Color Photo 8 shows the

results for a 64x64 hexagonal MRF applied on the natural terrain image of Color Photo 2, with similar parameters

and using the Euclidean RGB metric.

4.3 Other Lattices

There are only three possible tesselations of the image plane using a regular polygon: a square, a hexagon, and

a triangle. In addition to the square and hexagonal cases, we have investigated the use of triangular lattices for
image segmentation. A triangular lattice can be used to define the color and line processes in a similar fashion to
the hexagonal method. In fact, the triangular lattice actually forms a hexagonal lattice of lower resolution. The

triangular lattice requires three line processes, and each site has only three equidistant neighbors along its sides.

A potential advantage over the hexagonal and rectangular methods is that at each vertex in the triangular lattice,
six possible directions for the discontinuity exist, while only three and four exist for the hexagonal and rectangular
lattices, respectively. However, to date, results for the triangular lattice do not appear significantly different than
those for the hexagonal technique and require additional complexity to implement. Properly indexing neighbors and

each line process requires even and odd rows and columns to be addressed differently. In addition, convergence is

painfully slow and tends to oscillate. We are currently investigating a formulation for continuous line processes that

may allow more freedom in the choice of line process direction and location.
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5. MRF PARAMETERS

Efficient methods of automatically setting parameters in the MRF segmentation algorithm will increase the overall

usefulness of the method. There are four parameters of importance mentioned in Section 4. A controls the degree
of smoothing in the interpolation term. Higher values of A increase the amount of smoothing. In our experiments

with parameters, the value of A is kept constant at one. The line process penalty, /3, penalizes the formation of
color discontinuities. Iligher values of /3 will restrict the formation of line process discontinuities and thereby allow

increased smoothing of the color process. The data weighting term, a, allows control over the importance of the

input data. ligher values of a place more confidence in the validity of the input color image, while lower values are

desirable for noisy data. The gain energy term is altered using the parameter 7, which we set equal to one for all of

our parameter experiments. Larger values of favor the current state of the line processes.

Of particular importance in parameter estimation is the ratio of a to 0. By increasing this ratio, a higher density of

color discontinuities will form, while lowering the ratio produces fewer discontinuities and increases smoothing. We

chose to test the effect of setting a = 0.1 and varying 0 over the entire range of possible values. Figure 4 shows

the effect of the line process penalty / on the percentage or density of discontinuities for Color Photo 6 using a

64x64 hexagonal lattice in the MRF. The color differencing method was Euclidean RGB normalized to the range

from 0 to 255. The percentage of discontinuities was computed for each integer value of /3 after the network had

reached a final solution. This required computation of 256 separate MRF segmentations, one for each value of /3. To

speed up the process of testing the parameter values, we developed a parallel implementation using 8 Lisp machines
on an Ethernet. The results still required over 60 hours of computation. Fortunately, MRF algorithms are easily

parallelized and are ideal fGr analog VLSI implementations or fine grained parallel architectures like the Connection

Machine.

As shown in Figure 4, when 3 was zero, the final state of the line process consisted of 100% discontinuities, and no

smoothing of the input data occured (i.e. the original image was the result). When / was equal to the maximum

possible color difference of 255, no discontinuities formed and the result was merely a smoothed version of the input
data. We have computed similar graphs for several different color images and found that the inverse logarithmic
relationship of the curve between 0 and the percentage of discontinuities holds, with minor shifts in the location of

the "elbow". Subjectively, the best segmentations appear to occur near this levelling in the density of discontinuities.

Of interest in Figure 4 is a peculiar stabilization and sudden drop in the density of the line process discontinuities at
several intervals. These sudden drops in the percentage of discontinuities do not appear to be an artifact of either

the algorithms or the accuracy of the computer, but rather a result of the interaction between the underlying lattice

structure and the image content. At extremely high resolution of the line process penalty, the sudden drops are

equally as abrupt with no evidence of levelling out. We are currently exploring possible explanations. Perhaps as the

line process penalty changes, lower energy states will correspond to shapes that best match the underlying lattice

structure at discontinuous locations.

In fact, the line process penalty may be used as a kind of "temperature" to perform annealing instead of increasing

the gain of the sigmoid function which is set to a constant value. The value of 3 is lowered from the maximum

penalty to zero. When the change in the current state for a given value of 0 falls below a small threshold, / is

decreased by some increment (one in this case). Each time the value of /3 is lowered, the density of discontinuities

is plotted, resulting in a similar graph shown in Figure 5. Viewed from the perspective of statistical physics, the
unchanging portions of the curve may correspond to "equilibrium states", while at critical temperatures the sudden

addition of new line discontinuities may be similar to "phase transitions" in metals, ferromagnets, and ideal gases

(see (4] and (131).
We have also experimented with changing the parameters locally rather than globally over the image. For instance, the
weighting term for the input data, a, may be given values which vary over the image corresponding to the expectation

of noise in localized regions. Higher values of a place more confidence in the reliability of color information, whereas

lower values indicate a low signal to noise ratio. While implementation of this scheme is simple, the major drawback

to allowing parameters to vary locally is the incredible increase in difficulty of parameter understanding. The
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Figure 4. The effect of the line process penalty # (horizontal axis) on the percentage of discontinuities (vertical

axis). For each integral value of 3, the final state of the line process is computed.

----------------------------------------------

-------------------------

Figure 5. Intermediate states of the percentage of line proce, -ontinuities at successively lower values of

for a single MRF.

interrelationships of variable parameters make it difficult to predict the effects of changing parameters on the global

segmentation result.

Another important issue in understanding and controlling segmentation results depends upon the choice of color

difference functions, as mentioned in Section 3. We have only begun to analyze the effects of various differencing

methods on the final segmentations. A comparison of the results for the Euclidean RGB metric and the Maximum

IllS method described in Section 3 is shown in Color Photo 9. All other parameters are equal for the two results.

The IHS method is clearly more sensitive to color changes for equal line process penalty values and caused excessive

fragmentation. In the near future, we plan to use the color metric based on the sensor response discussed briefly in

Section 3 and compare its results to existing techniques.
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6. CONCLUSIONS

We have shown results for color segmentation of natural terrain imagery using MRFs. Comparisons of the results

for both square and hexagonal lattices using color differencing methods have been presented. We have also discussed
ongoing research in the use of color metrics and in understanding MRF parameters.

\We intend that the methods used in this paper for color segmentation be included in a larger perception system
capable of recognizing various objects in natural terrain such as rocks, trees, bushes, gullies, and other types of
vegetation. By producing an accurate description of the color of image regions which is both region-based (color

process) and boundary-based (line process) and integrating additional visual cues from laser range data and other
sensors (perhaps by coupled MRFs, as in [3]), we expect to produce more robust identification and therefore im-
prove corresponding autonomous navigation capabilities. However, implementations of MRF algorithms will require
specialized hardware to be practical for online use in robotic perception systems.
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Abstract

Machine vision can greatly benefit from the development and utilization of accurate reflectance models.
The hybrid reflectance model is a linear coint i:iation of Lambertian and specular components and is obtained from
the primary reflection components by making surface assumptions. Hence, Lambertian and specular surfaces are
special instances of hybrid surfaces. We present a method for determining the shapes of hybrid surfaces without
prior knowledge of the relative strengths of the Lambertian and specular components of reflection. The object
surface is illuminated using extended light sources and is viewed from a single direction. Surface illumination
using extended sources makes it possible to ensure the detection of both Lambertian and specular reflections.
Uniformly distributcd source directions are used to obtain an image sequence of the object. This method of
obtaining photometric measurements is called photometric sampling. An extraction algorithm uses the set of
image intensity values measured at each surface point to compute orientation as well as relative strengths of the
Lambertian and specular reflection components. Experiments were conducted on Lambertian surfaces, specular
surfaces, and hybrid surfaces. The results reflect a high accuracy in measured orientations and estimated reflectance
parameters.

1 Introduction

Most machine vision problems involve the analysis of images resulting from the reflection of light. The apparent
brightness of a point depends on its ability to reflect incident light in the direction of the sensor; what is commonly
known as its reflectance properties. Therefore, the prediction or interpretation of image intensities requires a sound
understanding of the various mechanisms involved in the reflection process. While shape extraction methods are
being developed and refined, it is also essential for the vision community to research and utilize more sophisticated
reflectance models. Once a "general" reflectance model is made available, we will be free to make reflectance
assumptions that are appropriate for the vision application at hand. The result, a more specific model, may then
be used to develop efficient shape extraction techniques.

Shape from shading [4][6][131, photometric sterco [18][7][2], and local shape from specularity [3) are
examples of techniques that extract three-dimensional shape information from photometric measurements. All of
these techniques rely on prior knowledge of surface reflectance properties. The reflectance properties are either
assumed or measured using a calibration object of known shape. In many real-world applications, such as those
involving surfaces of different reflectance characteristics, the calibration approach is not a practical one. Therefore,
the existing shape extraction methods are often used by assuming surface reflectance to be either Lambertian or
specular. Many surfaces encountered in practice are hybrid in reflectance, that is, their reflectance models are
linear combinations of Lambertian and specular models. Therefore, Lambertian and specular models are only
limiting instances of the hybrid model. It is desirable to have a method that is capable of extracting the shape of
hybrid surfaces, including Lambertian and specular ones.
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In many industrial applications, surface pol;h and roughness are found to be important inspection criteria.
In such cases, surface reflectance properties may be interpreted as measures of surface polish and roughness.
Furthermore, reflectance properties may be used to segment an image into different regions; each region may then
be regarded as a different surface to aid the process of inspection. For these reasons, it would be of great value
to have a technique that could, in addition to determining shape, also estimate the reflectance properties of each
surface point.

We begin this paper with a summary of the various mechanisms involved in the reflection process. By
considering both physical optics and geometrical optics approaches. the primary components of reflection are
identified. By making assumptions related to the microscopic shape of surfaces, the primary reflection components
are simplified to obtain the hybrid reflectance model. The object of interest is illuminated using extended light
sources and is viewed from a single direction. The sources are uniformly distributed around the object and
are sequentially scanned to obtain an image sequence of the object. We refer to this method of obtaining
photometric measurements as photometric sampling. An extraction algorithm uses the image sequence and the
hybrid reflectance model to determine object shape. Shape information is extracted without prior knowledge of
the relative strengths of the Lambcrtian and specular reflection components. In addition, the extraction algorithm
also estimates reflectance parameters at surface points.

2 Surface Reflection

2.1 A Unified Perspective

When light is incident on a boundary interface between two different media, it is reflected according to well-known
laws. There are two different approaches to optics and, consequently, two different approaches to the study of
reflectioa. Physical, or wave optics, is based directly on electromagnetic wave theory and uses Maxwell's equations
to study the propagation of light. Geometrical, or ray optics, on the other hand, uses the short wavelength of light
to simplify many of the light propagation problems. While geometrical reflectance models may be construed as
mere approximations to physical reflectance models, they possess simpler mathematical forms that often render
them more usable than physical models. However, geometrical models are applicable only when the wavelength
of incid,:nt light is sma!l when compared to the dimensions of the microscopic surface imperfections. Therefore,
it is incorrect to use these models to interpret or predict reflections from smooth surfaces; only physical models
are capable of describing the underlying reflection mechanism.

In [1 1 we have unified physical and geometrical approaches to describe reflection from surfaces that may
vary from smooth to rough. More specifically, we have focussed on the Beckmann-Spizzichino (physical optics)
model and the Torrance-Sparrow (geometrical optics) model. The surface height is modeled as a continuous sta-
tionary random process with standard deviation, a

7
h, representing the physical roughness of the surface (Figure 1).

The spatial variation of the surface is described in terms of a correlation function that determines the dependence
between the heights of different points on the surface. The spatial frequency of the surface is represented by
the correlation distance, T. The incident light is assumed to be a plane electromagnetic wave with wavelength,
A. The reflectance curves predicted by the physical and geometrical models are obtained by varying the three
parameters ryh, T, and A. From studying the behaviors of the physical and geometrical optics models, it is seen
that surface radiance may be decomposed into three primary reflection components, namely, the diffuse lobe, the
specular lobe, and Ihe specular spike.

The diffuse component results from two main mechanisms. In one case, light rays that impinge on the
surface are reflected many times between surface undulations before they are scattered into space. If these
multipl; reflections occur in a random manner, the incident energy is distributed in all directions, resulting in
diffuse reflection. Another mechanism leading to diffuse reflection is the internal scattering' of light rays. In this

'This mechanism is often referred to as "body" reflection.
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Figure 1: Surface Reflection is closely related to the microscopic surface profile and the wavelength of incident
light.

case, the light rays penetrate the surface and encounter microscopic inhomogeneities in the surface medium. The
light rays are repeatedly reflected and refracted at boundaries between regions of differing refractive indices. Some
of the scattered rays find their way back to the surface in a variety of directions, resulting in diffuse reflection.

Specular reflection is composed of two primary components: the specular lobe and the specular spike. The
lobe component spreads around the specular direction, and the spike component is zero in all directions except for
a very narrow range around the specular direction. [he relative strengths of the two components are dependent
on the microscopic roughness of the surface. A detailed analysis of the characteristics uL" the three reflection
components is given in [11]. We summarize our findings with the following remarks:

" The diffuse component may be represented by the Lambertian model [9]. This model has been used
extensively to test shapc-from-shading and photometric stereo techniques, and the results have indicated
that it performs reasonably well. More accurate models [8] [14] may be used at th cost of functional
complexity.

" The Beckmann-Spizzichino physical optics model predicts both the specular lobe and spike components.
For a very smooth surface (orh < A), the spike component dominates and the surface behaves like a mirror.
As the roughness increases, however, the spike component shrinks rapidly, and the lobe component begins
to dominate. The two components are simultaneously significant for only a small range of roughness values.

" A "sharp" specular component may result from the specular spike component when the surface is smooth
(ah/A < 1.5) and/or the specular lobe component when the surface is gently undulating ( hUIT < 0.02).

" The Torrance-Sparrow geometrical optics model provides a good approximation of the specular lobe com-
ponent of the Beckmann-Spizzichino model. Both models are successful in predicting off-specular peaks
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in the specular lobe component. Due to its simpler mathematical form, the Torrance-Sparrow model may
be used to reprcsent the specular lobe component.

" The Torrance-Sparrow model is not capable of describing the mirror-like behavior of smooth surfaces, and
it should not be used to represent the specular spike component as it would produce erroneous results.

" The specular lobes of both Torrance-Sparrow and Beckmann-Spizzichino models tend to have specular
peaks, rather than off-specular peaks, when the viewing direction is fixed and the source direction is varied.

In shape extraction techniques such as photometric stereo and structured highlight, images of the observed
object are obtained by varying the source direction while keeping the viewing direction constant. The shape
extraction method described in this paper is also based on the same approach. The shapes and functional forms
of individual reflection components are different for the varying viewing direction and varying source direction
cases. We emphasize this difference by introducing a new representation of the reflection components. Figure 2
shows polar plots of the diffuse lobe, specular lobe, and specular spike. The magnitudes of the three components
of the radiance value in the viewer direction are determined by intersections made by the lobes with the line
joining the source and the origin. The diffuse component is represented by the Lambcrtian model, specular lobe
component by the Torrance-Sparrow model, and the specular spike component by the spike component of the
Beckmann-Spiz/ichino model.

sensor
specular source
direction

specular spike

specular lobe ! '''"'o

reflecting surface

microscopic
roughness

Figure 2: Polar plots of the primary reflection components as functions of the source angle for a given viewing
direction.
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2.2 HiIbr"' Reflectance Model

In this paper, we assume that the surfaces of interest are smooth, i.e. either the surface roughness is comparable
. the wavelength of incident light ((Th/A < 1.5), or the surface is gently undulating (aoff < 0.02), or both.
From the previous discussion we see that, under these conditions, both the spike and lobe components can be
significant only in a narrow region aruund the specular direction. Therefore, we will combine the spike and lobe
components into a single component, namely the specular component. We also assume that the surfaces under
consideration are non-homogeneous. Therefore, a diffuse component of reflection may result from the internal
scattering mechanism. We use the Lamb-rtian model to represent the diffuse component. The combination of the
above mentioned two components is referred to as the hybrid reflectance model.

Consider the illumination of an object by a point source of light, as shown in Figure 3. The point source
emits light in all directions. Light energy reflected by the surface in the direction of the camera causes an image
of the surface to be formed. The intensity at any point in the image of the surface may be expressed as:

I = IL + IS. (1)

where IL is the Lambertian intensity component and IS is the specular intensity component.

Camera

Point
Source

e)n n

es S

Object

Figure 3: Two-dimensional illumination and imaging geometry. A surface element with orientation 0,, reflects
light from the point source direction 0, into the camera.

We will express the two components of image intensity in terms of the parameters that describe the two-

dimensional imaging and illumination geometry shown in Figure 3. In two dimensions, the source direction
vector s, surface normal vector n, and viewing direction vector v lie in the same plane. Therefore, directions are
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represented by a sing1 parameter, namely, the zenith angle 0.

Lambertian Component: The brightness of a Lambertian surface is proportional to the energy of incident light.
As can be seen in Figure 3, the amount of light energy falling on a surface element is proportional to the area of
the surface element as seen from the source position, often referred to as the foreshortened area. The foreshortened
area is a cosine function of the angle between the surface orientation direction 0, and the source direction 0,.
Therefore, the Lambertian intensity component IL may be written as:

IL = A cos(O0 - On), (2)

where the constant A determines the fraction of incident energy that is diffusely reflected. We have assumed that
the angle of incidence, (0, - On), is greater than -r/2 and less than -r/2, i.e. IL is always greater than zero.
Specular Component: Since the specular intensity component IS is a very sharp function of the source direction,

it may be approximated by the delta function [II]:

IS = B 6(0, - 20n). (3)

The basic photometric fu nction2 relates image intensity to surface orientation, surface reflectance, and
point source direction and may be written by substituting equations 2 and 3 into equation I to obtain:

I = A cos(O - O ) + B 6(0, - 20n). (4)

The constants A and B in equation 4 represent the relative strengths of the Lambertian and specular components
of reflection, respectively. We call A and B the reflectance parameters. We see that A > 0 and B = 0 for a purely
Lambertian surface, A = 0 and B > 0 for a purely specular surface, and A > 0 and B > 0 in general.

B

owl ,1 0 , (degrees)

.100.00 .50.00 r.e 100.0

Figure 4: Basic photometric function 1(0,) for a hybrid surface.

Our objective is to determine orientation and rellectance at each surface point from a set of image intensities
that result from changing the source direction 0. Therefore, we will often refer to the basic photometric function
as W)), a relation between image intensity and source direction. Figure 4 shows a plot of the basic photometric
function for a hybrid surface of given orientation.

2,he photom lcric function is similar to the image irradiance 151 cq,,ation, since image intensity is assumed to be proportional to image
irradiane.
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3 Photometric Sampling Using Extended Sources

3.1 Why Extended Sources ?

We propose to illuminate the object surface by using extended sources, rather than point sources, for the following
reasons:

" In the case of point source illumination, specular reflection is not detected unless 0, = 20n. In order to
determine shape and reflectance parameters of specular and hybrid surfaces, specular reflections must be
captured in the measured intensities. To detect specular reflections from surface points of all orientations, an
infinite number of point sources need to be positioned around the surface. Such an approach is unrealistic
from the perspective of practical implementation. Unlike a point source, an extended source emits light
from an area of points rather than a single point. Therefore, a small number of extended sources may be
used to ensure the detection of specular reflections.

" In the case of point source illumination, image intensities due to specular reflections are often observed to be
much greater than intensities resulting from Lambertian reflections [15]. Therefore, it is difficult to measure
both components in the same image. Extended source illumination tends to make the image intensities due
to Lambertian and specular reflections comparable to one another. A specular surface element of a given
orientation will reflect light from a small area on the extended source into the camera. On the other hand,
a Lambertian surface element of the same orientation reflects light from all points on the extended source.
This feature of the proposed illumination scheme makes it possible to measure both Lambertian and specular
reflections in the same image.

In Appendix A, we have shown how extended sources are generated. The extended source radiance
function, L(O, 0,), is derived, and the parameters that determine the direction and limits of an extended source are
defined. These results will be extensively used in the following discussions.

3.2 Photometric Function for Extended Sources

The photometric function for point source illumination (equation 4) needs to be modified for extended source
illumination. An extended source may be thought of as a collection of point sources in which each point source
has a radiant intensity that is dependent on its position on the extended source. The intensity of light reflected by a
surface may be determined by computing the integral of the light energies reflected from all points on the extended
source. Therefore, the modified photometric function I'(0,) is determined by convolving the basic photometric
function 1(0) wi," the extended source radiance function L(O, 0,). This operation is illustrated in Figure 5. For a
surface point of orientation 0,, the Lambertian component IL' of the modified photometric function is determined
as:

Os +or
IL' = A ]Os-Ce L(O, 0) cos(O - 0,) dO. (5)

The limits of the inegrz] 'A..:termined by the width of the extended source (Appendix A). It can be shown [10]
that IL' is a cosine funcL .; .i the angle between the surface orientation and the direction corresponding to the
"center of mass" o. he extended source radiance distribution, L(0, 0,). In our case, since the extended source is
symmetric with respect to the source direction 0,, the center of mass of the radiance function is in the direction
0,. Therefore, we obtain:

IL' = A' cos(O, - On), (6)

where the constant A' represents the strength of the Lambertian component.
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Modified Photometric Function

Figure 5: The photometric function for extended source illumination is obtained by convolving the basic photo-
metric function with the extended source radiance function.
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Similarly, the specular intensity component IS' resulting from the extended source L(O, 0,) is determined
as:

0s + a
IS' = B L(O, O) 6(0 - 20,) dO, (7)

or:
Is' = B L(20,, 0). (8)

Strictly speaking, the result of the above integral is dependent on the exact shape of the specular spike and lobe.
However, since both components are significant only in the specular direction, 20n, it is reasonable to assume
that the specular intensity IS' is proportional to L(20 n,Os), while the constant of proportionality is dependent on
the exact shape of the two components. To this end, we will use the constant B', rather than B, to represent the
strength of the specular component of the photometric function.

The modified photometricfunction relates image intensity ' to extended source direction 0,, and is expressed
as the sum of the components IL' and IS':

' = A' cos(O, - On) + B' L(20,, 0,,. (9)

Since the parameters A' and B' are proportional to the parameters A and B, respectively, they may be used to
represent the reflectance properties of the surface point.

3.3 Sampling

The process of measuring image intensities corresponding to different source directions is equivalent to sampling
the modified photometric function !'(O.), as shown in Figure 6. Samples of the photometric function may be
obtained by moving an extended source around the object and obtaining images of the object for different source
positions. An alternative approach would be to distribute an array of extended sources around the object such
that each source illuminates the object from a different direction. The entire array of extended sources may be
sequentially scanned such that, for each scan, a single source is active and an image of the object surface is
obtained. We have chosen to use this alternative approach in our experiments. We will confine the sampling
process to two dimensions; the surface normal vector, viewing direction vector, and source direction vectors for
all extended sources, are coplanar. The sequential scanning of extended sources positioned in the directions {0i:
i=1,2 ....... M} results in a set of image intensities {l'i: i=1,2 ....... M} measured at each point on the object surface.

The number of samples measured at each surface point is determined by the frequency f at which I'(O)
is sampled. In order to extract the shape and the reflectance parameters of hybrid surfaces, both Lambertian and
specular components of image intensity must be detected. Since we have used a delta function for the specular
reflection model, the period of the modified photometric function that contains specular intensities is equal to
the width, 2a, of the extended source radiance function. In the following section, we will show that, in general,
at least two photometric samples must have non-zero specular intensities for the extraction technique to work.
Hence, the photometric function must be sampled at a frequency greater than or equal to the minimum sampling
frequency3 fmin, where:

Ifm = - (10)

a

Note that, at this minimum frequency, the radiance distributions of adjacent extended sources overlap each other
for an interval of a.

31t is assumed that the interval of the modified photometric function that contains specular intensities is small compared to the total width
of the photometric function. Therefore, sampling frequencies that ensure the detection of specular intensities wil! provide a sufficient number
of Lambertian intensity samples.

571



I/f

20.

Figure 6: Sampling the modified photometric function.

4 Extracting Shape and Reflectance

Given the set of image intensities {l'i} measured at a surface point, we want to determine the orientation 0,
and reflectance parameters A' and B' of the point. We will first develop techniques to compute orientations of
purely Lambertian and purely specular surfaces. Later, these techniques will be used to extract orientations and
reflectance parameters of all instances of hybrid surfaces.

4.1 Lambertian Surfaces
Consider the case where the surface of an object is known to be purely Lambertian, and the shape of the object

is to be determined. The photometric samples for a Lambertian surface point may be written as:

I'i = A' cos(Oi - n). (11)

We would like to compute the orientation On and A', the strength of the Lambertian reflection component. To this
end, an error E is formulated as the sum of the errors in measured samples over the entire set of samples:

M
E [Pi -A' cos(Oi - 0.)]2 (12)

i=i

By using the conditions
OE 0E
--= 0 and A-7 = 0, (13)

we can determine values of 0, and A' that minimize the error E.
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4.2 Specular Surfaces

Now consider the case where the object surface is known to be purely specular, and the shape of the object is to
be determined. The photometric samples for a specular point may be written as:

'i = B' L(20n, O). (14)

We want to determine the orientation 0,, and the specular strength B' from the intensity set {I'i}. Let us assume
that the specular direction 20, lies between the directions 0 k and 0k+1 of two adjacent extended sources. Further,
let us assume that the photometric function is sampled using the minimum frequencyfn,, i.e. 0k+I = Ok+Ce. Then,
since the surface is specular, only the samples Pk and lk+1 will have non-zero values. We see that when 0n
increases, 20n approaches 0 k+1, Pk decreases, and Pk,+ increases. Similarly, when 0, decreases, 20,n approaches
0 k, 'k increases, and "'k,1 decreases. In fact, from equation 14 we see that the intensity ratio rk/l'k+ is equal to
the ratio L(20n, Ok)/L(2 0n, Ok+1). Since the extended sources have decaying radiance functions (Appendix A), this
ratio is a monotonic function of the angle 20n. Since the radiance functions of the extended sources are known
a-priori, we can precompute and store in memory the correspondence between l'k/l'k+l and On.

Given the image intensity set {'} at a specular surface point, the non-zero image intensities in the set are
first determined. If only a single intensity value, for instance Ik, is greater than zero, then we know that 20n =
Ok. If two image intensities, for instance 'k and l'k+l, are greater than zero, the ratio l'k/l'k+1 is used to determine
0n. Once 0,, is found, B' is obtained by using equation 14:

B1 = (15)
L(20n, Ok)

4.3 Hybrid Surfaces

The modified photometric function for hybrid surfaces is given by equation 9. At each surface point, we want to
determine A', B', and orientation 0n from the measured samples {l'i: i=1,2 ....... M} of the photometric function. To
this end, we will develop an algorithm that attempts to separate the Lambertian and specular components of each
measured image intensity and then computes surface orientations using the methods given above for Lambertian
and specular surfaces.

The extraction algorithm is based on two constraints, namely, the sampling frequency constraint and the
unique orientation constraint. By sampling the modified photometric function at the minimum sampling frequency
fmin, we can ensure that only two consecutive image intensities in the intensity set {r'i} contain non-zero specular
components. For each k in the interval 0 < k < M, l'k and I'k+l are hypothesized as being the two intensities that
have specular components. All remaining intensities in the set {'i: i=1,2 ....... M} must represent only Lambertian
components of reflection. These intensities are used to compute the surface orientation 0,1 and the Lambertian
strength A' (Section 4.1). The Lambertian components IL'k and IL'k+1 are determined and used to separate the
specular components IS'k and IS'k+I from 'k and /'k.l, respectively. The surface orientation 0,, and specular
strength B' are computed from IS'k and IS'k+I (Section 4.2).

Next, the physical constraint that each surface point has a unique orientation is exploited. An estimate 0 k

of the orientation is found as a weighted average of the orientations On, and 0,. The weights are proportional to
the strengths of the two components of reflection. We support this method of weight selection because the surface
orientation that is computed from intensities resulting from the stronger of the two reflection components is less
sensitive to image noises and is, therefore, more reliable. An orientation error ek is found by comparing 0,k with
On, and 0,s. Using the above approach, orientation errors are computed for all k, where 0 < k < M. The orientation
and reflectance parameters computed for the value of k that minimizes the orientation error are assigned to the
surface point under consideration. This process is repeated for all points on the object surface.
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It is important to note that the extraction algorithm is also capable of determining shape and reflectance
of purely Lambertian and purely specular surfaces.

Extraction Algorithm

Step 1: Let k = 1 and e0 equal a large positive number.

Step 2: Assume that image intensities I'k and I'k 1 consist of specular components of reflection. All intensities Pi,
where i $ k and i k+l, and the Lambertian model are used to compute the surface orientation O, and Lambertian
strength A'k (Section 4.1).

Step 3: The specular components IS'k and IS'k+I are separated from the image intensities I'k and Ik+1:

IS'k = lk - A'k Cos(Ok - 01),

IS'k+ = Ilk., - A'k CoS(Ok+1 - 0.1)- (16)

If IS'k < 0 or IS'kl < 0, set k = k + 1 and go to step 2.

Step 4: The surface orientation Os and the specular strength B'k are determined by using specular intensities IS'k
and IS'k+I and the specular model (Section 4.2).

Step 5: The best estimate of surface orientation, for the k iteration, is determined as:

A'k On, + B'k Os (17)A'k + B'k

The orientation error ek is determined as:

A'k IOni - 0k I + B'k Ons -
0 nk (18)

kAl k + B'k

Step 6: If ek < ek-1, then:

On =nk, A' = A'k, B' = B'k. (19)

If k < M-I, set k = k + 1 and go to step 2. Otherwise, stop.
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5 Experiments

5.1 Experimental Set-Up

We have conducted experiments to demonstrate the practical feasibility of the photometric sampling concept. A
photograph of the experimental set-up used to implement photometric sampling is shown in Figure 7. A 14-inch
diameter lamp shade is used as the spherical diffuser, and extended light sources are generated on the diffuser's
surface by illuminating it using incandescent light bulbs. All light bulbs are assumed to have the same radiant
intensity and are equidistant from the center of the diffuser. In our experiments, a source termination angle of
a = 32 degrees was used, and sampling was performed at the minimum frequency determined by equation 10.
The object is placed at the center of the diffuser and is viewed by a camera through a 1-inch diameter hole at the
top of the diffuser. The current set-up uses a WV-22 model Panasonic CCD camera that has a 512x480 pixel
resolution. The complete imaging system, comprised of lenses and camera, has a physical resolution of 0.002
inches per pixel width. In the current implementation, the light bulbs, camera, and object are all placed in the
same plane. This two-dimensional set-up is capable of measuring only the orientation of surface normal vectors
that lie on a single plane in orientation space. For each extended source, an image of the object is digitized
and stored in memory. The sequence of object images, generated by scanning the array of extended sources, is
processed on a 3/60 SUN work-station.

Figure 7: Photograph of the experimental set-up used to demonstrate the photometric sampling concept.

5.2 Experimental Results

Figure 8 shows photometric samples measured at a point on the surface of a plastic object using the above
experimental set-up. The measured intensity values are represented by black dots. The reflectance model of
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the plastic surface includes both Lambertian and specular components. The orientation of the surface point was
known a-priori. Using the orientation value, the two measured samples that were expected to consist of both
Lambertian and specular intensities were identified and are marked in the figure as "L+S". All remaining image
intensities result from Lambertian reflection and are marked in the figure as "L". The cosine function that best fits
the Lambertian intensities is represented by the solid curve. The specular components were extracted from the two
intensities that are marked as "L+S". Two estimates of surface orientation were computed using the Lambertian
and the specular components of the image intensities. Both computed orientations were found to be within 2.5
degrees of the actual orientation value. Similar experiments were conducted on Lambertian and specular surfaces
[10]. The results indicated that the reflectance model used in this paper does quite well in describing scattering
of light by smooth surfaces.

The experimental set-up and the extraction algorithm were used to extract surface properties of a number
of objects. Figures 9, 10, 11, and 12 show the results of the extraction method applied to objects with different
surface reflectance properties. For each object, a photograph of the object is followed by two reflectance image,
and a needle map produced by the extraction algorithm, and a depth map that is constructed from the needle
map. The reflectance properties of the surfaces are given by two images: the Lambertian strength image and the
specu!ar strength image. The intensity at each pixel, in both of these images, is proportional to the strength of the
reflectance model component the image represents. The needle map is a representation of surface orientations.
At each point on a needle map, the length of the needle is proportional to the tilt of the surface away from the
viewing direction of the camera. The direction in which each needle points is determined by locating the starting
point of the needle. All needles originate from the dots that constitute the resolution grid of the needle map. To
help evaluate the performance of the extraction algorithm, we have included a depth iimap of each object that is
obtained by integrating the orientations in the needle map. Note that the reconstructed surfaces are displayed at
some arbitrary Jff-set level in all the depth maps.

The object shown in Figure 9 is cylindrical and its surface is Lambertian. Figure 10 is the photo of
prism-shaped object that has a highly specular surface. An interesting application for the proposed method is
seen in Figure 11. The object is a metal bolt that has a hexagonal-shaped head. The painted surface of the head
is Lambertian in reflection, while the threaded section of the bolt is specular. Surface orientations are measured
only along the thin edges of the threads since surface orientations in the grooves between threads lie outside the
range of orientations that the current two-dimensional system is capable of measuring. While generating needle
maps, surface orientations are sampled to make room for the display of needles. In the process of sampling,
a considerable number of orientations measured on the threads of the bolt are lost. Hence, the orientations
measured on a few threads are displayed at a higher resolution. We have not included a depth map of the bolt as
its orientation map has many disjoint regions and is difficult to integrate.

All the above experiments were conducted on surface points that are either Lambertian or specular. A
major advantage of the photometric sampling method, over other shape extraction techniques, lies in its ability
to determine the shape and reflectance of hybrid surfaces. The surfaces of many manufactured plastic objects
seem to fall into this category. The Lambertian component is produced by the internal scattering mechanism,
while the sharp specular component results from the smoothness of the surface. Figure 12 shows the photo of a
plastic object that is cylindrical in shape. As expected, non-zero Lambertian and specular strengths are seen in
the reflection images. The needle and depth maps of the object are consistent with the actual shape.

An important feature of all the above results is that the surface properties at a pixel are computed solely
from the intensities recorded at that pixel. The needle maps and reflectance images have not been subjected to any
filtering operations. A simple error analysis was conducted to estimate the measurement accuracy of the current
set-up. In the results obtained so far, measured surface orientations were found to be within 4 degrees of the
actual orientation values, and an average error of 2 degrees in orientation was estimated.
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6 Conclusions

We conclude this paper with the following remarks:

" The hybrid reflection model is obtained by studying various reflection mechanisms and by making assump-
tions regarding the microscopic surface shape.

" The photometric sampling method uses uniformly distributed source directions to obtain multiple photometric
measurements at each surface point.

" Surface illumination, using extended light sources, makes it possible to capture both Lambertian and specular
reflections in the image intensities.

" The extraction algorithm uses the photometric samples to determine the shape and reflectance parameters
of hybrid surfaces, including Lambertian and specular surfaces. Objects comprised of combinations of the
aforementioned surface classes can also be handled by the algorithm.

" The extraction algorithm is local in that the orientation and reflectance of a surface point are computed
solely from image intensities recorded at that point.

" Accurate orientation estimates are obtained by using both Lambertian and specular components of the image
intensities.

We are currently in the process of extending the theory and experimental set-up to three dimensions. We are also
interested in using a more general reflection model that would broaden the spectrum of surfaces that the described
shape extraction method can handle.
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Figure 8: Samples of the photometric function, measured at a hybrid surface point. By using the known
orientation of the surface point the two intensities that have specular reflections are identified and marked
"L+S". The remaining points result solely from Lambertian reflection and the cosine function that best fits
these points is shown as a solid curve.
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Figure 9: Cyldrical painted object with a Lamhcrtian surface. Pigure 10: Prism-shaped metallic object with a specular surface.
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Figure 11: A metal bolt. The hcad of th bolt is painted and
has a Lambertian surface, while the threaded section has a Figure 12: Cylindrical plastic object with a hybrid surface.
specular surface.
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A Generating Extended Sources

There are numerous ways of generating extended light sources. In this section, we present the approach that we
have chosen to use. An extended source can be generated by illuminating a sheet of light-diffusing material with
a point light source. Figure 13 illustrates the illumination of a section of a circular diffcser of radius R. The point

OPoent

Camera 1 suc Source
7 S

Ob~e -t i
" Spherical

Diffuser

Figure 13: An extended source.

source is placed at a di.stance if from the diffuser's surface, and the viewed object is placed at the center of the
circle. Let us assume that the diffuser is "ideal", i.e. incident energy is scattered equally in all directions. Then,
the radiance 4 L(O. 0,) of the inner surface of the diffuser is proportional to the irradiance5 E(O, 0,) of the outer
surface of the diffuser:

L(O 0,) = CE(O 0s), (20)

where C is a constant of proportionality. The analytic expression for the surface irradiance E(O, 0,) may be derived
from the basics of radiometry as:

Icoso
E(O,O0) = r2--- (21)

where I ic the radiant intcnsity6 of the point source S. The radiance of the extended source may be determined
by oxpressing the variables r and - in equation 21 in terms of the parameters R, !1, and Os of the illumination

4
Ra'liance is defined as the flux emitted per unit of foreshortened surface area per unit solid angle. Radiance is measured in wats per

square n etcr per steradian (W.m-2.sr-1).
5

1rradiance is defined as the incident flux density and is measured in watts per square Mecer (W.m-
2
).

6Radian Intensity of a source is defined as the flux exiling per unit solid angle and is measured in watts per steradian (W.sr- t
).
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geometry:

LQ9, 0,) = CI[(R + II)cos(O - 0,) - R]
[(R + 11 - Rcos(O - 0,))2 + (Rsin(O - 0,))213/2 (22)

Throughout this paper, the position of an extended source is denoted by the angle 0, of the point source
used to generate the extended source. The radiance function L(O, O) is symmetric, or even, with respect to the
source direction (0 = Os), and its magnitude decreases as 0 deviates from 0. Points on the diffuser that lie in the
interval 0,-a < 0 < 0,+o, receive light from the point source S. Points that lie outside this interval are occluded
from the point source by points that lie in the interval. Thus, L(O, 0,) = 0 for 0 < 0,-a and 0 > 0,+a. The source
termination angle o is determined from Figure 13 as:

+cos R R (23)
R+11
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Height and Gradient from Shading

Berthold K.P. Horn
Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Abstract:

The shape-from-shading method described here enforces integrability and can deal with complex wrinkled surfaces.
It allows fusion of shading information with height and gradient information obtained using other vision modalities such
as binocular stereo or direct motion vision. The new method uses a regularizer to prevent divergence initially, but obtains
the exact solution despite this, because it can drop the "departure from smoothness" penalty term once it gets near the
solution. Two main features distinguish the new method from existing iterative schemes: simultaneous representation of
both height and gradient and local linear expansion of the reflectance map about the present estimate of the gradient. If
a number of implementation details are dealt with carefully, then the algorithm actually converges to the exact algebraic
solution when presented with exact numerical data. Straightforward implementation leads to a scheme that, like other
iterative schemes involving diffusion-like effects, takes time proportional to the square of the number of pixels in the
image. This suggests that proper multi-grid implementation is called for.

The algorithm has been applied to synthetic image!: of smooth objects, as well as surfaces with discontinuities
in gradient, such as crater-like shapes and polyhedra. The surface is recovered correctly given appropriate boundary
conditions, without the need to first segment the image at the edges. Application to digital terrain models permits
comparison of the recovered shape with the "ground truth."

1. Background

A special case of the shape-from-shading problem, applicable to surfaces with unusual reflecting properties, was
solved by [Rindfleisch 66]. For the special reflectance properties he considered, a profile of the solution surface

can be obtained by integrating along predetermined straight lines in the image plane. The general problem was

formulated and solved in [Horn 70, 75]. There the method of characteristic strip expansion is used to solve the

nonlinear first-order partial differential image irradiance equation. The reflectance map makes the analysis of

shape-from-shading algorithm much easier, provided that both light sources and viewer are far away from the

scene being viewed [Horn 77] [Horn & Sjoberg 79]. Several iterative schemes, mostly based on minimization of
some functional containing an integral of the brightness error, arose later [Woodham 77] [Strat 79] [Ikeuchi &

Horn 811 [Kirk 84] [Brooks &z Horn 85] [Horn & Brooks 86] [Kirk 87] [Frankot & Chellappa 88]. For a collection

of papers on shape from shading, as well as a review of the subject and an extensive bibliography, see Shape
ftrom Shading [Horn & Brooks 89].

The new method presented here was developed in part as a response to recent attention to the problem

of integrability [Horn & Brooks 86] [Frankot & Chellappa 881, and exploits the idea of a coupled system of
equations for depth and slope [Harris 86, 871 [Horn 881. It borrows from well-known variational approaches to
the problem "keuchi & Horn 811 [Brooks & Horn 85], as well as an existing least-squares method for estimating
surface shape given a needle map (see (Ikeuchi 84], chapter 11 in [Horn 86], and [Horn & Brooks 86]). For one
choice of parameters, the new method becomes similar to one of the first iterative methods ever developed for
shape from shading on a regular grid [Strat 79], while it degenerates into another well-known method [Ikeuchi &
Horn 81] for a different choice of parameters. If, on the other hand, the brightness error term is dropped, then

it degenerates into a well-known interpolation method [Harris 86, 8gj. The computational effort grows rapidly

with image size, so the new method can benefit from proper multigrid implementation [Brandt 77] [Brandt &

Dinar 791 [Brandt 30, 84], as can existing iterative shape-from-shading schemes [Terzopolous 83, 841 [Kirk 84,

87].

It was found that a linear expansion of the reflectance map about the current estimate of the surface gradient

leads to more rapid convergence. More importantly, this modification allows the scheme to converge in many
cases where the simpler schemes diverge, or get stuck in local minima of the functional. Most existing iterative
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shape-from-shading methods handle only relatively simple surfaces. Such schemes can benefit from a retrofit of

this idea.

The new scheme was tested on a number of synthetic images of increasing complexity, including some
generated from digital terrain models of wrinkled surfaces, such as a glacial cirque with a number of gulleys.

It recovered surface orientation at all points to within a degree or two in direction of the normal vector after
a few hundred iterations. To attain this accuracy, several details of the implementation had to be carefully

thought through [Horn 89]. Simpler surfaces are easier to process-with good results even when several of the

implementation choices were not made in an optimal way. Similarly, these details may be less important for real
images, were other error sources may dominate.

To conserve space, no detailed review of shape-from-shading work or photoclinometry is given here. For this
the reader is referred to the collection of papers in [Horn & Brooks 89]. Similarly, there is not enough space to
discuss several important implementation details-for these, see [Horn 89].

2. New Coupled Height and Gradient Scheme

The new shape-from-shading scheme will be presented through a series of increasingly more robust variational

methods. We start with the simplest.

2.1 Fusing Height and Gradient Recovery

One way of fusing the recovery of gradient from shading with the recovery of height from gradient, is to represent
both gradient (p, q) and height z in one variational scheme and to minimize something like

JJ((E(t.y) - R(p, q))' -- p((z. - p) ( - q)2)) ddy.1)

Note that, as far as p(x, y) and q(z, y), are concerned, this is an ordinary calculus problem (since no partial

derivatives of p and q appear in the integrand). Differentiating the integrand with respect to p(x, y) and q(z, y)
and setting the result equal to zero leads to

p z -+ (E - R)RP and q = zV + (E- R)R. (2)

Now z(x, y) does not occur directly in (E(x, y) - R(p, q)) so as far as height is concerned, we actually just need

to minimize

f ((z - p) + (zy - q)') dx dy. (3)

The Euler equation for this variational problem [Horn 86] is just

Az = p. + qy. (4)

Altogether then we have one equation for each of the unknowns p, q and z.

These three equations are clearly satisfied when p = z,, q = zy and E = R. That is, if a solution of the
original shape-from-shading problem exists, then it satisfies this system of equations exactly (which is more than

can be said for most other systems of equations for this problem obtained using a variational approach). It is
instructive to substitute the expressions obtained for p and q (equation (2)) in p. + qy:

p, q= + ZY + I ((E - R)(Rppp. + Rpq(py + q) + Rqqqy) (5)

- (R~p. + Rp Rq(py + q.) + R'qy) + (ERp + Ey Rq)Bigr).

Since Az = (p. q ) (equation (4)), we note that the three equations above for p, q and z are satisfied when

(R 2pX + RpRq(py - q_) + R2qy) - (ERp + EyRq) = (E - R)(R~ppp + Rpq(py + qz) I Rqqqy). (6)

This is exactly the equation obtained at the end of section 4.2 in [Horn & Brooks 86], where an attempt was made

to directly impose integrability using the constraint py = q. (where it was stated that no convergent iterative
scheme had been found for solving this complicated nonlinear partial differential equation directly).
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Note that the natural boundary conditions for z are

cz, + az, = cp+ s q, (7)

where (c, s) is a normal to the boundary.

The coupled system of equations above for p, q and z immediately suggests an iterative scheme
(n-*-) {}7 (

k} + -(E - R)Rp,

(n+i) (i, (8)qkt {Z kJ~ + -(E - R)Rq, (8)

(I .,- ) 2 I (n+l) 1(n+1)'
(n+1 _ ... n t kxPztkl -± lqtk hL'

where we have used the discrete approximation of the Laplacian for z:
{AZ} --- (9)

This new iterative scheme works well when the initial values given for p, q and z are close to the solution. In
fact, it will converge to the exact solution if it exists, that is, if there exist a discrete set of values {zkt} such that

{pki} and {qkj} are the discrete estimate of the first partial derivatives of z with respect to x and y respectively

and

Et = R(pk,, qkl) (10)

In this case the functional we wished to minimize can actually be reduced to zero. It should be apparent that
for this to happen, the estimator used for the Laplacian must match the sum of the convolution of the discrete

estimator of the x derivative with itself and the convolution of the discrete estimator of the y derivative with
itself'.

The algorithm can easily be tested using synthetic height data zkt. One merely estimates the partial

derivatives using suitable discrete difference formulae and then uses the resulting values Phi and qkj to compute
the synthetic image EkL. This construction guarantees that there will be an exact solution. If a real image is
used, there is no guarantee that there is an exact solution and the algorithm can at best find a good discrete
approximation of the solution of the underlying continuous problem. In this case the functional will in fact not
be reduced exactly to zero. In some cases the residue may be quite large. This may be the result of aliasing
introduced when sampling the image, as discussed in [Horn 89], or because in fact the image given could not

have arising from shading on a homogeneous surface with the reflectance properties and lighting as embodied in
the reflectance map.

It turns out that the iterative algorithm developed in this section, while simple, is not very stable unless

one is close to the exact solution, particularly when the surface is complex and the reflectance map not close to
linear in the gradient. It can be improved greatly by linearizing the reflectance map. It can also be stabilized by
adding a penalty term for departure from smoothness. This allows one to come close to the correct solution, at
which point the penalty term is removed in order to prevent it from distorting the solution. Consider first the

introduction of a penalty term for departure from smoothness.

2.2 Incorporating Departure from Smoothness Term

We now combine the iterative method of [Ikeuchi & Horn 81] for recovering p and q from E(-, y) and R(p,q)
with the scheme for recovering z given p and q. We look directly for a minimum of

((E (z, y) - R(p, q)) ' + A(p 2 p2 2q 2 ) + At((Z. _-p)2 + (Z' -)2))dd.(1
P_ p , q,-q d y (11)

The Euler equations of this calculus of variations problem lead to the following coupled system of second-order
partial differential equations:

AAp = -(E - R)R, - u(z. - p),

AAq = -(E - R)Rq - u(z, - q), (12)

Az = p. + qy.

'This and related matters are taken up in the implementation section of [Horn 89].
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A discrete approximation of these equations can be obtained by using the discrete approximation of the Laplacian
operator introduced above (equation (9)):

{AfkI - Al), (13)

where fkt is a local average of fhl. Using the discrete approximation of the Laplacian we obtain:

,2 MI - PA, ) 
= -(E - R)Rp - A(z. - Pki),

'-A(qki - qkl) = -(E - R)Rq - p(zy - qkl), (14)

-(k - zki) = Px + qy.

where E, R, Rp, and Rq are the corresponding values at the point (k,i), while z,, zy, p_ and qy are discrete
estimates of the partial derivative of z, p and q there. We can collect all of the terms in PkL, qkl and zki on one

side to obtain
(KeA' + t) ph = (nA'1k, + yz.) + (E - R)Rp,

(rA' + u)qkz = (,'A' qki + P-zY) + (E - R)Rq, (15)

zh- -j i zki - (p. + qy),

where A' = A/ 2 . These equations immediately suggest an iterative scheme, where the right hand sides are
computed using the current values of the zkl, Phi, and qkl, with the results then used to supply new values for

the unknowns appearing on the left hand sides 2.

From the above it may appear that R(p, q), RP(p, q), and Rq(p, q) should be evaluated using the "old" values
of p and q. One might, on the other hand, argue that the local average values p and q, or perhaps even the
gradient estimates z. and z-,, are more appropriate. Experimentation suggests that the scheme is most stable

when the local averages p and I are used.

The above scheme contains a penalty term for departure from smoothness, that is, it has been regularized.
Consequently it may appear that it cannot possibly converge to the exact solution, instead producing some
smooth distorted surface. Indeed, it appears that the iterative scheme will "walk away" from the correct solution
when it is presented with the solution as initial conditions, much as some earlier iterative schemes do. It turns
out, however, that the penalty term is needed only to assure convergence when far from the solution. When we
come closer to the solution, A' can be reduced to zero and so the penalty term drops out. It is tempting to leave
the penalty term out right from the start, since this simplifies the equations a great deal. The contribution from
the penalty term does, however, help damp out instabilities when far from the solution and so is needed to avoid

divergence in that situation.

2.3 Relationship to Existing Techniques

* Recently a new method has been developed that combines an existing iterative scheme for recovering sur-
face orientation from shading with a projection onto the subspace of integrable gradients [Frankot & Chel-

lappa 881. Their approach is to alternately take one step of the iterative scheme [Ikeuchi & Horn 811 and
then to find the integrable solution "nearest" to the result. The integrable gradient is then provided as initial

conditions for the next step of the iterative scheme, thus ensuring that the gradient field never departs too far
from integrability. The integrable gradient closest to a given gradient field is found using orthonormal series
expansion and by exploiting the fact that differentiation in the spatial domain corresponds to multiplication

by frequency in the transform domain.

* Similar result- can be achieved by using instead the method described in [Ikeuchi 84) [Horn 86] [Horn &
Brooks 861 for recovering the height z(z, y) that best matches a given gradient. The resulting surface can

2These equations need to be solved iteratively both because the system of equations is so large and because of the fact
that the reflectance map R(p, q) is typically nonlinear.
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then be differentiated to obtain initial values for p(z, y) and q(x, y) for the next step of the iterative scheme.

This works, but not as well as the new scheme described in the previous section.

* Next, note that we obtain the scheme of [Ikeuchi & Horn 81] (who ignore the integrability problem) if we

drop the departure from integrability term in the integrand-that is, when A = 0. If we instead remove the

departure from smoothness term in the integrand--that is. when A = 0-we obtain something reminiscent

of the iterative scheme of -Strat 79], although Strat dealt with the integrability issue in a slightly different

way.

* Finally, if we drop the brightness error term in the integrand, we obtain the scheme of [Harris 86, 87] for

interpolating from depth and slope. He minimizes
2+(A(P 2 2Py + +-q) ((z -p) 2 +(ZY _-q)2))dzdy.

and arrives at the Euler equations

AAp=-(z -p), AAq -(zy-q), and Az p.+ qy. (16)

Now consider that

AA(,z) = A(p - q1 ). (17)

Since application of the Laplacian operator and differentiation commute we have

A(Az) = (Ap). + (Aq)y, (18)

or
AA(A z) -(z. - p.) - (zyy - qy), (19)

and so
A A(Az) -Az + (p_ + qy) = 0. (20)

So this method actually solves the bi-harmonic equation for z by solving a coupled set of Poisson's equations

in an elegant, stable way that permits introduction of constraints on both height z and gradient (p, q). This

is a good method for interpolating from sparse depth and surface orientation data.

The biharmonic equation has been employed to interpolate digital terrain models (DTMs) from contour maps.

Such DTMs were used, for example, in [Horn & Bachman 78] [Horn 79] [Sjoberg & Horn 83]. The obvious
implementations of finite difference approximations of the biharmonic operator, however, tend to be unstable

because some of the weights are negative, and because the corresponding coefficient matrix lacks diagonal domi-

nance. Also, the treatment of boundary conditions is complicated by the fact that the support of the biharmonic

operator is so large. The scheme described above circumvents both of these difficulties.

2.4 Boundary Conditions & Nonlinearity of Reflectance Map

So far we have assumed that suitable boundary conditions are available, that is, the gradient is known on the

boundary of the image region to which the computation is to be applied. If this is not the case, the solution is

likely not to be unique. We may nevertheless find a solution by imposing so-called natural boundary conditions

[Courant & Hilbert 62]. The natural boundary conditions for the variational problem described here can be

shown to be
cp,+spy:=0 and cq,+sq,=O (21)

and
c z, + s z. = cp + sq (22)

where (c, s) is a normal to the boundary. That is, the normal derivative of the gradient is zero and the normal

derivative of the height has to match the slope in the normal direction computed from the gradient.

In the above we have approximated the original partial differential equations by a set of discrete equations,
three for every picture cell (one each for p, q and z). If these equations were linear, we could directly apply all

of the existing theory relating to convergence of various iterative schemes and how one solves such equations

efficiently, given that the corresponding coefficient matrices are sparse 3. Unfortunately, the equations are in

3See [Lee 88] for a discussion of the convergence of a particular iterative shape-from-shading scheme.
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general not linear, because of the nonlinear dependence of the reflectance map R(p, q) on the gradient components
p and q. In fact, in deriving the above simple iterative scheme, we have essentially treated R(p,q), and its
derivatives, as constant (independent of p and q) during any particular iterative step.

2.5 Local Linear Approximation of Reflectance Map

We can do a lot better, while preserving the apparent linearity of the equations, by approximating the reflectance
map R(p, q) locally by a linear function of p and q. There are several options for choice of reference gradient for
the series expansion, so let us keep it general for now at (po, qo) 4 . We have

R(p, q) -t R(po, qo) + (p - Po) Rp(po, qo) + (q - qo) Rq(po, qo) + (23)

Again, gathering all of the term in Ph, and qhz on the left hand sides of the equations, we now obtain

(A"+ R2)phi + RpRq qht =(iA'P ± +gtz.) + (E - R - pI? - qoRq)Rp,P (24)
RqRp PhI + (A" + Rq)q i = (A'4zh + uz.) + (E - R - poRp, - qoRq)Rq,

while the equation for z remains unchanged. Here we have abbreviated

A" = KA' + p. (25)

It is convenient to rewrite these equations in terms of quantities relative to the reference gradient:
6Pki = Phi - Po and 6bqk = qk, - qo
6
Ok = phi - Po and 6qki = qki - 90 (26)

6z 5 =z. - Po and 6zy = zy -qo

This yields
(A" + R2) bpkt + RpRq bqk = PcA'b6p t j + It bzz + (E - R)RP,P (27)
RPRq 6qki + (A" + R2)6qkg = reA'5qhl + p 6z, + (E- R)Rq.

(The equations clearly simplify somewhat if we choose either P and 4 or z. and z, for the reference gradient Po
and qO.) We can view the above as a pair of linear equations for bphi and iqkl. The determinant of the 2 x 2
coefficient matrix

D = A"(A" + R 2 + R2) (28)

is always positive, so there is no problem with singularities. The solution is given by
D ph= (A" + R2) A - RpRq B,

Dbqk =(A" + R;) B - RqRp A,

where
A = A'b h + j6z3 + (E- R)Rp, (30)

B = r.A'6qkh + u 6 z., + (E - R)Rq.

(There are various interesting ways of rewriting these formulae). This leads to a convenient iterative scheme
where the new values are given by

P(+) p ()+bp() and (n+i) () qt) (31)
i 6 hi qhi % (31)

in terms of the old reference gradient and the increments computed above. This new version of the iterative
scheme does not require a great deal more computation, since the partial derivatives RP, and Rq are required in
any case. It has been determined empirically that this scheme converges under a much wider set of circumstances
than the one presented earlier.

Experimentation with different reference gradients, including the old values of p and q, the local average p
and q, as well as z, and zy showed that the accuracy of the solution as well as the convergence is affected by this
choice. It became apparent that if we do not want the scheme to "walk away" from the correct solution, then
we should use the old value of p and q for the reference P0 and q0 .

4The reference gradient will, of course, be different at every picture cell, but to avoid having subscripts on the subscripts,
we will simple denote the reference gradient at a particular picture cell by (po, qo).
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2.6 When to Stop Iterating

It is often difficult to decide when to stop an iteration. If we knew what the underlying surface was, we could
just wait for the gradient of the solution to approach that of the surface. But, other than when we test the

algorithm on synthetic images, we do not know what the surface is, otherwise we would probably not be using
a shape-from-shading method in the first place! Some other tests include:

* The brightness error

Jf (E(., y) - R(p, q) ) 2 ddy (32)

should be small. Unfortunately this error becomes small after just a few iterations, so it does not yield a
useful stopping criterion.

* The departure from smoothness

f(pX + p2 + + q2)dxdy (33)

also drops as the solution is approached, but it does not constitute a particularly good indicator of approach
to the solution. In particular, when one comes close to the solution, one may wish to reduce the parameters

A, perhaps even to zero, in which case further iterations may infact reduce smoothness in order to better
satisfy the remaining criteria.

* One of the measures of lack of integrability

-(( _ p)2 
-+ (zy - q)2) dxdy (34)

appears to be useful, since it drops slowly and often keeps on changing until the solution has converged.

* Another measure of lack of integrability

If(p - q)' dx dy (35)

is not quite as useful. since it can at times become quite small.or stop changing significantly, even when z
is still inconsistent with p and q.

* One can also keep track of the rate of change of the solution with iterations

2- + ( q 2x ddy. (36)

One should not stop until this has become quite small. In most cases it helps to continue for a while after
the above measures stop changing rapidly; since the solution often continues to adjust.

3. Some Experimental Results

Shown in Figure 1 are synthetic images of a crater and of the shape recovered by the new algorithm. The

image in Figure 1(a), corresponding to lighting from the Northwest, is the input provided to the algorithm, while

Figure 1(c) is a synthetic image of the computed shape viewed under the same lighting conditions. Comparison
of these two images, however, does not provide a useful test of the algorithm, since the brightness error, that is,
the difference between these two images, becomes very small after just a few iterations, even though the surface

shape at that stage of the computation is likely to still be quite inaccurate. To get an idea of how well such an
algorithm really works, one needs to compare images of the original surface and that recovered by the algorithm
under different lighting conditions. Shown in Figure 1(b) and l(d) are images of the original surface and that

recovered by the algorithm when the light source is placed in the Northeast. In this case the two images are
identical, -;nce the algorithm recovered the original shape with high accuracy after a few hundred iterations,
under the ;ssumption that the gradient is zero on the boundary of the image.

Many iterative schemes for shape from shading use the gradient to represent shape, and some of these
schemes do not enforce integrability. In this situation showing an image of the recovered "surface" under the
same lighting conditions as those used to obt.in the input image is next to useless as a test of performance. In
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fact it is possible in this case to obtain a suitable gradient field in one step! That is, if neither integrability nor

smoothness is enforced, the problem is so underconstrained that one can arrange for the "surface" to yield an

arbitrary second image under different specified lighting conditions. Shown in Figure 3(a) and 3(b) are synthetic

images of a digital terrain model for two different lighting conditions. In Figure 3(c) and 3(d) we see synthetic

images of the computed gradient field "solution" under the same specified lighting conditions. The gradient field

is computed by application of the photometric stereo method [Woodham 78, 80] at each point in the image5 .

This points out the importance of synthetic images of the recovered surface obtained with assumed lighting

different from the lighting of the original scene.

To test the algorithm on more complex surfaces, a digital terrain model was interpolated from a portion

of a contour map using methods developed earlier for work with digital terrain models [Horn & Bachman 78]

Horn 79" [Sjoberg & Horn 83]. Bradford Washburn of the Boston Museum of Science kindly supplied a new

detailed contour map of the Mt. Washington region of the Presidential Range in the White Mountains of New

Hampshire. The area chosen for this work is Huntington's ravine, a glacial cirque with several major gullies6 ,

a contour map of which is shown in Figure 2. Heights on a 113 x 85 grid were interpolated from the digitized
contour map. Synthetic images of this surface illuminated from the Northwest and the Northeast are shown in

Figure 4(a) and 4(b). The image shown in Figure 4(a) is provided as input to the algorithm. Given the surface

gradient on the boundary, the algorithm converges to the exact solution (to machine precision) after several
thousand iterations. Synthetic images of the computed surface after just a few hundred iterations are shown in

Figure 4(c) and 4(d), under the same lighting conditions used for the images of the original surface.

4. Conclusion

A new iterative scheme for recovering shape from shading has been developed and implemented. The new

scheme recovers height and gradient at the same time. Linearization of the reflectance map about the local

average surface orientation greatly improves the performance of the new algorithm and could be used to improve

the performance of existing iterative shape-from-shading algorithms. The iew algorithm has been successfully

applied to complex wrinkled surfaces.
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THE SECOND DARPA IMAGE UNDERSTANDING BENCHMARK ON WARP AND
EXTENDING APPLY TO INCLUDE GLOBAL OPERATIONS

Jon A. Webb and Mike B. MacPherson
School of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

ABSTRACT

Warp was a participant in the second DARPA Image Understanding Benchmark study, which compared the
performance of a variety of architectures on a complete, integrated, image processing task. The performance and
implementation of the benchmark on the Warp machine are presented. Both tightly-coupled data parallelism and
loosely-coupled task-parallelism were exploited in order to get the best overall execution time on the task.

Using the experience on this task, programming issues for low- and mid-levei vision on parallel computers are
examined. In particular, the problem of extending the Apply language (a machine-independent language for
low-level computer vision) is considered. Extensions to Apply are proposed and it is shown how these extensions
allow the efficient implementation of all of the low- and mid-level vision operations in the benchmark. The class of
local and global operations that can be programmed with the extended Apply is considered. It is shown that all local
and global operations that are reversible- which produce the same results when applied from the top down, or from
the bottom up-can be programmed in the extended Apply.

INTRODUCTION

The second DARPA Image Understanding Benchmark addressed the issue of system performance on an integrated
set of tasks that interact in a way typical of complex vision applications. The goal of the benchmark study was to
gain a better understanding of vision architecture requirements that can be used to guide the development of future
vision architectures.

In the first DARPA Image Understanding Benchmark (Rosenfeld, 1987) the problems to be solved were specified,
but the algorithms were not given. This led to a great variety of different approaches to implementing each of the
algorithms, which made it difficult to compare different architectures. The performance of an architecture depended
on the algorithm chosen and the degree of optimization in its implementation as well as the performance of the
computer. In this study both the problem to be solved and the algorithm were specified, and C code was given to
solve the problem on a Unix computer.

In this benchmark, a complete image recognition system - the recognition of a two-dimensional mobile - was tested.
This is in contrast to the first benchmark, where individual routines were tested. This approach has the advantage
that overall timing is more realistic, since it measures the times that will be encountered when actually using the
architecture to do recognition.

In this paper, we present the results of our implementation of the benchmark on Warp, then turn to the issue of
programming low- and mid-level vision in an machine-independent manner. We have already developed (and used
in this study) a machine-independent language for local low-level image processing operations, called Apply. Use
of this language in the benchmark led to fast implementations of some of the routines, compared to implementation
of other routines with conventional tools. It would therefore be useful to be able to implement more of the routines
with an Apply-like tool.

We propose specific extensions to Apply, then show how those extensions make it possible to program ai of the
low- and mid-level algorithms in this benchmark. We then consider what class of image processing operations can
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be programmed in the extended Apply. We will prove that it is the class of image processing operations that are
reversible; that is, they produce the same result when applied to the image from the top down, or the bottom up.

BENCHMARK DESCRIPTION

The benchmark involves the recognition of an approximately specified 2 1/2 D "mobile" sculpture composed of
rectangles, given images from intensity and range sensors.

A complete description of the benchmark is available elsewhere (Weems, et al., 1988). We describe it here in
outline form.

The problem is to recognize a two-dimensional mobile given a range and intensity image. The mobile is shown in
Figure 1. It consists of a number of rectangular regions, connected by invisible threads, oriented randomly in planes
normal to the line of sight. The rectangular regions have different solid graylevels.

The input to the program is two 512x512 images. The first is a byte intensity image, the second is a floating-point
depth image. The two images are registered, and are taken with parallel projection.

The program is given a set of 10 mobile models, and must choose the correct matching model from its set. There is
only one correct match for each image. There are three factors that complicate recognition: the rectangles are
allowed to rotate in the image plane around the invisible threads connecting them to the rest of the mobile, there are
superfluous rectangles in the scene, and the depth image has added noise.

A

Figure 1: A Simple Mobile

The processing in the task is required to proceed in the following steps:
1. Connected component labelling on the input intensity image. Since it is noise-free, it does not have

to be filtered or thresholded first. Connected component labelling will correctly identify the rectangles
in the image as long as they do not partially cover spurious rectangles of the same color, or are hidden
by other model or spurious rectangles.

2. Trace and compute k-curvature of the borders in the labelled intensity image.

3. Smooth and perform zero-crossing detection in the first derivative of the border k-curvature. This
detects corners in the intensity image.

4. Count corners of components. If there are three right angles in sequence, declare a rectangle.

5. Median filter the depth image. Either 3x3 and 5x5 operators could be used.

6. Perform a Sobel operator on the smoothed depth image to detect edges.

7. Using a depth-first graph matching technique, match the hypothesized rectangles against the model.
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Verify matches by probing the images, using two techniques:

a. Depth probe: within the hypothesized rectangle region, examine pixels; pixels deeper than the
hypothesized rectangle count against it; pixels closer have no effect (since there could be a
rectangle covering the hypothesized rectangle); and pixels at the right depth and of the ri fht
grayvalue count for the rectangle.

b. Hough probe: perform a hough transform on the region of the processed depth image within
the rectangle and look for peaks at a predicted location.

8. Paint the detected model over the intensity image and output the result.

This recognition procedure is not necessarily the fastest method for solving the problem. In fact, as was pointed out
by C. H. Chien of Carnegie-Mellon, it is possible "short-circuit" the benchmark. A simple histogramming
operation applied to the depth image is sufficient to obtain the depth information of most of the rectangles, and these
rectangles can be extracted using a multi-value thresholding technique in a later stage. There may be cases where
more than one rectangle has the same depth due to the resolution used in extracting depth information from the
histogram of the depth image. These cases are rare and thus will not affect the result of matching.

The matching can be carried out in two steps: the initial matching and verification. The initial matching is trivial
due to the assumption that all the rectangles are parallel to the image plane. This assumption allows us to impose an
ordering on the rectangles in the mobile and to use "relative de pth" as the sole feature for the initial matching.
Note that the sizes, colors, positions and orientations of the rectangle have not been used up to this stage.

At the end of the initial matching, the depth of each rectangle of the mobile in the depth image can be easily
determined, and this information can be used to guide the extraction of each rectangle in the depth image. As
mentioned earlier a simple thresholding technique is enough to determine which depth pixels are associated with
each rectangle. The corners of that rectangle will be the ones with extreme values in x- or y- coordinates. Three
corners can uniquely determine a rectangle (a small number of additional depth pixels may be required in the
presence of noise). Edge detection, boundary following, or connected component labeling are unnecessary for
extracting the rectangle. The extracted information is then used to verify the result of the initial matching.

Notice that the intensity image has never been used at all. It may become necessary to resolve some ambiguity in
the depth image by using the intensity image, but this can easily be done by probing the intensity image at certain
points, without needing to go through any sort of elaborate processing.

We now review the Warp, then discuss each of the routines in turn.

WARP AND WARP PROGRAMMING

We briefly review the Warp hardware; further detail is available elsewhere (Annaratone, et al., 1987). Warp is a
medium grain parallel computer. It consists of a linear pipeline of ten powerful cells, each with 10 MFLOPS and 32
KW of fast static RAM memory. The array is connected to an "external host" that has a large (from 8 to 59 MB)
memory and two MC68020 "cluster processors" that can feed data to and from the Warp array. (There is also a"support processor", which was not used in this benchmark). The external host is connected in turn through a bus
repeater to a Sun 3/160 workstation. Programs on Warp are executed using an "attached processor" model; the
user code on the Sun prepares data, then calls Warp for processing, which may take place while the Sun continues to
do other operations.

An integrated implementation of the Warp machine called iWarp is underway as a joint project between Carnegie
Mellon and Intel Corporation (Borkar, et al, 1988). The heart of an iWarp system is the iWarp component: a single
chip processor that requires only the addition of memory chips to form a complete system building block, called the
iWarp cell. Each iWarp component contains both a powerful computation engine (20 MFLOPS) and a high
throughput (320 MB/s), low latency (100-150 ns) communication engine for interfacing with other iWarp cells. AniWparp srp demonstration system consists of an 8x8 torus of
iWarp cells, delivering more than 1.2 GFLOPS. It can be expanded to include up to 1,024 cells.

There are two programming languages that are used on Warp for computer vision. The first, W2, is the basic
language for the array. W2 is a Pascal-like language in which each individual cell is programmed, and send and
receive statements are used to transfer data between adjacent cells. W2 provides basic data and control structures
such as integer and floating-point scalars and arrays, conditionals, and looping statements.
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The second, Apply, is a specialized language for local operations in computer vision (Hamey, Webb, and Wu, 1987;
Wallace, Webb, and Wu, 1988). In Apply, the programmer writes a function that will be applied around a single
pixel in an input image; the Apply compiler generates a program that causes this function to be applied in parallel all
across the image. This makes it easy to write such local operations as edge detection, smoothing, graylevel
transformations, and so on. Global operations like histogram and Hough transform cannot be written in Apply. The
Apply compiler has been mapped onto a wide variety of parallel computers, and other implementations are in
progress. On Warp, Apply generates a W2 program.

Apply and W2 have been used to create a library of about 140 programs called WEB that covers most local and
global low-level vision operations. 'Ihe library includes histogram, connected components, FFT, edge detection,
smoothing, and so on. These are available as compiled programs to be executed on Warp, or as models to follow to
create new vision operations.

CONNECTED COMPONENT LABELLING

The connected components algorithm was implemented by H. Printz (Deutch, et al., 1988; Kung and Webb, 1985)
of Carnegie Mellon. It uses a divide an conquer technique where slices of the image are first labelled independently
on each cell, then the labels are unified by examining the borders between the cells. The merge is performed in a
sequential pass; cell 0 merges its labels with cell 1, then cell 1 with cell 2, and so on. Finally, each cell passes its
labelled image forward through the array where it is relabeled by the following cells, if necessary, to merge regions.

We did not attempt to use the recommended algorithm in this step, because we had existing code, and because the
recommended algorithm would probably perform much worse than the Printz algorithm. The recommended
algorithm propagates labels within the image without using an equivalence table. Each pixel is given a unique label
based on its row and column coordinates, then labels are propagated from one pixel to another if both pixels have
the same grayvalue in the original image. By performing repeated propagations in different directions, all pixels can
be correctly labelled.

Depending on the order in which different directions are chosen, the worst case pattern can change, but for any
choice of directions there is a pattern that requires this algorithm to make a number of steps on the order of the area
of the image. (For example, if the different directions are always followed in the same order, a spiral pattern one
pixel wide will take this long). This is very poor performance in the worst case. However, it was not clear from the
algorithm description whether worst case behavior was an issue. In the test images, all of the interesting regions
were compact and rectangular. If we ignore the background, only a few passes of propagation were necessary.

In any case, this algorithm is better suited to large processor arrays with simple processors than to small processor
arrays with powerful processors like Warp. The only operations; that are performed in the recommended algorithm
are comparison of pixel values, and assignment of the smaller of owo integer values. This means that computers that
provide these facilities, and no others (such as address calculation or floating-point arithmetic) in their hardware will
be at an advantage for this algorithm.

The structure of the algorithm also makes it well suited to large processor arrays. Each step involves transfer of a
label value and pixel value to a pixel's neighbor. The time for this step is TW'/P, where T is the time for the
computation for a single transfer and computation, I is the number of pixels in the image, and P is the number
processors. The best case is obtained when I=P, so that there are as many processors as image pixels- a very large
number. For Printz's algorithm, the execution time is AP+B/P, where A is the time to do a merge step, and Bis the
time to label the entire image serially. The best case is obtained when P=4B/IA. With the parameters taken from the
first DARPA IU benchmark, this gives P=16, which is much closer to the Warp machine's actual number of
processors.

The connected components code consisted of 226 lines of W2 code. (Because the problem to be solved involves a
global computation, only W2 could be used to program it on Warp). Of the 226 lines, 60 were in the labelling of the
image locally, and 62 were in the computation of the global maps. The remaining 104 statements were declarations
and I/O statements to read the image into and out of the Warp array.

A comparable program for a serial computer written in FORTRAN, CLAB from the Spider library (SPIDER, 1983),
consists of 59 lines. The W2 code is thus nearly the same length (in its serial section, i.e., labelling the image slices
individually) as the FORTRAN code. This reflects the similar level of the W2 and FORTRAN languages. The
merge operations needed because of parallelism double the total code, and additional I/O statements and
declarations double it again.
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TRACING AND COMPUTING K-CURVATURE

This step could be broken down into two steps: (1) computing the direction numbers of boundary pixels in the
labelled component image; (2) extracting the boundaries, smoothing them, taking their derivative, and detecting zero
crossings. The first step could be done purely locally, since the direction number of a pixel depends only on the
pixels in a 3x3 neighborhood around it. We implemented step (1) in Apply, and used the provided C code to
perform the rest of the computation.

The Apply code was a straightforward translation from the provided C code. We show the Apply program In Figure
2 to illustrate its sinplicity. For comparison we show the original serial C code in Figure 3. Note that the Apply
program is shorter. Because the Apply compiler automatically handles border processing in a reasonab!e way, it is
not necessary to include the lok, tok, etc. tests in the user program. Also, Apply makes image pixel references
:elative to the current position, which eliminates the x and y variables in the C program.

procedure setchain(intensity in array(-l..1,-l..l) of real,
ch out byte)

is
cval: integer;

begin
ch := 0;
cval := intensity(O,0);

if intensity(-I, 0) = cval then ch ch I 1; end if;
if intensity(-l, 1) = cval then ch ch 1 16; end if;
if intensity( 0, 1) = cval then ch : ch 1 2; end if;
if intensity( 1, 1) - oval then ch ch 1 32; end if;
if intensity( 1, 0) =cval then ch ch 1 4; end if;
if intensity( 1,-i) = cval then ch ch 1 64; end if;
if intensity( 0,-i) = cval then ch ch 1 8; end if;
if intensity(-l,-l) = cval then ch ch 1 128; end if;

end set-chain;

Figure 2: Apply Code for Computing Direction Numbers

The second step of the code was executed using the provided Sun C code. This included a scan of the direction
number image in order to trace boundaries, followed by three convolutions of the boundary vectors to detect comers.

This step could have been made faster by a Warp implementation. There were two reasons we did not use Warp: (1)
The boundary tracing operation is difficult to do in parallel. The image could be split up among processors, or the
boundaries could be distributed to processors. In the first case, a separate step is required to merge boundaries,
which can be quite difficult. In the second case, locating the boundaries in the image and making sure that different
processors have different boundaries requires a second component labelling pass over the image; and memory
allocation is difficult, since each Warp cell loes not have enough memory to store the whole image. (2) The
boundary tracing could be done in parallel on the Sun with other steps in the system, leading to a lower overall time
for the system if it was not done on Warp.

MEDIAN FILTER

Depending on the problem, either 3x3 or 5x5 median filtering could be required. We had existing 3x3 median filter
code already in WEB, which had be heavily optimized. The 5x5 code was written new for the benchmark.

3x3 MEDIAN FILTER

The 3x3 median filter maintains three sorted column lists, only one of which must be updated as the window is
shifted to the left. The three column lists are sorted according to their middle element, forming what we will call the"smallest," "middle," and "largest" list. The smallest two elements of the smallest list are smaller than at least
five elements of the 3x3 window, so they cannot be the median. Similarly for the largest two elements of the largest
list. This leaves five elements; these are sorted. The median of these is the median of the 3x3 window.

In the Warp implementation of this algorithm the image is divided by columns into ten slices, each cell taking one
slice, and the medians are calculated independently in each cell as the image is fed to the array row by row. This
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static unsigned char setchain(intensity,x,y)
bmarkbyte image intensity;
int x, y;

register unsigned char ch;
register int cval, loktok, rok,bok;

ch = 0;
cval = intensity[y][x];

/* set boundary flags */

1ok = x > COLMIN;
tok = y > ROWMIN;
rok = x < COLMAX;
bok = y < ROWMAX;

/* 4-connected boundary & B-connected boundary */

if (tok) {
if (intensity[y - 1] [x ] cval) cb = ch i 1;
if (rok a& (intensity[y - l][x + 1] == cval)) ch - ch I 16;
I

if (rok) {
if (intensity[y 3 Ix + 1] == oval) ch - ch I 2;
if (bok &S (intensity[y + l[x + 1] - cval)) ch - ch I 32;
I

if (bok) {
if (intensity[y + 1] [x I - oval) oh - ch I 4;
if (lok && (intensity~y + I][x - 1] - oval)) ch - oh I 64;
I

if (1ok) (
if (intensity[y ] Ex - 11 - oval) oh - oh i 8;
if (tok && (intensity[y - 1][x - 1] - oval)) ch - oh I 128;
}

return (oh);
I

Figure 3: C Code for Computing Direction Numbers

partitioning method wastes computation since each cell has to reinitialize te median filter for each row, as opposed
to partitioning by row, where only one cell has to reinitialize the median filter for each row. It has the advantage of
allowing computation of results on line, and requiring less memor per cell (which was the overriding factor whenthis code was implemented on the prototype Warp machine, which had only 4K words of memory per cell.)

5x5 MEDIAN FILTER

While median filter can be formulated as a local operation, the provided C code used raster order processing to
speed up execution time. This made it impossible to implement the code using Apply, which does not allow the
programmer to take advantage of raster order processing. Therefore, the 5x5 median filter algorithm was a straight
translation of the provided C code into W2. The image is divided into 10 horizontal slices, with each processor
getting one slice. To compute the first median in a row the values in the 5x5 region are sorted and the 131h largest is
chosen. To compute the next median in the row five new values (the right side of the 5x5 region) are inserted into
the sorted list, and the five values no longer in the region are removed from the list. The 13th is then chosen as the
median for this window. This process repeats for the rest of the elements in the row.

The programming effort for this algorithm was minimal, since the partitioning the image by rows is straightforward,
and processing of a row is done exactly the same way as in the C code. This is illustrated by the statement counts
for the different parts of the code; 28 W2 statements were involved in programming the image I/O, and 52
statements were needed for the computation, versus 67 statements for computation in the Ccode.
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GRADIENT MAGNITUDE AND THRESHOLDING

The Sobel operator was a straightforward implementation of the provided C code. The Apply code for the Sobel
operator is shown in Figure 4. The code development time for this program was only 10 minutes.

procedure grad(imagein : in array (-1..I, -1..1) of real,
threshaquared : const real,
imageout : out byte)

is

xderiv, yderiv : real;

begin

xderiv :- 0.25*imagein(-l,-l) + 0.5*imagein(-1, 0) + 0.25*imagein(-l, 1) -
0.25*imagein( 1,-i) - 0.5*imagein( 1, 0) - 0.25*imagein( 1, 1);

yderiv :- 0.25*imagein(-l,-l) + 0.5*imagein( 0,-i) + 0.25*imagein( 1,-i) -
0.25*imagein(-l, 1) - 0.5*imagein( 0, 1) - 0.25*imagein( 1, 1);

if (xderiv * xderiv + yderiv * yderiv) < threshaquared
then imageout 0;
else imageout 255;

end if;

end grad;

Figure 4: Apply Sobel Operator

DEPTH AND HOUGH PROBES

The depth and Hough probes were performed as part of a graph matching algorithm that ran on the Sun. The probe
routines were compact loops that consumed the majority of the computation time for the graph matching. Moving
these loops to Warp was straightforward, since they consisted of operations that accessed a rectangular area of the
image, and performed a few simple tests on it.

DEPTH PROBE

The depth probe took place in a bounding box aligned with the horizontal and vertical image axes in which a
rectangle was supposed to lie. Pixels within the region were first tested to see if they fell within the supposed
rectangle (which could have any orientation) and then, if they did, one of several counters was incremented
depending on whether the pixel was deeper or closer than the supposed rectangle, or at the right distance and with
the right intensity value.

Since the processing of each pixel was independent, there was no advantage in dividing the region in some
large-grain fashion, such as splitting it into adjacent strips of columns. Moreover, there was considerable overhead
in doing this, because the padding needed to make the image divide evenly into strips would vary for each region,
and would have to be computed at run time, since the bounding box size was determined then. Also, the loops
distributing the image across the cells would have bounds that could be known only at run time, so that the compiler
could not take advantage of known loop bounds to perform various optimizations, such as pipelining. Instead, the
region was distributed across the ten cells by having each cell take every tenth pixel as the region was sent in raster
order from the cluster processor. Once the entire region was sent, the cluster processor sent a series of sentinels that
caused the cells to total and output their counters.

Code download was done only once per execution. It averaged 1.6 s with a standard deviation of 1.3 s. The
standard deviation of the code download time is high because the system software must verify, before each probe,
that the code has already been downloaded and must also initialize the machine state. This time is included in the
code download time, but varies with the number of probes. A linear regression model of code download time of the
form a+bN, where N is the number of probes, gives a=185 ms, and b=11.3 ms. In other words, the initial code
download takes 185 ms, and the incremental cost (in overhead counted as code download time) for each probe is
11.3 ms.
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HOUGH PROBE

While the image region to be processed could vary, the Hough space produced was fixed. Therefore, we chose to
split the Hough space among cells, and have each cell process the entire image. This led to a straightforward W2
program, the inner loop of which is shown in Figure 5.

Each cell receives the pixel, and forwards it to the next cell. The cell then updates its portion of the Hough space,
which is divided by theta values- each cell takes every tenth theta value. The calculation of rho is as in the C code.
Once all pixel- a-. nrocessed, the cells concatenate the Hough space and output it to the host.

FOR i := strow TO endrow-1 DO BEGIN

y := i - MIDROW;
FOR j stcol TO endcol-I DO BEGIN

x J - MIDCOL;
RECEIVE(I, x, ipixel); SEND(r, x, ipixel);

IF ipixel <> 0 THEN BEGIN
htp := 0;
FOR theta offset := 0 TO 80 BY 10 DO BEGIN

theta := theta offset + cellid;
rho := fix((x*sin[theta] - y*cosathetal) / RBINSIZE);
IF rho < 0 THEN
BEGIN posx htp+9; posy := 0-rho; END

ELSE

BEGIN posx : htp; posy := rho; END;
hough[posx] [posy] :- hough[posx] [posy] + 1.0;
htp : htp + 1;

END;
END;

END;

END;

Figure 5: The inner loop of the W2 Hough program

The code was downloaded only once, with an average time of 900 ms, and a standard deviation of 748 ms. The
standard deviation of Hough probe code download time is high for the same reason as with match strength probe.
The linear regression model gives the initial code download time as 179 ms, and the extra time per probe is 13.9 ms.
These times are consistent with those for match strength probe.

PAINT RESULT

After the model was detected, it was painted over the input image and the resulting image was output. In the
provided C code the paint rectangle routine was called repeatedly as the model graph was traversed. This would
have considerably slowed the Warp implementation, since the overhead for program startup is significant. In our
implementation, the rectangle descriptions are stored in a list, which is then passed to the Warp for painting all at
once.

Two different implementations of the paint rectangle routine were tried. In the first Apply code was used. Ai
rectangle descriptions were passed as parameters to the Apply routine. The Apply program checked to see if its
pixel fell within the rectangle description, and if it did then it was painted. (The rectangle descriptions were ordered
i the same order as the C code would have painted them. Hence the Apply code always produced the same resultas the original C code, even when rectangle descriptions overlapped.)

In the second implementation, which was written in W2, each cell took one tenth of the rectangle descriptions. A

row of the image was passed in, and each cell painted its portions of the rectangles onto that row, passing the painted
row on to the next cell. As before, the rectangles were ordered so that painting happened in the same order as the
original C code.

The second implementation was faster, mainly because some of the testing could be done on a per-row basis
(namely, whether the row intersected with the circumscribing rectangle aligned with the image axes around the
rectangle to be drawn). In the Apply code this had to be done on a per-pixel basis.

The time for this routine was 2.3 s with a standard deviation of 179 ms. Of this, approximately 97% (standard
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deviation 0.40%) of the time was spent in the Warp paint rectangle routine.

EXPLOITING TASK-LEVEL PARALLELISM

Warp is programmed using the attached processor model, in which a general purpose host (a Sun workstation) runs
the majority of the code, which is also the least time-consuming portion, and calls the Warp array to do time-
consuming small portions of the program. In this benchmark, these poions of the code are those that access
images. Almost every operation that touches all or a large portion of the pixels in the image runs on Warp. (The
.Ay cx~cpaiun is ac h:wuidary ,xtra,'on codc).

We take advantage of the intrinsic parallelism in this model at several points in the benchmark. Warp can run on its
own, doing some image processing, while the Sun does other tasks in parallel.

Exploiting task-level parallelism in this way allows us to largely eliminate the overhead of reading in images during
the benchmark, which would otherwise constitute a significant portion of the total benchmark time. Figure 6 shows
where we were able to make use of task-level parallelism: that is, in "read depth image," "read model
descriptions," and "extract strong cues." "Read depth image" involves reading the floating-point depth image
from disk, and "read model descriptions" involves reading the model descriptions in, where they are stored in
ASCII. Because the depth image is so large, it takes about one second to read; since the model descriptions are
stored in ASCII, they also take about one second to read and translate into internal binary format.
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Figure 6: Task-level parallelism in the IU Benchmark

Because the depth image and model data are read in parallel with a Warp computation, they do not contribute to the
total benchmark time; their time is subtracted from the benchmark time. This effect is better than the normal
speedup provided by faster hardware, which is only multiplicative.

While the depth image is being subjected to median filter and the Sobel operator on Warp, "extract strong cues"
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runs in parallel on the Sun. "Extract strong cues" is a complex procedure that is difficult to parallelize, and which
would have required a lot of reprogramming to run on Warp. Moreover, since it could be run in parallel, its
execution did not contribute to the total benchmark time (at least in the case when 5x5 median filter was used).

Exploiting task-level parallelism in this way is a powerful and general method of reducing total program time,
because it does not rely on particular hardware features; instead, any routine that does not have dependencies with
later routines can be executed in parallel. Task level parallelism is therefore much easier to exploit than data
parallelism, which was exploited in the routines implemented on Warp; only minimal reprogramming is necessary.
Unfortunately, there are only a few places in the benchmark where task level parallelism can be used. This is due to
the general nature of recogrtion programs, where almost every reasoning step depends on those preceding it.

PERFORMANCE SUMMARY

Table 1 gives all the performance figures for Warp on the IU benchmark. The times given for indented lines are
included in the first non-indented line above. Means and standard deviations of execution times are also given. All
times are in seconds. All numbers are rounded to three significant digits.

The startup time for Warp programs was estimated to be about 25 ms, not counting code download time, which is
given in the table.

MAKING PARALLEL PROGRAMMING EASIER

In the implementation of the Warp routines above, there is a strong difference between those implemented using W2
and those implemented using Apply. The Apply routines are shorter than the corresponding C programs, and
generally took only a few minutes to program; the W2 routines are longer than the C routines, and generally
required days of careful programming to got riht. Here we examine the reasons for this difference.

The W2 programmer has to do several tasks that the Apply programmer avoids:
I. Input and output the data structures from Warp.

2. Sequence the operation across the input data structure. The C programmer must also do this step.

3. Combine separate portions of the output data structure into one structure.

The W2 programmer is also at one other important disadvantage compared to the Apply programmer; W2 code runs
only on Warp, while Apply programs run on several machines, with more implementations underway. It is far
easier to exchange Apply programs between machines, making Apply programs more useful as a medium for the
exchange of ideas, and aso Apply programs have a much longer useful lifetime than W2 programs. (For example,
the .Apply programs in WEB have been ported from Warp to iWarp and through two changes in Warp/W2
architecture without change, while the W2 programs needed or will need changes in all three cases.)

The W2 programmer, however, has two critical advantages compared with the Apply programmer: (1) W2 is a
general language, and (2) It is possible to exploit raster-order processing in W2, giving greater efficiency. The first
advantage is the reason that connected components and the Hough probe algorithm were written in W2; the second
is the reason W2 was used for median filter and the paint result routine.

We now consider whether it is possible to extend Apply so that it can be made more general, and capable of
exploiting raster-order processing, without losing the ad vantages listed above.

Let us make a list of requirements for the new, extended Apply:
1. It should be capable of raster-order processing for greater efficiency.

2. It should be capable of computing global image processing algorithms.

Considering the global image processing algorithms in this benchmark, we observe that they all order their
processing in the following way:

* The image is broken down into sections, one section per processor.
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" Each processor computes a global result on its section.

" The global results are combined to create the global data structure for the whole image.

Our experience suggests that this divide and conquer approach to global image operations is useful and general.
Therefore, we will use it in the extended Apply as the uniform paradigm for global image oprations. We will add
to Apply the ability for the programmer to define a special combining function; this takes the output of two Apply
functions applied over areas of the image and combines them. For example, the combining function for histogram is
the operation of adding the two histograms. We also add a termination function, which is applied once to the finalglobal data structure; this can discard intermediate results needed for the combining operations andproduce theglobal output. In order to initialize the dat structures that are being computed, we add an initialization function.

We will also add raster-order image processing to Apply. An important issue is whether this would make it more

difficult to implement Apply (since restricting the programmer to order-independent operations was supposed to
make Apply compilers easier to implement). Our experience suggest that it does not; all Apply compilers (except
for the one for SLAP (Fisher and Highnam, 1987)) process the image in raster order anyway. (Raster order
processing makes sense only on processors that have much fewer processors than pixels. This is the reason it would
b chard to implement efficiently on an architecture like SLAP. The same problem exists on other architectures, for
example the Connection Machine (Tucker and Robertson, 1988).)

Raster order processing implies that there must be some way of initializing the computation, since raster order
algorithms assume some previous state. The initialization function we added in order to compute global operations
can serve this purpose. The current Apply function becomes the function that is applied repeatedly, in raster-order,
across the image. Note that the presence of an initialization function allows us to start the raster-order processing
anywhere in the image; this makes it possible to still process the image in parallel, with raster-order processing at
each cell.

Raster order processing allows us to think in terms of processing regions of pixels. Because of this, we can add a
useful restriction to the applications of the combining function; we require that Apply use it to combine global
variables computed only over adjacent regions of the image. This makes it easier to implement many global image
operations, for example connected components.

To summarize, extended Apply programs consist of up to four parts:
'. An initialization function, which can be run anywhere. in the image.

2. A raster-order function, which is applied in raster-order across the image (wrapped around the borders
of the image). The first execution of the raster-order function is guaranteed to be preceded by an
execution of the initialization function.

3. A combining function, which combines the outputs of any two image regions to produce an output for
the concatenation of the two regions. In order to make programming easier, we stipulate that the
combining function will be applied only to adjacent "swaths" (groups of consecutive rows) of the
image.

4. A termination function, which is applied once after the output of the entire image is computed.

Of course, it is not necessary to have all these parts in an Apply program; only the raster-order function is required.

To illustrate how the Apply compiler could use these functions on different parallel computers, let us call the
initialization function I, the razter-order function R, the combining function C, and the termination function j. On a
serial processor, these functions will be executed as follows on a NxN image:

I0 ,R(0,0),R(0,1) .... R(0,N),R(I,0) .... R(N,N),TO

Subscripts are used to represent the image pixel at the center of the window processed by the function.

On a multiprocessor where the image is broken down horizontally, each processor taking an adjacent set of rows, a
similar program will be used, except that each processor will process only its rows, and the combining function will
be applied to merge results from adjacent stripes. One processor's program might look like this:

(i,0),n(i,0),n(i,1). .R(i,N),R(i+1,0), .... R(j,C0
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where the application of CO merges this processor's results with the results from some other processor. The order
of the combining operations depends on the interprocessor communications facilities.

If we partition the image vertically, each processor taking an adjacent set of columns (as in the Apply Warp
implementation) we can still implement raster order processing by passing intermediate results between processors
after each has completed processing its portion of the columns. The program on the first processor looks like this:

I(i,O),R(i,O) .... R(ij),SendO
where Sendo sends the intermediate results from this processor to the next. Intermediate processors have this
program:

ReceiveO,R( k) .. R(i, l),SendO

and the last processor has this program:

Receiveo, R(i, k) .... R(i,l), Co
Processing the image in this way creates a pipeline of processors, staggered diagonally across the image. After
processor 1 has started processing the first row, processor 0 goes on the process the second. This mapping would be
efficient only on computers with low communications overhead, such as Warp.

There are several ways of merging regions computed on different processors. With only nearest-neighbor
communications in a linear processor array, regions would be merged serially-i.e., the first region is merged with
the second, this result is then merged with the third region, and so on, resulting in a tree of merge operations like that
shown in Figure 7. On a machine that has more flexible interprocessor communications facilities, regions can be
merged in parallel as shown in Figure 8.

Figure 7: Merging results from adjacent image regions serially

Figure 8: Merging results from adjacent image regions in parallel
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The image can be broken down differently, for example by columns, or by allocating a square region to each
processor. Dividing the image in such a way as to give each processor a complete row has the advantage that SendO
and Receiveo functions are unnecessary. However, breaking the image down in other ways also has advantages.
Dividing the image by columns allows us to compute local Apply operations on-line; as each row is fed to the
processor array, another row of results is computed. Dividing the image into squares allows us to use more
processors efficiently, since Apply programs must duplicate processing at the region perimeter, and the rectangular
region of a given area with the shortest perimeter is a square.

There is an important limitation in the divide and conquer when we try to reduce execution time by using more and
more processors. Because of the overhead of the merge step, execution time decreases until a certain point, after
which using more processors actually results in longer execution time. The number of processors that gives the
shortest execution time depends on the algorithm, the image size, and the interprocessor communication method.
Let A be the time to merge two adjacent regions, and B be the time to process the entire image in raster order. With
serial merging of regions as in Figure 7, the optimal number of processors is 42B/A-; on a two-dimensional array of
cells with two merge steps (one horizontal and one vertical) the optimal number is (B/A)2W; and with the merge
steps implemented as in Figure 8, each merge halving the number of regions to merge, the optimal number is
Bln 2/A. Table 2 gives the optimal number of processors for three algorithms: image sum, histogram, and connected
components, all on 512x512 and 10,000xlO,000 images. The time for 512x5l2 connected components comes from
its Warp implementation in the first DARPA Image Understanding benchmark; the other times are estinated.

We also give the "knee" of the execution time profile, where the benefit (increase in speedup) per unit cost
(decrease in efficiency) is maximized (Eager, et al., 1989). Defining the efficiency of the parallel implementation on
N processors as EN=T1/(NTN), where T. is the execution time on k processors, this point is the k for which EA/Tk is
maximized. The point at which this happens is the most cost-effective number of processors to use. For a linear
array, this number of processor at :he knee is "B/3A; on a two-dimensional array, it is (B/4A)2 . There is no closed
form solution for the number of processors with parallel merging; it is N in the equation N=(B/A)ln 2/(InN+2).

Algorithm Image size B/A Serial merge Two merge steps Binary tree merge

Max Best Max Best Max Best

512x512 262,000 512 296 4100 1625 181,000 15,600
Image sum 10Kx10K 100,000,000 10,000 5773 215,000 85,499 69,300,000 4,030,000

512x512 1020 32 18 102 40 710 106
Histogram 10Kxl0K 391,000 625 361 5340 2120 271,000 22,500

512x512 256 16 9 40 16 177 32
Connected components 10Kxl0K 5000 71 41 292 116 3470 430

Table 2: Global operations with different communications methods

Table 2 gives us some justification for allowing the programmer to assume that the image is divided only by rows
when writing the combining function. For algorithms as complex as histogram, the overhead of the merge operation
is great enough so that there is not enough parallelism available to require dividing the image in this way. The only
cases where the available parallelism exceeds the number of rows are image sum with two merge steps or parallel
merging, and histogram for binary tree merge (and even there the most cost-effective number of processors is near to
or less than the image height). Even if we allowed image subdivision by columns, the Apply programmer andcompiler could not make good use of it except with extremely simple merge operations. (Of course, in the absence
of a combining function the Apply compiler can still divide the image by columns, without introducing any extra
overhead, just as the current Apply does in its implementation on Warp.)

BENCHMARK GLOBAL IMAGE PROCESSING OPERATIONS IN APPLY

We now consider how the global image processing operations in this benchmark can be written in the extended
Apply.

We will sketch the implementations of each algorithm and avoid detailed questions of their implementation in the
new language. We order the algorithms in order of difficulty.
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MEDIAN FILTER

The median filter algorithm can be written using a raster-order function as follows:
* At the beginning of each row, the raster-order function sorts the elements in the window and stores

them in a list. It then selects the median element from this list; this is the output. In preparation for
moving the window to the right, the leftmost elements of the window are deleted from the list, and the
new rightmost elements are added.

Since the median filter algorithm does not compute a global result, there is no need for combination or termination
functions.

PAINT RECTANGLE

As supplied with the benchmark, the paint rectangle algorithm performs an important optimization; for a given
rectangle, it determines from its bounding box whether or not the current row of the image intersects with the
rectangle or not. Our extended Apply program can make the same optimization:

* At the beginning of each row the raster-order function determines, for the current row, whether or not it
intersects each of the rectangles being painted. It then goes through each of the intersected rectangles in
order (from most distant to nearest), determining if the current pixel lies within them, and repeatedly
assigning the current pixel the color of the rectangle within which it falls. The result is that the current
pixel gets the color of the nearest rectangle containing it.

DEPTH PROBE
The depth probe operation as supplied with the benchmark processes only with the bounding box of the rectangle
that is being probed. It computes a simple global operation on this rectangle:

" The initialization function zeroe; the various counters: points too deep, points at the correct depth, and
other points. It also zeroes a variable that keeps track of the sum of depths of points at the correct
depth.

" The raster order function first determines if a pixel falls within the rectangle. If it does, it updates the
appropriate counter, and adds its depth to the sum of depth variable if it is at the correct depth.

" The combination function simply adds together corresponding variables from the adjacent regions.

" The termination function calculates the average depth by dividing the sum of depth variable by the total
number of correct points.

Note that the W2 progam implemented for the benchmark used a different method of partitioning the image than
any we have proposed for implementing extended Apply programs. The image was dealt out to the processors, one
pixel at a time, with no concern for how the processors mapped onto the image; each of the ten processors simply
took every tenth pixel. This was done because there is no dependence whatsoever between adjacent pixels in the
code as supplied with the benchmark, and because it was easier to program.

However, the extended Apply makes it possible to propose a refinement in the algorithm, which can also be used in
the paint rectangle routine. For each row, it is possible to calculate the starting and ending pixels in that row that fall
within the rectangle; this computation can be done in the raster-order function. The resulting code avoids having to
test every pixel for whether it lies in the rectangle. Since this test is difficult, involving several floating point
operations, the resulting code is faster, and no more difficult to implement in the extended Apply.

HOUGH PROBE

Hough probe performs a Hough transform on the Sobel-processed depth image to find rectangle edges. The region
of the image processed is localized, but the Hough transform produced is not, although only a small portion of it is
actually used. Using the divide and conquer model in this way has serious implications for memory usage. We
present two different implementation of Hough probe in the extended Apply. In the first, we divide the image:

* The initialization function zeroes the Hough space ind also calculates the sine and cosine tab!' s that are
used to update it.
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" The raster order function first determines if the pixel is non-zero. If it is, it increments all elements of
the Hough space that are mapped by this pixel; this is a sine wave in the Hough array.

" The combination function sums the two Hough spaces from the adjacent regions to give the new Hough
space.

There is no termination function because the final output of this algorithm is the Hough space. However, we could
implement more processing in the Hough probe by including some of the probing for weak and strong edges in the
termination function. This would make it unnecessary to output the Hough space.

This implementation of Hough probe requires each processor to store the complete Hough space; worse, when the
two Hough spaces are com bined one processor must store two of them. This is unfortunate, since in parallel
processors memory is usually at a premium. The Hough space used here is 180x512; this would not fit, for
example, in the Warp cell's 32KW memory, or in iWarp's 128KW memory.

The W2 code implemented for the benchmark divides the Hough space among processors. We can do this in the
extended Apply, by treating the output Hough space as an image. In this way, updating the Hough space becomes
similar to a graphics operation, with the output Hough space being the output image:

" The initialization function calculates sine and cosine tables as before. (Since the initialization function
is run at the beginning of a row, and the Hough array is indexed as (p,9), we must initialize the
complete sine and cosine table for each row).

" The raster order function need only consider, for a given Hough pixel, what image pixels map onto it.
This is a line in the image; the raster order function indexes along this line, and increments the Hough
pixel for each non-zero image pixel.

There is no combination or termination function, because we have formulated Hough transform as a local operation
by treating the input image as a global parameter. This algorithm could actually be implemented in the current
Apply as it is formulated here. (It was not implemented in this way for the benchmark because of technical
restriction in the current Apply; global parameters must have dimensions that are know at compile time. The
subimage processed by the Hough probe is determined at run time).

The second implementation of Hough probe has an advantage when only a small part of the Hough space is actually
needed, as here (where strong and weak edges are searched for in part of the Hough space). Only that part of the
image that maps on to the corresponding portion of the Hough space will be examined, if we precede the raster order
function by a test if the Hough pixel is needed. In the first implementation of Hough transform, there is no good
way of avoiding this unnecessary computation.

In this implementation, the input image is stored at all processors, while the Hough space is distributed. If the input
image is large, it may not fit. In this case, it is possible to process the input image in slices, incrementing the Hough
space appropriately for each slice. This results in some unnecessary computation (because the line parameters for
the image scan have to be recomputed for each slice), but it can make the memory space used for each pass
arbitrarily small.

CONNECTED COMPONENTS

One of the assumptions underlying the divide and conquer model implemented by the extended Apply is the idea of
data reduction. The output data structure of this level of vision is assumed to be smaller than the input, which is an
image. This assumption, which is true of most vision algorithms at this level, is not true of connected components,
since the output data structure is an image, just like the input. This assumption is also violated by Hough transform,
but as we have seen it is not difficult to deal with this problem in Hough transform, because of the many sources of
parallelism there. It is harder to deal with it in connected components, however.

Connected components can be formulated in many different ways. These different methods have significantly
different implications for the type of architecture that implements the algorithm most efficiently. The recommended
algorithm for the benchmark is different from the algorithm we implemented on Warp; this is because the
recommended algorithm is more suitable for a large processor array, while the algorithm we implemented is better
suited for a small processor array like Warp. In this section we will examine both the algorithm we actually
implemented and the recommended algorithm from the point of view of the extended Apply.
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First, let us consider the algorithm we actually implemented. It breaks down into three parts:
1. Split the image into separate parts, allocating one region to each processor, and label them separately,

building an equivalence table for each part.

2. By examining the boundaries between the parts, merge the equivalence tables.

3. Apply the merged equivalence table to the image, producing the completely labelled image.

The final step is actually done by application of the first cell's equivalence table to the entire image, followed by
application of the second cell's equivalence table, and so on. Doing the applications in this way allows us to make
only a single forward merge pass (from the first cell to the last) across the equivalence tables, instead of having to
make both a forward and backwards pass, and also avoids having to create a unified global equivalence table.

We will put the first two steps in the above algorithm into one extended Apply program, and put the second step into
a second program, since each requires a pass over the image. The first two steps in connected components can be
written as follows:

* The initialization function zeroes the equivalence table.

" If the new pixel is non-zero, the raster order function gives it a label, copying the label from the pixel to
the left, left and above, above, or right and above, if any of them are non-zero, and otherwise assigning
it a new label. If two of these pixels are non-zero and have different labels, it performs a union between
the two labels and assigns the smaller of them to the new pixel. (A standard UNION-FIND algorithm
(Aho, et al., 1975) can be used, or see below.) The labelled pixels from the top and bottom boundaries
of the image region are saved in a special buffer.

* The combining function merges the two equivalence tables by stepping along the touching boundaries,
noting touching non-zero pixels, and performing a merge between the two equivalence tables.

There is an important optimization that can be performed in the raster-order function; because the image is two-
dimensional, it is not necessary to perform a complete merge when two labels are merged. A region that is inside a
second region can never be merged with any regions outside the second region. This optimization has been taken
advantage of by several authors (Kung and Webb, 1985; Schwartz, et al., 1985).

The second step is a simple Apply program:
• The r3ster-order function sin.ply looks up the pixel in the equivalence table and outputs its mapping.

This implementation of connected components suffers from one flaw, which was partially overcome in the W2
program implemented for the benchmark; the number of region labels can be potentially very large, as much as
one-quarter (for 8-connected components) to one-half of the image pixels (for 4-connected components). This
makes the equivalence table very large, in fact much too large to fit in one Warp cell s memory. In practice,
however, (and in this benchmark) the number of components is not this great.

The W2 program addressed this issue by maintaining separate equivalence tables on each cell, which were never
completely merged. As long as an individual cell did not need to label more components than would fit in its table,
the algorithm would work. We cannot use this approach in the extended Apply, since it maintains an idea of a single
value of all global variables for the entire image.

This restriction shows one of the assumptions behind the divide and conquer model that we are using in Apply; that
is that there is a reduction in the size of data being processed. Otherwise, the divide and conquer model becomes
inefficient. In connected components this assumption is normally satisfied; but in extreme cases, it may not be, and
connected components will have to be implemented directly in the target computer language, or in a different way.

Another way connected components can be implemented is as described in the algorithm supplied with the
benchmark. In this algorithm, labels are simply propagated pixel to pixel, and no global equivalence table is used.
The simplest way of implementing this is as an ordinary Apply program. Initially, we assign each non-zero pixel a
label based on its position in the image, then

* The raster order function simply copies the minimum of the adjacent non-zero pixels and the current
pixel to the current pixel.
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This implementation is extremely inefficient, however. Each pass moves a label only one pixel, and the longest
connected component in an image can have a length on the order of the area of the image; so the running time of the
algorithm is proportional to the image area. By taking advantage of raster-order processing, we can cause this
propagate labels all the way across one row or down one column in on pass, but this is not especially useful since
propagating them in the other direction is just as hard as before.

THEORETICAL RESTRICTIONS OF THE EXTENDED APPLY

So far, we have taken a practical approach to understanding the class of image processing operations that can be
computed in the extended Apply; we showed how several of the benchmark algorithms can be implemented in it.
Now we consider the class of operations that can be implemented in extended Apply from a theoretical point of
view.

Suppose we have a global operation GO to be performed over an image I=(a0 ,..... a,). Let it be implemented by a
series of applications of some raster-order operation RO:

G(J)=R(a0 ,R(a 1 .. R(a n,0)))
RO is the raster-order algorithm that is used to implement GO on a serial computer. For example, if GO is"calculate the histogram h8" then R(a,h) is the operation "add 1 to h(a)," and the output of RO is the new
histogram.

On a parallel machine, we will execute a series of operations of RO on different subsets of the image, then combine
them somehow. We do this using a new function CO such that

C(R(a,R(a1 ,... R(ai_1 ,0))),R(ai,R(ai+1 ,... R(a., 0))))=R(a0,R(a 1,.. .,R(a,, 0)))

for any O<i:in. RO is the raster-order function in extended Apply, and CO is the combining function (we are
ignoring the initialization and termination functions, which do not affect the proof.)

It turns out that for any local function RQ, is is possible to define a function CO that combines two outputs of RO to
produce the same result as repeated applications of a single instance of RO, so long as applying RO to a sequence of
data produces the same result as applying it in the reverse order.

The proof is as follows. Suppose we have the results of applying RO repeatedly to two sequences A and B, and we
want to compute the result of applying RO to AIIB. (AIIB is the concatenation of the sequences A and B). We write
R*A for the output of applying RO to A, so we want to compute R*AlB given R*A and R*B. Given R*B, we find (by
enumeration, if necessary) a sequence C such that R*C=R*B. We then define

C(R*A,R*B)=R(c0 ,R(c1 .. R(cm,R*A)))

Now we show that C(R*A,R*B)=R*AIIB. Consider the graph of applications of RO that led to R*B=R*C, as shown in
Figure 9. Below the point at which R*B is computed, one branch of the graph leads down the application of RO to
the {ci}, and another branch leads down the application of RO to the {bj). We extend this graph upwards to the
computation of R*AIIB by applying RO to the fak). Now, since RO is is reversible, we can invert the graph and get
the same result R*AIIB below c0 . But this result is exactly what we have defined as C(R*A,R*B). This completes the
proof.

This proof does not show that CO can be computed efficiently. In extended Apply, the programmer is responsible
for defining CO reasonably. Note that if the programmer's definition of CO computes the same result regardless of
the order of application of RO, then Ro does not have to be reversible. Also, CO may not compute the same result,
but different results may be equivalent for the programmer's purpose. For example, floating point computations are
not order independent, but generally the errors are small enough so that this does not matter. Or different orders of
evaluation may calculate different results, but these might all be the same for the programmer's purpose-for
example, the construction of the equivalence table in the connected components algorithm.

As we have seen, most global image computations can be formulated in this manner. Some cannot; these are image
processing operations that depend on processing the image in a particular order, such as some half-toning
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Figure 9: Graph of applications of RO to compute R*AIIB

algorithms, the forward and backward pass in the two-pass grassfire algorithm, and certain region merging
operations.

SUMMARY

In our implementation of the second DARPA IU benchmark, we explored a number of programming issues:
choosing which routines to run on Warp, and which to run in parallel (when possible) on the Sun; choosing which to
write in Apply, and which had to be written in W2; and choosing how to partition the data in the W2 programs.

We now believe it is possible to confront the issue of programming mid-level vision routines in largely machine-
independent manner. We propose to use the divide-and-conquer programming model to do this.

We showed how the DARPA IU benchmark roulL .. s can be implemented in this model, and how flexible the model
is for experimenting with different possible mappings of the routines. The theoretical basis of the model was
explored, and it was shown that a general class of global image processing operations- those that are
reversible- could be implemented with it.
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Mean field theory for surface reconstruction

D. Geiger and F. Girosi
Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139

Abstract

In recent years many researchers have investigated the use of Markov Random Fields (MRF) for
computer vision. MRF have been generally used to obtain a reliable estimate of a function starting from
a set of noisy data and some a priori knowledge about the function. These models can easily deal with
discontinuities, introducing a discontinuity field (the so called line process) and the solution is usually
found by means of Monte Carlo algorithms. The major drawbacks are the computational complexity of
the implementation and the difficulty in estimating the parameters of the model.

In this paper we introduce a deterministic approach to two MRF models, based on some classical
statistical mechanics tools. By studying the partition function of the system a set of non linear equations
are obtained whose solution gives the reconstructed function and its discontinuities. We introduce the
concept of effective potential, that allows us to eliminate the line process variable from the probability
distribution. A study of the effective potential leads to a clear interpretation of the parameters of the
model and then to a criterium for their estimates. The deterministic equation that we obtain are feasible
of a fast, iterative and parallel solution.

We consider a model useful to reconstruct piecewise smooth functions, so that the set of data is
smoothed almost everywhere but not at the discontinuities. The model is then improved to obtain a
smooth diqcontinuitv field and to enhance the contrast where a discontinuity appears. The improved
model exhibits the concepts of threshold, suprathreshold and hysteresis for the detection of discontinu-
ities. Parameter estimation is discussed and experiments with synthetic and real images are presented
for both the models, confirming a better performance of the improved model.

1 Introduction

In recent years many researchers [8][11][5] (3][4] have investigated the use of Markov Random Fields (MRF)

for early vision. MRF models can generally be used for the reconstruction of a function starting from a

set of noisy sparse data, such as intensity, stereo, or motion data. Usually two fields are required in the

MRF formulation of a problem: one represents the function that has to be reconstructed, and the other is

associated to its discontinuities. The essence of the MRF model is that they give the probability distribution

of the configuration of the fields, given a set of data, as a Gibbs distribution. The model is then specified

by an "energy function", that can be modeled to embody the a priori information about the system. In the

standard approach an estimate of the field and its discontinuities is given by the configuration that maximizes

the probability distribution, or equivalently that minimizes the energy function. Since the discontinuity field

is a discrete valued field (it assumes only the values 0 or 1) this becomes a combinatorial optimization

problem, that can be solved by means of methods like the Monte Carlo one (simulated annealing[13], for

example).
The MRF formulation is appealing because it allows to capture many features of the system of interest by

simply adding appropriate terms in the energy function. However it has two main drawbacks: the amount

of computer time needed for the implementation and the difficulty in estimating the parameters that control
the relative weight of the various terms of the energy function.

In this paper we propose a deterministic approach to MRF models. It consists in explicitly writing down a

set of equations from which we can compute, possibly by means of techniques of numerical analysis, estimates

of the values of the field f and the line process. A natural framework of this approach is the equilibrium

statistical mechanics, dealing with systems with many degrees of freedom described by Gibbs probability

distributions. In principle statistical mechanics allows us to derive the mean statistical values of the field

as explicit functions of the data and tha parameters of the model: an algorithm implementing this would
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consist just of one step. Since the analytical computations required to obtain these explicit expressions are
usually too hard, some approximations have to be made: as a result the solution is given in implicit form by
a set of non linear equations, that we call deterministic equations to underline the deterministic character of
the whole procedure.
We concentrate our attention on the partition function Z, that is the sum of the probability distribution
over all the possible field configurations, since it is well known to contain all the information about the
system. The idea underlying our approach is to first eliminate from Z the line process degrees of freedom:
we will show that in doing so the effect of their interaction with the field can be simulated by a temperature
dependent "effective potential" that depends only on f. Its use is fundamental in the derivation of the
deterministic equations, and gives useful insights on the role and the significance of the parameters.
An advantage of such an approach is that the solution of the deterministic equations is faster than the
Monte Carlo techniques, fully parallelizable and hopefully feasible of analog networks implementation. The
possibility of writing a set of equations is useful for a better understanding of the nature of the solution and
of the parameters of the model.

We discuss two different MRF models. The energy function of the first model has been already studied by
several authors[11110][12]lhl). This energy function is not complex enough to introduce consistently concepts

like smoothing with enhancement of discontinuities, hysteresis, threshold and suprathreshold.
In the second model we define an energy function with an extra term with respect to the previous one,

establishing an interaction between the line process at neighborhood sites. This interaction can stimulate the
creation of a line at a particular site if a line at a neighborhood site has been created. This term will allow
the data to be smoothed, but, and at the same time, to enhance the contrast at the discontinuities. Typical
edge detortion features like hysteresis, threshold and suprathreshold, which do not arise from the previous
energy function, will arise naturally from the model. We point out that this model is a generalization of the
previous one, that can be recovered by simply setting an appropriate parameter to zero.

The two energy functions can be applied to dense data and with small modification to sparse data as
well. The problem of surface reconstruction and retrieving images from sparse data is addressed and an
algorithm to perform these tasks is obtained and implemented.

The paper is organized in the following way: Section 2 presents an overview of Markov Random Fields in
vision. Section 3 propose the deterministic approximation of MRF, with an application to the two particular
models mentioned above. Section 4 discusses how to estimate the parameters of the models. In Section 5
the results are exhibited. Section 6 Extends the formulation to sparse data and show results. Section 7
concludes the paper.

2 MRF for Surface Reconstruction

Consider the problem of approximating a surface given a set of sparse and noisy data g on a regular 2D
lattice. We think the surface as a field f (surface-field) defined on a regular lattice, such that the value of
this field at each site of the lattice is given by the surface value at this site. Adopting a probabilistic point of
view we are interested in the conditional probability of f given the data g (P(f19)). Bayes theorem allows
us to write

P(I g) x P(glf)P() (2.1)

where P(glf) is essentially the probability distribution of the noise and P(f) is the prior probability distri-
bution of the field f. The noise is usually assumed to be Gaussian, so that P(glf) is known. The shape of
P(f) depends on our a priori information about the system and it is what differentiates a model from an
other one. If we assume that the probability of a certain value of the field at a site depends only upon the
neighbor sites, the Clifford-Hammersley theorem guarantees that we can always write

P(f) x e - PU(f) (2.1)

where U(f) can be computed as the sum of local contributions from each lattice site i and,3 is a parameter
that is called the inverse of the natural temperature of the field. As a result the conditional probability
P(flg) can always be written as P(fig) oc #e - OHs(I) where Hg(f) is usually called the "energy function"
of the model.
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The discontinuities of the field f can easily be included in this framework. In fact Geman and Geman [8]
introduced the idea of another field, the line process 1, located on the dual lattice, and representing explicitly
the presence or absence of discontinuities that break the smoothness assumption. The interaction between
the fields f and I can be chosen so that the most likely configurations are piecewise smooth.
Once the probability distribution has been written down, an estimate for the fields is usually obtained with
the field values that maximizes it, or equivalently that minimize the energy function Hg(f). A number of
troubles immediately arises. In fact the energy function very often is not convex, and due to the discrete
nature of the line process fields, simulated annealing or similar Monte Carlo techniques must be used to solve
the problem. The computational effort to obtain a good estimate of the fields is then very large, becoming
one of the major drawbacks of the MRFs. Another drawback comes from the fact that the energy function
depends on some parameters that control the relative weight of the various terms. The problem of parameter
estimation has been attacked in many ways, but it is far to be completely solved. It is still not very clear
how they are related to the quality of the solution and to quantities of physical interest.

3 A deterministic approximation of MRF

3.1 The Effective Potential and the Deterministic Equations

We now briefly sketch how a deterministic approach to MRF can be pursued. Details of the derivation can
be found in [6]. Let g a given set of data, possibly sparse, defined on a 2D lattice, f the field associated to
the surface to reconstruct and I a field whose value is one where a discontinuity occurs and zero elsewhere.
We considcr energy functions of the general form

Hg[f, 1) = Efg[f,g] + Eyi[f, l1 (3.1.1)

where the first term is usually --i(fi -gi) 2 , coming out from the Gaussian distribution of the noise, and the
other terms contain the a priori informaticn about the system. Due to the discrete nature of the line process
field the minimum of the energy function 3.1 can not be found by computing derivatives with respect to the
variables, unless we succeed in eliminating the line process field from the probability distribution. This can
be done by looking at the partition function Z. It is well known that Z completely describes the statistical
properties of a system, and its knowledge permits to compute all the relevant statistical quantities (as mean
values or correlation functions). In our case it can be written in the following form:

Z = E e-OH,[f,"]= E e - N( E ' ' [f, 91) E - a ' I ' ]

{1,} {fI {}

where F{! means the sum over all the possible configurations of the fields f and I.Defining a temperature
dependent effective potential as

E, l] = In f3EtifIZ1

the partition function becomes:

z = e I ' )  (3.1.2)
{}

We notice that the line process disappeared from equation 3.1.2, leaving Z unchanged, so that the energy
function given by Efg + E0 has the same information content of Hg. Information coming from the
discontinuity field is contained in the effective potential, who "simulates" the presence of the line process. A
set of deterministic equation is now easily obtained by simply minimizing the new energy function Et. + E-4-f
with respect to f, that is by writing down the following system of equations (usually non linear):

(E + E0 )0 (3.1.3)
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Figure 1: The surface field f, the horizontal line process h and the vertical line process v are represented
in two sites, (i,j) and (i+2, j+2), of the lattice. There are three fields defined in each site of the lattice as

opposed to having one field in a lattice and other fields in a dual lattice.

If the temperature (1) is different from zero eq. 3.1.3 gives implicitely the mean statistical values of the field
f in the so called mean field approzimation. When the temperature is zero it can be shown that eq. 3.1.3
gives the values of f that minimizes Hg[f, 1].
Similar equation can be derived for the mean values of the discontinuity field. In this case the trick is to
add the term Ei li hi to the energy function, where h is an arbitrary external field that is set to zero at the
end of the calculations. The effective potential depend then on the field too, but it can be shown that in the

mean field approximation the following equation hold:

a hE= (3.1.4)

Equation 3.1.4 becomes exact in the zero temperature limit, and together eq. 3.1.3 gives a set of deterministic
equations whose inspection is generally very useful, giving insights on the nature of the solution and of the

parameter of the model.
This method is very general and can be applied, in principle, to every energy function tha can be written

as in eq. 3.1. even if its appliability depends on how far the analytical computations can be carried on. We
showed here its basic formulation including a line process field, but it can obvioulsy extended. This turns
out to be useful, because in this paper we introduce two discontinuity fields (see figure 1) the horizontal
(h) and vertical (v) line process. The line process hij connects the site (i,j) to the site (i,j - 1), while vij
connects the site (i, j) to the site (i - 1, j). In this way we will be able to reduce the two dimensional problem
to two one dimensional problems, provided that the horizontal and vertical line processes do not interact.
In the next section we consider some specific energy functions and list some exact and approximated result
that have been obtained with these techniques in [6].

3.2 A MRF Model for Smoothing and Detectin& ,Discontinuities

In this section we study a particular MRF model, defined by the following energy function:
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Figure 2: The effective potential is shown as a function of the horizontal gradient (f3, - f t i,) a) For
/3 -- 0.002. b) Zero temperature limit (j3 --- 00 ).

E(f, h, v) =E 15(f) + E,(h, v) + E1 ,(.f, h, v) (3.2.1)

where
Eg(f) (fij - gi,j)' , El (h, v) Jj(hij +vij) (3.2.1a)

i~j i~J

Efl(f, h, v) = a E [(fi~j - fijj-1) 2 (1 - hi,j) + (fij - f-j) 2 (1 - vi~j)] (3.2.1b)
i-j

where a and 7 are positive valued parameters and g is the data field. This energy function has been already
studied in the context of surface approximation,l] [10] [12][11] but within different approaches. Let us briefly
comment each term of eq. 3.2.1. The first term enforces closeness to the data and the second one takes
into account the price we pay each time we create a discontinuity and is necessary to prevent the creation of

discontinuities everywhere. The third term contains the interaction between the field and the line processes:
if the horizontal n: verfica! gradient is very high at site (i, j) the corresponding line process will be very
likely to be active (h j = 1 or vij = 1), to make energy decrease and signal a discontinuity.

We notice that the line process fields interacts only with the f field: there is not interaction between the
line process fields themselves. Therefore the contribution of the line process to the partition function can be

exactly computed and the effective potential turns out to be:

E.(f) Ei,j,{a(( t j - 1,_,j)l + (1,,j - I

'In[a(7 - a(f, - - a(f, - fij-))]} (3.2.2)

where we have defined o'(z) = 1

The effective potential "simulates" the interaction between the line process and the field f with a new

interaction between the field and itself. We notice from eq. 3.2.2 that the effective potential is a sum of local
terms depending on the gradient of the field and on the temperature of the system. The shape of one of the

local terms has been depicted in fig. 2 for /3 = oo and 3 = 0.002 as a function of the horizontal gradient of
the field.

If no line process is present in the energy function its shape would be a simple parabola, increasing to
infinity as the gradient increase to enforce smoothness. Let us consider the zero temperature result of fig. 2:
as far as the gradient is below a threshold the effective potential is a parabola, then it becomes a constant.
This means that the smoothing effect acts only where the gradient is not too large. The gradient growing too
much means that a discontinuity is likely to occur, and no smoothing effect has to take place (the potential
becomes constant). When the temperature is different from zero the interpretation is similar, but the border
between the smoothing and not smoothing regions becomes less sharp, due to thermal fluctuations of the
line process field. This intuition is supported by an explicit computation: by applying eq. 3.1.4 we obtain:

hij = o03(a(fij - i-j) 2 -t) and Vjj -o-,O (a(ij, - fij~) 2 - 7) (3.2.3).

Equations 3.2.3 allow us to compute the mean values of the line process as a function of the mean values of
the field f. In the zero temperature limit (3 - oc) the function o,3 becomes the Heaviside function: when
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the horizontal or vertical gradient (fi. - fi,.-l or fij - f -ij) are larger than a threshold (V/') a vertical
or horizontal discontinuity is created, since the price to smooth the function at that site is too high. This
leads to a clear interpretation of the parameter 7, as it will be discussed in section 4.2.
The values of the field appearing in eq 3.2.3 can be found by solving the set of deterministic equation
described in the previous section (eq. 3.1.3), that can be written as:

S - a~f, - f,,- )(1 - D + Wfj+i - A, - ij+1)
- a(fij - fi,,j)(1 - hj) + a(.fi+,,j - f,j)(i - hi+1,j) (3.2.4)

where hij and !;i,j are given by eq. 3.2.3
When substituting eq. 3.2.3 in eq. 3.2.4 we obtain a set of non linear equations for the mean values of f,
that can be solved in a fast, iterative and parallel way. Equation 3.2.4 gives the field at site ij as the sum
of data at the same site, plus an average of the field at its neighbor sites. This average takes in account the
difference between the neighbors. The larger is the difference, the smaller is the contribution to the average.
This is captured by the term (1 - lij, where lij, is the line process. At the zero temperature limit (3 -, oo)
the line process becomes 1 or 0 and then only terms smaller than a threshold must be taken in account for
the average. This interpretation helps us in understanding the role of the a and - parameters, as it will be
discussed in chapter 4.

3.2.1 The Effective Potential and the Graduate Non Convexity Algorithm

We have to point out that this energy function has been studied by Blake and Zisserman [1], in the context of
edge detection and surface interpolation. They do not derive the results from the MRF formulation but they
simply minimize the energy function. From a statistical mechanics point of view the mean-field solution does
not minimize the energy function, but this becomes true in the zero temperature limit, so their approach
must be recovered from the MRF formulation in this limit. This is indeed the case, and it is easy to show that
the effective potential becomes the Blake and Zisserman notential when13 goes to infinity. In order to obtain
the minimum of the energy function E 2 Blake and Zisserman introduce the GNC (Graduate Non Convexity)
algorithm, that is different from our deterministic scheme, but can be embedded in the MRF framework in
a natural way. Let us review briefly the GNC algorithm. The main problem with the this is that is not a
convex function and a gradient descent method can not be applied to obtain the minimum because one could
be trapped in a local minimum. In order to solve this problem Blake and Zisserman introduce a family of
energy functions E (P ), depending continuously on a parameter p, pc[O, 1], such that E(I) is convex, E(° ) = E2
and E (P ) are non convex for pf[0, 1). Gradient descent is successively applied to the energy function E(P)

for a prescribed decreasing sequence of values of p starting from p = 1, and this procedure is proved to
converge for a class of given data. The construction of the family of energy functions E(P)is ad hoc and
consists of a piecewise polynomial. In our framework a family of energy functions with such properties is
naturally given by Eeyjy. The GNC algorithm can then be interpreted as the tracking of the minimum of
the energy function as the temperature is lowered to zero (like a deterministic annealing). In this way the
approach of Blake and Zisserman can be view as a deterministic solution of the MRF problem, even if it
does not fully exploit the possibility of obtaining deterministic equations for the surface and discontinuity
fields. The results obtained by applying this method to edge detection, for example, are good, and a pattern
of meaningful discontinuities can usually be recovered [1]. However, sometimes the full set of discontinuities
is not obtained: when the gradient of the image brightness is under the threshold a discontinuity may not
be detected, even though it would be necessary, for example, to close a contour.
If irteraction between lines (self interaction of the line-field) is introduced in the energy function this problem
can be overcome, as we discuss next.

3.3 Making discontinuities smooth

So far we have not exploited an important physical constraint of images, namely the smoothness of the
discontinuity field. Isolated discontinuities are very unlikely to occur and, on the contrary, the presence
of a discontinuity at a site makes more likely the presence of a discontinuity at a neighboring site. This
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a. b.

Figure 3: The effective potential for,3 0. 002 and different values for the parameter C. a) For e 0.9 b)
For e z 0 the effective potential becomes the potential studied by Blake and Zisserman.

smoothness constraint on the discontinuity field can be incorporated in the model by simply adding a new
term to the energy function. We then study a MRF model defined by the following energy function

E' = E + Eli

where E is given by equation 3.2.1. We have defined the new term as

Ell = 7Zhij hij - + vi i ,
i,

where e is a new parameter whose exact meaning and estimation will be explained in the next section. To
make more evident the meaning of the new term we notice that

1

El + Ell = E (1 - e)[hi,. + vij] + Ie7E[(hj - hi,-,)2 + (vij - Vi-,,j)
2 ]  (3.3.1)

ij2

where El is given by equation 3.2.1a. From eq. (3.3.1) it is clear that c is related to the degree of smoothness
of the discontinuity field and so must be a positive number. In order to keep positive the price we pay for
creating a discontinuity and to prevent the line processes from being active everywhere, c has to be less than
1.
We notice here that this model is a simplified version of other potentials. In particular, the neighbor size
considered here is at most of two pixels; Gamble & Poggio for example, have discussed more sophisticated
cliques composed of larger neighboors.

As in the previous case we are interested in computing the contribution of the line process to the partition
function. This task is more difficult than the previous one, and we used the mean field approximation to
obtain approximated result for the effective potential.

Pj)= Z ,2 (a((1j - ,-,ij) + (16 - 1)2)
- ln [(1 + e - , "(G k. Y 2+ + ))(I + e - P( Q, 

-'
f 

'-f ' + 
' 

.
'  ))1} (3.3.2)

where . - a(fi,j - fi-1j,.) 2 and G! is analogous. A detailed computation by means of the transfer
matrix method shows that this potential is highly non local, due to the interaction between the discontinuity
fields. To have some insight on the effect of the new term in the energy function we have looked for a local
approzimation to the non local effective potential. To obtain a local potential we approximate the term

2,,-,+h., by hij. The result obtained is plotted in fig. 3 as a function of the horizontal gradient.
The effect of this new effective potential can be well understood if we think at the system as an ensamble of
interacting particles and if we study the interaction force between particles, that is (minus) the derivative
of the effective potential. In this case the gradient of the field should be thought as the relative distance
between to particles. The force has been depicted in fig. 4 for two values of e and for /3 = 0.002. We notice
that when 4the gradient is low the force is linear and attractive, as the force of the ideal spring. When the
gradient increases the force quickly decreases, and, unlike the usual spring, becomes repulsive, pushing the
particles apart. This effect takes places only in a limited interval of values of the gradient; when it becomes
too large the spring breaks up and the force goes to zero. As a result the overall effect will be of a smoothing,
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Figure 4: The force associated to the effective potential for 3= 0.002 and different values of the parameter
c a)For c=0.9 . b) For e = 0 the force does not assume negative values, and the enhancing effect does not
take place.

where the gradient is smaller than a threshold, and an enhancing, where the gradient is "sufficiently large".
Where the gradient is too large no smoothing or enhancing will take place.
We notice that the "enhancing" effect is due to the new term Ell in the energy function, and its intensity is
controlled by the parameter e. By setting e to zero we recover the previous, and the force associated to the
effective potential never becomes negative (fig. 4b).
This result could have been obtained just by qualitative reasoning. In fact the term Ell has been introduced
to make the presence of a discontinuity at a site to stimulate the presence of another discontinuity at a
v-ighLor site: since a discontinuity is created where the gradient is large, to obtain this effect it is needed

that a large gradient at a site makes the gradient at its neighbor site larger, and this is what the effective
potential of fig. 3 does.
As in the previous case we obtained a set of non linear equation relating the mean values of the discontinuity
field with the mean values of the field:

2h-l + hij+1

ij ,r (a(ij - fi,) 2  
7 + 7 hj1 h ) and

ij , I,j ) 2 -7 + E7 
-'f"Y 2 (3.3.3)

Notice that now equations 3.14 form a set of non linear equations and the solution for the line process is not
as simple as before.

We applied the arguments of the previous section to obtain a deterministic equation for the field f. We
do not write it here for sake of space, (they can be found in [6]) and simply remind that they are a specific
instance of eq. 3.3. We used for E~ff the formula coming out of our computations, but every potential
reproducing the shape of fig. 3 should work.

3.3.1 Hysteresis, Suprathreshold and Threshold

The solution obtained in equation 3.3.3 for the line process deals with the problem of streaking. Streaking
is the breaking up of an edge contour caused by fluctuations above and below a threshold along a contour
[2]. This is a common problem with thresholded detectors. In the results coming out from the last MRF
model we considered the thresholding is done with hysteresis. This is the way the Canny's detector works
[2]. The hysteresis phenomena are evident from equation 3.3.3, since, with the creation of a horizontal line
at a neighbor site, say {i,j - 1} (hij- = 1), the energy necessary for creating a line at a site {i,j} decreases
by 1, if two lines are created at {i,j - 1} and {i,j + 1} then the energy decreases by e7. A low threshold
(threshold) and a high threshold (suprathreshold) arise naturally. The suprathreshold for creating a line is
given by < _ (Ij - fd-O2 , in this case a line is created no matter what. In the same way the lowest
threshold is given by 2,(l - ) < (fi, - fA_ ,) 2 _< , in this case a horizontal line will be created at site
{i,j} if a horizontal line has been created in the sites {i,j - 1} and {i,j + 1}.
At higher temperatures the threshold and suprathreshold are not so well - defined, and we have adaptative
thresholds that depend on the values of the field.
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4 Parameter Estimation

The parameters a, -1 and c must be estimated in order to develop an algorithm that smoothes, enhances and
finds the discontinuities a given set of data.

4.1 The parameter ce

To estimate a we notice, a posteriori, that if the gradient is very small the discontinuity field has no effect
and can be neglected. We analyze a in this case, assuming that it does not change at higher energies.
The MRF model obtained neglecting discontinuities has been shown to be equivalent to standard regulariza-
tion. The parameter a plays then the role of the regularization parameter, controlling the balance between
the data and the smoothing term. The noisier are the data the less we want to "trust" them, so that a is
large; the less noisy are the data the more we "trust" them, so that a should be small. To estimate c various
mathematical methods are available. The generalized cross validation method introduced by Wahba [15, ?]
and the standard regularization method described by Tikhonov [14] were studied by Geiger and Poggio [7]

to estimate a.
The generalized cross validation method (GCV) is used when an estimation of the noise is not available. It
states that the optimal value of a can be obtained by minimizing the functional (here in one dimension)

1 [fn,.(i) - gi]2 2
n (1 - akk.(a))2  "c

where fn,,,(ti) is the smoothed solution, wk (a) (1 - akk(o))/(1 - _ -n=0 ajj (a)) and akk(a) = '9 (f,,)(tk).

For the purpose of smoothing images GCV and standard regularization methods gives about the same values
of a [71. Better results should be obtained if the estimation of a is done locally (for a small neighborhood).

4.2 The parameter -y

We first analyze the parameter y setting c, to zero. From the line process equation given by equation 3.3
one can see that V is the threshold for creating a line. Let's call the value V/ . From the expression
of the effective potential we notice that if the gradient is above no smoothing is done and if the gradient

is below then smoothing is applied. The parameter defines the resolution of the system and we explain

this with two examples.
In the first example suppose we are working with the stereo module, so the data field is a depth-field. In
this case is the threshold for changes in depth to be called a depth discontinuity. This value is deter-
mined according to the resolution of the stereo system available and/or to the desired resolution that one is

interested.
If the field is associated to intensity data the parameter e is the threshold for detecting edges. This value
is somehow arbitrary, and probably context dependent. A variation of = 16 units to = 32 units for a
8-bit array image is likely to be in agreement with the human threshold. The exact value of depends on
the attention of the observer or on the sensitivity required by the examined problem.

For a value of c diferent from zero the absolute threshold to create an edge is also given by . However
when there is support from neighbor edges this threshold can be lowered to x ( /(l - f) (see equation
3.3.3). This suggests to set y so as to guarantee that the highest noise gap is smoothed (we are assuming
that noise gaps are isolated features). In this case the f parameter will be set to assure that at the edges the
images will not be smoothed but perhaps enhanced. In this case the value of 30 may be desired for an

8-bit array.

4.3 The parameter E

The parameter c makes the energy E different and more general than the previous one. It controls the
amount of propagation of the line in a line process. So, once a line is created, the price to pay for creating
another line next to it will be lowered by the amount of 7y. In other words, from the definition of E' one

can see that the difference in the energy corresponding to the ( ion or not of a line at pixel (i - l,j) is
given by 7t. This is what characterizes the threshold and supratireshold or the hysteresis phenomena [2].
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Figure 5: a) Step edge with 140 grey value units for the step. 1b) White noise with standard deviation 30

grey value units has been added. c) The noisy image after 20 iterations for a = 4, -y = 24000, e = 0. d) The
noisy images after 20 iteration for a = 4, - = 45000, C = 0.9

The threshold is given by ' and the suprathreshold by V/1, e varying from 0 to 1.0. When e =

1.0 lines are created everywhere, since once a line is created there is no cost in creating another one and

then it propagates indefinitely. How much does one want to propagate a line? or How much should the
difference between the threshold and the suprathreshold be? or Which exact value of e to choose? According

to the discussion above about 7y we conclude that e should be chosen to guarantee that !L:11 is below

the desired edge threshold. For detecting edges of objects in a scene one wants to have high suprathreshold

and threshold (usually object boundaries exhibit high gradients) and e large (bigger than 0.5) so that all the

object boundaries are detected, included the exceptional boundary pixels with a somehow smaller gradient.

5 Results

For the implementation the zero temperature limit equations have provided results as good as the deter-

ministic annealing with a faster computational time. We do not have proves of convergence but only good

experimental results.
In order to find the mean field solution for the model described by the energy function E' we solved the

deterministic equations for the line process and the field f in a coupled and iterative way. Details about

implentation can be found in [6] Typically the algorithm has converged in 20 iterations which takes about 1

minute for images of 64 X 64 pixels on a Symbolics 3600.
We first tested the algorithm on a synthetic step edge image with noise added. This is a good test-image

since locally many edges on real images are like that. Due to the simplicity of the pattern the effect of having

added a new term to the energy function E is very clear.

The step edge image is an 8-bit array of 64 x 64 pixels with a step intensity of 140 units (see Figure 5a). Next
white noise, with standard deviation 30, is added to the step edge (see fig. 5b). We used the deterministic

equation derived from the energy functions E and E' to obtain fig. 5c and d. Fig. 5c has been obtained
after 20 iterations of the iterative algorithm, setting a = 4 and -7 = 24000 so ._. / 80. Notice that

the noise has not been completed 1liminated, and the edge starts to be smoothed. To completely eliminate
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Figure 6: a) The still life image 128 X 128 pizels. b) The image smoothed with E 0.9, -f 1400 and ot 4
for 20 iterations

the noise we could choose a larger value of -y, enlarging the smoothing region, but as a re.sult the step edge
would be smoothed too.
In fig. 5d we set e= 0.9, a =4 and 7 = 45000. Because we set the ratio 2 to be higher all the noise has
been smoothed away without smoothing the edge. Indeed at the edge there is support from the neighbor
edges to lower the threshold to a factor (1 - E) = 0.1. Therefore the noise is supressed and the edges are
not smoothed but on the contrary are enhanced. We conclude here that for a noisy step edge, the model
described by the energy function E' is able to retrieve and enhance the edge in a better way than the model
associated to E.

We used the same algorithm used to obtain fig. 5d to analyze a real still life image. The original image
has been shown in fig. 6a, and the smoothed one in fig. 6b. It can be seen that specular, shadow and contour
edges have been enhanced, while the noise has been smoothed away.

6 Sparse Data

Until now we dealt with a set of data defined on all the lattice. This is not always the case, especially if the
field has to be the output of a stereo or motion module. In that case data are given on a subset of the lattice
and the data-field term (Efg) in the energy function can be modified in the following way

E19 = f' - gi,, => ' i - gj'rj
i~j i~j

Here 7-ij is a flag that is one if data is given at site (i,j) and 0 otherwise. This slightly modification has
no effect on the theoretical results, and only some changes take place in the deterministic equations for the
surface field: the term enforcing closeness to data disappears when data is not given at a site. We rewrite
here the deterministic solution for the field f in the case of the Energy E, since the energy equations for E'
are modified in the same way. In the case of sparse data eq. 3.2.4 becomes then

,j-ti~j = gi,j-i,j :-- a(fij - fij- 1 )(1 - ij) + a(fi,j+l - d)(1 - i,j+)

- a(fi,j - fi-,)(l - hij) + ca(j+jj - fi,j)(i - hj+jj)

To apply this algorithm one needs to fill in the data. We chose to fill in the data by averaging near
neighboors and applying the algorithm at the same time. So at each step of the algorithm each lattice site is
visited: if there is no field value the average neighbor value is taken otherwise we apply the above algorithm.
We notice that no action is taken if at a particular site there is no field value and no neighbor field value.
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Figure 7: a) A face image of 8-bits and 128 X 128 pixels. b) Randomly choosen 70 9% of the original image.
For display the other 30% are filled with white dots. c) The algorithm described above is applied to smooth
and fill in at the same time with c = 0.9, -( = 1400 and a = 4 for 70 iterations.

From one face image we produced sparce data by randomly suppressing 70 % of the data. (see Figure 7).
We then applied the third energy algorithm to sparse data. The parameters were kept the same as the other
real image.

The reconstruction of images from sparse data can be applied to depth data at zero crossings in which is
known as surface reconstruction. We used the stereo algorithm based on zero crossings to obtain depth data
from the image shown below. Then we applied susscesfully the algorithm to reconstruct the depth surface.
The parameters now have to change according to the criteria used for depth discontinuity.

7 Conclusion
We have used statistical mechanics tools to derive deterministic approximations of Markov Random Fields
models. In particular we studied a model that is suitable for surface reconstruction preserving discontinuities.
This model has been developed to include the following characteristics:

" the surface field is smoothed when its gradient is not too high,

* where a discontinuity occurs contrast will be enhanced (if it is not too large already),

" the discontinuity field is likely to be smooth (isolated discontinuities are inhibited),

" hysteresis and adaptative multiple threshold arise naturally from the model.

* 3 parameters are needed to specify the model,

" An understanding of the parameters is possible.

" It is naturally absorbed in the model the problem of sparse data

We also derived a deterministic solution for the mean values of the surface and discontinuity fields,
consisting in a system of coupled non linear equations. An algorithm has been implemented to obtain a
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Figure 8: a) A left camera image of 8-bits and 128 X 128 pixels. b) The right camera of the same scene c)
Sparse depth data obtained by the stereo algorithm based on zero crossing. The intensity represents depth
values. d) The algorithm is applied with c = 0.0, - = 400 and a = 4 and the surface reconstruction is
obtained.

solution for this system: it is fully parallelizable, iterative and recursive, allowing low computational time.
It can be applied to sparse data. Some approximations have been done to obtain local results; it would be
interesting to analyze other approximations or extensions of this model. For example, a model that includes
interaction between the horizontal and vertical line processes could be developed to inhibit self-intersections
of the discontinuity field. A term like hii(1 - vii) would do it.

The integration of different visual modules to improve the detection of the discontinuities can also be
addressed in this scheme. For instance, as suggested by Gamble & Poggio [5], we can add the term 6 hij (1-eii)
to the Weak Membrane Energy or the third energy. Here ei, is an external field, for example the edge map
that is coupled with the stereo field. For implementation purposes the only consequence of adding this term
is the change of the global parameter -f into the local parameter -jr = 7 - 6(1 - eii). For a more precise
discussion see [6]. Another deterministic scheme is presented by Hurlbert and Poggio [9].
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1. INTRODUCTION

In this paper we describe research being performed on a system named RAMBO (Robot Acting on Moving
BOdies). RAMBO resides principally in the "mind" of a Connection Machine, and drives a monocular camera
and laser pointer (attached to a robot arm) through space. A second robot carries a target (perhaps along a
"virtual" surface to mimic the motion of a vehicle along the ground) attached to whose surface are sensors
(light-sensitive diodes) with focusing optics. RAMBO's general task is to illuminate a set or sequence of these
sensors for specific durations of time, possibly subject to overall temporal constraints. Figure 1 is a diagram-
matic representation of the experimental set-up.

The vision-based control loop for RAMBO is also shown in Figure 1. We briefly describe the functions of
the different modules of this system, from data collection to robot motion control.

1. The digitizer of the video camera mounted on the robot arm can obtain video frames when new visual
information is needed.

2. A low level Connection Machine vision module extracts the locations of the projections of model features
(i.e., polyhedral vertices) from the image. Once a model for the target's motion has been established, the
predicted locations of visible target features are established using fast table lookup procedures imple-
mented in the Connection Machine.

3. An intermediate level vision module establishes the instantaneous pose (location and orientation) of the
target in the camera coordinate system.

4. The target motion predictor fits a target trajectory in location/orientation space to the most recent history
of instantaneous pose estimates. The trajectories of so-called goal points around the target (called goal tra-
jectories) are also determined. A goal point is a location fixed in the frame of reference of the target that
one of the robot joints has to follow in order to accomplish one of the basic illumination subtasks of the
total task. The determination of these trajectories should ideally take into account the subsequent visibil-
ity of a sufficient number of target features to verify or modify RAMBO's model of the target's motion,
and safety criteria that would allow RAMBO to move away from the target to a safe viewing location in
the event that the target's motion changes in an unanticipated way.

5. From the predicted goal point trajectories, the robot motion planner calculates the robot motions necessary
for following the goal trajectories, and the resulting camera trajectories. If the subtasks were not ordered
in the original task specification, then the motici planner orders them (using either optimal or heuristic
methods). The camera trajectories are used for transforming subsequent target pose estimates from the
camera coordinate system to an absolute coordinate system. In our current implementation, the Connec-
tion Machine is used to plan a smooth motion from one goal trajectory to a subsequent goal trajectory
(from which the next subtask can be performed)

The RAMBO project thus provides us with a context for studying several basic classes of problems in
vision and visual navigation. These problems include the development, of parallel Connection Machine algo-
rithms for efficient image processing and analysis, visual tracking, and visual planning.

In order for RAMBO to complete even its most basic navigation task, it must be capable of visually track-
ing its target through space. Feasible tracking algorithms depend on many factors including sensor field of view,
processing time per frame, relative motion of the target and the sensor, accuracy of sensor control, etc. We can
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identify two basic approaches to visual tracking that are relevant to RAMBO:

a) Two dimensional tracking algorithms, in which tile target can be kept in the field of view by determining
its image motion, and computing a suitable sensor motion that "nulls" or minimizes the image motion (see
Tsakiris and Aloimonos Aloimonos and Tsakiris, 1988).

b) Three dimensional tracking, in which a complete three dimensional model of the target's relative rigid
body motion is established, and a sensor motion is determined that would cause certain components of the
relative motion to be zeroed (for example, when RAMPO is firing its laser at. the target, we might, want all
components of the relative rigid body motion between RAMI3O and the target to be zero).

While approach (a) is simpler, it is not always applicable or sufficient. Its applicability depends on the fac-
tors listed above (i.e., sensor field of view, frame processing rate, etc.), although little research has been con-
(ucted that reveals the conditions under which two dimensional methods can be used for tracking. For example,
given a frame processing rate, a inodel for the accuracy of image motion estimation and(l a model for the control
accuracy of the sensor, one would like to know the minimum field of view that would guarantee (with some pro-
bability) thfat tie target could be tracked.

Ilowever, even if it. is possible to keep the target in the field of view using two dimensional methods, it
might not be sufficient for the overall planning process. For example, RAMIIO should compute it.s trajectory
through space based not. only its particular sequence of illumination tasks, but also based on its ability to retreat
if the target changes its motion in a way that might potentially cause it to collide with RAMBO. This type of
analysis can he more ea-ily accomplished using direct three dimensional models.

One standard approach for three dimensional tracking is to compute a sequence of instantaneous target
pose estimates, ahd then to fit a motion model to this sequence of pose estimates. The pose estimation problem
arises in other applications as well (e.g., object recognition), so is of general interest. In S'ection 2 we describe a
Connection Machine pose est ination algorithm. This algori'hm, based on results originally presented by Lill-
nainmaa, ilarwood and Davis (Linnainrnaa et al., 19881, involves generating target pose hypotheses from matches
of triples of image features to triples of target surface features, and clustering appropriate low dimensional pro-
jections of the complete six parameter pose estimates. Trhe algorithm is very fast, generating a pose estimate in
generally less than one second of Connection Machine time.

The overall computational architecture of RA.MBO is quite similar to the one we previously developed for
road and road network navigation JSharma and Davis, 1988; Waxinan et. aL., J987)--vit..; separate computational
modules for image processing, geometric reasoning, sensor control, m6"iloon planning and plan supervision (see
ligure I). RAMIO's task set, however, leads to a much richer set of problems in visual planning. In Section 3
we describe how ILAN13O determines an appropriate subtask ordering if the initial task definition does not
specify a fixed subtask ordering, and also explain how the Connection Machine can be used to establish smooth
motions between consecutive goal trajectories.

2. POSE ESTIMATION

In the current imlplementation of RAMBO, tile relative rigid body motion of the target is determined by
fitting a polynomial model to a sequence of instantaneous pose estimates. In a "feedforward" mode of process-
Ing, aI new pose esti mate can b)e quickly computed based on predictions of the image projections of specific target
surface featres. lowever, in order to "bootstrap" this procedure, or to recover front gross errors (file to either
changes in the trajectory of the target or mistakes in image analysis, we have developed a Connect ion Machine
pose est,i niation algorithm that is not based on any prior knowledge of target, pose or motion.

This algoritli in is based on work originally described in Linnainmaa et al. 119881. In that paper we showed
that if a trille of iMage featuIres (i.e., perspective projections of polyhedra corners) could be matched to a tri ph
of target surface featiures, then a sipliile (11iartic equation cal be solved to determine a small number of six
dgr e of freedom l)ose estimates (in fact,, the equations almost always have only two solutions). Since it. is
(Iifficult to determine which image features match to which target features in the absence of prior knowledge, the
basLsic hypothesis generation proce(lure is embedded in a clustering algorithin that matches many comhinations of
three imiage features against. coin bi nations of three target features. Various heuristics can be employed to reduce
lIhe coibinatorics of this matching process. The key to the success of the clustering process is the choice of an

appropriate projection of the six dimensional pose space in which to perform the initial clustering. The projec-
ion u1sed was a two dimensional projection corresponding to the visual direction to the target. center under any

hypothetical pose estimnate. Within ,,ach bin of this two dimensional clustering space, pose estimiates were

groip4,d by visual size of the target.
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A straightforward implementation of this algorithm on the Connection Machine would result in a very slow
pose estimation process because of the intensive floating point arithmetic operations associated with solving the
quartic equations determined by each image triple/target triple combination. Below, we describe how a few sim-
plifying assumptions allow us to replace these arithmetic operations by a small number of table lookup opera-
tions. The result is a pose estin, aion algorithm that takes less than one second of Connection Machine time for
images of our target.

2.1. ALGORITHM DETAILS

Our Connection Machine pose estimation algorithm combines three ideas:

1) Pose estimation by matching triples of image features to triples of target features [Linnainmaa et al.,
1988).

2) Standard camera rotations [Kanatani, 19881.
3) Paraperspective approximation to perspective projection [Aloimonos and Swain, 1987).

This combination allows ti'e extensive use of lookup tables in lieu of costly floating point arithmetic opera-
tions. Feature points detected ii the image are grouped into triples (called image triangles). Each image trian-
gle is defined by a distinguished vertex (called the reference vertex), the lengths of the two adjacent sides, and
the angle between them (the reference angle). Image triangles can be computed for all triples of detected image
features (three triangle per triple, since any point can be chosen as the reference vertex) or various heuristics can
be employed to reduce the number of image triangles constructed (for example, our current implementation
includes a simple test for vertex connectivity).

The determination of the target's pose is somewhat si, . if each image triangle is first transformed so
that its reference vertex is at the image center and one of its edges is coincident with the image x-axis. This is
equivalent to a rotation of the image plane (with the rotation parameters expressed as functions of the reference
vertex's initial image position) to bring the reference vertex to the image center, followed by a camera roll to
bring one edge into coincidence with the x-axis. In [Kanatani, 1988] Kanatani developed simple formulas for
these rotations.

Consider a given image triangle/target triangle pair after the image triangle has been rotated into standard
position-see Figure 2. The position of the target triangle in space is then determined if we can compute:

1) Angles 01 and 02 of the lines POP, and PoP2 with respect to the Z-axis.

2) Distance, R, from the center of projection, 0, to the vertex P0 on the Z-axis.

The perspective transformation which maps the target triangle onto the image triangle is approximated by
a paraperspective projection [Aloimonos and Swain, 1987]. This amounts to a sequence of two
transformations-a local orthographic projection of the target triangle onto a plane parallel to the image
through P0 , and a perspective projection of the resulting image onto the image plane. This is depicted in Figure
3. From this Figure we can see that:

f /R = d /(D sin0l) (1)

and

f /R = d2 /(D 2sin0 2) (2)

We then define the parameter 8, the ratio of the lengths of the two sides of the image triangle; S, the ratio of
the lengths of the two sides of the target triangle; and K, the ratio of s and S:

s - d/d 2; S = DI/D 2; K = sIS

The parameter K is thus a known constant for any image triangle/target triangle pairing. Dividing (1) by (2)
we find that K is the ratio of the sines of 01 and 02:

K = sin0/sin02  (3)

The dot product of the two unit vectors n, and n2 parallel to POP, and PoP2 is equal to cosa. These two unit
vectors have components (sin0, 0, cos0l) and (sin02cosp, sinO2sinO, cos02), where 0 is the angle POP2 makes with
the image x-axis. The resulting dot product is therefore

cosa = sin0 1sin0 2CosO + cos01Cos0 2  (4)

The angles 01 and 02 are unknown. The fact that the ratios of the sines of these angles must be equal to the
known constant, K, allows us to eliminate one of the unknowns from (4). This yields a second degree equation
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in sin2
0'1 If we let X- sin'2 0, then this equation can be written as

si ,2O.i2X - (K 2 - 2K cosocosO + I )XI + K 2sin2 a 0 (5)

This equation always has two positive solutions, but only the smaller of these solutions has magnitude less than
I and can thus be equated with the sine of an angle. Thus, the solution of this quadratic always yields a single
solution for sin01 . This single sine solution results in two solutions for 0, differing by ir. They correspond to mir-
ror image directions of POP 1 with respect, to the plane parallel to the image plane through P0. The correspond-
ing value for sin00 obtained from (3) also yields two solutions for 02 separated by 7r. Note that we cannot com-
bine the two solutions for 01 with the two solutions for 02 arbitrarily. Two of these combinations yield a positive
number for cosOlcosO.; the other two combinations result in a negative product. One of these pairs is unaccept-
able and was introduced when (-4) was squared. Only the two combinations consistent with (4) are allowable
solutions. Finally, for each allowable pair (01, 0.) we compute the distance, R , of the vertex P0 from the center
of projection. Once 01, 02 and R are known, we can determine the three dimenional location of any other tar-
get point. Specifically, we compute the location of the centroid of the target, and then compute its projection
onto the image plane. Ve apply the inverse transformations of the roll and standard rotation (thatr brought the
reference vertex to the image center to the target centroid projection) to compute the direction of sight of the
target under this particular pose hypothesis. A two dimensional array of possible centroid projections is main-
tained, and at each location in the array we both count the number of image triangle/target triangle pairs that
yielded pose estimates resulting in that projected target centroid location, and we maintain a list, of those pairs
along with the distances computed to the target centroid. This information is used by a subsequ'nt clustering
algorithm to identify large subsets of image triangle/target triangle pairs yielding sufficiently similar pose esti-
mates. The details of that clustering algorithm, sketched below, can be found in DeMentlhon, Ziavras and Davis
Dc.%lenthon et al., 19891.

2.2. CONNECTION MACHINE IMPLEMENTATION

"'hP Connection .Machine is used in three ways to implement the pose estimation algorithm:

I) as a lookup table engine;

2) as a combinatorial machine, considering all combinations of image triangles and target triangles:

3) as an image processor for calculating convolutions and finding peaks (clustering) in the liough transform
space.

2.2.1. Lookup Table Engine

There are several different table lookup operations performed in the course of pose estimation. First, the
parameters of the standard rotation are stored in a two dimensional lookup table indexed by image position.
The parameters of the inverse rotations are also stored in this two dimensional lookuip table.

A second set of lookup tables is maintained, one for each possible target triangle. These are also two
dimensional lookup tables, indexed by a, the reference angle of an image triangle and K, the ratio of s and S.
Each such table contains the three dimensional location of the target centroid as output (there is no need to
explicitly store or compute the intermediate variables corresponding to the orientation and location of the target
triangle in the image coordinate system).

All of these tables can be computed beforehand and loaded into the Connection Machine.

2.2.2. Combinatorial Machine

Here we describe how the image triangle/target triangle pairs are distributed in the Connection Machine.
vWe regard the Connection Machine as a two dimensional array. Each target triangle is assigned to one row of
this array. The coordinates of P0 and the value of S (for indexing into the corresponding target triangle table)
arc stored with each copy of the target triangle. Image triangles are assigned to columns of the array. The
information initially associated with each image triangle includes the image plane coordinates )f its vertices and
the parameters of both the standard iotation and its inverse. The target triangle data is then scanned across the
rows and the image triangle data is scanne-l tip the columns to create the combinatorial pairing of image
trianglesitarget triangles.
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2.2.3. Image Processor

The analysis of the pose estimate voting patterns of the image/target triangle pairs involves operations
common to basic image processing. The two dimensional clustering array of projected target centroids is
represented in the Connection Machine by assigning one processor per location of this two dimensional array.
After all votes are cast by the image/target triangle pairs, the counts in this array are locally smoothed, and the
smoothed array is then thresholded. The above threshold processors are then numbered according to their vote
strength, and the subset of image/target triangle pairs that contributed to the above threshold counts are
selected for further processing.

A second clustering step is then applied, in parallel, to the triangle pairs corresponding to each above
threshold centroid projection. Each centroid projection is assigned to a row in a two dimensional matrix, and
the triangle pairs that, contributed to that centroid projection are then loaded into the columns of that row and
bucket sorted by Z coordinate of the centroid. Each row is smoothed independently, and the highest cluster is
finally selected as the correct cluster. The triangle pairs that contributed to that cluster are then selected, and a
final least squares estimate of the target's pose is computed based on the actual correspondence of image features
to target features.

3. TASK AND TRAJECTORY PLANNING

In order to pcrform task and trajectory planning, RAMBO currently makes the simplifying assumption
that a complex goal can be decomposed into a sequence of simple subgoals, and that each subgoal can be per-
formed with one joint of the robot in a fixed position with respect to the target. This joint has to "tag along"
with the target and so we call it the tagging joint of the robot. The fixed position with respect to the target that
the tagging point must follow to complete a subgoal is called the goal point. All goal points required for each
complex action on a target can be predetermined and stored in a database of actions specific to eaci target.
Each goal point. ib defined by its pose in the target coordinate system.

As RAM\BO proceeds from one subgoal to another, it will generally have to change the trajectory along
which it moves, so that at some time !, we would want RAIjMBO to launch from its current goal trajcctoiy and
to land at some subsequent time, t o + T, on a new goal trajectory. The duration T is referred to as the reach-
ing duration. Once to and T are chosen, then a reaching trajectory that takes RAMBO from its original goal
trajectory to the new goal trajectory can be determined by using, for example, a parametric cubic spline that
,wures continuity and smoothness at both takeoff from the original trajectory and landing on the new goal tra-
jectory (see Figure 4).

A subproblem, then, in controlling RAMBO's motion from one trajectory to another is the choice of T, the
transit time. It should be chosen so that the resulting linear and angular velocities and accelerations are within
the limits of RAIT3O's motions. Additionally, the resulting reaching trajectory should be safe ir. the sense that
it should not cross the path of the target and should not require RAMBO to assume impossible configurations.
The Connection Machine can be used to examine a range of reaching durations in parallel, finally choosing the
smallest reaching duration resulting in a realizable reaching trajectory.

We set up a 2D array of processing cells with time as the vertical dimension, and values of T as the hor-
izontal dimension. Each column of the arry contains a copy of the predicted goal trajectory, with the first row
containing the position of the goal at the present time in location/direction space, the next, row containing the
position at a time increment beyond that, etc. Every column also contains a copy of the trajectory of the tag-
ging joint from the original trajectory, sampled with the same time increments as the goal trajectory. The
difference between columns is that they use different durations, T, of the reaching trajectory, increasing from
one column to the next.

Each cell in the array computes a point of the reaching trajectory for the time to corresponding to its row
and for daration T corresponding to its column. It then computes estimates of appropriate derivatives of its
reaching trajectory by communicating with its neighbors in the column. The maxima of the derivatives are
c.,mputed for each column and the column that has the smallest T for which the maximum derivatives are
within bounds is chosen to determine the reaching trajectory. The near term future motion of the robot, should
be controlled based on this selected trajectory.

A rule-based system is used for completing sets of tasks. It is based on a heuristic strategy for dealing with
illegal trajectories (ones involving collisions or impossible robot positions or motion derivaJtives) and incorporates
either a greedy strategy for choosing tasks or a fixed task ordering. Both versions are described below. Essen-
tially, the following ordered set of rules is iteratively applied until the set of tasks is completed. The rules were
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chosen to be simple, but fairly robust.

Rule 1: If currently on the goal trajectory of an uncompleted task, remain on it for the specified task duration,
then restart rule set.

Rule 2 (Greedy): Find reaching trajectories to all remaining goal trajectories. Choose quickest legal reaching
trajectory to a goal trajectory and follow it until reaching the corresponding goal trajectory, then res-
tart rule set.

Rule 2 (Fixed order): Otherwise, find reaching trajectory to the goal trajectory o,' thv- next task in the desired
sequence. Follow this reaching trajectory until reaching the corresponding goal trajectory, then restart

tile rule set.
Rule 3: If there is no legal reaching trajectory to a goal trajectory, find a reaching trajectory to the "approach"

trajectory (this is a pre-defined trajectory relative to the target motion from which some goal trajec-
tory is likely to be eachable in the future), begin to follow this reaching trajectory and restart the rule
set.

Rule 4: If the reaching trajectory to the approach trajectory is not legal, maintain present position relative to
the target and restart the rule set.

If a revision of the target motion model parameters occurs during the application of any of the rules, the
rule set is restarted. This is because a revision of the target, motion will sometimes cause a reaching trajectory
or section of goal trajectory previously thought to be legal to be disallowed. Most of the time, however, since
the revisions of the motion model parameters will not be large, there will be no drastic change in the robot
motion due to them.

4. CONCLUSIONS

\Ve have described progress to date on constructing a set of Connection Machine vision and planning algo-

rithis that should allow RAMBO to plan, monitor and execute a complex navigation task. These algorithms
are currently being integrated o that they may be tested on some simple initial navigation tasks. Additionally,
we ar developing fast Connection Machine two-dimensional target tracking algorithms, which could be inter-
leaved with the more computationally demanding three dimensional tracking algorithms, and studying the appli-
cability of logic programming methods for specifying, synthesizing, monitoring and controlling RAMBO's
act ions.
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MAC-I BASED IU ENVIRONMENT DEVELOPMENT

Philip Kahn, David Disabatino, Daryl T. Lawton
Advanced Decision Systems

1500 Plymouth Street
Mountain View, Calif.)rnia 94043-1230

1. INTRODUCTION

Image understanding software environments are important tools for supporting research, development and
technical transfer. They are used to support shared development across multiple researchers and projects
and to make possible the rapid prototyping of applications and experiments. The major objective of the
work described here is to construct a low cost image understanding environment, along the lines of the gen-
eral architecture laid out in jLawton and McConnell - 88, McConnell et.al. - 87], that would run on low-cost
personal computer workstations. A basic goal is to stress machine independence and also to align the develop-
mient effort with ongoing and extensive commercial activity in coprocessors, video technology, programming
environments, and available software. This will enable applications to extend the core environment using
commercially or community-supported tools whenever possible and will enhance modularity.

We have initially targeted a Mac II as a platform for this development due to it's availability and the
large number of commercial products that exist for it. The Mac is an open architecture which is readily
extended by a large, and rapidly growing, number of coprocessors, storage and video boards, cameras and
digitizers. It is fairly simple to construct, with off-the shelf hardware products described below, the basic
components of an image processing laboratory for image access, storage, display, and processing. This is
also true for software products. There is an enormous number of commercially developed and supported
software packages that are available. For example, a voice activated, hypermedia-based interface can be
constructed using Silicon Beach's Supercard and Articulate System's Voice Nivigntor for around $1500. The
Macintosh also suI ports an extensive, well-tested, and optimized user interface and construction facilities
built around the ROM-based set of Toolbox routines (Apple Computer - 88]. This includes such things as
windows, browsers, controls, overlays, and dialogs.

The basic components and constructs used iII our environments have been described in [Lawton and
McConnell - 88, McConnell et.al. - 87, Edelson, et.al. - 88, Riley et.al. - 87]. In general, we found that
developing corresponding components of the user interface on the Mac was fairly simple. For example,
Figure 1 shows the interactive application of a spatial mask to a set of edges registered with an image. The
selected edges are then displayed in a Browse Table for further inspection Figure 2 shows the association of
a Pixel-Mapping-Function between linked windows, where one window is zooming onto the selected portion
of the other. We found that several of the commercially available products could be integrated with imiage
handling. The use of generic (ommonLISP made possible the use of progrminming constructs developed for
(oiinioiL ISI'-based It' environments.

On the negative side, we found that integrating othr commercial application software such as ('A )/('A M.
databases, and expert system building to, Is was still rather ditficult and awkward. In part. this is duc to
the lack of a conventional opertting system which supports such things as virtual mnmnrv, multi-tasking.
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interprmcess cojO imat 'ii and tilt lack of language interfaces for mnuch of the comminercial Mac software.
Ainot her limitation that has miade us qoestion t 1w appjropriateniess of the Mac is the Allegro (oral Coinuion-
1.l' I' environmnti itself. While providinig great flexibility andI power as a development environment, it needs
o be greatly optimized as a ron-timie ' vstei hefore we canl consider it for developing coilputationally intenl-

siv t' enviro~nment applications. The main hard ware limitations we experienced stern from an overworked
CTV1. The central processor nmust not only perform all the computation and symbolic processing required for
imiage understanding, hot must also drive all the graphic display operations that are so fundlamental to this
t~lpe of int eractivye linage and graphical ob~ject oriented application and orchestrate the access of all (devices
to the main nienior y. The C P1 handles all file writes and mnemory management tasks byte by byte. TIhis
prolt11 i canl bc solved in several ways, and rumors froni Apple indicate that they -ire actively developing
hard ware t hat addresses all these soloutions (e.g., using anl ANMD 29000 RISC graphics coprocessor increasing
hus I andtwid thI fromn 1Gm lIz to 20miilIz, and having dIirec t memory access channels).

I'l( liemiit at ions we have disctovered are, in all likelihood, soon to be addcressedl by A pple so t hey call

iliItwth low-cost scientific workstations fromi other vendors such as Still, D)E( , Apollo. and Next.
WithI tie i u rasiog so ph ist icat ion of uiser-i nierface. tools associated with these machines, inzc reased power.

av,! a lairge t hird-partv so pplv of hardware and software, they all provide very attractive platforms for It'
(ii vi ro0111 ii ts.

2. SYSTEM CONFIGURATION

Iliere- are thnrut. priarv comiponeiits iii an It' environmienit: IUT constructs, anl striictiires, user interface.

andI the ii dcrlY iii hard ware p~latftormn aiid syst emi-level soupport.

It' coiistructs aiid striict ures provide the means for mnanipulating imagery and extracteod features. ex-
tict jog and describing t he content of imiagery at varying levels of abstraction, input/output, etc. As in any

lauguage, the expressiveness- andl p~owe'r of 11 U7t ructiires and conist ructs largely d~eterinies thle natuoral ness.
cx preSsiveiles. and eticiency with Iwhvich Viio aind Imiage analysis proct ssin iignay occur.

Aui IV eniviroinmuent user interface p~rovidles the mecans by which a user of the system miay flexibly aiid
co"iiifo rt ablYx interact WithI data. undlers tand and dlebug algori thmius, al niodi fy the state of the p~rocessinrg and

s 'vst cii. We have found t hat a highly iiiteractive user interface is most productive and is usually required for
tlit- iisr to effic iently develop), u nderstandl, an(l describe p~rocessinrg algorit hmis and results. In flexible, highly
textual, or low-bandwidth user interfaces sigiiificairtlY and dIirectly decrease the power and flexibility of the
IV tn vii onmurit uiser. Typical elemient s in a flexible 11' en vi ronmient ti' rface inucluode rapid graphical
display (e.g.. p~an, zooni, (drawitng), color graphical overlay, (e.g., she- es in anl overlay plane), powerful
windo(1w andl mienu coot rol mechlanismus, flexible iotuse-d ri yen processing (e.g., wheni the mouse is clicked over
aiil edge. a oser-selecteol fuinct ion is executed with t hat edge as ain argument), data Lnid environmient browsing
faci litijes (t'.g. , inspect intg thlt; values in aii i loage o r in a collect ion o~f extracted liniage objects), riser- interface
biiiltding tools (e.g.. for building (oll]iiain1-olepeuileit. niliius specifying mouse-driven processing, complex text
and imiuncric inuit via window dialogs with the user, ttc. ), and other tools to ease the borden arid increase
Ow lit XjSlsivtne-ss of the riser. Other sctnsorv miodalities (t'.g. , computer gerierateod tries or speech, voidce
key word reeoguiitioli. touch screens) canl also en1hance. the powe~r anditlficiencY of the user interface.

A heilN t and failrly powerful IW environment iser intt rfacc was hirototypeh iii Allegr- ('oral Conimon-

I' W (TI) -t it, NmalI. 'Ili- oltjvct. rene tools, pr, vitlto lv (VI. antI the native Mac graphical rttritous
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and hardware greatly simplified the design and coding of this prototype IU environment interface. Though
the interface is fairly fast, our exclusive use of CommonLISP and the use of some high-level interface mech-
anisms provided by CCL somewhat decreased the performance which can otherwise be achieved by using C
and more directly accessing the underlying Mac graphics primitives.

The Mac-based IU environment development hardware and system level support has several goals. First,
to provide a powerful and extensible front end for the IU software environment. Second, the base level of
equipment should be inexpensive (about $10K). Third, the system should easily scale up into more advanced
applications by incorp,'rating commercially available add-on modules.

The Mac lIx and Mac IIcx are full 32-bit, 68030-based machines using a 15.67mtz clock, a 68882 floating
point coprocessor, S(SI and RS-422 ports, and a flexible NuBus expansion bus architecture (10mHz). The
Mac Hlcx has three NuBus expansion slots, and the Mac IIx provides six NuBus expansion slots. The
NuBus provides an open architecture which has led to widespread commercial availability of powerful and
inexpensive extended hardware capabilities which include coprocessors, memory, storage, digitizers, extended
ports, robotic control, measurement, voice recognition, and a rapidly growing assortment of other equipment.
Because of the large commercial Mac market, these products are relatively inexpensive, powerful, simple to
install, and well supported.

The next sections concentrate on the description of a low-cost and modular Mac-based hardware platform
for IF environments. The processing and interface requirements of an IU environment on the development
and design of this underlying system are discussed.

2.1 BASE-LEVEL SYSTEM

The base level system is intended for the entry level user who wishes to have basic vision and image processing
capabilities at very low cost (about $1OK). Basic capabilities include the ability to read in imagery, perform
advanced image and vision processing, display and store imagery and results, and share data and programs
with a networked computing community and file system. Main components of the base level system include
the III software environment and interface, basic computing equipment, basic secondary storage facilities,
display capabilities, networking, and primary system level software and utilities.

The base level system is designed so that it can be simply scaled up by addirg off-the-shelf commercial
hardware and software modules. For example, enhancements in processing power, storage, graphics display,
voice keyword interface, and extended capabilities for hard copy production, image acquisition, camera
control, robotics, and mobile capabilities can be achieved by adding commercially available modules which
can be added to the core system.

A base level systemi should be able to perform simple vision processing tasks in a reasonable amount of
time, provide for the basic user interface, provide for reasonable secondary storage and archival, and netwurk
and share files with the larger computing community. The base level hardware to support this includes a
Mac lIx or Mac llex with 8MB memory, secondary storage comprised of an 1.4MB floppy drive and at least
an k0MB hard drive. an Ethernet card, and a basic coler monitor and video card (640 x 480 x 8-bits). The
retail price for this equipment is about $10K.

Sec"t ndarv storage for the base level system includes an IAMB internal Apple floppy drive and at least
an it MB hard disk drive. The floppies can be used to archive or transport small amounts of data, and the
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I lhrernet provides high speed transport of data to other machines or file servers on the network. Large scale
archival mav be achieved using the Ethernet to transfer data to other machines on the network which have
high volume archive media (such as tape drives). If all system software occupies about 30MB (including
.source), this leaves at least 50MB for user files and data. This provides a workable amount of storage for
most vision and image processing tasks.

An inexpensive graphical display for the base levei system can be provided by a 3" Apple coior monitor
viih b-bit video card (640x480). An Apple extended keyboard andi mouse facilitate user input. Alternative
displays, cards, keyboards, and mice are available at comparable cost, and the particular choice is subject
to individual user preference. Greater display resolution is simply provided by using alternative third-party
monitors and video cards. Graphics display is standardized by the Mac II operating system, and software
writte-n according to this standard is independent of changes in display hardware. Thus, changing monitor
aiidf display resolution should not require display and interface code modification. Additionally, the iunber of
monitors is only limited by the number of open NuBus expansion slots, and advanced multiinonitor features
art sn pported by the operating system . wiidows may be dragged from one monitor to aiot her).

2.2 MODULAR EXTENSIONS TO THE BASE LEVEL SYSTEM

2.2.1 Display:

tidelitv and fttxibilit s of graphic di, play is particularly important for advanced vision research and iniage
analysis applications. Display feedback is an important tool for debugging and evaluating algorithms and
oe,.. 'l'h~iough tlie Mac I! allows as many monitors to be used as there are available Niuflus slots (up to six).
we have found that a two monitor system provides good cost performance: a moderate to high resolution
co or counsol mn itor and a high resolution full color monitor. The console monitor requires only moderat,
reslution, it provides the primary textual feedback to the user, and it allows moderate resolution display of

:a~ery. "l'he display monitor is primarily used for very high fidelity display of imagery and image objects
(.-. ,,l(r or black and white images, edges, surface plots, target identification, etc.). A display monitor

sh,,lld have high spatial and color resolution in order to avoid introducing visual aiiornalies in displayed
dat a.

'Il b~ase level systm fprovides the moderate to high resolution color monitor (640 x 480 x S-bits).
Co mm,rciallv avai lalle high resolution monitors (e.g., 1024 x 768) are available for abouit K retail and tie
col,,r video driver cards run from about S1.500 (8-bit) to $4K (24-bit) retail.

2.2.2 Storage alad Archival:

Th, large amon nt of data encountered in vision research and iniage analysis justifies the use of large disk
drive mnits which can store the large quantities of intermediate processing results, imagery, and progranis.
Se'condary dr: es are also related to archive capabilities, since removable drive media can provide good
archival facilities. Reiovable archival media is required when imagery and processing results are to be
storcd frr futur use or shared arrong distant users, and to provide backup facilities for data recovery. A
fast and av archival media also reduces the size and cost of required magnetic drives.

"'iher- are thiree main types of secondary/archival devices: tape, removable magnetic disk, and removable
,,pti"'al ,;t,)rage. Tape ;trchivaf provides for high volume inexpensive ba kup, but the sequential access excluidt s
its is,. a" a vi able serondary storage. Cost for thiese tape backup units varies from aboit 1 K for a ,401NI1I
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cartridge to several thousand for a reel-to-reel or high density 8mm units. Removable magnetic disk media
has the advantages of random access and low access time (e.g., 20ms), which allows its use as secondary
storage, though these disks tend to be small and have a very high relative cost per MB. Optical media has
provided all attractive altcer ative. Write-once-read-many (WORM) optical drives are fairly inexpensive,
random access, and possess access times approaching slow hard disks. Yet, the write-once is generally a
limitation that is not well-suited for the vision and image analysis domains. A very good soL ion in terms of
cost price performance is afforded by the new magneto optical removable media drives which have reasonable
access times (e.g., 50ms), good transfer rates (e.g., 1.2MB/sec), large capacity (e.g., 600MB), multiple read-
write as offered by conventional magnetic drives, relatively inexpensive media (e.g., $268 per 600MB), and
relatively low drive unit cost (e.g., $4000). These drives are have been newly introduced by Ricoh, Sony,
and Canon.

Of course, the particular choice of secondary/archive method depends upon required access times, quan-
tities of data, cost limitations, etc. of the particular problem domain. The inain point to be made is that a
wide range of viable choices are available as modular additions to the core system.

In addition to the secondary storage device itself, NuBus direct-memory access (DMA) boards are new-
comers to the Mac market which greatly improve disk and overall system performance. These boards
essentially contain a very fast SCSI chip set, fairly large cache memory, and a NuBus controller. Hard drive
I/O thus ties up less CPU time, and the fast SCSI interface provides higher data transfer rates. Because the
NuBus controller in some of these boards supports burst mode (which the Mac 1I does not), other NuBus
boards which support burst mode can greatly benefit from such a board. These DMA boards vary from $500
to several thousand depending upon the amount of memory placed on the board.

2.2.3 Image Acquisition:

In order to experiment and algorithmically manipulate imagery from a program, images must first be con-
verted to a digital form. The acquisition of image data is often a difficult, cumbersome, and time-consuming
task. A frequent problem limiting many vision researchers is their inability to flexibly acquire real image
data in order to test and demonstrate algorithms and techniques. This problem is especially difficult for
motion researchers since a large amount of imagery must be collected from a sequence of video frames. To
:;implify these tasks, image acquisition system modules may be easily added to the base level system.

A full discussion of image acquisition hardware and technologies is beyond the scope of this paper, so we
instead overview the range of possible image acquisition solutions. There are two main methods for acquiring
imagery: video input or scanned from hardcopy (e.g., photographs).

Video input requires a video digitizer and generally an NTSC video source (e.g., as produced by most
video cameras in the U.S.). Other video formats are possible (e.g., RS-170, HDT'.'). Good quality real-
time monochrome digitizers for the Mac 1I retail for about $1200, and color digitizers have recently betonie
widely available for less than $3K. Video sources may be obtained from videotape (e.g., 3/4", consumer VHS),
videodisc players, live cameras, or video generators. Videotape as a playback media introduces anomalies
and distortions into in, gery, though a time-based corrector which retails from $2K-1OK (depending on
quality) may be used to partially offset some distortion and freeze frame problems. More expensive (i.e.,
$40K and up) videotape players have accurate single frame access capabilities, though the prices seem to be
coming down somewhat. Videodisk recorders/players provide single write, random access, good-freeze frame
capability, built-in RS-232 control to allow simple computer integration, good monochrome resolution (B/W
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resolution is about 450 lines, color resolution is about 350 lines), reasonable storage (e.g., 16,000 frames)
and relalively low cost (c.g., $12K). For example, the Panasonic TQ-2026F unit offers these features. The
best quality source of video data conies directly from a good quality CCD videocamera (monochrome CCD
videocameras retail from several hundred dollars to about $3K for smaller size, higher resolution, and added
features). The videocamera output may then be directly fed into the video digitizer. Without exception,
this is the preferable method for video image acquisition when image quality is of concern.

Alternatively, images may be acquired from hardcopy image sources (e.g.. slides, photos, books). We have
not considered very high end laser scanners which produce the best quality digitization from hardcopy, since
their cost can exceed $100K. Desktop scanners provide a lower cost, good quality (e.g., 400dpi) alternative.
These scanners operate much as a photocopier, and they produce good spatial resolutiun and digitization.
When simplicity and better spatial resolution is important, scanners are often preferable to video acquisition
systems. An 8-bit B/W 300dpi desktop scanners retail for less than $3500, and 24-bit color digitizers retail
for about $6K.

2.2.4 Coprocessing:

Overall computational power can be increased by orders of magnitude with the addition of commercially
available coprocessors. These coprocessors plug into NuBus expansion slots within the Mac in order to provide
far greater computational power to solve computationally intensive vision and image analysis problems. For
example, currently available coprocessors for the Mac II include: TI MicroExplorer and Symbolics MacIvory
LISP machines on a board (board plus basic software is about $10K apiece), the MacDSP board by Spectral
Innovations, Santa Clara, CA has a 24MFlop DSP (at about $3K), the Levco transputer board, the Perceptics
image processor, and others. As with all coprocessors in the current state-of-the-art and market, integration
call often be difficult, though some coprocessors are easier to integrate than others. For example, tile LISP
machines provide fairly simple mechanisms for subtasking via remote processor calls (RPCs), and they have
their own virtual memories (something not found in most other coprocessors on the market).

In general, the parallel computing and Mac coprocessor markets and products are just now emerging. The
quality and software support for these coprocessors is rapidly increasing, while their cost is decreasing. The
recent rapid development of DSP chips with over 50MFlops performance is sure to impact the power of these
coprocessor boards. Apple is currently introducing an extension to their operating system called MR-DOS
which provides consistent mechanisms for multitasking, interprocess communication, priority scheduling and
timer services and configurability. This is intended to produce a well-defined, consistent software interface
for future coprocessors developed for the Mac. It is expected that these new coprocessors will greatly
extend processor speed, size and speed of on-board mniemory, bus architecture bandwidth, the generality
of applications which can run on the coprocessor, ease of use, programmability, and the quality of their
development environment.

2.2.5 Extended User Interface Support:

The basic sensory modalities of the user interface include visual (via the display), touch (via the keyboard
and mouse), and sound (via the built-in Mac stereo sound and voice generation capabilities). Other sensory
modalities may be added using off-the-shelf components to expand the ease, power, and naturalness with
which the user may interact with the IU environment. For example, the interface may be expanded to
;nclude voice keyword recognition (e.g., the VoiceNavigator by Articulate Systems of Berkeley, (A retails for
about $750 and operates without application softwar( niodification), a data glove (soon to be available by
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Nintendo at relatively low cost), 6-d trackball (e.g., from (IS Graphics, Westford, MA for $3300 retail), a
touch screen (e.g., from MicroTouch Sys' ins, Woburn, MA retail for $900 annd up), and other sensory input
devices. These additional sensory modalities expand the potential application domains, ease of use, and user
expressiveness over the base level system.

2.2.6 Hardeopy Capabilities:

It is important that the results of processing be transferred into hardcopy for the purposes of reporting
results (e.g., final reports, published papers), transferring data (e.g., text files, images), and human-readable
archival. Because the Mac is popular in the desktop publishing market, color printers, high resolution
laser printers, slide and photo generators, and other hardcopy generation devices are widely available and
competitively priced. If volume is not high enough tojustify the purchase of niore expensive equipment (e.g.,
a color printer), service bureaus are widely available to obtain hardcopy from Mac II datafiles.

2.3 CURRENT SYSTE.M

An extended IU environment workstation has been built at ADS. The workstation is int nded primarily for
computer vision research and image analysis. These domains typically -equire more advanced capabilities
than afforded by the base level system, so modular extensions have been added. As shown in Figure 3,
these extensions include a 600MB magneto optical disk with removable media, am additional hi-resolution
color monitor and video card, hi-resolution hardcopy capabilities, and extensive video image acquisition
and digitizing facilities (see Figure 4). Coprocessors have also been explored as a means to expand the
computational power of the platform (e.g., we evaluated the TI MicroExplorer and Symbolics Macivory LISP
coprocessor boards). These modular extensions have provided us with a powerful and flexible environment
for operating within the vision and image processing domains.

In addition to the base level system, we have added a RasterOps 19" color monitor (model 1948S) which
retails for about $5K and a SuperMac Spectrum/8 video card (1024 x 768 x 8 bits) which retails for about
$1500.

A SCSI connected Jasmin 600MB magneto optical removable drive was added (it uses the new Ricoh
drive). Each cartridge holds 300MB on each side, it has an average access time of 50ms (about twice the
time required for most magnetic drives, though writing on the optical media takes longer), and a 1.2MB
data transfer r-ite. The drive retails for about $5K and each removable cartridge retails for about $270. For
tape backups, we transfer data over the ethernet to our timeshare machines which have attached 9-track and
8iam tape drives.

Figure 4 shows the video image acquisition subsystem we have added to the base level system. NTSC video
sources are provided by a Sony LI)P-1500 videodisk player, 3/4" videotape (Sony V05800 recorder, V05850
Recorder, and RM440 remote editing deck), and a Sony color broadcast quality camera. A FOR-A digital
time-based corrector reduces image noise by providing better video stability and freeze-frame capability (an
especially important consideration for videotape). The videotape editing deck provides a desktop videotape
controller which is placed near the operator console to allow convenient videotape and image access control.
Because these decks do not have good freeze frame and random access abilities, they are not well-suited for
the digitization of imagery in a motion sequence. The videodisk player and direct camera input has proven
to be better for motion sequence digitization. The videodisk player is controlled by the Mac through its
RS-422/232 port using the Voyager Videostack by The Voyager Company, Santa Monica, CA (about $60)
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Figure 3: Current Workstation Configuration

which allows simple computer control of playback which includes forward play, fast play, single step, random
frame jumps, freeze frame, rapid scan, disk eject and close, frame display, and unit reset. We plan to build a
simple port interface to control the videodisk player via user program control and from within ComuionLISP.
Video data is displayed on two Sony video monitors.

We currently use an 8-bit nitlochront l)ata Translation (DT) video digitizer board with four software-
selectahle input video channels (which we use as composite color, red, green, and blue) which retails for
about . 1100. The digitizer captures 640 x 480 images in 1/30th second. Color images may be captured
by digitizing and saving the color planes in sequence. We currently drive the digitizer from the interactive
program supplied by DT, and we also have a Pascal/C driver which allows direct capture of images from
the digitizer into our preferred CVL image format. We eventually plan to integrate the current program
interface to allow users to drive the digitizer functions from ComnionlISP.

2.4 FUTURE MAC-BASED SYSTEMS

Several changes are currently underway in the Mac and general computing environment which will greatly
impact the modular extensions available fc.r the base level system.

Storage and archival technologies are rapidly developing faster, larger, and less expensive memories.
The availability of large, low-cost secondary memories provides greater latitude in the computation/power
tradeoff for It environments, research, and applications development. Magneto optical media and 8m1 tape
systems will most rapidly develop in the near future. The reccnt advent of DMA boards has overcome some
limitations in the Mac II systems (e.g., slow SCSI chip set, no DMA) which will result in far lower average
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access times for these secondary devices.

Coprocessors for the Mac and parallel processing in general is rapidly volving. More parallel coprocessors

are becoming available for the Mac, and the use of these coprocessors allows te overall computational power

of the system to be stated in terms of hundreds of MIPS (versus the 3MIPS iln the Mac x-series achines). In

this framework, the Mac is primarily a chassis and graphics front-end processor. The recent develop's.nt by

Apple of MR-DOS is intendcd to standardize the communication and tasking in such an arrangement, and

this standard n,ay help to accelerate the development of these systems. T he rumored addition by ,pple of

an AMD 29000 RISC graphics coprocessor to the Mac (supposedly to be introduced in late '89 or early '90)

will offload graphics tasks from the main MAC CPU and significantly boost overall graphics and processing

power.

the next year or so, real-tie digitizer to large optical media storage will be comrcially available. Such

systems are also capable of scanning digital data to video in real-time. This would provide high quality,

random access, digital image acquisition, and real-time display of processing results at relatively low cost;

current hard disk systems which currently do this run into the six digits. The ability to redisplay processing

results in real-time which may have taken far longer to process (e.g., motion processing or segmentation

results) will greatly help to describe algotnms and results in the community.
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3. CONCLUSION

In general, we found the Mac to be a very good graphical platform which facilitated the rapid prototype
development of an IU environment on a low-cost, modularly expandable system. The base Mac system
without the addition of coprocessor boards did not have sufficient computational power to support moderate
to high computational requirements which usually occur in advanced IU applications. The use of coprocessor
boards was explored and found to be a viable way to greatly increase the power of the base system to better
handle increased computational loads. Upcoming improvements to the Mac operating system to handle
virtual memory, multiprocessing, and larger memories will make the Mac better suited for IU environments
and applications.
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ADSTRACT

A review of some estimation basics is followed by an illustrative application of the variable dimension Kalman

filter for tracking a maneuvering target. The performance of the nearest neighbor standard filter is compared
to that of the probabilistic data association filter for tracking a target in clutter. Multi-target tracking, using
sonar sensors to estimate an autonomous robot's distance from walls, is applied to the navigation problem.

The Kalman filter equations can be completely decentralized and distributed among the nodes of a multi-
sensor system. Each sensing node implements its own local Kalman filter, arrives at a partial decision, and

broadcasts it to every other node. Each node then assimilates this received information to arrive at its own
local but optimal estimate of the system state.

ESTIMATION AND KALMAN FILTERING

ESTIMATION

Non-Bayesi-an Estimation

Non-Bayesian Estimation is used when the value being estimated is not a random variable but is constant.
The estimate should converge to this value as the number of readings -- cv.

Assuming the prior Probability Density Function (PDF) of z is unknown, its posterior PDF is unavailable,
leading to the use of a likelihood function:

Ak@() = p(zX)

and hence the Maximum Likelihood (ML) method

i(k) = argmaxp(z'jx).

The likelihoods arise from enipirical or analytic models of the sensor.

Bayesian Estimation

Bayesian Estimation is used when the parameter to be found is a random variable (RV) with a PDF p(z).
A value of z is assumed to have occurred via this PDF and remained constart during its measurement
sequence. The measurement sequence should converge to the actual value of x that we are measuring.

Given the prior PDF for x, its posterior PDF follows from Bayes' Rule

p(Zlzk) = P(kIr)P(T)
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This leads to the Maximum A Posteriori (MAP) method:

.i(k) = argmaz~p(xzzk) = argmaz,.[p(zk lz)p(z)].

Both the ML and MAP methods yield modes of a probability distribution (the most likely value).

Least Squares Estimation

The LS method is for non-random parameters and for measurements

z(j) = h(j, x) + w(j),

which yields

.i(k) = argmin , Z[z(j) - h(j,x)] 2 .

,=I

Iere h(.) is the sensor model. The least squares techniques yie!ds the mean, not the mode, of the probability
distribution function.

Minimum Mean-Square Error Estimation

The MMSE method is for random parameters and yields

ik)=argminjE[(.i - x)2Izk].

Linear Estimation

The estimator is a linear function of the measurement data.

i= f + P"zP - I(z - 1

where
P.. = E[(z - E)(x - t),

" is the expected measurement, and (z - i) is the innovation produced by the true measurement.

Equivalences Of Methods

All the above can produce the same results under certain conditions:

* ML _MAP

This occurs when the prior PDF for x is non-informative, ie when p(x) = E and c - oo or when the
PDF is a Gaussian with an - 00

" LS L= IL

This occurs if the noises w(j) in z(j) = h(j, z) + w(j) are independent identically distributed (liD)
zero mean Gaussian RVs. This also applies if z is a vector property.

* MMSE = MAP

These coincide if the posterior PDF of z is Gaussian with arbitrary mean.

" Linear Estimation

W-X 1 is a G"auwiall IV the linear estimator of the MMSE form is equivaient to the best linear
estimator for arbitrarily -listributed RVs with the same first and second moments. However if the RVs
are not Gaitiqian the MMSE can be a better estimator than the linear estimator (ie. Gaussian RVs
give the worst case results of an MMSE estimator).
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Figure 1: The (Linear) Kalman Filter (one cycle).

THE KALMAN FILTER

Kalman filtering is a form of optimal estimation characterized by recursive (i.e. incremental) evaluation,
an internal model of the dynamics of the system being estimated, and a dynamic weighting of incoming
evidence with ongoing expectation that produces estimates of the state of the observed system. The basic
Kalman filter loop appears in Fig. I (taken from [BF88]). Its input is the system measurements, its apriori

information is the system dynamics and noise properties of system and measurement, and its useful outputs
are the innovation (the difference between the predicted and observed measurement, by which the filter's
performance may be quantified), and the estimated system state.

Consider a system with state vector x, taking observations z with Gaussian noise sources w and v respec-
tively:

x(k + 1) = F(k)x(k) + G(k)w(k) (1)

z(k) =H(k)x(k) +v(k) (2)

where

f w~) ' st(k) r5(k) \. 3

For such a system the conventional Kalman Filter equations for state prediction x(k + I k), variance
prediction P(k + 1 I k), state update x(k + 1 k + 1) and variance update P(k + 1J k + 1), where the variance

653

• wle Up O W



is defined as
P(k I k) = Ei[x(k) - *(k I k))[x(k) - *(k I k))T I Z')

may be found in (Bar-Shalom [BF88) and have the following form:

Prediction:

*(k + 1 k) = Ff2(k 1k) + GSR-'z (4)

P(k + I k) = FP(k I k)f" + GQGT  (5)

Update:

x(k+lI k+l)=[I-KH](k+ IIk)+Kz (6)

P-'(k + 1I k + 1) = P-(k + I I k) + HT R-'H (7)

where

K = P(k + I I k+ I)HTR - 1 (8)

F = F - GSI-'H (9)

The (first order) extended Kalman filter (EKF) is a version of the Kalman filter that deals with nonlinear
dynamics or nonlinear measurement equations, or both. It linearizes the problem around the predicted
state (a second-order EKF makes a second-order approximation). The basic control loop of Fig. 1 still
applies, but measurements are predicted using the nonlinear measurement equation h(.). The measurement
model h4k, x(k)] is linearized about the current predicted state vector, *(k + I k) using the Jacobian of
the nonlinear measurement function h(.). The calculations or filter gain, state update, and covariance
update use the Jacobian hx(.). Likewise state prediction is accomplished using the nonlinear state equation
f(.). The plant model f[k, x(k)] is linearized about the current estimated state vector, ic(k I k). The state
prediction covariance is computed using the plant Jacobian fx(k).

For ease of notation, we use the measurement Jacobian to define the measurement prediction covariance
matrix S(k ± 1): S(k + 1) = hx(k + 1)P(k + I I k))hxT(k + 1) + R(k + 1) (10)

With these definitions of fx(k), hx(k + 1), and S(k + 1), the extended Kalman filter equations are the
following.

*(k + 11 k) = f[k, (k I k)] (11)

P(k + I I k) = fr(k)P(k I k)'xr(k) (12)

K(k + 1) = P(k + II k)lix(k + 1)S-'(k + 1) (13)
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*(k + I I k + 1) = fc(k + 1 k) + K(k + 1) [z(k + 1) - h[k,x(k + I I k)] (14)

P(k + 1 I k + 1) = P(k + I I k)- K(k + 1)S(k + 1)W T (k + 1) (15)

In the formulation above and in the examples of the next section, one process receives all measurements
and makes the estimation. There has been a considerable amount of recent interest in the development of
algorithms to process information obtained from a distributed sensor system. This interest arises from a need
to use parallel processing architectures efficiently. Parallel computation is needed if multi-sensor systems are
to be able to process their data in real-time. A decentralized filter is presented below.

CENTRALIZED FILTERS

MANEUVERING TARGETS

When targets maneuver, i.e. &pdlut from the basic, steady-state, "normal" dynamic behaviour, a tracking
filter must respond. To the filter, maneuvering is signaled by a rapid increase in the normalized innovation.
Recommended methods for dealing with this situation include the following.

1. Increase the process noise, or certain components of it, attributed to the target.

2. Use several filters with different assumptions in parallel, and combine their outputs probabilistically.

3. Create new filters as needed, pursuing a hypothesis tree of parallel hypotheses about target state. This
tree must be pruned rapidly lest its maintenance overwhelm the computational resources.

4. Model maneuvers as colored (correlated) noise: in particular model target acceleration as a zero-mean,
first-order Markov process (one with exponential autocorrelation).

5. Perform input estimation, in which measurements based on the nonmaneuvering model are used to
detect and estimate the control input applied to the plant dynamics, and that control input in turn is
used to correct the state estimate.

6. Use variable dimension filtering, in which the maneuver is considered part of the plant dynamics, not
noise. Maneuver detection causes the substitution of a different, higher-order dynamic model for the
lower-order, "quiescent" model.

Bar-Shalom [BF88] compares the performance on maneuvering targets of three filters: two-level white noise,
variable dimension (VD) filtering, and input estimation (IE). Ile notes that the computational effort ratios
between the three are 1:2:8. His study reveals that the two-level white noise filter does surprisingly well,
being slightly worse than the VD filter but definitely better than the IE filter.

We chose to implement the VD filter, in the light of its relatively low computational cost and relatively high
efficacy in the Bar-Shalom study. Our illustrative application was to a target moving in two dimensions at
constant velocity until some time at which it begins constant acceleration in the same direction. The quiescent
filter is simply the constant-velocity target filter, the maneuvering filter is for a constant acceleration target.

Fig. 2(a) shows the normalized innovation (i.e. error measure) of the constant-velocity filter as time passes.
Performance starts degrading at T = 5, when acceleration begins. Fig. 2(b) shows the corresponding estimate
of y position, which gradually degrades through time. The VD filter has remarkably better performance,
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Figure 2: Performance of the Variable Dimension filter. (a) Estimated y position 'Or target that starts maneuvering
at T=5. (b) Normalized innovation of quiescent filter applied to target. (c) Estimated y position for target from VD
filter, (d) Normalized innovation of VD filter (note scale change compared to (b)).
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which underlines the importance of accurate dynamic modeling. Fig. 2(c) shows the normalized innovation

of the VD filter (note the scale change). The maneuvering filter w-vas switched in at T = 6. Fig. 2(d) shows

the corresponding estimate of y position.

TARGETS IN NOISE

Tracking an object in the presence of spurious measurements (clutter) can be done in several ways. All

assume a validation gate outside of which measurements are ignored: its size is a function of the desired

probability of including the true measurement, and can be derived from a chi-squared calculation applied to

the normalized innovation.

1. The optimal way to track a single target in clutter is the track-splitting approach, in which a tree of

possible tracks is maintained. This can be a combinatorially expensive method.

2. An obvious alternative to treating all measurements, as it were, in parallel, is to pick a single candidate
measurement and proceed as if it were the right one. The obvious candidate is the one closest in

measurement space (that one with smallest normalized innovation), so this technique is called the
nearest-neighbor standard fifter (NNSF). The problem is that the true measurement can be missed.

3. A third approach is the probabilistic data association filter, or PDAF. In it, the measurements within
the validation gate are probabilistically blended to yield a combined innovation which is input into the
Kalman filtering process. The problem is that the result does not correspond to that of any actual
measurement.

The application illustrated in Figure 3 is tracking a constant-velocity target moving in two dimensions.
The plant and measurement are both noisy, with the measurement noise being drawn from a contaminated
Gaussian, in which with some probability the measurement noise has different parameters (here, higher
variance) than the noise expected by the filter. The filter produces a validation gate, based on the innovation
covariance. A measurement within the validation gate is used, while one outside the gate is ignored. In the
run illustrated, the elliptical validation gate (here a circle) shrinks while good measurements are obtained,
and grows when a measurement is missed - this adjustment makes reacquisition more likely. The figure
shows snapshots of the validation gate during a serious loss and reacquisition of track.

General aspects of the behaviour of the NNSF and PDAF filters may be predictable on abstract grounds.
For instance we might make the following predictions for uniformly distributed clutter and high probability
of detection (probability that the target is detected at all, either inside or outside the validation gate.)

1. With both the NNSF and PDAF filters tracking in clutter, as time goes on it is increasingly likely that

the filter will "lose track", e.g. start tracking clutter, or have an estimate of target state outside some

fixed bound.

2. With a "non-maneuvering" NNSF filter, low and high clutter levels may be less immediately harmful
than medium levels, since with low clutter the target is likely to be nearest the predicted state, and

with high clutter there is likely to be a clutter point near the predicted state. It would seem that at
intermediate level the clutter would be more likely to attract the filter away from the target.

3. The NNSF filter would seem more likely to make serious errors by tracking clutter since it does not
weigh the evidence. The performance of the PDAF should degrade more gracefully as conditions get
worse.

We implemented the NNSF and PDAF filters, and used them to provide individual output tracks, as in
the previous work. Also the programs were embedded in Monte Carlo simulations to provide data over a
number of runs in statistically similar situations. The results confirm the above expectations but also provide
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Figure 4: In this figure and the next, the filter is a constant-velocity (linear) Kalman filter. The plant noise is an
acceleration component (white noise of mean 0.0 and variance q = 0.2.) Clutter density a, = 0.4. (Parallelepidal)
validation gate size is such that .99 of target measurements should fall within it initially. The measurement noise has
variance 0.2 for the x, 0.1 for y. (a) Error in X vs time in NNSF, tracking situation parameters as in text, clutter

density 0.5. (b) Error in Y vs time in NNSF, clutter density 1.0. (c) Error in X vs time in NNSF, clutter density 2.0.
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Figure 5: (a) Error in X vs time in PDAF, tr0cking situation parameters as in text, clutter density 0.S. (b) Error in

Y vs time in PDAF, clutter density 1.0. (c) Error in X vs time in PDAF, clutter density 2.0.

some surprises. Fig. 4 shows individual tracking runs for situations with uniformly distributed clutter of
increasing density. The number of clutter points in the validation gate was determined by rounding a normal
variate of indicated mean (the clutter density) and standard deviation to the nearest integer, and uniformly
distributing the resulting number of clutter points throughout the validation gate volume. In these runs the
volume was close to unity. The NNSF figures should be compared with Fig. 5, which shows PDAF results
for similar situations.

Figs. 4 and 5 illustrate indeed that lower clutter levels can result in worse NNSF performance than higher
levels, and that performance of both filters falls off as time increases. They perhaps furnish a mild surprise,
viz. the ability of the PDAF to reacquire the track. This happens for lower clutter levels, and presumably
occurs when the "signal to noise" ratio is high in the validation gate (e.g. there are few measurements in the
validation gate, and at least one of them is near the actual position of the target and correctly is accorded
high weight). The behavior of the PDAF in high clutter conditions is not as surprising - it drifts, taking
the average of the random clntter.

Fig. 6 shows statistics gathered over N = 50 runs with the NNSF filter. It should be compared to Fig. 7.
The plots show the fraction of lost tracks and the average final error of the filter's estimate. Both functions
vary over tihe set of tracking times 14, 8, 16, 32 ) timesteps, and both vary over the set of clutter densities
f 0.25, 0.5, 1.0, 1.5, 2.0, 3.0 }. Here "lost track" is defined as the estimated position being more than some
fixed distance (here 2.0) from the actual position of the target. Thus it is possible to imagine the filter
actually tracking clutter for the entire run, going wildly wrong in its estimates, but luckily arriving inside
the threshold distance just at the last step, and thus not "losing track" by this definition.

The average final error function is meant to quantify the filter performance more than the discrete "lost
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Figure 6: This figure and the next show the fraction of lost tracks (a) and the average final error (b) of the filter's
estimate. Both functions vary over the set of tracking times {4, 8, 16, 32 } timesteps (axis T), and both vary over
the set of clutter densities f 0.25, 0.5, 1.0, 1.5, 2.0, 3.0 ) (axis D). "Lost track" means the estimated position is more
than some fixed distance from the actual position of the target. This figure shows results for the NNSF, with tracking
situation as in previous figures.
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Figure 7: Lost tracks (b) and average final error (b) vs track length and clutter density PDAF, with tracking situation
as in last figure.
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track" measure, illustrating a linear loss function corresponding to the intuition that an estimate closer to
the truth at the final timestep is better. Results like those in Figures 4 and 5, we are probably safe in
inferring that a closer final estimate also betokens a better estimate throughout the run.

The plots are perhaps surprising in that by this definition of lost track, the NNSF outperforms the PDAF
fairly convincingly over a large range. These results are typical of many we obtained, but it is occasionally
possible to engineer situations where the PDAF loses track less often. At least it seems fair to say that the
situation is more -omplicated than it appears from Figure 6.1 of [BF88], which indicates a marked superiority
of PDAF along axes whose semantics are not clear from the text (perhaps the original paper gives more
details).

The plots are perhaps nct surprising in that they accord with the prediction of graceful degradation of the
PDAF in terms of the average error metric, using which it convincingly outperforms the NNSF. The higher
sensitivity of NNSF to intermediate clutter levels is again demonstrated.

NAVIGATION BY MULTI-TARGET TRACKING

We are using a Kalman-filter-based, multi-target tracking approach to mobile robot navigation. The goal is
to get optimal performance with a single sensor through a strategy of Active Sensor Control. Ultimately,
we shall use a hierarchical control strategy with three layers (attention, looking, recognition). In the limited
navigational task we undertake first (maneuvering in a known laboratory with unknown obstacles), the
recognition aspect is subsumed into the looking aspect.

The navigation problem can be divided into the two distinct tasks of localization, (determining the absolute
position of the robot), and obstacle avoidance. In the multi-target tracking framework, localization is
a process of looking for erpected events; the sensors are directed to instantiate the locations of beacons,
which are reliable, easy-to-sense, natural features of the robot's environment, such as the walls of the room.
Precise localization of position can then be obtained by using a target-based [BF881 approach to track these
beacons as the robot moves. The task of obstacle avoidance is achieved by a measurement-based [Rei79]
tracking technique whose attention is captured by unexplained events in the path of the robot. We show the
localization component of t.his navigation technique using a single sonar sensor mounted on a simple mobile
robot with point dynamics. Although the scheme has been run on the robot hardware, the illustrations come
from a simulator we are developing that will incorporate detailed sensor and environment models for sonar.

Ultimately this work will incorporate both the "top-down" and "bottom-up" control styles that can be found
in perception (see the Dizcussion section). In the full implementation, the recognition layer is complex,
involving path-planning, obstacle avoidance, and model learning and maintenance - slow prccesses of a
global nature. The attention layer provides a high-speed interface to the real world.

The System Model

The system dynamics for one of Oxford's mobile vehicles are illustrated in Fig. 8(a). The state of the vehicle
at time tk is described by the state vector x(k) = (x:,yk, k,T). xk and yk are the x and y coordinates
of the center of the vehicle referenced to a global frame. 4k is the orientation of the vehicle referenced to a
global frame. T is the speed.of the vehicle at time t, which represents the linear distance the vehicle will
travel during the time interval from t& to tI+1. The motion of vehicle is such that during each timestep it
travels first in a straight line forward from position (zk, yk) to position (z&+i, yk+1), then rotates to its final
orientation Ok+t.

Xk+i = X&+-A+Tcos O
yk+l = yk+Tksin4k

The robot motion is controlled by specifying a control input u(k) = (0,0, A k, ATk)T. AOL controls the
final rotation applied after the linear movement forward for the current time-step. This rotation is subject
to a random disturbance vo, modeled as zero-mean Gaussian with variance q0:

Ok + I = + A + vo, vo -N(0, q0)
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Figure 8: (a) System dynamics for robot vehicle. (b) Taking a range measurement from a wall. (Xk, Yk, Ok) is the
position of the robot vehicle in global coordinates. (Ri,,,) represents a line in global coordinates. z, is a noisy
measurement of the perpendicular distance from the vehicle to wall pi.

AT controls the distance traveled forward for the neit time-step, which is subject to a random disturbance
VT, modeled as zero-mean Gaussian with variance qT:

Tk+1 = ATk + VT, VT - N(0, qT)

The overall plant equation of the system is

Y 1+ = y+Tkh sinOk 0 1
Yk+ 1 0++ AOTl0 + (16)

which may be written as:

x(k + 1) = f[k, x(k)] + u(k) + v(k), v(k) N(0, Q(k)) (17)

where f[k, x(k)] is a non-linear function of the system state.

The Measurement Model.

The measurement model is for a stationary robot vehicle aiking range measurements to a number of walls
using a sonar sensor. For now, we assume perfect measurements of Ok, the orientation of the vehicle. (Our
system has a 9-bit resolution digital compass that gives us this information. We also have developed reliable
algorithms to extract orientation information directly from the sonar data). The model of the environment
is a list of n line segments that represent walls and large planar objects in the room. A line segment pi
is represented by Ri, its perpendicular distance from the origin, and 0j, its orientation with respect to the
origin. In terms of these parameters, the equation of the line is:

Ri - z cos0i - y sin0i = 0 (18)
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The sensor returns the minimum distance of any object detected in its 25 degree beam width. Thus if it is
pointed in a direction approximately perpendicular to the wall, the range value obtained is the perpendicular

distance from the vehicle to the wall. The active sensor control framework uses an a priori estimate of
position i(k I k - 1) to direct the sensor to look nearly perpendicular to a given wall pi = (R,Oi) to obtain

a measurement zi of the perpendicular distance to the wall (Fig. 8(b)).

Let r, denote the true perpendicular distance from a given vehicle location (xk,yk) to the wall. Then

ri = IRi - xk cosOi - yk sin .  (19)

The absolute value arises since the vehicle could be on either side of the wall. The measurement zi is the

true perpendicular distance ri corrupted by zero-mean Gaussian noise w with variance w,:

z,=ri+w, wtv-N(O, tv.)

Suppose that at time t the robot is predicted to be in the location k(k I k - 1). The predicted location is
used to suggest n wvalls to obtain range readings from. The sensor is directed to look for each of these walls,

and the returned values are checked with an appropriate validation gate to yield validated range readings zi

for in of the n visible walls. We combine the validated range measurements to form a composite measurement
vector z(k) = I ..... XmT. To relate this measurement vector z(k) to the vehicle position x(k), we define
the non-linear function i

[R, - zx cosO - yk sinOll 1
h[k, x(k)] = (20)

IR, - zX cosO, - yk sinO,, I

Finally, a composite noise vector w(k) completes he measurement model:

z(k) = l4k, x(k)l + w(k), w(k) - N(O, R(k)) (21)

The function hk, x(k)] incorporates the prior information concerning the walls pi for which validated range

readings have been obtained at this time interval. So far we have ignored the data association problem,
assuming that each range measurement comes from the appropriate wall. The viability of this assumption

depends on how accurately the system model predicts the vehicle's movement; experimentally it has been
justified so far.

Extended lIahinii Filter Equations

The extended Kalman filter equations for the plant and measurement models described above in equations
17 and 21 use linearized plant and measurement models. The plant model f[k, x(k)] is linearized about the

current estimated state vector, k(k I k). We accomplish this by defining the plant Jacobian, fx(k):

[1 0 -Tksinotk cosok1

fx(k) = [7Xfl(kX)I T 0 1 Tk cos ok sin0k (22)= f ( , ) x = :k(kk) = 0 1 0 ( 2

00 0 0 X=k (tk lk)

The measurement model h4k, x(k)] is linearized about the current predicted state vector, 5k(k + 1 I k). We
define the measurement Jacobian hx(k + 1) to be:

-1Cs 1±sin 01  0 01

lx(kt + 1) = [VxhlT(k,x)1I_ = .(23)
Cos 0m ± sin m 0 0.
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The ± signs arise because li[k, x(k)] contains the absolute value function fo reasons given above. In calcu-

lating fx(k), the appropriate sign for each wall is chosen based on the dead-reckoning estimate of the robot's

position. The absolute value f,.,ctions would make the Jacobian of h[k, x(k)] unstable at sensing locations

very close to the wall. This is not a problem in practice because the sensor is located at the center of the

vehicle. The definitions of fx(k), lix(k + 1), and S(k + 1) are used in the extended Kalman filter equations

(11) - (15) in a multi-target control structure.

Results

We avoid some of the filter initialization difficulties by starting the vehicle from an exactly-known initial

location and setting the initial state covarlance matrix P(O 10) to zero. Because the motion of the robot

vehicle has a significant unpredictable component, the state covariance matrix P(k I k) grows considerably

with time if no updates of position from the sensor are provided.

Three runs of the simulated system are shown in Fig. 9. The error ellipse is defined by the first four elements

of P(k I k), and represents the uncertai,'r; in the prediction of the vehicle position (xk, yk). In Fig. 9(a), the

speed noise UT causes the uncertainty lli,,se to grow with time in the direction of motion of the vehicle. The

heading angle noise v causes the uncert, inty ellipse to grow in the direction perpendicular to the vehicle's
motion. Our task for the measu, mnt pr rcess is to decrease the size of this ellipse, and hence increase the
confidence in the state estimate i((k I k) f g 9(0) and (c) show the effects of measurements from one and

two walls, respectively.

Future Voi k

In this implementation, using a single Kalman filter to derive the position of the robot is effective because

1. The environment has been known exactly a priori

2. The environment has no moving objects and no clutter.

In a practical situation, an ultrasonic navigation system may need to deal with an unknown environment
that contains unmodeled walls, unknown moving objects, and clutter. For this reason, in addition to the

central Kalnan filter for vehicle position, a multi-target framework that initializes and maintains tracks

for individual targets in the environment is necessary. We plan to implement the three-layer strategy of
Active Sensor Control as a mechanism for managing the multi-target tracking approach to navigation. In
the sensor control framework, we shall develop a set of local attention processes, each tracking a particular

target or searching for new targets, and carrying out some fast, local processing to facilitate this local control.

The looking layer will perform the rmulti-target tracking per se, assigning local tracking resources to follow
individual pre-identified targets and responding to new targets and unexplained events.

A DECENTRALIZED FILTER

FULLY DECENTRALIZED DECISION MAKING

Previous attempts at decentralized Kalman filtering ,.ave either assumed a completely centralized architec-
ture (Fig. 1) in which all the sensors' observations are passed back to a central processing facility that fuses
the data, [BF88]. [DWV76), [Cho79J, or assumed some level of local embedded processing capability in each

sensing node, but still however relying on a central processing facility to perform the global data fusion (ie.

hierarchical decentralization) [11RL88], (Ifer37]. Since both of these methods require a single central facility
to perform overall data fusion they suffer from the associated problems: potential computational bottlenecks

and the susceptibility to total system failure if the central facility should fail. larris and White [IIW87]
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Figure 9: (a) A run with no !,alidated measurements. The triangle represents the actual vehicle position and orienta-
tion (Zk, yk, 0k), the reclangle represents the estimated vehicle position and orientation, and the ellipse represents the
uncertainty in the estimates of !tk and y,. (b) A run taking range measurements from a single wall. The error ellipse
shrinks perpendicular to the wall a. . .eriori confidence in the estimate of Xk and yk increases witf, measurements.
The wall comes into view and ' .rs from view during the run, causing large effects in the error ellipse. (c)
Measurements from two . A - ion from two directions reduces error.

665



IntaieReadings Local Communicate from ot'her

Estimate Nodes

Figure 10: Algorithm for individual nodes.

give descriptions of algorithms for decentralized system architectures using blackboards for communication
between nodes, but they suffer from the well-known problems associated with blackboard systems (svich as
keeping the blackboard current and free of redundant information).

Fully decentralized decision making [HD881 is advantageous to hierarchically decentralized and other forms
of distributed system architectures because:

1. It allows complete parallelization of any algorithm. Therefore the system would be ideal for
implementation on a parallel processing network (such as a transputer array).

2. It leads to a speed increase over other architectures by removing potential computational bottle-
necks.

3. It gives a system that is very resilient to loss of one or more of its nodes (ie. a highly survivable
system).

Distributed sensing and algorithms for sensor fusion that can be distributed amongst several sensing nodes
have interesting applications in robotics, process plants and C 31 fields. The algorithm we present here is
fully decentralized, requiring no central processing facility to perform data fusion [RD891. The information
communicated between nodes is simple and the equations for assimilation of other nodes' data are no more
complex than those for a conventional Kalman Filter. Our filter reaches the same global optimum as a
conventional Kalman Filter, but since this filter may be run simultaneously at the m sensing nodes of an m
node system it performs faster.

The Decentralizing Algorithm

Fig. 10 shows the operations performed by each one of the nodes in the system. Each node is initialized
wi~h estimates of the state of the system together with an associated variance of that estimate. These
initial values for state estimates and variances may be obtained in several ways and the methods used by
the implementation3 given in this paper are outlined in later sections. After initialization, the main loop
begins with each node taking a reading from its sensor of the state of the system. With this reading (and its
associated variance) the node is able to compute conventional Kalman Filter equations to reach its own, new
estimate of the state. Each node then broadcasts this estimate to the other nodes and receives information
being broadcast to it. Last, each node computes assimilation equations to take into account the data it has
just received; in fact, each node thus locally computes a global estimate.

This paper includes details of a linear version of the algorithm in which each node shares the same coordinate
frame and has the same representation of the state of the system as other nodes. In the nonlinear case, each
node, although measuring the same state, is in its own coordinate frame and uses its own representation of
the state which may or may not coincide with the representation used by other nodes. This case is treated
in full in [RD89] and is not derived here, although experimental results are given.

The Linear Algorithm
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Consider the linear Kalman filter equations 4 - 7. To decentralize them we must make the following As-
sumption (from Hashemipour [IIRL881): Assume we can partition the observation vector into m subvectors
of dimension mi. Assume also that we can partion the H matrix conformably. (This means a node cannot
make a full-rank observation of the system state.) We can therefore say that

v,(k) = [vT(k) ...vr(k)jT

and that
E{v(k)vT(k)) = biockdiag{Ri(k) ... , R,(k)}

H(k) = {HT(k),...,H (k)}

From this assumption we can also partition the F and G matrices and also the state estimates and variances,
* and P. This allows each node to implement its own local Kalman Filter for its own local estimate of the
state.

Each node, i has a system model and takes observations that are individualized versions of eq. (1) - (9).
That is, simply subscript the following variables in those equations with i: x, z, F, F , G, H, Q, S, R, P,
K.

Derivation of Assimilation Equations

We now derive the equations each node computes to assimilate the information supplied by other nodes.
References to equations (1) - (9) mean their local versions. From the Assumption above,

HT R-t(k)H - Z[HT(R'(k)Hi] (24)

and also

m

K(k)z(k) = P(k I k) Z[HTR'(k)z;(k)]. (25)
i=1

From (7) we can say

HTR7'Hi = P-(k + I I k + 1)- P -(k+1 I k). (26)

Hence from (7), (24) and (26) we can write

P-'(k +I k +1) = P-'(k + IIk) + Z[Pj'(k + Ilk + 1)- Pi'(k + Ilk)],
j=1

and by placing this assimilation equation at each node (decentralizing) we arrive at

P, '(k + I I k + 1) = Pi-'(k + I I k) + E[P, '(k + I I k + 1) - Pi,'(k + I I k)].
j=1

The summation over j does not include the term when j = i since this has already been accounted for in
(7).

Now premultiplying (26) by Pi(k + I I k + 1) and rearranging gives

I- KHi = P,(k + 11 k + I)PT (k + I I k). (27)
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Premultiplying (6) by Pi'(k + IlIe + 1), using (27) and rearranging gives

HTR-'z 1 = P-'(k + I I k-4+ 1)xi(& I k + 1) - P-'(k+ Il k)xi(k + 11lk). (28)

Using (6), (27) and (28) and decentralizing gives

i*,(k + I Ik + 1) = Pj(k + I Ik + 1)[137'(k +~ I1I k)*,i(k + 1~ k)

j=1

From (4) we can write

GSn Ij z, = x,(k + 1 I k) - Fixi(k + 1 lk+ 1) (29)

and noting that from the Assumption we can write

GSflF'z = Z[GiSn lzil
i= 1

we can derive
m

Ri(k + I Ik) = P'i(k)*,i(k I k) + Z{*,j(k + 11lk) - F'j(k)i*j(k + I~ k + 1)}.
j=1

Assimilation Equations

To reiterate: each node takes readings from its sensor, computes its local version of equations 5 - 6, commu-
nicates to all o~her nodes (see below) and then computes the equations given below.

Prediction:
mn

ic,(k±+1 lk) = f(k)fi(k k) +Z{*j(k± + l Ik) - Fj(k)*,j(k±+1lIk±+1)) (30)
j=1

Pi(k + I1I k) = Fi(k)P,(k + 11 ke + l)FT(k) + Gi(k)Qi(k)GT(k) (31)

Update:

x1i(k + I I k-i- 1) Pi(k + I I k + 1)[PT7'(k + 11 k)f*,(k + 1I k)

+ E P j (k + I Ik+ 1)*,j(k + IlIk + 1) - P i'(k + 1I k)i,(k + I k)) (32)

state error in/*

variance error info
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Figure 11: (a) A tpclstarting configuration of pursuers and the evader. (b) The pursuers have surrounded the
evader.

using *k(0 -1) = ko and P(0 1 -1) = P0 for initialization of each node.
(The summations above are over every node j from j 1 to j = m except for when i.)

The terms state error info and variance error info are the values transmitted by each node to each other
node during the communication step of Fig. 10. The information to be communicated is not complex (one
vector and one matrix per iteration), and the data fusion equations are no more complex than the local
estimate update quations.

IMPLEMENTATION

The algorithms have been implemented on a SUN 3.0 computer simulating several nodes running simulta-
neously. The application is a pursuer-evader game in which there are a number of independent pursuers
attempting to surround and trap a moving evader. The pursuers and evader move on a two dimensional
surface: the evader only moves horizontally and with a constant velocity. Each pursuer is an independent
mobile sensing node taking noisy observations of the single moving evader. Each pursuer has its own model

of the system (ie. thle evader's motion pattern) and they all communicate between themselves to arrive at a
global decision of the location of the evader so that they can then decide where best to move to surround it
(see Fig. 11).

Linear Case

In this case each pursuer takes full-state z = (Z, y, i)T observations of the evader, corrupted by noise (the
noisiness of a node's readings being proportional to the distance between that pursuer and the evader) and
each has a correct model of the evader's dynamics. The evader is travelling in the horizontal direction at
constant velocity. After taking readings the pursuers evaluate local versions of equations 5 - 6 and then
calculate the data they must transmit all the other pursuers. Each communicates this data to each other
pursuer and collect others' variance error info and state error info to arrive at a global estimate for the
(r Y) position of the evader and also its velocity in the a direction. The Kalman filter is initialized by setting
the observed velocity of the evader to zero for the first five iterations to allow the filter to settle before the
noisy observations of the velocity are taken into account.

Results
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Figure 12: (a) Linear case x-coordinate estimate (actual = solid rising line). (b) Linear case y-coordinate estimate
(actual = 178). (c) Linear case horizontal veihcity estimate (actual = 4.0).

Figs. 12 and 13 are graphs of the global estimates from two pursuers (only two are shown for clarity) and
the evader's actual parameters plotted against number of iterations. These results show:

1. Each node arrives at the same (albeit initially inaccurate) global estimate from the very first
iteration. Therefore, by communication the evaders have reached a common group consensus of
the position of the evader.

2. The global estimates for the (z, y) positions soon converge to very close to the actual values and
continue to track it well. The filter converges faster than a conventional Kalman Filter since it is
able to process m lots of sensors' information simultaneously.

3. The global estimate for the velocity of the evader i converges more slowly to the actual value but
this is to be expected since i is small compared to the observation noise and also differentiation
always amplifies noise.

Nonlinear Case

In this case each pursuer has an (r, 0, i, 0) state representation of the position of the evader, which is moving
in the horizontal direction with a constant velocity. However, in order to simulate a realistic case where
each pursuer is a photodiode based device, angle only measurements are taken. No range data is available
from the sensors so communication between the pursuer is essential for pursuers to arrive at a full state
vector. Each pursuer takes its sensor measurement and constructs its own view of the state of the object.
Each pursuer knows where it is and where all the other pursuers were from the last communication step
so each pursuer is able to transmit appropriately transformed variance error and state error information to
the others. (Also each pursuer transmits its current position to all the others). The assimilation equations
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Figure 13: (a) Non-linear case x-coordinate estimate (actual =solid rising line). (b) Non-linear case y-coordinate
estimate (actual = 185).

are computed and each pursuer ends up with a full state representation of the evader. This 'filling in' of
the empty states occurs because if one computes the linear weighted sum of a node's state estimate xi and
another node's transformed estimate ixi the new state vector xi obtained is full rank (ie. the intersection
of the angle estimates of the two nodes has been solved to give range data) (Dur881. If

i~xe

xi = G xi+ i my-+IEx
where xi and xj are (r,) state vectors with initially no values for r and iE. and jl ar ae y-associated
information matrices with zeroes in the range information positions one obtains the correct estimate for r

in xi. The filter required five steps to arrive at reasonably accurate estimates for the r and terms for eachpursuer. Then it was able to follow the evader, updating its estimates for e and e on each iteration.

Results
Results are shown in Fig. 13, which shows the (, y) position of the evader and the (r, y) estimates of two
pursuers. Only two pursuers' estimates are he neow f stater T , obetaerisrfull ations of each pursuer
have been converted to cartesian form for these plots, simply so that the estimates of two pursuers may be

directly compared. The results show that:

w . The pursuers are able to track the evader despite each pursuer taking only a partial estimate of
the state. By communication between themselves they are able to arrive at a full state vector
estimate for the position of the evader.

2. Te pursuers are in agreement over the position of the evader. The non-linearities in the system
(ie. using an (r, 0) representation for a linear cartesian motion) cause the slight error between the
two pursuers' esiatimates.

The Future

The algorithm is currently being implemented in OCCAM on an array of sensors, each with a photodiode

based angle detector and its own transputer. This will enable the algorithm to be tested on real data and
allow experiments with sensors returning measurements asynchronously. Also the algorithm may be extended
to allow tracking of several objects simultaneously.

T he motivation behind this work was to attempt to discover and set down mathematically what pieces of
information must be communicated between a group of sensors in order for them to reach a conclusion.
This problem must now be investigated further and beyond the limits of just a simple linear tracking filter
algorithm. It appears th the multi-sensor network we have analysed here may be thought of as a complex
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Markov chain with information propagating through each node. This line of research borders onto the wider
issue of sensor models and may throw some light on how best to model complex sensors such as CCD cameras
in order that the value of the information returned by a sensor in any arbitrary situation may be assessed
by other sensors. Being able to model sensors in this way would lead to the possibility of building intelligent
sensing nodes that could be connected together as a fully decentralized network.

DISCUSSION

OPTIMAL ESTIMATION AND ACTIVE INTELLIGENCE

Optimal estimation techniques have at least three distinct roles to play in real-time sensorimotor systems.

1. They can be used as the basic paradigm for estimating the state of systems internal to the observer.
Estimating external states is akin to perception.

2. They can be used to estimate the state of systems internal to the observer. Estimating internal state
involves aspects of proprioception (using information from internal sensors), but can also involve sensing
the outside world, especially to determine dynamic observer parameters such as location and velocity.

3. They can be used as low-level utilities in service of several aspects of perception or action.

Control Styles in Perception

Top-down (expectation-driven, hypothesis-verification) methods cope with the inherent underdetermined
and computationally intensive nature of perception by using apriori knowledge to constrain the space of
interpretations for perceptual data. In a navigation context, these methods correspond to map-guided
route-finding, perhaps landmark recognition and similar tasks in which an internal model exists and the
input is expected.

One important role of perception is to cope with the unexpected. This seeming truism is often ignored, and
has deep implications for computational perceptual models. In particular it implies that tops-down control
strategies are by themselves inadequate. In a navigational context, obstacle avoidance illustrates this role.
The complementary control strategy is bottom-up, or data-driven: Here the style is often a fixed order of
processing of input data (say by successive levels of feature detection and extraction) leading to increasingly
abstract levels of description of the input. As technology improves it is becoming possible to achieve the
massive data-processing effort in real time, and the practical considerations that have partially motivated
the tops-down approach are vanishing (see, e.g. (Bro88]).

In one sense, the Kalman filter is an example of expectation-driven perception. By definition it incorporates
explicit models of dynamics and noise. The strength of the Kalman filter for estimation is that it has these
models at its disposal, but requiring them limits the sorts of perceptual jobs that the Kalman filter can
reasonably be expected to perform. The severe tops-down requirements can be mitigated to some extent,
and at some cost, by such measures as running several different filters embodying different assumptions in
parallel, switching between filters when lack of fit motivates such a switch, allowing the filter to estimate
control inputs to the plant, etc., as we have seen in earlier sections.

Despite such seemingly sophisticated adaptive capabilities, the extensive literature on Kalman filtering ap-
plications (e.g. [BF88,Rei79,Abu86,Bar78,Gel73,Hal84,Ken81,Mor77,MCTW86,Ed83] reveals that the per.
ceptual tasks most often attempted are those in which the plant (often target) follows well-known and rather
simple (e.g. ballistic) dynamic laws, and in which the target is modeled as a point in space. The typical
perceptual task is tracking the (perhaps maneuvering) target (perhaps in clutter). Thus the perceptual task
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(data association, or segmentation), consists of the twofold problem of linking measurements together into

tracks and ignoring spurious data. The basic Kalman filter mechanism provides help in the way of quantified

measures of uncertainty, surprise, information, expectation, etc. but provides nothing directly to cope with

the familiar problems of controlling search in interpretation space. The track-splitting, NNSF, PDAF, etc.
approaches all have analogs in the edge-linking problem in computer vision, for example.

Dissatisfaction with the paradigm of expectation-driven low-level perception, combined with skepticism about

the efficacy of local bottom-up segmentation, has motivated other algorithms for target tracking. Their goal

is often to accomplish perceptual grouping using global, expectation-driven metrics of grouping quality, as
well as to cope with input in a more data-driven way [Kuc87]. However, much remains to be done here.

Perception: Estimating External State

It seems that if optimal estimation techniques are to be a paradigm for perception, at least the following
conditions must apply.

1. The dynamics of the objects must obey known, predictable laws.

2. The noise mean and covariance properties of the domain dynamics and of the measurement system
must be known apriori.

3. The data may arise from several information sources - the Kalman filtering technique provides a
principled way to combine (fuse) them.

4. The raw perceptual input must be processed to yield a measurement vector containing information
about the state of the observed objects. If objects are more complicated than single points, this
step may call for solving "the vision problem" in order to do tracking. An extreme example is reliable
tracking of a face in a crowd, using data from a face-recognizer. The point is that even such basic vision
tasks as region-finding are not well understood, and should not be lightly suggested as "preprocessing"
for a tracker.

5. Measurement data must be available over a significant interval, probably tens of time-steps for reason-
ably complex domain dynamics.

6. Dealing with complex perceptual events in real time will call for substantial computational resources.

Proprioception: Estimating Internal State

The other main use for Kalman filters is for internal state estimation, in aid of complex, often adaptive,
control (e.g., fEd831). Such proprioception is not divorced from perception: A vehicle can determine its
position from fixed beacons (say landmarks or stars) by tracking them and interpreting the data with a
Kalman filter. In practice, the contrast between the sophistication of the dynamic models for plants that are
to be estimated and controlled and the models of external targets is dramatic (for a plant to be controlled,
sometimes 80 state variables, for a target to be tracked, perhaps six). Presumably the observer's state
description equations are relatively stable, and devoting computational and analytic resources to precise
observer description is a good long-term investment that will pay off in better information about and control
over its state. For another thing, the observables themselves are under more control. A roving vehicle can
observe bar-coded reflectors as location beacons, or can track static features such as walls or furniture, whose
apparent motion arises more or less predictably from observer motion.

Thus the proprioception problem is inherently more "expectation driven" than the perception problem, and
Kalman filtering techniques may well be an appropriate paradigm since the following conditions apply.

1. The dynamics of the observer obeys known, predictable laws. They may be complex to model but
there is only a single, known system to characterise, and it makes sense that the observer is something
the observer itself knows best.
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2. Proprioception may be provided by on-board sensors such as tachometers, odometers, shaft encoders,

etc.

3. The noise mean and covariance properties of the observer dynamics and its measurement system can

be experimentally determined "off-line", as can the properties of the expected visual stimuli.

4. The raw perceptual input must be processed to yield a measurement vector containing information

about the state of the observer, but the observer can choose to interpret a limited set of stimuli by

customized methods if internal state estimation is the only goal.

5. Presumably measurement data is available for a significant interval, on the order of the "lifetime" of
the observer, rather than of the lifetime of the unexpected visual phenomena that occur in perception.

6. Computational requirements may not be as severe since the update rate needed for proprioception may
be lower than that for perception.

THE FUTURE

We plan to use both aspects of estimation in work at Rochester to integrate real-time vision and motion
with high-level planning in a hierarchical parallel system. An early step will be the inclusion of estimation
techniques in the robot's gaze control system [Bro89].
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Objective Functions for Feature Discrimination:
Applications to Semiautomated and Automated Feature

Extraction *

Pascal Fua Andrew J. Hanson
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Abstract

In a companion paper, we have proposed a way of exploiting information-theoretic objective functions to
evaluate the correspondence between a generic model language and shape hypotheses in a digital image. These
objective functions balance a model's goodness of fit to the photometric evidence against its geometric quality.
Here, we describe applications of the objective function approach to the extraction of feat urcs from aerial imagery
using both operator-guided cneing and automated hypothesis-generation methods. We formulate generic models
for buildings and present experimental results on a variety of difficult aerial images.

Introduction

The goal of a feature-extraction system is to find the best labeling of a scene in terms of a particular set of
models. Given unlimited computing resources, we might proceed simply by evaluating an objective function such
as that proposed in the companion paper [9] for every possible combination of pixels and keeping those with the
best scores. Since such exhaustive search is not feasible in practice, interactive or intelligent automated procedures
are required to generate likely feature hypotheses. An objective function can then be used to optimize the spatial
characteristics of single hypotheses or to rank a collection of static feature candidates. In order to achieve reasonable
rankings of an exhaustive set of hypotheses, the objective function would typically have to embody a very complex
semantic model; when excellent initial hypotheses are available from human input or from an hypothesis generator,
simpler models may be sufficient.

In this paper, we begin by demonstrating the application of the objective function approach in a semiautomated
environment where the human operator cues the system by providing a rough sketch of the feature of interest. Next,
we show how, using a relatively simple generic model for buildings in aerial imagery, similar cues can be automatically
generated and optimized, resulting in a ranked set of feature labels.

Interactive or semiautomated systems are of special importance because no automated hypothesis-generation
system is likely to approach human performance in the near future; practical systems should provide the opportunity
to exploit human context knowledge and intuition to focus the attention of automated optimization systems such as
ours.

An effective approach for fully automated systems is to generate candidates that correspond to local maxima of
the model score expressed by the objective function. Then the model plays a uniform and consistent role in both
hypothesis generation and evaluation, and the objective function itself serves ultimately to choose the most likely
global maxima of the score.

The objective function approach shows its strength relative to other approaches in two particular circumstances:

*This research was supported in part by the Defense Advanced Research Projects Agency under Contract Nos. NIDA903-86-C-0084
and DACAM7-85-C-0004.
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" Difficult Data. When lithe photonetric evidence it lihe ii nagts is noisy and characterized by occlusions,
shadows, and amibiguous edges, standard edge opera tors and segiuentation procedures will rarely generate

he u na Inb igitons evidence needed to parse the scene. Objective functions provide a means for ranking large
numbers of ambiguous possible parses.

* Generic Models. \Vhen a straightforward template model is adequate to search for the desired features,
simpler approaches like the lough transform [1] may suffice. An objective function approach that includes

ei, tlric qiiulitq measures balanced with the photometric information is much more important when the
georietry of the model is gen ric, rather than fixed.

Application Doiiiain: Cultural Features. As an application domain, we examine the extraction of rectilinear,
pre'sumably cultural, features from aerial imagery. This seems to be the simplest nontrivial model that exercises all
tli compoients of the objective function approach, and therefore is an excellent laboratory for experiments. Much
mrre complex models can in principle be formulated with no change to the basic framework; we have carried out
examples of several other models, including roads, vegetation, and three-dimensional buildings with shadows [6,7].
More details of applications using other models will be the siubject of later work.

Other work on the cultural feature problem includes that of hluertas and Nevatia [23], which is a strict edge-based
aptroach, a inumber of investigators such as Ohta, et al., [2,] who concentrate on segmentations and region-based
it hods, and McKeown and Denlinger [21], who merge road inten,ity profiles with edge-tracking to delineate roads

ii aerial imagerv. Our work assimilates many basic ideas from such approaches, unifies them into a framework
Ohat balances tie experimental image information against abstract model expectations, and provides a theoretically
justifiable objective function that distinguishes among comlipetinig hypotheses.

We be"gin hv reviewing our objective function approch and our photometric and geometric models. Next,
we invest igate tie application of tie method to operator-guided refinenient of two-dimensional features with various

ont ric const raints. Then we describe the application of subsets of tite objective function to the critical procedures
lw,,'dd hv ;In autolnalled hypothesis-gerieration system for tie discovery of buildings in aerial imagery. Finally, we

,l appro ach Io a set of challenging aerial images and evaluate the results.

Review of the Objective Function Formulation

A Model for Buiildings

We model buildings in aerial imagerv as rectilinear objects with a planar intensity distribution, possibly with
ainotialies. aid distinct edges. If stereo information is available, the model requires the building roofs to be elevated
above the background. The goodness of fit of the data to the model is measured by the information-theoretic length
of the encoded description of the data in terms of the model; the shorter the encoding, the better the fit.

The choice of the planar area model for buildings is based on simplicity and an experimental observation. Theoret-
ically, one would expect building roofs to be planes that were approximately Lambertian reflectors, yielding constant
intensity patches in the image. Experimentally, the combination of photometry, film processing characteristics, and
digitization artifacts that characterize the vast majority of the digital aerial images at our disposal do not produce
constant intensity patches, but patches that are much better described by a plane in intensity space. The plane is also
the closest genv ralization of the constant intensity model that is easily computed. Invoking theoretical corrections
for non-Lambertian reflectors woulu be much less justifiable, since we have no information whatever about the (is-
tribution of roof materials in our images, and in fact cannot know for certain that the observed effect does not derive
front some step in the processing or digitization processes, as opposed to non-Lambertian reflectance. Finally, while
the constant, model produces verifiably poor results directly traceable to the area term in the model, misinterpreta-
tions found when using the planar model appear to come from many sources, so that there is no phenomenological
justification for going beyond the planar model at this time.

As noted in [9], the technique used to discount anomalies can be critical for the local maximality of the score. In
low resolution imagery, the techniques described in [9] have proven adequate. However, in high resolution images,
an explicit representation of anomalies such as shadows and occlusions enhances the performance of the objective
function. In this paper, we model such structured anomalies by allowing model instances to have holes whose
encoding cost is taken to be the cost of encoding their boundaries.
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In effect, this means that an area with an internal blotch that is very expensive to encode should be compared
with a model of the same area that has an identically shaped cutout; the cheapest of the two encodings is the
preferred interpretation. This approach causes the objective function to prefer to treat random noise by encoding
each pixel, while choosing to cut out large anomalous areas, encoding only their shapes; these outlined areas would
be prime candidates for possible later treatment using models for shadowing and occluding structures.

Evidence Measures

We have proposed in [9] a class of objective functions based on the minimal description length principle of
Rissanen [25,26] that balances the photometry-based likelihood of a particular scene-labeling against the elegance
and appropriateness of the geometric shape models used to propose a given set of labels. This approach has much in
common with the information-theory approaches to segmentation of Leclerc [191 and of Georgeff and Wallace [11],
and the decision theory approach to region labeling of Feldman and Yakimovsky [3].

A specific instance of the building model described in the previous subsection is characterized by its area A and
its boundary length L. We model the area by fitting its intensities to a plane, histogram the deviations from the
plane, and represent these deviations as a single gaussian peak of variance a such that n pixels lie within the peak
and Ti are considered outliers. Similarly, the boundary L is partitioned into two components, I pixels that are maxima
of the edge gradient and thus satisfy our definition of an edge pixel, and i that fail to be maxima. Thus A = n + .
and L = I + 1. Stereographic information is modeled by projecting a candidate model instance in one image to the
other image and including separate terms in the objective fmnction for the resulting area A, and boundary L".

The total score for a set of non-conflicting model hypotheses is

S(,n 1 ...... )= S( i), (1)

where the score for each model instance is the difference between what we call the effectiveness F of the photometric
model and the geometric cost G. the effectiveness may be understood as the number of bits saved by representing
the data with or without the model, and thus measures the goodness of fit of the data to the model. Separating the
area, edge, and stereo terms in the model score, we write

S(Mi) = FA + Fi,E + F,S - "yGi, (2)

where

FA, = (8-kA) A  (3)S2

FE = (1 - kE)- (4)

Fs = FA +FE (5)c = L
G = C + L (6)s

are area, edge, stereo, and geometric complexity measures, respectively. kA is the number of bits needed to encode
the distribution of pixels differing from the chosen planar model,

kAA = n(logo + c) + 8+ E(ni), (7)

kE is the number of bits needed to specify whether or not a pixel is a maximum of the image gradient,

kE( = E(l,), (8)

and G represents a model for the boundary geometry that penalizes excessive length in the boundary L.
Here a is the standard deviation of the main gaussian peak, W is the number of anomalous pixels, and E(a, b)

-a log a - b log -+6 is the entropy of the partition of a set of pixels into two distinct sets.
The scale s serves to normalize the intrinsic "complexity content" of the evidence in the image; s may also be

viewed simply as the inevitable heuristic parameter that :onverts the pixel-based measures A and L from length
dimensions into dimensionless numbers that can be interpreted in terms of probabilities. The geometry coclcient 7
governs the trade-off between the pixel-based evidence and the tendency to hallucinate the desired shape model.
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Operator-Initiated Shape Refinement

Procedurs Ih; ,licient ly locate t lie nearest, local optimum of the objective function are requir'! fur the following
purposes:

" Test iig the nat ire arid effectiveness of particular models incorporated into the objec ive fuiction.

n improving th, characteristics of automatically generated feature hypotheses.

" Relieving huiiiiin operators of the burden of metrically accurate feature delineation by a irtoiirat icallv optiiinizing

a rugh sket(ich.

\We addre>s this problem by describing object contours as geometrically constrained curves iioving in a potential

, that can deforin tlerselves to local maxima of the objective function; the resultant outline will then conform to

the nearest object in the inrage that corresponds to the model represented by the objective function. Such curves

w%'re originated by Terzopoulos, Kass, and Witkin as "snakes" [16,29]. In their approach, bourndaries arc described
as polygonal curves with a score that includes geometrical constraints and a measure of edge strength. "Snakes" do

rot take into account any photometric evidence outside the edge; they yield good results only if the initial position
of the curve is close enough to the boundary of the object, to be influenced by its edges. Since we also use interior
arcri inform iiton, our curv's can easily grow or shrink if the initial position is very inaccurate. By integrating more
infornmation and incorporating anomaly discounting, our algorithm also becomes more stable anrd less sensitive to
photometric anomalies.

The opt irization proced(ire for our objective function is extremely time-consuming on serial ,nachines, but has
bee'n irplenurrieeh in real t irme on the Connection MachineTMi [8].

The Potential

In litheory, the potential used by the optimization procedure should be computed using the objective function.
In practice, however, the objective function used for scoring is inappropriate for snake-like optimization procedures
because reitiher the edge measure nor the geometry measure are smooth enough to form a potential that acts over a
rea-sonable distance. Therefore, for the purpose of optimization, the geometry is imposed as an external constraint,
while the edge effectiveness is replaced by

I 9 if g > go
Fgrad=+1 log go (9)

curve 0 otherwise,

where

(01)V = (-L (10)(2-,)-)\& + (o"

It can be shown [10] that points on curves that maximize Fgrad are local maxima of the ,dge gradient, and therefore

also maximize F,.

Deforinable Models in Two Dimensions

To find local maximaof the potential V, where V = FA +Fgrad , we describe object contours as deformable closed

curves defined by an ordered list of contiguous points C represented by tire vector X of their integer x coordinates
and tire vector Y of their y coordinates. During each iteration of the optimization procedure described below, X
and Y are updated. C is then recomputed by drawing lines between points that are no longer contiguous and
merging points that have identical coordinates, thereby generating new vectors X and Y. The edge effectiveness FE

is computed using those new boundary pixels and the area effectiveness FA of the pixels enclosed by the boundary
but not belonging to it. In this way the contour can shrink or expand as required to optimize the objective function.

Trademark, Thinking Machines, Inc.
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(a) (b)

(c) (d)

Figure 1: (a) A synthetic image of a circle and the initial position of the curve. (b) The position of the curve after 3
iterations and (c) 7 iterations. (d) The final outline.

At evcry iteration, we compute the derivative of V with respect to deformations of the contour C:

_ OFA + gra
Ox Ox OX
av _OFA OF
DV _ IA + grad

OY aY aY
In Appendix A, we derive expressions for these derivatives. To perform the optimization, we use a gradient descent
technique modified in two respects:

Impose a geometric constraint. The simplest geometric constraint is smoothness, which we enforce by
incrementing X and Y in the direction of the gradient as in a standard gradient procedure and then recursively
smooth the resulting coordinate vectors using the mask (.25,.5,.25). This procedure is fast since it can be
implemented using only integer additions and shifts, but no floating point operations or multiplications. To
generate the results presented in this paper, at each iteration, the X and Y vectors are convolved 10 times
with the mask (.25, .5, .25).

Experimentally, this procedure yields results nearly identical to the snake method, which replaces the smooth-
ing procedure by simulating the dynamics of a curve moving in a viscous medium. The snake technique is
summarized in Appendix B, where we show that our constrained optimization is equivalent to applying the
snake to the potential V - aL 2 , where L is the object boundary and a grows with the amount of smoothing.

Score optimi-ing curves operating under this constraint will attempt to shrink (or expand) to match the
contours of an object and yield a smooth outline. In the application domain of buildings, described below, we
instead constrain the contour by fitting a rectilinear polygon to the contour after each iteration.
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* Normalize the (hrivatives of the scorie. The inagnitude of the derivatives is not related to the current
distance of the contour from its optimal location. Therefore, for every iteration, we pick a step size and retain
only the sign of the derivatives which indicates in which direction the contour should move, resulting in a string
FX of -L,0 and 1 for the X coordinates and a string FY for the Y coordinates. We then normalize the string
so that (IFN 11

2 + II/FYJII2 )/11 = 62, where n is the number of boundary points and 6 the current step size, and
replace OF/OX and OF/(JG" by FX and FY in Eq. (14). This ensures that the displacement of each point is
on the average of nagniitude 6.

(a) (b) (c)

Figure 2: (a) An aerial image of a suburban scene. (b) Interactively entered initial contours.
(c) Final outlines after optimization.

(a) (b) (c)

Figure 3: (a) Initial contours in the left image of stereo pair. (b) Final polygonal outlines after optimization.
(c) Matching outlines in the right image.

Because of the smoothing terms, deformations are propagated along the curve at every iteration, making this
procedure considerably faster than ordinary gradient descent.

Since the objective function is highly nonconvex, after each iteration we recompute the score and verify that it
has increased. If, instead, it has decreased, the curve is reset to its previous position and the step size reduced.

The optimization proceeds until the curve stabilizes. For example, going from the initial estimates of the closed
curve shown in Figure 1(a) to the final result shown in Figure 1(d) took only 10 iterations. Figures 1(b) and 1(c)
show the position of the curve after 3 and 7 iterations respectively.

We now turn to the aerial image in Figure 2(a), the four initial contours shown in Figure 2(b) yield, after
optimization, the final outlines of Figure 2(c). Note that the corners of the house are slightly rounded because of the
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presence of the smoothing term.

Finally, we look at the central building in Figure 3. Given the the two initial contours shown in Figure 3(a),
the algorithm generates the outlines shown in Figure 3(b). Using a second image, the elevation of the contours can
now be automatically determined by maximizing the stereo effectiveness Fs defined by Eq. (5). For all hypothesized
elevations within a given range, the projection of the outlines in the second image and the corresponding value of
Ps. are computed. The elevation for which Es is maximal is the height with the strongest supporting evidence. In
Figure 3(c), we show the computed projections of the contours in a second image of the same scene.

In the following sections, we turn from operator-initiated applications to purely automated feature-extraction
systems based on the same objective functions.

Automated Building Extraction

The semiautomated system described in the previous section had to be manually cued by the human operator.
In this section, we describe a procedure for automatically generating such cues by using a building model consisting
of three-dimensional rectilinear outlines conforming to the area, edge, and stereo models of our standard objective
function.

(a) (b) (c)

(d) (e) (f)

Figure 4: (a) An aerial suburban scene. (b) A Laws segmentation with undersegmented roofs.
(c) Oversegmentation resulting from a different parameter choice. (d) (e) (f) Canny
edge images computed progressively lower edge-strength thresholds.

The combined use of all three types of evidence is critical for the general success of the approach; if any one of
these evidence sources is omitted, the class of interpretable images is markedly restricted.

Details of the Parsing Procedure. The detailed steps in the parsing procedure that we have implemented are
outlined below:

e Generate Edge Cues. As initial input, our system can use either edge maps or segmentation region bound-
aries. We have used Canny edge maps [2], the Laws segmenter [17,18], and the Leclerc segmenter [19]. The
edge cues are then generated by extracting edge segments with the appropriate geometry from either region
boundaries or linked edge pixels. The system builds model edges by finding breakpoints in the initial curves
[4] and fitting curves obeying the model geometry (e.g., straight segments for buildings) between those break-
points. Edge location is optimized using the technique described in Fua and Leclerc [20]. The resulting edges
are scored using the edge-quality portion of the objective function; we compute the percentage of edge pixels
that are maxima of the local gradient, and retain only the best edges.
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Figure 5: Construction of binary relationships among elementary edge structures across a set
of segmentations.

Figure 6: A stereo pair of images containing a large complex building.

Hierarchies. N~o single parameter setting cau be expected to handle all target objects in one image, much less
in multiple images. To solve this problem, we use a parameter hierarchy of either edge maps or segmentations.
Such hierarchies arise naturally when using low-level operators with variable sensitivity parameters.

- When using the Canny map, we compute a series of maps with monotonically increasing edge strength
thresholds. We then merge edges of different Canny edge maps into edges into a single list by retaining
the best nonoverlapping edges.

- When using segmentation boundaries, we compute a series of segmentations ranging from undersegmen-
tation to oversegmentation, and extract edges from the region boundaries only. We retain each edge's
region identification, and, instead of removing overlapping edges in different levels of the hierarchy, we
mark them as belonging to the same physical edge.

Shape cues are merged across the hierarchy in subsequent analysis steps to achieve image independence. In
Figure 4(a), we show a typical image containing suburban houses. Figures 4(b-e) show portions of both
a segmentation parameter hierarchy and an edge map hierarchy to illustrate typical problems such as the
absence of relevant shape information and the presence of excess irrelevant information encountered when one
attempts to use any single parameter setting.

All the results in this paper were computed using the Canny edge operator [2]. However, we have found that
the process can be considerably more efficient if segmentation cues are used because the segmentation region
preselects groups of edges adjacent to uniform image regions and reduces the search space.
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(a) (b)

Figure 7: Steps in the parsing procedure. (a) Straight edges extracted from the original image
data. (b) The cluster of egdes corresponding to the building.

(a) (b)

(c) (d)

Figu.e 8: Steps in the parsing procedure. (a) A cycle of edges suggesting the presence of a
good building object. (b) The enclosure resulting from completing the missing links
in the cycle. (c) A cycle of edges that has no consistent semantic interpretation.
(d) The resulting enclosure.

" Construct Arcs (Compatible Binary Edge Relationships). Pairs of edges that satisfy the geometric
model constraints are assigned binary edge relationships. If a segmentation is being used to generate cues,
we first compute relationships among edges belonging to single regions at one level of the hierarchy; next, we
use transitivity to construct binary relationships among edges occurring at completely different levels of the
hierarchy, as illustrated in Figure 5. When the regions correspond to good cycles, using the segmentation serves
to make cycle construction more reliable and efficient.

Finally, a patch in the image is associated with each detected binary structure. The area component of the
total objective function score for the patch is computed, and only structures with a high score are retained.

* Construct Cycles. We next gather all the clusters of edges related by chains of binary relationships; related
edges are clustered together based on their having similar photometry. Within the clusters , we look for cycles,
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wlih we d1 ini is circultr lists of binary relationships satisfying both the photoIIetric and geometric model
requirements. \We i1lustnte cycle constru ction by examining the images in Figure 6. Figure 7 shows the edges
and two exampzles of graphs constructed from them. Figures 8(a) and 8(b) illustrate a building cycle and
the enclosure resulting from running the model-based completion algorithm. Figures 8(c) and 8(d) show the
results for a more typicI cycle; this undesired hypothesis illustrates the great need in such a system for a way
to dist inguisli good hypotheses from nonsensical ones.

(a) (b) (c)

Figure 9: (a) B[are edges in an image containing a building. (b) A closed cycle before optimization, including
only a portion of the building. (c) The cycle after optimization has expanded to fill in the building
areas matching the model.

(a) (b)

Figure 10: Two enclosures generated by the system. The larger one, (a), was built using
spurious edges that accidentally lined up with the true building, (b). At small
scale, hypothesis (a) dominates because, although it fits the photometric model less
well, it is much larger.

e Build Enclosures. To form enclosures, the gaps in the cycles of edges are first closed using a procedure that
finds the best rectilinear path. The closures are found using a variant of the F* algorithm [5]. The resultant
closed contour forms a building cue that is optimized using the method of the previous section.This optimization
stage is crucial in several respects

- Compensation for Poor Photometry. Optimization moves the contour to a local maximum of the
objective function. However, this maximum can be an hallucination that conforms to the geometry but
has poor photometric evidence. In Figure 9, we show how the optimization of a deficient hypothesis can
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produce a rluch-inlproved buildilng Candidate. Ill Ie( case when neighboring regions have low contrast,
the ssten can hialucinate enclosures with good ar'a scores that span both regions, a.s shown in Figure
10. WVhen such hal I ici nat ioris do occur, edge (uality is an important discriminatory tool.

Collapse of Multiple Hypotheses. Tie cycle uilder typically generates massively redundant hy-
potheses with overlapping c)ninlon portions. (ycles with sufficient overlap will be optimized to identical
enclosures, thus serving to reduce the redundancy of the hypotheses to be considered. This strategy is
extremely effective in finding such things as faint building edges that an edge detector may miss, but that
are paired with a strong edge on a different side of tire building.

" Find Stereo Match. When stereo is being utilized, the system computes the parameters of the three-
(limensional plane describing the world-position of the enclosure by optimizing the stereo effectiveness measure.

* Select Enclosures. The current implementation of the system assumes that we are dealing with independent
model candidates, which are then scored using the objective functions given in Eqs. (1-6). For complex scenes,
the system builds a set of overlapping, and therefore conflicting, enclosures that encompass the candidate
model instances mentioned earlier. The system chooses a subset of nonoverlapping enclosures that maximizes
the appropriate objective function.

The strength of this procedure is that it integrates model knowledge into every step of the parsing process, while
referring continuously back to the image data for confirmation of each hypothesis.

Experimental Results on Buildings

A

(a) (b)

((d)

Figure 11: Subset of enclosures that maximize ,he objective function at scale 7

We now show the results of running the system on a series of complex images with very different photometry.
Using the basic building model outlined in an earlier section, the hypothesis generator automatically produces several
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(a) (b)

(c) (d)

Figure 12: Subset of enclosures that maximize the objective function at scale 8

hundred model candidates in each image. The objective function ranks theses hypotheses according to their scale-
dependent score. The scale parameter is the only parameter we have varied from image to image. Since the scale
has a semantic meaning, it is inevitable that a semantic decision to select its value will be required at this stage
to achieve the performance goals set by the human operator. We have made no attempt to encode the knowledge
needed to automate the selection of scale.

Buildings. In the companion paper [9], we have argued that the scale parameter s that appears in the objective
function effectively fixes the lower bound on the geometric quality and size of aceptable structures. In Figures 11 and
12 we compare the results of the selection procedure of four different images, once with scale 7, and again with scale
8. At scale 7, all the buildings are picked out, but some candidates with marginal characteristics such as yards and
parking lots are retained. At scale 8, the rejection ratio of spurious candidates is improved, but now some legitimate
buildings are also lost. If stereo information were available, we could use it to reject some of the spurious candidates.

Stereoscopic Buildings. When stereoscopic or multiple imagery such as Figure 6 is available, the ambiguities
inherent in the identification of rectilinear, building-like objects in monoscopic imagery are largely resolved.

In Fig. 13 we show the outline of the three highest-scoring building candidates found by the system and their
relative scores. Note that the incomplete building shown in Fig. 13 (a) has very uniform photometry, while the
perceptually correct outline shown in Fig. 13(c) includes large shadows and darker pixels that degrade its area-
encoding effectiveness. As a result that the scores (using only the edge and area terms of the objective function) of
the two outlines are extremely close. Not surprisingly, the Laws segmenter [17,18] produces the segmentation shown
in Fig. 14 in which a region very similar to the erroneous outline has been extracted.

However, when we project the contours found in the left image into the right image and take the corresponding
stereo effectiveness into account, the score of the "correct" parse becomes considerably larger than the score of the
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(a) (b) (c) (d)

1.5
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e f

(f) (g) (h)

F igure 13: (a) (b) (c) The three highest scoring hypotheses generated by the system when
parsing the left image of Fig. 6. (d) Ratio of the scores at scale S of (b) and (c) to
the score of (a) when using stereo information (triangles) or not using it (squares).
Without stereo (a) and (c) have similar scores, while (c) dominates whith stereo.
(e) (f) (g) (h) The same three hypotheses with holes and the ratio of their scores
including stereo. (g) dominates even more clearly and (f) in intermediate between
(e) and (g).

Figure 14: A Laws segmentation with building region highlighted

erroneous one. Thus, in a case like this one, the additional stereoscopic information helps the system overcome ainbi-
guities that arise in complex scenes. Upon optimizing the stereo effectiveness, we know the three-dimensional position
of each rectilinear contour; we can thus produce three-dimensional objects having the observed two-dimensional up-
per surface. When we supply the best candidate (Fig. 13) to the SRI cartographic modeling system [13,14], we can
generate synthetic three-dimensional views of the scene such as the ones shown in Figure 15.

Effect of Improving the Anomaly Model. To further disambiguate difficult situations such as the one described
in Fig. 13, we can also extend our model to allow object contours with holes encoded solely by their boundary encoding
cost as shown in Fig. 13 (e) (f) and (g). When using both this more sophisticated model and the stereographic
information, the ranking of the three model instances plotted in Fig. 13 (h) is now closer to that of a human. Thus,
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(a) (b)

Figure 15: Synthetic views of a three-dimensional scene with the original image texture mapped onto tile central
building model. Scene areas that cannot be texture-mapped because they are not visible from the
original camera position are shown in black.

A*

(a) (b)

Figure 16: (a) Building candidates found in the left image. (b) Building candidates projected to the right
image.

more sophisticated modeling techniques as well as additional photometric evidence help produce more reliable scene
parses.

As an illustration of the full stereo parse, we show in Figure 16 a multitiered building with the best subset of
stereo enclosures that appear to be more than twenty feet high, and in Figure 17, an oblique view synthesized using
the resulting parse.

Conclusions

In this work, we have proposed a feature-extraction approach that uses a probabilistic objective measure as
the heart of either operator-initiated feature-extraction procedures, or a totally automated heuristic hypothesis-
generator tuned to produce a spectrum of local minima of the objective function. The step of the automated system
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Figure 17: Synthetic view of a three-dimensional scene with the original tiered building image texture mapped
onto the building model.

just preceding final ranking includes a local optimization identical to the operator-initiated process. These techniques
unify the optimization requirements of low-level photometric evidence with high-level heuristic or operator-imposed
semantic constraints.

The system successfully discovers a high proportion of building-like objects in aerial images with difficult pho-
tometry; such images are likely to cause standard image-partition processes to miss many or most object instances.
Stereoscopic information is found to be particularly effective in resolving building candidates.

In future work, we plan to extend the range and complexity of the models supported, to include three-dimensional
modeling and illumination information, and to pursue a comprehensive treatment of high-level interdependencies
among models to support complex cartographic analysis requirements.
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Appendix A: Derivatives of the Effectiveness

Derivatives of the area term

To estimate the derivatives of P'A, we first compute the contribution dFA of every point (x, y) in the image when

added to the patch defined by C. We recall that

FA (8- kA)
A

kA = n(logo+c)+8gi+ nlog iTlog T

where c = log(27re) and n and ii are the numbers of normal and anomalous pixels, respectively, which we can
rewrite as:

kA nci-log v
kA = n(c, - )+nlogn+ i'log-i-AlogA,

where cl = 8.0 - e and v = a 2 . To evaluate the contribution of an individual pixel we must distinguish two different
cases:

1. The pixel's deviation d from the planar fit lies in the main gaussian peak. In that case, n and A must be
incremented by 1, while the the overall variance v is modified by dv :- (d 2 - v)/n. Therefore dFA can be
computed as follows:

dFA = (i-logy) c2 dv
S -- n - + logn- logA

Slgv)- C2( -1) + logn- logA= (el 2 " 2 v -

where C2 = log, 2.

2. The pixel does not belong to the main peak. Its contribution to ji" and dFA can then be taken as

dFA = logi-logA.

Having computed dFA, we can now estimate OFA/OX using finite differences. Let us consider a boundary point
P = (x, y). Our implementation assumes that the boundary points themselves do not belong to the patch. There
are four possible patterns for the 3 x I horizontal neighborhood centered around P:

Case a: 1 P 0
Case b: 0 P 1
Case c: I P 1
Case d: 0 P 0

where 0 represents a point that does not belong to the patch and 1 represents a point that does.

" Case a: If P moves to the right, the center point is added to the patch and FA becomes FA+dFA(x, y); conversely
if P moves to the left, the left point is removed from the patch and the FA becomes FA -dFA(x- 1, y). OFA/COx
is therefore estimated to be

OFA dFA(x,y) + dFA(x - 1,y)
Ox 2

" Case b: Similarly
OFA dFA(x , y) + d1,A(x + 1, y)
Ox 2

" Case c and d: The boundary is locally horizontal,

OFA

Ox
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0IFA /OV is tlie vector of the O'A/Ox for all the points in (0.1 V/01 is conipited similarly by replacing horizontal
neighborhoods b.y \ertical ones. Note tnatr d/fA can be computed on a pixel per pixel basis and therefore in parallel
for all pixels ii thle imnage.

Derivatives of the edge te'xrn

Referring to Eq. (10), we write Fgrad as

IF1 - I o g(j. Y)

Fgrad l Z og
S C(,y) go

Here go is the niininmum gradient threshold required for an edge to be considered. In practice, we precompute, once
and for all, the quantity F defined by

log(g(xy)Ig0) ifs> go
I(x, = { otherwise

We also precompute the derivative of F, OF/Ox and Or/Oy. At each iteration, OFIL/OX and OF/OY are simply the
vectors whose components are the values of OF/Ox and Or/Oy at the current boundary points.

Appendix B: Snake Dynamics

l'ollowing Terzopoulos [29], we consider a "snake" curve C to be a physical curve dined by the vector (V, Y),
embedded in a nedium of viscosity a = 1/A and moving under the influence of the potential V = L 2 - aF. L "2 , the
square length of the boundary, can be computed as

L 2 XKX + IYY (11)
22

where K is the tridiagonal matrix with coefficients -1,2,-1. At every iteration of the optimization, we then solve
the equation of dynamics,

OV dC
O-- + a- = 0, (12)

where OV/OC is the vector (OV/OX, OV/OY). Since the deformation energy L 2 in Eq. (11) is quadratic, its derivatives
with respect to X and Y are linear. Thus, each iteration of the optimization amounts to solving the two linear
equations:

KXt+a(Xt-Xt 1 ) a OFIc_

KYt + (Yt -Yti) a F 17 (13)

Let 1 = (I[+ kA)1 Eq. (13) can be rewritten as

OFIcct-I

Xi = M(Xt- I + O Y c-' )

Y = M(Yt-1 + 0OF I - )  (14)

For (v large enough (typically a > .01), the matrix M can be approximated with excellent accuracy by an n-diagonal
matrix. We can therefore solve Eq. (14) simultaneously for X and Y by ccnvolving the right-hand terms X +OF/OX
and Y + OF/OY with the appropriate mask. In this formulation, the value of a determines the width of the mask
and how nmuch X and Y are smoothed - the smaller a, the more smoothing.

The recursive smoothing procedure proposed in the main text amounts to multiplying X and Y with a convolution
matrix with coefficients that are centered around the diagonal and are similar to those of the matrix M used to solve
the snake equations. The smoothing procedure can therefore be considered an approximation to the snake method
in practice both techniques yield indistinguishable results.
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Abstract

One of the main impediments to the use of machine vision techniques in robotic applications has been the lack
of real-time response. Many of the more appealing motion detection algorithms contain a burdensome computa-
tional cost which precludes real-time implementation. However, the advent of new high speed architectures for
image processing has opened up the possibility of real-time motion detection and quantification. This paper
discusses the use of spatio-temporal filtering on a frame-rate video processor to perform real-time motion track-
ing with a camera mounted on a robotic arm.

INTRODUCTION

Motion detection and quantification in machine generated imagery has betn studied quite extensively over
the last few years. One of the goals of this work has been to determine optical flow fields that measure image
velocity at each pixel in the image. A variety of techniques have been used with varying results including,
among others, matching based techniques [3,6, 17], gradient based techniques [7,11,16] and spatio-temporal
energy methods [1,10].

Our interest in this area is in exploiting motion tracking for robotic applications. In particular, we wish to
track moving objects (parts on a conveyor or on a rotating table for example) with an arm mounted camera in
order to pick them up with a stable grasp using a dexterous multi-fingered Utah-MIT hand [2). Applying these
methods to real-time motion tracking is, however, difficult. The computational demands of these methods, usu-
ally carried out on a pixel by pixel basis, put a large computational burden on any system in which real-time
response (for servoing of an arm mounted camera) is required. Previous work by Burt et al. [5] has focused on
high speed feature detection and hierarchical scaling of images in order to meet the real-time demands of sur-
veillance and other robotic applications. Related work has been reported by Lee and Wohn [13] and Wiklund
and Granlund [19] who use image differencing methods to track motion. Corke, Paul and Wohn [8] report a
feature based tracking method that uses special purpose hardware to drive a servo-controller of an arm-mounted
camera. Goldenberg et al [91 have developed a method that uses temporal filtering with similar hardware to our
own. Luo, Mullen and Wessel [14] report a real-time implementation of motion tracking in 1-D based on Horn
and Schunk's method.

We have exploited the properties of the PIPE [4,12] real-time image processing machine in this work to
achieve real-time tracking of objects in 2-D using a combination of feature based spatial and temporal process-
ing. The motion energy in a scene is identified and used to control the arm mounted camera, keeping the mov-
ing object centered in the field of view.

In our initial work, we are using the experimental setup shown in figure 1, which consists of a CCD cam-
era mounted on the end effector of an IBM 7575 SCARA arm. The IBM arm is controlled by a PC based con-
troller (Figure 2) that allows user access to the low level control of the arm. In our experimental environment,
we have a single moving object on a homogeneous worktable, similm to an industrial setting. The goal is to
track the motion of the moving object in the scene and keep the objec. in the center of the field of view. The
motion is very arbitrary, generated by a toy mobile robot that "bounces" off obstacles in the scene and changes
its direction of motion arbitrarily i.e. non-predictive), thus precluding us from using predictive motion or Kalman
filter tracking techniques.
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Thus, we do not need to be able to compute a full optic-flow field at each pixel in the image, but rather,
we need to detect where the object is and quantify its global motion (translation) in order to move the hand for
grasping. Since we wish to track the motion with an arm mounted camera we are faced with being to able to
update the robot arm parameters at high enough rates to keep the object centered in the field of view of the
imaging system attached to the robot arm. Our work is notable in that we are explicitly using spatio-temporal
processing at real-time rates in conjunction ';!th robotic arm control. The technique has proved to be quite good
at maintaining the moving object in the central field of view of the arm-mounted camera system.

ARCHITECTURE OF THE PIPE IMAGE PROCESSOR

In tasks such as tracking a moving part and picking it up, vision sensing has to be synchronized with robot
motion in real-time. Typically, the processing of images cannot keep up with the servo rates of joints in an arm,
causing delays in movement. To alleviate this, we are using a PIPE image processing system which can process
a single image in one video field time. Each stage in the system, called a Modular Processing Stage (MPS), is
designed so that all input, processing, and output are completely synchronous with the video-raster and thus
allows a complete image to be treated as one data structure. The stages of the pipeline are connected along a
number of different pathways. There is a forward path connecting the output of each stage to the input of the
next stage, a backward path connecting the output of each stage to the input of the previous stage and a recur-
sive path connecting the output of each stage to its own input. In addition, there are six video buses to connect
the output of any stage to the input of any other. Each of these data-paths is eight-bits wide. Images can be
made to stream between stages, spending one cycle (1/60th of a second) in each stage for processing. The
hardware modules available in each stage include:

* Two image buffers, 256x256x8 bits each, for storing images.

" Two neighborhood operators to do any arbitrary 3x3 or 9x1 convolution on the complete image.

* Four look-up table operators to do any arbitrary point transformation operation on the complete image,
such as multiplying each pixel in the image by 2.

• Three ALU's to do simple operations on two images, such as subtracting one image from the other, pixel
by pixel.

* A Two Valued Function Module (TVF), that is a very powerful tool to do any arbitrary operation on two
images, or to perform arbitrary image warping operation operations, such as rotating an image by an arbi-
trary angle.

It needs to be emphasized that all the operations in a stage can be done on the complete image, and 4an
be finished in 1/60th of a second. Given this capability, we have developed a number of algorithms to imple-
ment real-time vision modules with the goal of fast and robust motion determination.

SPATIO-TEMPORAL FILTERING FOR MOTION DETECTION

A robust but computationally demanding approach to motion detection and quantification is to use a
number of spatio-temporal filters that are "tuned" to different discrete image velocities [1]. By finding peaks in
the responses of this filter suite, the velocity of an image event can be estimated. The number of filters needed
for such a method is prohibitive for a real-time application such as ours. Our method instead lies upon a single
spatio-temporal filter that will isolate motion energy in the scene quickly, but will not be as robust in determin-
ing the actual velocity in the scene. However, since we are tracking a single moving object, our arm servoing
procedure can effectively track the motion that has been isolated in the scene.

A simple technique that can isolate motion energy is to difference two successive images in the scene.
This techniques suffer from a number of problems that makes it less than robust. Among these problems are
noise and shifting image boundaries in a stable digital image, aliasing effects due to texture on the object and
field alignment problems. The effects of any differencing method must be smoothed both spatially and tem-
porally for meaningful motion isolation.
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Our attempt to track moving objects in real-time begins with the implementation of a spatio-temporal
filter. In spatial image processing, an edge detection method due to Man" and Hildreth [15] is to calculate the

Laplacian of a Gaussian filtered image. The Gaussian part of this separable operation is used to smooth the

image, after which the Laplacian operator generates essentially a second derivative response in the smoothed

image. The zero-crossings of this second derivative operator are then used to find edges in the image. An ana-

log of this operator in the temporal domain can be approximated by taking a second derivative operation on a

spatially smoothed input image. The temporal operator can be extended over a number of successive frames and

zero-crossings isolated from it. To implement suc a filter on the PIPE, three successive images (using every

other field for spatial consistency) are spatially smoothed with a Gaussian filter (note: more images in the tem-

poral dimension could be used with a correspondingly longer latency in the processing cycle). The three images

are then temporally filtered on a per pixel basis using a mask that finds second derivatives over three images.

The forward, backward and recursive paths on the PIPE allow the spatial processing to be carried out in three
successive stages and then the three consecutive spatially filtered images can be combined via the three paths

described above. This concurrency is one of the key aspects of real-time implementation on the PIPE

Once the second derivative response is calculated, the zero-crossings can be isolated using a binary neigh-

borhood operator that looks for sign changes across a pixel's 3 x 3 neighborhood. The zero-crossings are some-
what noisy, with oscillatory crossings in areas of weak temporal edge strength. Therefore, a simple energy
threshold is used to insure that zero-crossings found by the algorithm are not noise artifacts. The algorithm

takes 2 PIPE cycles, which provides a new set of zero-crossings every 1/30th sec. with a latency of 6 PIPE

cycles (1/10th sec.).

QUANTIFYING THE MOTION

Once the regions of motion have been found using the spatio-temporal filters discussed above, the motion
has to be quantified. In this procedure, a global centroid of the spatio-temporal edges is used to quantify the
motion, which can be done in two ways on the PIPE. The first method is pyramid based, using a variation of a
method discussed by Goldenberg et al. [9]. Each buffer within an MPS of the PIPE can be "squeezed" (sub-
sampled) by a factor of 2 in each dimension at a cycle boundary, thus allowing a 256 x 256 image to be
reduced to a I x 1 image in 16 cycles (16/60th of a second). The centroid algorithm operates by finding a local
centroid of each 2 x 2 rectangular window of the image, and then squeezing the image. This is repeated 8 times
after which the global centroid value is left as the 1 x 1 image. Local centroids are computed by using the
spatio-temporally filtered edges derived above as binary blobs that contain the image's motion energy. The
binary image of spatio-temporal edges is then ANDed w*Ii a ramp image of X pixel coordinates and stored in a
MIPS buffer. A similar procedure is done for Y axis coordinates of the thresholded binary region. Each of the
two images now contain a spatially indexed set of pixels in areas where a blob exists. Using a local 2 x 2 con-
volution, each 2 x 2 window in the image has a local centroid computed. At the end of this cycle, (performed
in 1/60th sec.) the image is squeezed and the process repeated, until a global centroid results in a 1 x 1 neigh-

borhood of the image.

The calculation of centroids of motion energy using this pyramid approach is slow in that it takes 16
cycles to reduce the image to a I x I image containing tht centroid in either the X or Y dimension. Our second
implementation takes advantage of a special purpose hardware board, ISMAP (iconic to symbolic map). The
ISMAP works by forming accumulator totals in one cycle and a simple division operator allows the centroid in
each dimension to be calculated in two cycles rather than 16. Thus, the entire motion detection and
quantification process now takes 6 cycles on the PIPE, yielding an update rate of 10 HZ on calculating motion-
energy centroids.

TRACKING THE OBJECT

The motion detection algorithm needs to translate motion in 2-D image space coordinates into motion in
3-D robot coordinates. We have restricted the motion of the object to a 2-D plane. Hence, we need to perform
a simple calibration that will relate changes in image space coordinates to changes in the robotic workspace. In

697



our experimental setup, the vertical distance from the camera to the moving object is fixed, so a simple calibra-
tion method is sufficient to relate changes in U-V image space with X-Y motion of the robotic arm.

Tracking the object is accomplished by having the PIPE system continually update the centroid measure-
ment of the moving object A PC reads the centroid information from the PIPE upon a request from the robot
arm when it is ready to perform another positioning move. The processing loop is:

* The system is initialized and when a moving object is detected by the spatio-temporal filters, a centroid of
the motion energy is calculated and fed to the robot system.

* The robot is servoed so that the old centroid will map to the center of the camera's coordinate system,
thus keeping the object centered in the field of view.

* The procedure is repeated as long as the spatio-temporal filters detect motion energy.

The connection between the image processing system and the robot arm is via a serial line running at
9600 Baud. This severely limits the ability of the system to do joint level servoing. The approach used here is
to feed the new image centroid to the calibration transform on the arm system, and then move the arm to the
new Cartesian coordinates. The arm controller has a number of parameters that can be used to tune this move-
ment, including variable settling times and calculation of via points that smooth the response of the arm during
its tracking phase. Currently, we can generate motion energy centroids at 10 HZ and arm servoing at 4 HZ. By
removing the serial link, update rates of the arm position approaching 8 HZ may be possible.

EXPERIMENTAL RESULTS

The system works quite well in motion tracking tasks. We have tested it in following straight line motion
and in arbitrary randomized motion that is quite jerky and unpredictable, implemented with the mobile toy
robot. The system is capable of tracking the object accurately as it covers the entire workspace of the robot. A
video tape showing the tracking response also has been produced. Figure 3 shows 3 responses from the vision
algorithm (from a static camera) for a typical tracking scene that shows the ability of the vision system to accu-
rately locate motion energy using spatio-temporal filtering. In these images, the toy robot is moving inside a
box, from which it bounces off randomly and changes direction. In the top image, the toy robot is moving in
the upper left part of the scene, but it has encountered a comer of the containing box, which has slowed it to a
stop. The motion energy is shown to the right, revealing no apparent motion (blank picture). In the middle
image, the robot has started to bounce off the wall and motion energy is detected. Finally in the third image,
the motion of the robot is tracked as it moves forward. The centroids of these detected motion energy regions
are then used to guide the arm in its movement to track the object.

SUMMARY AND FUTURE WORK

Our future work is to include depth tracking as well as X-Y motion tracking. A possible approach is to
use sonar [14] in the servo loop to add a depth value to the calibration. The update rates from the sonar are
approximately equal to our current motion control rates, so the method seems compatible. In addition, recent
work by Waxman, Wu and Bergholm [181 has exploited using multiple spatio-temporal filters on the PIPE to
calculate image velocities, which we may be able to use to refine our motion velocity estimates.
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Dynamic Motion Vision

Joachim Heel
Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Abstract

We present the idea of Dynamic Motion Vision in which a dynamical model of the motion
imaging situation is the foundation for the systematic processing of a sequence of images. We
use this formulation to design a Kalman Filter for the estimation of a dense depth map of
the environment. We show further how a motion estimation procedure may be integrated
into the filtering process. The resulting algorithm is a systematic solution for the problem
of recovering both a dense depth map and motion parameters from an arbitrary sequence of
images. Experimental results on synthetic and real images demonstrate the practicality of the
approach.

1 Introduction

The key question in motion vision research today is how to extract information from an entire
sequence of images rather than just two consecutive frames. The hope is that multiple frames will
improve the accuracy, reduce the influence of noise and even allow the extraction of information
which cannot be recovered from just two frames.

We can only hope for such an improvement if we succeed in incorporating the information from
multiple frames in a systematic way derived from the physics of the motion imaging situation.
Previously proposed solutions to this problem often lacked such a foundation or were subject to
strong restrictions which limited their applicability.

Let us begin by examining what constitutes the temporal coherence in some of the currently
proposed algorithms for the recovery of structure and motion. A first class of algorithms r2], [15],
the rigidity scheme [16], uses intuitive or biologically motivated relationships between frames d. the
basis for multi-frame processing. Consequentially we have no guarantee for the quality of such an
algorithm and failure cases are easily constructed.

Another group of algoiithms makes use of multiple frames as a means of accumulating a sufficient
number of constraints for the solution of a set of equations. Examples are [13], [12]. These methods
do not make use of the temporal relationship between frames.

The photogrammetric problem of relative orientation motivated another approach: Find the
motion parameters which minimize the spatial error of points in the real world corresponding to
a given set of extracted features [7], [14]. Disadvantages of such approaches are the necessity to
extract and match features and the complex nonlinear minimization problem involved

It was soon realized that only an explicit model of temporal behavior would allow further im-
provements. Dynamical models were proposed in [153, [3] and [4]. The initial approaches suffered
from a number of problems which limited the practicality until Matthies, Szeliski and Kanade [10]
added a new perspective recently. Using a simple dynamical model for temporal changes in depth
they implemented a Kalman Filter based algorithm for the recovery of structure from real images
with promising results. The remaining limitations are the necessity to know the camera motion as
well as the restriction of motion to one translational degree of freedom.

In this paper we present two results: the application of the theory of dynamical systems to
motion vision to establish an explicit model of the temporal relationship between image frames and
an algorithm for the recovery of arbitrary structure and motion based on the dynamical model. We
have conducted a series of experiments on synthetic and real images to verify the theoretical r esults.
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The underlying paradigm of Dynamic Motion Vision bears applications for other tasks in motion
vision such as segmentation, optical flow etc.

2 Dynamic Motion Vision

2.1 The idea

Dynamic Motion Vision is divided into two steps:

1. The formulation of a dynamical model for a quantity of interest.

2. The application of techniques developed for dynamical systems for the measurement of the
particular quantity.

In our case the quantity of interest will be the environmental depth Z for which we construct a
dynamical model relating it to the measurable optical flow. We apply to this model the technique
of Kalman Filtering to obtain an estimate for the depth Z, i.e. the structure of the scene.

This formulation suggests that the approach bears applications far beyond the specific one pre-
sented here. We view it as a new perspective on the pertinent problems in motion vision. The
theoretical foundation for this approach is described in [6].

2.2 A dynamical model for structure

A dynamical model' consists of two parts 2:

1. A differential equation which describes the change of the quantity of interest x over time

x= f(x). (1)

2. An algebraic equation which describes the relationship of the quantity of interest x to a
measurable quantity y

y = g(x). (2)

We now model the motion imaging situation in terms of such a dynamical system. We adopt
the usual co'.entions for coordinate systems (origin at the center of projection, z-axis aligned with
the optical axis pointing towards the image plane) and motion parameters (vectors of instantaneous
translation t and rotation w) as depicted in figure 1. Our quanitity of interest is the depth Z, we
consider the optical flow (u, v) to be measurable.

If P is a point with position vector R on the object moving with t and wa relative to the camera
we have that

A = -t - w x R. (3)

The third component of this vector differential equation

, = -W - (Ay - Bx)Z (4)

is the dynamical model for the depth Z corresponding to (1). We have used the components of the
motion vectors t = [U, V, W]T and w = [A, B, C]T and the coordinates (x, y) of the projection of P
into the image plane.

' This is a simplified version of a general dynamical system.
2Boldface is used to denote vectors.
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Figure 1: Coordinate system, motion parameters and projection geometry.

The relationship between our dynamic quantity Z and the measurable optical flow (u, v) is well
known [9] as the motion field equations

u = -U+xW +Axy-B(x2 +1)+Cy

= -V + yW -Bxy + A(y 2 + 1) - Cx. (5)
z

Figure 2 shows a block-diagram of the dynamical model we have constructed.

System Model Measurement Model

-U + xW + B )+ IU = -U+x Axy -B(x2 + 1) + Cy

=-W - (Ay - Bx)Z _ V+YW B+A(y 2 + 1) - Cx

_ _ _ _ z

Kinematics Motion Field

Figure 2: The dynamical systems model of motion vision

Clearly there are other dynamical models that can be constructed like the ones in [15], [3], [10].
The goal is to find the simplest one without making overly restrictive assumptions. Note that our
only assumption at this point is the rigidity of the scene employed in (4).

Before we describe the algorithm which uses the above model for the recovery of structure and
motion we briefly discuss the nature of the measurement process which provides us with the optical
flow (u, v). We used the so-called sum-of-squared differences (SSD) optical flow. For every point
P = (x 1 ,yl) in image 1 we seek to determine the point P2 = (x1 + u, y, + v) to which it moves
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in image 2'. We assume that the brightness in a neighborhood N of P1 remains nearly unchanged
between frames and that P2 is within an area S of P1 . By denoting the brightness function in
image i by Ei(z, y) we can formalize the procedure. For every point (X, y) in image 1 we seek the
displacement (u, v) such that

SSD(u,v) = min [Ej(x+ ,y+'i)- E 2 (x + + u,y+ 77+ v)] 2 . (6)

In other words we are looking for the displacement that minimizes the sum of squared -differences.
Various improvements of this basic technique using multi-grid techniques and sub-pixel fitting are
possible.

For our purposes we are mainly interested in quantifying the certainty or variance of an optical
flow value obtained by this method. We will make use of the variances '2 and or of the optical
flow measurement in our structure and motion algorithm. Anandan [1] suggested a "confidence
measure" which intuitively corresponds to an inverse variance in some way. In Heel [6] we give a
formal derivation of optical flow variance based on noise propagation.

Under some assumptions these variances take the form

0 2=SSD and o2 SSD (7)

where the subscripts denote partial differentiation and expressions are evaluated at the (u, v) that
minimize (6). Intuitively we see that the variances are high where the SSD is large or in other words
the match between the two compared regions was not very good. The variances are also high in
the case of small second derivatives which indicate a low curvature of the SSD surface. Such a case
arises when the region we are searching for a match is nearly uniform in brightness so that many
matches are possible.

2.3 A Kalman Filter for depth estimation

The problem we are facing is to compute a dynamically changing quantity (in our case the depth
Z) but we are able to measure only a function of this quantity (the optical flow). However, we have
a mathematical model which describes the temporal evolution of the quantity of interest. Given
an initial value, the depth Z will behave exactly according to this dynamical model and we could
determine Z at any time precisely. The problem is that we do not know this initial value.

To solve this problem we will simulate the differential equation describing the dynamical system
in our computer in parallel with the actual system (the moving camera) starting with our best guess
for the initial value. In every step we can then compare the optical flow values produced by our
simulation with the one we measure from our image. To compensate for the error we made in our
choice of the initial value we then use the difference between the measured and simulated optical
flow to improve our simulation value for the depth. This is the well-known idea of an observer
depicted in figure 3.

The dynamics simulation part of the observer is exactly the same as the dynamic model (4) we
constructed in the previous section, however, we use a caret to denote quantities in the observer.

Z = -W - (Ayk - Bxk)Z (8)

Following the observer principle we improve the simulation of Z in every step by an amount pro-
portional to the error in the observed quantity, the optical flow:

3 Vejocities are normalized by the interframe time interval T to obtain displacements.
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Camera Observer
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2=2±

Figure 3: The observer principle

where (it, ii) is computed from (5) using the current value of Z.
The obvious question is how to pick the elements of the so-called gain e. Here is where the

reliability of our measurements expressed in the form of variances C2~ and uomenoly
Clearly, if we consider our measurements (u, v) to be very reliable (small variance) then we would
like the error in the measurement to have a very strong effect on the value of Z. On the other hand
a low confidence in the measurement should cause us to weight an error in the optical flow less. A
systematic way of computing the gain e which takes the variance of the measurements into account
is the Kalman Filter which interprets both the state Z and the measurement (u, v) as stochastic
processes. The gain is chosen such that the signal-to-noise ratio of the estimation is minimized.

For details on the Kalman Filter, specifically the nonlinear version used here, refer to [5]. We
summarize below the discrete time filter equations for the recovery of structure from optical flow.

1. Update component:

Filter Gain e T = [2 T T 0 2 + IZ zke [ckck 'z .k + Rd]-

State Update 442k Uk - v ]

Covariance Update oj 2 (1 - eck)k

2. Prediction component:

State Prediction 2k+1 = -TW + [1 - T(Ayk - Bxk)jZk

Covariance Prediction cz,k+1 = [1 - T(Ayk - Bzk)]2 Z, k

We have used the following notation: and ,k are the depth and its variance, the quantities
the filter estimates. Further we have

=[(U-kW)/Z] (10)
(V ykW)/Z

and

R 20 (11)
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the measurement covariance matrix. Note that we have assumed that the estimates of the optical
flow components u and v are independent. Finally, fi and i ir the state update equation denote the
motion field computed according to (5).

2.4 Making the algorithm practical

Let us briefly reflect upon the effect of the technique outlined above. A point P in the environ-
ment will appear at P' = (z, y) in the image plane. The state equation of our system describes,
how the depth of P will change due to the motion t, w. The Kalman Filter uses this knowledge
to reconstruct the depth Z from the optical flow measurement (u, v). Note that the filter produces
only the result for Z at P' or in other words: we need one Kalman Filter at every pixel in order to
obtain a dense depth map.

2.4.1 Depth reinterpolation

The previous remark uncovers the main difficulty we are faced with in implementing the tech-
nique: The point P' at which the Kalman Filter operates also moves inbetween frames. In practice,
this will have the following consequence. Suppose the current depth estimate is stored in an array
corresponding to the image pixel array. The updated value for Z computed at (x, y) is not valid
at (z, y) but rather at some (x', y') which is the location to which (x, y) moves due to the relative
motion of the scene. Fortunately, (X', y') is given to us by the optical flow vector (u, v) which would
allow us to have the filter "follow" the projection real world point in the image plane.

Instead of pursuing this option which may be realistic for a small set of features but hardly
for a dense depth map we insert a reinterpolation stage which computes the Z values at the grid
points of our depth map from the warped depth map. A number of techniques are available for this
task including bicubic and bilinear interpolation. We have found a fast weighted averaging scheme
described in [6] to work very well, while more sophisticated methods are computationally expensive.

2.4.2 Motion estimation

So far we have acted as if the motion parameters t and w were known. In practice this may be
the case, for instance in a mobile robot system where the vehicle motion can be extracted from axle
potentiometers or similar sensors. However, the iterative nature of the Kalman Filter allows us to
estimate the motion parameters in addition to the structure. Note that the scheme will work even
better if the parameters are in fact known.

The idea for the motion estimation is based on the fact that if the structure Z were known to
us we could use it together with at least 3 measurements of the optical flow (u, v) to compute t and
w in a least-squares fashion from the motion field equations (5)

-U + xW
U = + + Axy- B(x 2 + 1) + Cy (12)

= -V + W Bxy+ A(y 2 + 1)- CX. (13)

The key idea is that, since Z is not known (it is precisely what the filter is estimating) we use the
current estimate 2 instead. For the least-squares estimation, let us assume the we have i = 1. .. , n
locations (xi, yi) in the image where we measured the optical flow (ui, vi) and estimated the depth
estimates Zi (the output of the prediction stage of the filter). Then we wish to find t and w such
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that
=1

10~ 1U 0 t + +Xyi (W+1)4) J'

= Z '(vi + [0, i i'_Y t Zi , Xy,-l-j2(4

= E (ui +ai'-t +bi'.W)2 + (V,+ c,t +diW)2

i=1

is minimal. Differentiating with respect to the motion parameters t and w yields the following linear
system of 6 equations as a necessary condition for a minimum

+ c ) t + [ ai • bi + ci • di) W = -Zuiai + vici)

[ ai • bi + ci di) t + b? + d?)] w = - uibi + vidi) (15)
i=1 i=1 I $i=1

This system can easily be solved for the desired parameters.
The result of integrating the depth reinterpolation and the motion estimation into the block

diagram of the Kalman Filter is shown in figure 4.

Motion t W
tm o Estimation

(u') Udat Predict

Z, az  Reinter- i- Zpolation Z, a z

Figure 4: The block diagram of the Dynamic Motion Vision algorithm for depth and motion esti-
mation.

2.5 Implementation and Experiments

We have implemented the Dynamic Motion Vision structure and motion estimation from optical
flow and present below the results of experiments on synthetic and real images. Since space is
limited we present only the most important results for the synthetic image experiment and report
the results on real images in full detail.

In the first experiment we used a 3D polygonal modeler and computer graphics package to
generate a sequence of images of a crater as perceived by an aircraft flying over the structure.
Some images from the sequence, samples of the optical flow computed from them and the recovered
structure are shown. This experiment allows us to compare the structure used in the creation of
the images with the depth map recovered by the algorithm.
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Figure 5: The first three images of the crater sequence.
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Figure 6: The first three optical flow fields from thle crater sequence.

lIi the second experiment we used a CCD camera with a focal length of 10 mm in pure trains-
lational motion over a scene consisting of a small spray bottle on a table before a flat background.
The bottle was 730 mm away from the camera, the background was 1000 mm away. The motion of
the camera was non-uniform: The camera translated ,5 mm between frames except between frames
2 and 3 where the translation was only 2 am, The distances and motions were chosen so as to
limit the components of the optical flow vectors to less than 6 pLxels. The absolute values of t he"
ranslational iiot ion parameters and depth are of course only recovered up to a constant factor

whichi is ,Iternuiu, by thle choice of thle initial value of Z. In all experiments we began withI an

beiialyot Ir1'lm b map the value of which was an average of the actual depthI in the scene as it may
a i" it.d by a si uple range se'nsor.

\%e conside.red thlis experiment to he a crucial test for the algorithml for the following reasons.

I . Tlie, not ion was non niforin aiid therefore bound to reveal any prob~lems due to thle siinnlt a-
ous ",t moat iou of depth and motion.

'2. "lih ep ,Ii variations inl the scene are small. As a consequence thle difference bet we','i Ih
,,:t id fkw oi t le h,-- ott and o th-e bckground would be very sm-all.

1 l)ul,' to ; abserir'e o~f texture on tihe bottle thle optical flow there was rat her uioisv.

I'le algorithbi ,,,,ms to hiamdle all of these problems reasonably well . Since no aSSUlnpt ion about
Iih. no (t ion was ,'unplow'd. the tion-umniformitv was (letected as the plot 10 oft lie iiot ion Iparamuetrs,
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Figure 7: The structure created in the geometric modeler and the recovered structure. Note that

viewing perspectives differ slightly.

X. . . . ..

.........
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Figure 8: The first three images of the bottle sequence.

reveals. We observed that the z-component of the translation vector is particularly sensitive to

errors in the optical flow/depth. The structure of the bottle, the table is on which it stands and

the flat background are clearly recovered. As expected the scarcely textured bottle cap's structure

is not recovered as accurately.
The implementation is also reasonably fast: for the image size of 300 by 300 pixels one iteration

takes approximately 2 minutes on a Sun 3/60 if the optical flow has been precomputed. Note,

however, that due to the local nature of the Kalman Filters this algorithm is ideal for a parallel

implementation on a SIMD machine and a considerable speedup should be achievable.

Our other experiments were equally encouraging with exception perhaps of those involving a

focus of expansion in the image plane. Near the focus of expansion, the nature of the motion forces

the optical flow measurements to very small values thereby decreasing the signal-to-noise ratio. A

look at the equations reveals that the Kalman Filter reacts accordingly by choosing very small values

for the filter gain. This is of course the desired behavior but the depth recovered in a region around

the FOE becomes useless.
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Figure 9: The first three optical flow fields from the bottle sequence.
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Figure 10: The recovered and the actual translational motion. All other motion components were
negligibly small with exception of W which had a peak error of -0.12 mm in iteration 3.

3 Conclusion

We have shown how the theory of dynamical systems can be applied to the motion imaging
situation. The resulting formulation can be exploited in the design of a Kalman Filter for the
estimation of a dense depth map with interleaved motion estimation. We have also shown, that
Dynamic Motion Vision need not be be subject to the severe limitations of previous approaches.
We need no knowledge of motion or features. Note however, that the approach will work particularly
well in the case of known motion or at location of feature-points.

A major shortcoming of the specific application of Dynamic Motion Vision outlined in this paper
is the use of optical flow as a measurement. Optical flow computation is not only computationally
expensive but also very noisy in general. Our goal is to formulate the motion imaging situation in
terms of a dynamical system in which the brightness values or their derivatives appear directly as
measurements. We will build on the work of Horn, Weldon and Negahdaripour [1I, [8] who have
developed direct methods for two-frame motion vision.

We believe that Dynamic Motion Vision can provide solutions to other problems than Kalman
Filters for structure recovery. In particular we intend to use dynamical models for the segmentation
of scenes containing several moving objects and for the improvement of structure estimates obtained
by a stereo pair of cameras in motion. In our opinion, the most intriguing feature of Dynamic Motion
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Figure 11: The structure recovered after each iteration step of the DMV algorithm from left to right
and top to bottom.

Vision is that it provides a systematic way of processing a sequence of images and is no longer limited
by the restrictions of previous techniques.
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Abstract

This paper ' discusses the collection of image sequences for quantitative experiments in motion analysis. Much
of the work in motion analysis aims at the determination of motion parameters and depth of environmental points.
In order to assess the effectiveness of motion algorithms it is necessary to obtain motion data with ground truth
of known accuracy. Until now, such accurate ground truth has not been available, especially in the context
of autonomous navigation in outdoor environments. Availability of good ground truth is critically important
in understanding the limits and accuracy of motion analysis, for without such data collected under realistic
conditions, the effectiveness of such algorithms is a matter of conjecture. This paper contains a description of the
motion data collected by the Computer Vision Group from the Computer and Information Science Department,
University of Massachusetts. The data was collected at Martin Marietta in Denver in October 1988, using the
imaging facilities provided by the Autonomous Land Vehicle (ALV). A total of eight sequences of about 30 frames
each were collected at five different outdoor sites using move and shoot and stop and shoot methods. For all the
sequences accurate ground truth of environmental objects was determined using theodolites and a laser range
finder. The camera egomotion parameters (this included both translation and rotation) were determined using
a Land Navigation System on board the ALV. We show example images of the data set collected and present an
analysis of one of the sequences. The data will be made available for motion research to the scientific community.

1 Introduction

Mitch of the motion analysis effort is aimed at the determination of motion parameters and depth of environmental
points. In order to assess the effectiveness of motion algorithms it is necessary to obtain motion data with ground
truth of known accuracy. Until now, such accurate ground truth has not been available, especially in the context of
autonomous navigation in outdoor environments. Availability of good ground truth is critically important in under-
standing the limits and accuracy of motion analysis, for without data collected under conditions, the effectiveness of
such algorithms is a matter of conjecture.

It should be noted that various studies [1,3,4,5,6,7,8] demonstrate that algorithmic computation of motion
parameters and depth are subject to error in many circumstances, especially those situations associated with realistic
applications. To our knowledge, accurate ground truth for motion imagery of outdoor scenes does not exist.

The problem is compounded by the fact that some algorithms are very sensitive to small variations in the data.
For example it has been shown [7] that algorithms assuming purely translational motion are very sensitive to small
amounts of rotation; this rotation can be caused by uneven surface grade, bumps, stones, road banking, or vehicle
sway and vibration. Since such deviations from ideal trajectories will be present in any real application, they must
be taken into account by motion algorithms. Thus, to evaluate motion algorithms it is important to obtain acarate
measurements of the actual motion of the vehicle, as well as the depths of the objects in the scene.

Since accurate ground truth has not been available our first goal was to collect image sequence data along with
accurate ground truth information. Our previous experience with relatively small scale data acquisition with the
NAVLAB at Carnegie-Mellon and the University of Massachusetts mobile robot encouraged us to undertake this
venture. For this paper we used the facilities provided by the Autonomous Land Vehicle (ALV) at Martin Marietta.
It is our expectation that the images and the associated data will be useful to researchers for both qualitative and

'This research was supported by Defense Advanced Research Projects Agency grants F30602-87-C-0140,DACA 76-85-C-0008, DACA T6-
86-C-0015 and National Science Foundation grant DCR8500332.
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quantitive motion work.
The main body of this paper discusses the approach we have adopted to determine accurate ground truth and

gives the experimental results. This include sample images and an analysis of one of the image sequences. After the
experimental results we state some of the intended uses of the data.

2 Experimental Methodology

Figure 1: Photograph of the ALV

Collection of motion data is itself a non-trivial task. The motion data set needs to consist of more than just a series
of images acquired at intervals. First, considerable instrumentation of the vehicle and camera is required in order
to provide the camera position and look angle with respect to a 3-D world coordinate system for each image of the
set. In addition to this accurate ground truth, positions of a number of environmental objects are needed in order to
assess the accuracy of the results. We identified two different methods for collecting motion data. The first is a stop
and shoot method of data collection, while the second is a move and shoot method. In the stop and shoot method
of data collection the vehicle is stopped while acquiring each image frame. After an image frame has been acquired
the vehicle is moved again and another image frame acquired. This goes on until all the frames have been collected.
The ALV's Land Navigation System (LNS) is used to provide accurate vehicle position and pointing information.
The position and pointing parameters of the camera with respect to the vehicle needs to be determined by prior
calibration. Accurate 3-D positions of a number of environmental objects are determined from a detailed survey of
the area; for cultural (i.e. manmade) objects like buildings, fences and signposts, the ground truth will be fairly
accurate. For some natural objects like rocks, it will be possible to determine the position of specific surface points
accurately, while for other natural objects like bushes and trees it is more difficult to determine a single location
representative of their position. In some cases additional objects like traffic cones were added to provide more detail.
These were precisely located by surveying the point on top of the cone. Note that stop and shoot may not reflect
the perturbations of the vehicle that will probably be encountered by real moving vehicles, nor will it reflect the
accuracy with which the LNS can dynamically acquire data. A second problem of course is the fact that light levels
may often change due to passing clouds or other factors.

In the move and shoot method of data collection the same measurements are made using the same instrumen-
tation, but the vehicle is kept in motion. Important advantages of move and shoot are the realistic scenario of a
moving vehicle and the ability to shoot images rapidly before variations in lighting become significant. The motion
of the vehicle will introduce certain errors. First, certain data (such as the vehicle roll angle) are available only at 40
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Figure 2: Site 2 (top left), Site 3(top right), Site 4(bottom left), SiteS(bottom right)

Table 1: Description of Images Acquired. Most image sequences
are 30 frames long.

Site Name 7 Description Surface Methodology
1 Rocket Field hill, cones, bldgs. dirt-road stop & shoot 1

2 Record Bldg. 'i road, bldg., hill on-road stop& shoot

2 move & shoot
3 Rifle Range road, sheds, bldgs. dirt-road st shoot

3 " "' move & shoot
3 move & shoot

4- Beyond Tomorrow giant rock, trees off-road move & shoot
.5 Stage Coach Road hills, rocks, trees dirt-road move & shoot
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Figure 3: Coordinate System of the LNS

Pttpoopt Pt P I

ms intervals. Second, slight timing mismatches between measurements and image acquisition will introduce errors
in the data set. This can occur if the vehicle hits a bump between the reading of the LNS and the acquisition of the
image. Finally, it is assumed that the camera is fixed rigidly to the vehicle. No account is taken of movement of the
camera relative to the vehicle attributable to vibration or deformation of the shell, and no account is taken of slight
movements of the camera optics from vibrations or movements. Another problem with this approach arises from the
fact that image acquistion and digitization may take substantial time because of the limited in memory storage and
the consequent need to move large amounts of data before re-shooting.

To provide truly representative data, various combinations of sites and data collection methods were considered.
Thus the kind of road surface considered (on-road,dirt-road and off-road) may determine the practicality of certain
kinds of motion algorithms (e.g. algorithms which assume smooth motion between frames will work best with on-road
sequences and may not work at all with off-road sequences).

The sequences acquired also differ in scene content. Some road sequences have many man-made objects (such
as buildings and fences), since algorithms based on lines are well equipped to exploit these. Finally, to provide a
complete data set, there are sequences in which there are no man-made objects but instead only natural objects like
rocks, trees and bushes. Vehicles must be able to navigate in these environments as well. Most of the sites have a
number of distinct objects or environmental features, but are not overly cluttered, since it was deemed infeasible to
determine the location of every object visible at such a site. In a few of the sequences a small number of traffic cones
and cardboard boxes were placed throughout the scene. Survey data was used to locate the most distinguishable
objects.

Image and instrumentation data was collected for sequences of approximately 30 vehicle locations using the stop
and shoot method. The image and instrumentation data was collected again using the move and shoot method. For
both methods survey data was used to locate the initial and final positions of the vehicle (so that it could be related
to the survey data for the objects). Additionally for one of the stop and shoot sequences, the vehicle's position was
surveyed at every point to provide an independent check of the LNS data. In this context it should be mentioned
that the ALV (Fig 1) is 2.7 m wide, 4.2 m long and 3.1 m high. It weighs approximately 16000 pounds. It is eight
wheel powered and hydrostatically driven. The direction and distance travelled are provided by a Land Navigation
System (LNS). The LNS measures direction as an absolute angle, for example, azimuth is measured with respect to
true North. Sample readings of the LNS are provided in the appendix.
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3 Description of the Data

The collection sites for images were located in the area surrounding the Martin Marietta plant in Denver. Images
were acquired by moving the ALV on rough terrain (off-road), unpaved road (dirt-road) and macadamized road
(on-road).

The LNS system was activated while the vehicle was in motion in order to determine the camera egomotion
parameters. In addition, the initial location of the vehicle and an adequate number of environmental points were
m-asured with the help of two theodolites. It should be noted that for stop and shoot the distance travelled between
successive stops is not always the same. This is not a liability because we are able to determine the location of the
vehicle in 3-D with the help of the LNS or survey data or both. This provides us with ground truth for the translation
and rotation of the vehicle. Table 1 gives details of the images which were collected. We show respresentative images
from four of the sites in Fig 2. In each case red, green and blue images of 512 x 512 resolution were acquired.

4 Analysis of the data

For the stop and shoot sequence at Site 1, a 2-D map constructed from the theodolite measurements and with the
vehicle location in each frame determined by the LNS data is shown in Figure 4. The depth values of the surveyed
environmental points are shown in Table 2. The corresponding points in the image are shown in Figure 5. Although
we only present a 2-D map, we are in the process of making full 3-D maps of each site and of the vehicle trajectories.
It should be noted that in every case we have determined the initial vehicle position by using the theodolites. Hence
for every image sequence the 3-D position of the camera at each frame can be determined by using the LNS data
starting from the initial vehicle position. Note that the translation and rotation parameters are also given. It is
encouraging to note that the laser range finder readings for distances and the distances computed by taking theodolite
readings (angles) agree to within 0.1 m for most objects.

For one of the rifle range stop and shoot sequences we computed the 3-D position of three points at every
vehicle position from theodolite measurements. From this we computed the Euler angles for rotation of the LNS
coordinate system. We compared this with the Euler angles for rotation computed from the LNS data. It was found
that the rotation around the z-axis (Refer Fig. 3) agreed to with 0.1 degree. This is expected because the horizontal
measurements of the theodolites were large and hence very reliable. The vertical measurements of the theodolites
were much smaller. Nevertheless, the rotation around the x-axis and y-axis also agreed to within 0.5 degree. We have
also compared the distance travelled as measured by the theodolites and laser range finder with the LNS distance
travelled and found agreement to within 0.1 meter. These figures almost certainly reflect the limitations of our
survey work and not the LNS itself. The manufacturer's specifications for the LNS indicate an accuracy of 0.005
degrees in pitch, yaw and roll.Our exercise in independent verification was merely designed to reassure ourselves
that the LNS was functioning properly. The camera position can be obtained from the LNS position through a rigid
transformation.

5 Intended use of the data

The data shall be put to the following uses:

" To recover depth of environmental objects through the application of various motion algorithm. For a detailed
description of the principal algorithms of interest developed by the University of Massachusetts please refer to
[1,10,11,12,13).

" Determine the accuracy of the LNS system [14] available on the ALV by comparing the results of camera
egomotion parameters obtained by the LNS with theodolite measurements. This will allow us to determine
whether better instrumentation is required on the vehicle. In particular our goal is to determine whether more
expensive inertial navigational systems are required for ground truth or the existing LNS system is adequate.

" Comparison of results obtained by stop and shoot with move and shoot. This is of importance because in the
past practically all motion data has been obtained through stop and shoot. We would like to know to what
degree stop and shoot is representative of real vehicle motion.
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=12 Pt. Object x y Dist.
1 Cone 1 -23.9 10.1 26.0
2 Cone 2 -30.3 17.3 34.9
3 Cone 3 -14.3 3.7 14.8
4 Cone 4 -19.6 12.4 23.2
5 Cone 5 -10.5 10.2 14.7
6 Cone 6 -12.5 21.2 24.6

=16 7 Box 1 -25.1 5.6 25.8

18 is 8 Box 2 -31.2 10.4 32.9

'14 9 Box 3 -25.0 8.7 26.5
=6 10 Box 4 -16.9 14.7 22.4

11 Pole 2 -107.6 151.2 185.6
-. 12 Pole 3 -32.5 46.1 56.4

F 313 Mountain -171.0 86.9 191.9

14 Trash Can -18.7 22.7 29.5
5 15 Bldg. 1 -35.3 25.7 43.7

16 Bldg. 2 -25.3 27.7 37.5
3 17 Bldg. 3 -1.7 5.1 5.4

18 Truck -45.5 24.9 51.8
*Theodolite 1 . Theodolte 2

Table 2

.Frame 1

Figure 4
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6 Conclusion

This data collection effort attempts to satisfy the longstanding need of motion researchers for outdoor motion
sequences with accurate ground truth. The data is being made available to the general community and can be
obtained by communicating with Ms. Valerie Cohen at UMass (E-mail address is vcohenOcs.umass.edu).
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8 Appendix - The LNS data

The following is a sample of LNS data for the image sequence analysed in this paper.

Acquisition time: 11800 Acquisition time: 14441
x position: 0.000000 x position: 0.626390
y position: 0.000000 y position: 0.502460

yaw: 0.887852 yaw: 0.894659
pitch: 6.275386 pitch: 6.275961
roll: 0.006999 roll: 0.007382

distance travelled 0.000000 distance travelled: 0.803084
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ABSTRACT

This paper describes a method of modeling sensor detectability and its implementation in the VANTAGE geomet-
ric/sensor modeler.
Each sensor consists of one or more light sources and TV cameras, which illuminate and observe, respectively,
various portions of faces of an object. Sensor detectability, which specifies where the sensor can "see" (detect), can
be described by a result of AND/OR operations between illuminated and camera-observable portions of 3D faces.

In order to represent this sensor detectability, first we will define a G-source, an abstract sensor component,
representing either a light source or a TV camera. Then, we will investigate G-source illumination conditions
to describe under what condition each G-source illuminates (or observes) surface portions with respect to its
illumination direction. We will show that the sensor detectability can be decomposed into its component G-sources'
illumination conditions and AND/OR operations between them. Based on these findings, we will propose the sensor
composition tree. The tree consists of G-source illumination conditions as its leaf nodes and set operations which
indicate a combination of the component G-source illumination conditions, as its branch nodes. We will also propose
several 2D structures to represent detected 2D appearances given by VANTAGE using a sensor composition tree.
Finally, we will show how to use these capabilities in model-based vision.

INTRODUCTION

Geometric modelers allow users to create, store, and manipulate models of three-dimensional (3D) solid ob-
jects [Req8O,RV82,Mor85]. I hese geometric modelers have found many applications in CAD/CAM and robotics
areas. Such examples include mechanical part designs [Sut63,BG82], off-line robot simulations [Loz82,SM861,
automatic creation of programs for numerically controlled (NC) machineries [Bez72], finite element analysis.
Building a model-based vision system based on a geometric modeler [BH86,HH87,Ike87] is one of the most inter-
esting applications. The relevant knowledge of an object required for recognition is extracted from its representation
in a geometric modeler and then used for recognition by a vision program. It has become very common to design
an object by means of a geometric modeler; this designing process provides a geometric representation of an object.
This geometric representation can be used to build a model-based vision system. If we can establish a systematic
method of converting those representations into a recognition program of that object, recognition programs can be
relatively easily obtained.
A geometric modeler represents a 3D object, while a recognition program observes a 2D appearance of the object,
and thus requires its 2D representation. Moreover, model-based vision systems often use various active sensors to
obtain visual information: an active sensor projects a special set of lights onto an object and measures depth/surface
orientation from the returned light. Under these active sensors, the object appearances are determined by the
product of an object model with a sensor detectability, which defines where the sensor can "see" (detect) [IK89]. As
shown in Figure 1, the same object under the same attitude, thus represented as the same object model, can create
different appearances (and features) when detected by different sensors. The edge-based binocular stereo reliably
detects depth at edges perpendicular to the epipolar lines, which are the lines parallel to the line connecting its two
TV cameras. The photometric stereo, which consists of three light sources and one TV camera, detects surface
orientations of the surfaces which are illuminated by the three light sources and are visible to the TV camera. The

'This research was sponsored by the Defense Advanced Research Projects Agency, DOD, through ARPA Order No. 4976, and monitored
by the Air Force Avionics Laboratory under contract F33615-87-C-1499.

The vi,.ws and conclusions contained in this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Research Projects Agency or of the U.S. Government.
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light-stripe range finder, which consists of one light source and one TV camera, detects distances of surfaces which
are illuminated by the light source and visible to the camera.
Thus, it is necessary for a geometric modeler to represent not only an object model but also a sensor detectability
in order for it to be fully used for a model-based vision system. It is also important to represent the 2D appearance
of an object explicitly and symbolically, because such a 2D representation is the one to be used by the vision
system, and thus should be well-organized and easily accessible. Surprisingly, however, little effort has been
expended in this direction, even though some of the early applications of the geometric modeler were vision
applications [Rob65,Bau721. This is probably because the main application of the geometric modeler is still in
designing mechanical objects, and the main concern is how to represent 3D rather than 2D information.

OBJECT
MODEL

DETECTABILT

BINOCULAR PHOTOMETiC LIG-T-S'RIP
STEREO STEREO RANGE FINDER

Figure 1: Object Appearances.

This paper proposes to represent sensor detectability and to produce symbolic 2D representations of an object
appearance using a geometric modeler. First, we examine how to specify the sensor detectabilities. We propose to
represent them using a tool called a sensor composition tree and consider how to implement this sensor composition
tree in our geometric modeler, VANTAGE. Then we will propose several 2D structures to represent an object
appearance symbolically. We will also discuss some of the applications of this system.

DEFINITION OF SENSOR COMPOSITION TREE

Each sensor consists of one or more light sources and TV cameras, which illuminate and observe, respectively,
various portions of 3D faces. Sensor detectability, which specifies where the sensor can detect, can be described as
a result of AND/OR operations among illuminated and camera-observable portions of 3D faces.
In order to represent this sensor detectability, first this section defines a G-source as an abstract sensor component
repres'nting either a light source or a TV camera, and then, investigates G-source illumination conditions to describe
under what condition each G-source illuminates (or observes) surface portions with respect to its illumination
direction. This section also proposes a sensor composition tree, which consists of G-source illumination conditions
as its leaf nodes and set operations which indicates the combination of the component G-source illumination
conditions, as its branch nodes.

722



FEATURE CONFIGURATION SPACE
Sensor detectability depends upon various factors which include: position of a feature, orientation of a feature,
reflectivity of a feature, transparency of air, ambient lighting, and so forth. In most object recognition problems
the orientation and position of a feature are the most important factors. This subsection proposes a method of
representing the angular freedom between a feature and a sensor, which affects sensor detectability the greatest.
Later on, we will consider the effect of distance.
In order to specify the angular freedom explicitly, we attach a coordinate system to each point of an object feature
and consider the relationship between the sensor coordinate system and the feature coordinate system. For example,
on a 3D face, we define a coordinate system so that the z axis of the feature coordinate system agrees with the
surface normal at that point and the x-y axes lie on the face, but are defined arbitrarily otherwise. For other features,
we can also define a feature coordinate system appropriately. See Appendix A for more details.
Since angular relationships between the two coordinate systems are relative, for the sake of convenience we fix the
sensor coordinate system and discuss how to specify feature coordinates with respect to it. The angular relation
between the sensor coordinate system and feature coordinate system can be specified by three degrees of freedom:
two degrees of freedom in the direction of the z-axis of the feature coordinate system, and one degree of freedom
in the rotation about the z-axis. See Figure 2 (a).

Since we want to consider the angular relationship, we can translate the feature coordinate system so that the two
coordinate systems share the origin. We will then define a sphere whose origin is the origin of the sensor coordinate
system, and whose north pole is the z axis of that system. We will specify a feature coordinate system as a point
on the sphere. Referring to Figure 2 (b), the point on the north pole of the sphere represents the feature coordinate
system aligned completely with the sensor coordinate system. Any other point on the spherical surface represents
a feature coordinate system obtained by rotating the sensor coordinate system around the axis perpendicular to a
plane given by the sphere center, the spherical point, and the north pole until the direction from the sphere center
to the point coincides with the z axis of the feature coordinate system. Figure 2 (c) represents various sensor
c-rdinate systems corresponding to spherical points. As for a point inside of the sphere, the distance from the
spherical surface to the point represents the angle of rotation (modulo 360') around the z axis from the coordinate
system corresponding to the surface point to the coordinate system corresponding to the inside point. Figure 2 (d)
shows those coordinate systems corresponding to points on a radial axis. We will refer to this sphere as the feature
configuration space, and represent the ability of a given sensor to detect in it.2 '3

G-SOURCE ILLUMINATION CONDITION
Each sensor consists of two kinds of components: light sources and TV cameras. For example, both a time-of-flight
range finder and a light-stripe range finder have one light source and one TV camera. The binocular stereo has one
light source (without light sources you cannot observe anything) and two TV cameras; the photometric stereo has
three light sources and one TV camera.
This paper regards both light sources and TV cameras as generalized sources (G-sources). Each G-source has two
properties: the illumination direction and the illuminated configurations. The G-source illumination direction of
a light source denotes its light source direction; the G-source illumination direction of a TV camera denotes the
direction of its line of sight. G-source illuminated configurations of a light source denote the collection of the
feature coordinate systems in which the feature can be illuminated, provided that its illumination direction is not
occluded; G-source illuminated configurations of a TV camera denote the collection of those systems in which the
feature is visible to the TV camera, provided that its illumination direction is not occluded.
Thus, in order for a feature to be illuminated by a G-source, the feature coordinate system should be in the
illuminated configurations, and the G-source illumination direction should not be occluded. We will call these two
conditions the illumination condition of the G-source.
The G-source illumination direction can be represented in the feature configuration space by a radial line from the
sphere center. Let us denote this G-source illumination direction as V, which is a unit vector from the origin of
the feature coordinate system to the sensor coordinate system. G-source illuminated configurations can be specified
as a volume in the configuration space. For example, let us suppose a light source is located at the origin of the
sensor coordinate system and the origin of a feature coordinate system is on the negative z direction of the sensor
coordinate system. Then, its G-source illumination direction is represented as the line segment from the sphere
center to the north pole. If this G-source illuminates faces whose surface orientation is less than 90 degrees from
the illumination direction, then its G-source illuminated configurations are represented by the northern hemisphere
of the feature configuration space, as shown in Figure 3. In most cases, however, the area near the equator is noisy,
so we exclude that area and have a spherical cone whose axis is the same as V and whose apex angle is d.4

2 This representation will not create discontinuities around the north pole as opposed to the case in which Euler angles from the sensor
coordinate system to the feature coordinate system are used to specify spherical points; this representation will instead create discontinuities at
the center of the sphere and at the south pole. However, this is advantageous because we mainly use the area around the north pole to discuss
detectability and reliability.
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Figure 2: Feature Configuration Space.
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Once a G-source illumination condition is applied to a 3D face, it generates an illuminated portion or portions and

a shadowed portion or portions on the 3D face.

SENSOR COMPOSITION TREE
The detectability of a sensor, that is where a sensor can detect, can be decomposed into illumination conditions of
its component G-sources and operations between them. For example, a photometric stereo system can detect only
the portions of a 3D face on which its three light sources project light directly and which its TV camera observes.
Thus, we can decompose the detectability of a photometric stereo system into four different G-source illumination
conditions (three light sources and one TV camera), and AND operations between them. In the case of a light-stripe
range finder, for a portion to be seen, it is necessary that it be illuminated by the light source and be observed
from its TV camera. Thus, we can decompose the detectability into two G-source illumination conditions and AND
operations between them.

Accordingly, portions of a 3D face detected by a sensor can be obtained by independently applying its component
G-source illumination conditions to the 3D face and then applying set operations to the illuminated portions on the
3D face. For example, the photometric stereo's detected portions can be obtained by applying its four G-somce
illumination conditions to a 3D face to generate four kinds of illuminated portions on the 3D face, and then applying
AND operations among the illuminated portions. For a light-stripe range finder, its detected portions can be obtained
by applying two G-source illumination conditions to a 3D face to generate two kinds of illuminated portions on it
and then applying an AND operation between the portions on the 3D face.
A TV camera has functions as G-source and as a projector. As a G-source, a TV camera generates illuminated
(visible) portions on a 3D face. In other words, by tracking the lines of sight in reverse directions, we can define
the illuminated (visible) portions on the 3D face. (Actually, those portions are visible from the TV camera.) Then,
the TV camera projects the illuminated (visible) portions of a 3D face onto the image plane to generate its 2D
appearance.
Based on this consideration, AND, OR, aiid PROJECTION operations are necessary for combining illuminated
portions on a 3D face and for projecting, to generate a 2D appearance of the portions detected by a sensor. It is
also necessary to specify the order of the set operations. For this, we will define a sensor composition tree. That
is a binary tree, each of whose leaf nodes represents a G-source illumination condition and each of whose branch
node represents one of the set operations: AND,OR, or PROJECTION.
We can represent several sensors' detectability using this sensor composition tree. For example, Figure 4(a) shows
a light-stripe range finder and its sensor composition tree. The right leaf node, GS1, corresponds to the illumination
condition of the light source, and the center node, GS2, represents the illumination condition of the TV camera.
These two nodes are connected by the operation, AND. Since the appearance is generated with respect to the
coordinate of the TV camera, the operation, PROJECTION, is applied with respect to GS2.

Two other examples, a two-light light-stripe range finder and a photometric stereo, are also shown in Figure 4.

G-sourcme

G-source
illumination
direction

G-source
illuminated
configurations

\ /

Figure 3: G-source illumination condition.
3Most sensors detect faces. In this case, we only need to consider the spherical surface as the configuration space instead of the total sphere.
4 The current implementation of VANTAGE can handle only the normal G-source, whose illuminated configurations are depicted as a spherical

cone, describe above. For other types of G-sources, see [1K891.
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Figure 4: Example of sensor composition tree: (a) The sensor composition tree of a light stripe range finder; (b)
The sensor composition tree of a two-light stripe range finder; (c) The sensor composition tree of a photometric
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SENSOR COMPOSITION TREE IN VANTAGE

This section considers a method of representing the sensor composition tree and the operations required to determine
where a sensor can detect in VANTAGE.
G-SOURCE AND ITS OPERATIONS
This subsection defines a method of representing a G-source and its illumination condition in VANTAGE. VANTAGE
represents a G-source illumination condition as a node of the sensor composition tree. A VANTAGE function,
SCTNODE, creates a node of a sensor composition tree in VANTAGE.
The G-source illumination direction, and thus also the illuminated configurations depend on the position of the
feature coordinate system with respect to the the sensor coordinate system. However, if we can assume that a
G-source is far away from the object, then the G-source illumination direction becomes a constant vectors at any
point of an object considered. In this case, that direction can be specified as a constant vector, V = (Xv, Y, Z,)'
with respect to the sensor coordinate system at any point of the object.
The G-source illuminated configurations are also represented as an invariant spherical cone regardless of the position
of the feature. The axis of the cone is the same as the illumination direction, V, while the apex angle is denoted as
d. Using these parameters, the illumination condition of the distant G-source, called the Orthographic Generalized
Source, can be represented as

(SCTNODE OGS g-source-name V d)

in VANTAGE, where g-source-name is a node name used in the sensor composition tree.5

In general, the G-source illumination direction depends on the position of a feature. As a result, the G-source
illuminated configurations change over the object. However, the shape of the spherical cone, whose apex angle
is d, is invariant with respect to the illumination direction. Thus, in this case, called the Perspective Generalized
Source, we will specify the explicit position of the G-source.6

(SCTNODE PGS g-source-name X d),

where X denotes a matrix that indicates the coordinate system of the G-source with respect to the sensor coordinate
system.
VANTAGE calculates the illumination direction based on the position of the feature with respect to the sensor and
determines the illuminated portions of a face. These illuminated portions of the face is attached to the 3D boundary
representation of the 3D face as 3D face illumination properties.
Figure 5(a) shows an example of a 3D scene, where a 3D scene refers to a collection of several 3D objects. In
this example, it consists of one cube, one arch, and one table. To this 3D scene, we will apply one sensor which
consists of two G-sources: one light source from the right direction and one TV camera from the left direction. We
will use this 3D scene as an illustrative example throughout this paper.
One G-source, corresponding to the light source, generates 3D illumination properties on its 3D faces, as shown in
Figure 5(b), while another G-source, corresponding to the TV camera, generates other 3D illumination properties
on them, as shown in Figure 5(c). Since a property does not necessarily take a uniform value over a single 3D face
(for example, only one portion of a face may be shadowed while other portions may be illuminated by G-source
1), VANTAGE divides the 3D face according to the different G-sources, and creates corresponding 3D subfaces.

IMPLEMENTATION OF SENSOR COMPOSITION TREE
It is necessary to consider set operations on 3D illumination properties on a 3D face. We will define an AND
operation between an illuminated property I and a shadowed property S by two different G-source, i,j as follows:

I - (ANDij)

S - (AND1iS)

S -- (AND Si Sj)

For example, referring to Figure 6, each 0-source, Light-l, 2, and 3, generates its own illuminated portion and
shadow portion. Applying AND operations to an illuminated portion gives the result shown in Figure 6 (a). The
illuminated portions can be obtained by applying intersection operations, as shown in Figure 6 (b). The shadowed
portions can be obtained by applying union operations, as shown in Figure 6 (c). VANTAGE implements this AND
operation as intersection operations through a recursive polygon clipping process. See [IR89] for more details.

5 The current implementation of VANTAGE has also optional arguments to indicate type, focal length, and image size.6More precise specification is possible such as defining focal length. See [BRH*89] for more details.
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(a)

(b)

Figure 5: 3D face properties: (a) 3D scene consists of one cube, one arch, and one table. A sensor, which consists

of two G-sources, one light source from the right direction and one TV camera from the left direction, is applied to

the 3D scene; (b) 3D illumination properties generated by the light source; (c) 3D illumination properties generated

by the TV camera.
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Figure 6: AND operation among illuminated portions.

729



We define OR operations as follows:

I +- (OR I 1)

I - (ORiSj)

S - (OR Si S)

The operation OR has a complementary relationship with the AND operation. Let us suppose the same three light
sources generate three illuminated portions on the same 3D face and we need a part of OR of the three illuminated
areas. See Figure 7 (a). The illuminated portion can be obtained by applying union operations to the illuminated
portions, as shown in Figure 7 (b), while the shadowed portion can be obtained by applying intersection operations
to the shadow portions.

ILLUMINATION PROPERTIES
ON 3D FACE

Ught-i Lght-2 Ugh-3

\or/

V
(a)

ILLUMINATED SHADOWED

Light-1 Light-2 Light-3, Light-) Ldght-2 Light-3

\union/ \inter/

\Nionl

(b) (C)

Figure 7: OR operation among illuminated portions.

Let us consider the case where we generate an appearance of a 3D face, from a TV camera, of a portion illuminated
by a different light source. We will generate only a portion that is illuminated and visible. The operation AND is
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executed between the illuminated portion and visible portion on the 3D face. Then, that portion is projected using
the operation, PROJECTION, onto the image plane of the TV camera.
These set operations are defined as nodes of the sensor composition tree. In order to create such nodes, we use

(SCTNODE operation node-name left-node right-node)

where operation is one of the following:

" AND - AND operation is applied between two illuminated portions.
* OR - OR operation is applied between two illuminated portions.
* PROJECTION - a projection is generated from a 3D face.

Once a sensor composition tree is represented, it is applied to a 3D scene by a function called apply-sensor-to-scene.
This function is executed in three steps. In the first step, portions illuminated by each G-source on a 3D face are
generated and stored as 3D illumination properties on the 3D face. These properties define how to divide each 3D
face into several subfaces with the same properties. In the second step, set operations, such as the AND and OR
operation are executed between illumination properties along the sensor composition tree, and the results are also
stored on a 3D face. In the third step, visible illuminated and visible shadowed portions of 3D faces are projected
onto the image plane as its 2D appearance.
The resulting 2D appearance consists of visible 2D faces, which are divided into illuminated portions and shadowed
portions. Strictly speaking, the sensor composition tree should give only illuminated portions, and thus, the resulting
2D appearance should consist only of illuminated portions. However, depending on applications, we may be
interested in shadowed portions. Thus, the current implementation of VANTAGE will produce shadowed portions
as well as illuminated ones.

TWO-DIMENSIONAL STRUCTURE

This section examines the representational structure of 2D appearances. Before discussing the main topic, we will
review 3D representation of VANTAGE [KBR*88]. Then, we will examine several 2D structures having various
priorities regarding illumination information with respect to the 3D structure.
3D STRUCTURE
We will begin by considering the definition of a 3D face. Several definitions of faces are possible depending on
continuity conditions across their boundaries. Referring to Figure 8, if we define a face as the surface patch such that
across its boundary Co continuity is violated, then, the entire boundary of an object becomes one face. VANTAGE
refers to this level as the Solid level.
We can define another type of face as the surface portion such that across its boundary, at most, C' continuity is
violated. This level, called as Merged level, generates faces as shown in Figure 8(b). Note that the cylindrical part
and the planar part are connected. We can also define C2 faces as shown in Figure8(c). This level is referred to as
the Grouped level in VANTAGE.

While Class C, C', andC2 faces are defined purely mathematically, VANTAGE has one more level; at this bot-
tom level, the boundary representation of a object contains only planar faces, which have originated from either
polyhedral primitives or from polyhedral approximations of curved primitives. 7 The latter faces are referred to as
approximation faces. This level will be referred to as the APP level.

VANTAGE builds the higher levels of representation from the APP level representation. First of all, VANTAGE can
group a set of adjacent planar faces that approximate the same curved surface into one curved face. This grouping
operation can generate a grouped level (Class C2) representation of an object. Second, faces that are tangent across
an edge, that is, C1 continuous, are also merged into a merged face and the merged level (Class C1) representation
is completed. Finally, VANTAGE can group all faces that are connected and generate the solid level (Class CD)
representation. We will refer to this whole structure as the 3D structure of an object.
VANTAGE maintains a 3D boundary representation of an object at each level. This representation contains lists
of faces, edges and vertices at each level. Vertices contain their respective coordinate values, and edges join
these vertices. The edges are either straight lines or curved lines, depending on the level. The faces are either
planar polyhedra or curved polyhedra and are represented by a collection of connected edges at that level. The
neighborhood information or topology relates the edges, faces, and vertices of the object, and is stored in the form of
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Figure 8: Definition of Faces: (a) Class CO face: Solid level; (b) Class C' faces: Merged level; (c) Class C2 faces:
Grouped level; (d) polygon approximation faces: APP level face.
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winged-edge representation [Bau72], where each level maintains its own winged-edge representation. For example,
the arch in the example scene shown in Figure 5(a) has the 3D structure as shown in Figure 9.

Several 2D structures are possible, depending on the priority of illumination information with respect to the 3D
levels. For example, we can put the illumination information below the 2D APP level; we can also put the
illumination information above the 2D solid level. In order to examine these cases, we will consider the 3D scene
shown in Figure 5(a). We will asst:me a sensor which consists of two G-sources: a light source which illuminates
the scene from the right direction and a TV camera which observes it from the left direction. Applying this sensor
to the 3D scene, VANTAGE will generate a 2D appearance of it. In the following subsections, we will investigate
several 2D structures of the 2D appearance.
FLAT STRUCTURE

The 2D appearance of a 3D scene is an explicit symbolic representation obtained by projecting the scene onto
the image plane using the sensor composition tree. VANTAGE first generates a 2D boundary representation by
projecting the 3D APP level boundary representation of the scene. Thus, a 2D boundary representation of a scene
is a set of 2D faces, 2D edges, and 2D vertices, linked by winged-edge relations. Each 2D element corresponds to
its 3D counterpart.
Then, VANTAGE projects the 3D illumination properties, generated along the sensor composition tree, of the 3D
faces onto the 2D boundary representation. Thus, each 2D face is divided into several subfaces to correspond
to illumination properties of its 3D face. Subfaces do not maintain winged-edge relations; they represent internal
structure of a 2D face.
Thus, the basic 2D boundary representation is a collection of 2D APP faces, which maintain the illumination
properties below them as subfaces. This representation, which we will refer to as the flat structure, is the default
2D representation of VANTAGE.
The current implementation of VANTAGE supports three kinds of 3D illumination properties: illuminated (1), cast-
shalowed (CS), and self-shadowed (SS). These three values can be consolidated into two values, illuminated (I)
and shadowed (S) by the operation:

S (OR CSSS).

This is necessary to be able to apply AND/OR operations to illumination properties.8

Figure 10(a) shows the 2D appearance of the example scene. This 2D appearance is represented by the fiat structure
as shown in Figure 10(b). Note that the several approximate faces are divided into two parts to store the illumination
information.
ILLUMINATION-ORIENTED STRUCTURE

This structure gives priority to the illumination information. In it, a 2D appearance will be classified into two
categories: illuminated, and shadowed. Within each category, its own 2D structure is constructed.9

First, VANTAGE classifies the 2D subfaces into the two categories. In each category, the following operations are
repeated. From the 2D APP level, as is the case in 3D, VANTAGE builds three more levels of representation based
on surface properties. VANTAGE can group a set of adjacent 2D subfaces which come from 3D APP faces of the
same curved surface into a 2D curved face. Second, 2D faces which come from 3D faces that are tangent across
an edge, are also merged into a 2D merged face. And finally, VANTAGE groups 2D subfaces which come from
the same object into a complete 2D structure.
Figure 11 shows the illumination-oriented structure of the example scene. Note that the illuminated portion of the
cylindrical part of the arch is represented in several levels.

This illumination-oriented structure is useful when applying the sensor composition tree to a 3D scene, because the
sensor usually detects only illuminated portions which are in the illuminated category.
This structure is also useful when generating a 2D structure of a 3D scene of a simple camera projection. In this
case, we will put the light s')urce at the same place as the viewer. Then, all visible portions become illuminated,
and thus, we can get a 2D structure of all visible portions of a 3D scene.

7 VANTAGE represents a complicated object as a collection of simple primitive objects, such as a cube or a cylindrical object, by using CSG
representation.

'VANTAGE has two methods of generating a 2D appearance: applying a sensor composition tree, and applying a TV camera and a light
source directly. We explain the former method in this paper. If we use the latter method, we can generate a 2D appearance which also maintains
three categories of illumination information: illuminated, self-shadowed, and cast-shadowed.

9If the 2D flat structure maintains three categories of illumination properties, then three structures are generated within the three categories:
illuminated, cast-shadowed, and self-shadowed.
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As mentioned before, the current implementation of VANTAGE supports three kinds of illumination properties:
illuminated (I), cast-shadowed (CS), and self-shadowed (SS). In the sensor composition tree module, the following
operations are performed on the illumination properties:

li - i

S, - (OR CSi SS,),

where i denotes that the illumination property is given by the G-source i. However, we can also define

i - (OR i CS.)

i - SS

Then, by applying OR operations to a 3D scene, the shadow category gives a collection of the portions represented
by (AND SS9 S5,). Using this schema, we can generate 2D structures of various kinds of combinations between
G-sources. This is particularly useful when each G-source has a different color and we are interested in analyzing
the color of a 2D appearance.

GEOMETRY-ORIENTED STRUCTURE
We can also sL. the priority of the illumination information somewhere between the top level (solid level) of the
2D structure and the bottom level (APP level).
Let us suppose that we put the illumination information between the solid level and the merged level. Then, at
each solid, a face structure is generated. In the example scene case, since there are three objects, three structures
are generated: the front cube, the middle cylinder, and the back cube. Then, each structure will be divided into
two parts: illuminated and shadowed. See Figure 12(a). This structure is particularly useful when we analyze
illumination conditions of each object.
We can also put the illumination information between the merged level and the grouped level. Then, a merged face
will be divided into three categories of illumination conditions, as shown in Figure 12(b). This structure is useful
when we produce detectable faces by means of an active sensors, because the direct output of an active sensor are
the collection of C faces.
The illumination information can also be stored between the grouped level and the APP level. Then we will obtain
the structure as shown in Figure 12(c).

SOLID
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LEVEL

I I I
~ GROUPED

LEVEL

I I I //\ I I
APP
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Figure 9: 3D structure.
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Figure 10: Flat structure: (a) 2D appearance of the example scene; (b) Flat structure of the 2D appearance.
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APPLYING VANTAGE TO MODEL BASED VISION

This section briefly outlines how to apply the VANTAGE geometric/sensor modeler to one of the applications of
Model-based vision: geometric compiler project to automatically generate an object localization program from an
object model.
From the 3D representation of an object in VANTAGE and the sensor detectability of a particular sensor, we
can generate a possible appearance of that object under that sensor. For example, Figure 13(a) depicts a sensor
composition tree of photometric stereo, while Figure 13(b) represents the internal representation of the tree in
VANTACE.

APPLY-SENSOR-TO-SCENE

> (SENSOR-TREE)
ROJ SEN3 NODE TYPE LEFT-NODE RIGHT-NODE PARENTIS]

S SEN3 AND CS4 SEN2 NIL

A.. SEN2 CS4 CAMERA NIL NIL (SEN3)

G4SEN2 AND CS3 SENI (SEN3)
AND CS3 LIGHT NIL NIL (SEN2)SEN1 SENI AND CS2 CS1 (SEN2)

GS4 CS2 LIGHT NIL NIL (SENI)
AND CS1 LIGHT NIL NIL (SENI)

GS3 > (APPLY-SENSOR-TO-SCENE 'SEN3 'SCENEI CS4)

GS2 GSI

(a) (b)

Figure 13: Sensor composition tree in VANTAGE: (a) The sensor composition tree of the photometric stereo; (b)
The internal representation of the sensor composition tree. In the current implementation, the internal representation
keeps only AND/OR operations. The final projection is combined into a apply-sensor-to-scene function.

Figure 14 shows an example of the application of the sensor composition tree of the photometric stereo to a car
model. Figure 14 (a) is the car model. This sensor consists of four G-sources: three light sources and one TV
camera. Thus, the first step in applying the sensor composition tree to the car model generates 3D illumination
properties of four G-sources, from GS1 through GS4. These 3D illumination properties are stored on 3D faces.
Then, set operations between 3D illumination properties are executed along the sensor composition tree as shown in
Figure 14(b). Finally, the projection of the car is generated with respect to the G-source GS4. Figure 14(d) shows
the corresponding needle map of the car obtained by the photometric stereo system, while Figure 14 (c) shows the
original scene. They correspond with each other quite well. As you can see in this example, we cannot predict
object appearances correctly without the sensor modeling capability of a modeler like VANTAGE.

Using the illumination-oriented structure, we can obtain the portions of the car detectable by the photometric stereo.
Since the appearance is representable by frames, we can easily convert the output from VANTAGE to the appearance
represented in Figure 15(a). We can classify and categorize various appearances into possible aspects, where each
aspect shares the same combination of detected 2D faces. Since whether a 2D face is detected depends on sensor
detectability, the possible aspects also depend on sensor detectability. In other words, without this capability of
VANTAGE, we cannot generate possible aspects of an object under one particular sensor. TV as, this capability is
one of the most fundamental components of an automatic generation of object localization program.
One aspect itructure, a symbolic representation of an aspect, is constructed at each aspect group, where an aspect
is a topologically equivalent class of object appearance and is used as a basic representation for the geometric
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compiler. Since each 2D appearance is represented symbolically, it is relatively easy to construct such an aspect
structure (as shown in Figure 15(b)) based on 2D appearance structures generated from the output of VANTAGE.
Predicted ranges of uncertainty of geometric features are determined using the sensor reliability and added to the
aspect structures.
Our geometric compiler, a program to compile an object model into a localization program, uses aspects as a basic
tool for object localization. It generates a two step program; to classify one appearance of an object into one of the
possible aspects, and then to determine the precise attitude and position within that aspect.
The geometric compiler generates aspect classification part of the interpretion tree by performing recursive s,,-
divisions of possible aspects (more precisely aspect components). These sub-division is performed with examining
uncertainty ranges of aspect features along the order of the smaller computational cost of them and determining
threshold values [ike89]. Namely, before generation, the compiler calculates computational costs of available
features and sorts the features along their computational costs. Figure 16 depicts an example of computation costs
of features. The abscissa denotes the sixteen features, which our current implementation uses, while the ordinate
denotes their computational costs.

The actual generation begins creating a node which contains all possible aspect components. After this operation,
the following operation will be applied recursively to each node containing a group of aspect components along
a set of features. At each node, containing a group of aspect components, the compiler examines whether it can
divide the group into several groups by thresholding the uncertainty range of one particular feature of the aspect
components. If it can, it stores the feature name at the node, generates subnodes corresponding to subgroups of
aspect components, and connects them to the node. It also stores the threshold values to divide the groups at the
node. If it cannot, it does nothing. Then it repeats the above process using the next feature along the set of features
until each node contains only one aspect components or applicable features is exhausted. If exhausted, the compiler
forces to divide the node into single aspect component nodes and stores a special rule, parallel rule. 1o
The generated classification strategy is represented as a tree structure, which we refer to as an interpretation tree,
whose intermediate nodes correspond to classification stages of aspects and store feature kinds and values for
classifications. Each leaf node contains one particular aspect component.
Each leaf node of the tree, thus if the tree is applied to a real scene, gives a correspondence between an image
region and an aspect component (and thus a model face). The compiler generates attitude determination by using
these correspondences [IH89]. The compiler has rules concerning how to define a face coordinate system on a
model face. Using the rules, the compiler defines a face feature coordinate system on a model face, stores the
method in nodes of the tree. The compiler also calculates the transformation from the face coordinate system to the
body coordinate -ytem using the geometric model of the object and store it in the nodes of the tree. Thus, after
this operation, the- object model is represented as a collection of feature coordinate systems and their relationship to
the body coordina:e system in the interpretation tree, as shown in Figure 17(a). At each leaf node of the tree, the
compiler prepares a verification node to calculate the confidence measure of the obtained body coordinate system
by comparing the predicted edges and observed edges.

Once this process generates the localization strategy, it converts the strategy into a program using an object library.
An object library is a collection of prototypical objects of the object-oriented programming. An object in the object
oriented programming is a processing unit, which can perform some operations and store several internal values in
slots. We can define demon functions for each slot, where a demon function will be invoked implicitly when we
retrieve/insert a value from/into the sloL We can define methods for each object, where a method function will be
invoked explicitly when we send a message, assigned to the method, to the object. We can instantiate an instance
object from a prototypical object, where the instance object can inherit slot names, slot values, demon functions,
and methods. In the compile mode, the geometric compiler retrieves the definition methods stored at each node
previously, and instantiates appropriate objects from the object library, and attaches these instance objects to the
interpretation tree. See Figure 17(b).

Figure 18(a) shows the generated program [1H89] from the car model. Nodes having B and L correspond to those
for aspect classification and attitude determination, respectively. The generated program is applied to a scene. The
program extracts a feature value, specified at each node, from the region, compares it with the threshold feature
values, and classifies the region into one or several possible aspects. The generated program estimates the body
coordinate systems at these possible aspects. Comparing the edge distributions generated by VANTAGE from the
estimated body coordinate systems and the real edge distribution, the program determines the most likely position
and attitude, as shown in Figure 18(b), where the most likely one, generated by VANTAGE, is superimposed over
the scene.

10
1n the run mode, all the node connected to the parallel node will be executed. The most likely branch under the parallel node will be chosen

using the confidence measures given by the verification nodes described below.
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Figure 16: Computational costs of features: The abscissa denotes the order of the sixteen features, which our current
implementation uses, while the ordinate denotes their computational costs. The order depends on various factors
such as the implementation of the hardware, size of image, and computational method. (a) The cost order in ourcurrent implementation; (b) The cost order in the same parameters except the search area of the neighboring region
is two times larger.
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Figure 17: The geometric compiler; (a) The object model is represented as a collection of feature coordinate systems
and their relationship to the body coordinate system in the interpretation tree. (b) The geometric compiler uses an
object library to convert a recognition strategy into a recognition program.
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SUMMARY

This paper has described a method of modeling sensor detectability and its implementation in VANTAGE sensor
modeler. Each sensor consists of one or more light sources and TV cameras. Sensor detectability, that is where
the sensor can detect, can be specified by a set operation of portions illuminated by its light sources and portions
visible to its TV cameras.
In order to represent this sensor detectability, we defined a G-source as an abstract sensor component representing
either a light source or a TV camera. Then, we proposed G-source illumination conditions to describe under what
condition each G-source illuminates surface patches with respect to its illumination direction.
One of the most important findings is that the detectability of a sensor can be decomposed into the sensor's
component G-sources' illumination conditions and set operations between them. We can apply its G-sources'
illumination conditions independently to an object model, and then apply set operations between them, to obtain
detectable portions.
According to these findings, we proposed a sensor composition tree, which consists of G-source illumination
conditions as its leaf nodes and set operations as its branch nodes. These set operations perform the combination
of the component G-source illumination conditions. The execution of the sensor composition tree is implemented
in three steps: applying the component G-sources' illumination conditions to all 3D faces of the object and storing
them as 3D illumination properties on those faces; applying set operations between stored illumination properties;
and projecting the resulting illuminated portions onto the image plane to generate a 2D appearance.
We also proposed several 2D structures to represent detected 2D appearances, given by VANTAGE using a sensor
composition tree. Since the 3D structure of VANTAGE has four levels of representation: solid, merged, grouped,
and approximation and since 2D appearances of 3D scenes can be obtained by projection, illumination information
can be stored at, above, between, or below these levels in 2D.
Finally, we showed how to use these capabilities in model-based vision.
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Appendix A: Definition of Coordinate systems

Face We define the z-axis of the feature coordinate system to agree with the surface normal, and the x - yaxes lie
on the face, but are defined arbitrarily otherwise.
Edge We define the z-axis to agree with the average direction of the two normals of the two adjacent faces incident
to the edge. We define the x-axis of the feature coordinate system to agree with the edge direction. The y-axis is
determined according to x and z.
Vertex We define the z-axis to agree with the average direction of the normals of the adjacent faces incident to the
vertex. The x and y axes lie on the plane perpendicular to the z-axis, but are defined arbitrarily otherwise.
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INERTIAL NAVIGATION SENSOR INTEGRATED MOTION ANALYSIS
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ABSTRACT

Land navigation requires a vehicle to steer clear of trees, rocks, and man-made obstacles in the vehicle's path
while vehicles in flight, such as rotorcraft, must avoid antennas, towers, poles, fences, tree branches, and wires strung
across the flight path. Automatic detection of these obstacles and the necessary guidance and control actions triggered
by such detection would facilitate autonomous vehicle navigation. An approach employing a passive sensor for mobil-
ity and navigation is generally preferred in practical applications of these robotic vehicles. Motion analysis of imagery
obtained during vehicle travel can be used to generate range measurements to world points within the field of view of
the sensor, which can then be used to provide obstacle detection. But, state-of-the-art in motion analysis is not robust
and reliable enough to handle arbitrary image motion caused by vehicle movement. However, many types of existing
vehicles contain inertial navigation systems (INS) which can be utilized to greatly improve the performance of motion
analysis techniques and make them useful for practical military and civilian applications. In particular, INS measure-
ments can improve interest point selection, matching of the interest points, and the subsequent motion detection, track-
ing, and obstacle detection. We review various techniques of ranging (both passive and active) and discuss an inertial
sensor integrated optical flow technique for motion analysis to achieve increased effectiveness in obstacle detection dur-
ing vehicle motion. Our approach to motion analysis for obstacle detection is illustrated by simulated results and the
results obtained using land vehicle data.

1. INTRODUCTION
A desired obstacle detection system for many practical applications should exhibit robustness and should not

place unduly excessive size, power, or weight demands on the host vehicle. It should work in day/night/adverse
weather conditions and shouid preferably be covert to minimize the threat to the vehicle and the pilot. The technique
used for obstacle detection must also have graceful degradation, instead of total failure, under conditions of limited
operability. !n recent years, considerable effort has been put toward the detection of obstacles that present themselves
primarily to ground vehicles. Using mainly active sensors, such as a laser scanner, obstacles (like fence posts, rocks,
vegetation) are detected within the field of view of the vehicle's sensor.14, 37 Other active sensors such as Millimeter
Wave1 (MMW) can detect obstacles such as wires, but the constant and continuous image of these active sensors
betrays vehicle's covertness.

Passive sensors, such as a TV camera, are also being used to detect obstacles for ground vehicles.9, 16.27 How-
ever, state-of-the-art motion analysis techniques for obstacle detection are not robust and reliable enough for many
practical applications. Many of these techniques require that unrealistic constraints be placed on the input data in order
to make them work. The largest sources of error are sensor motion and incomplete/ambiguous information in the
sensed image data. However, many types of land and air vehicles (e.g. helicopters and military ground vehicles) con-
tain an Inertial Navigation System (INS) whose output can be used for applications beyond the original intent of the
system. Such vehicles can use the INS information to greatly simplify some of the functionalities normally provided
by computer vision, such as obstacle detection, target motion detection, target tracking, stereo, etc. Figure 1 shows
several inertial sensor assembly/packages currently available. In this paper, we make use of INS measurements to
enhance the quality and robustness of motion analysis techniques for obstacle detection and thereby provide veiiicles
with new functionality and capability.

The objective of the work presented in this paper is to describe our maximally passive arlroach to obstacle
detection and to discuss the details of our inertial sensor integrated optical flow analysis technique. In Section 2, we
review the principal techniques of passive and active ranging. Section 3 discusses the technical problems associated
with motion analysis for passive ranging. We present our new approach to motion analysis in Section 4 and describe
the details of the optical flow technique. Section 5 describes the results we have obtained with our optical flow
approach. Finally, Section 6 provides the conclusions of the paper. A brief discussion on navigation errors for some
ring laser gyros is provided in Appendix A.
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(a) (b)
Figure 1: Inertial sensor assemblies. (a) The ring laser gyros (RLGs) used in this unit are Honeywell
Mood GG1342's, which are 4.2 inches in length. This model is the mainline aircraft navigation-
grade laser gyro with a performance in the 0.007 degree/hr range. (b) Integrated inertial navigation
package, which uses Honeywell's GG1308 ring laser gyros, currently under development is extremely
compact and can be mounted on a camera.

2. OVERVIEW OF PASSIVE AND ACTIVE RANGING TECHNIQUES

2.1 PASSIVE RANGING

There are a large numbe of obstacle detection techniques proposed in the literature that make use of motion
analysis, stereo methods, or other techniques for passive ranging.

Motion Analysis Techniques - These methods can be further broken down into optical flow approaches or
structure and motion methods.

Optical Flow Techniques - These techniques utilize information provided by the velocity field that
represents the apparent motion of stationary object points through a temporal sequence of images. Most
methods for estimation of optical flow can be categorized into two classes, gradient-based methods and
displacement-based methods.

Gradient-Based Methods - These methods use relationships involving optical flow and derivatives
of the image brightness function coupled with a variety of constraints on the flow field. 2° , 22

Although considerable work has been done in this area, significant results have yet to be demon-
strated on images of outdoor scenes. One fundamental reason for this is that these methods are
highly sensitive to noise. This is a highly undesirable property of any method used on images of
outdoor scenes. Furthermore, theoretical analysis has shown that there is a direct conflict between
various constraints imposed on the flow field.23 In particular, it is shown that errors due to instabil-
ity of solutions of the required systems of equations are inversely related tz the size of the neighbor-
hood used for flow smoothness constraints but that increasing the size of the neighborhood increases
the error due to violations of flow smoothness.

Displacement-Based Methods - In these methods image features (points, edges, regions, or boun-
daries) are matched between a temporal sequence of two or more images to derive initial estimates
of flow vectors. 5,8 , 32 ,35 These methods make use of the flow pattern which is experienced by a
moving observer. 24, 25, 29, 30 The motion between frames can be decomposed into translational and
rotational components. The final (usually the second) image in the sequence can then be derotated
to achieve a relationship approximating pure translation between the first and second image. In the
case of pure sensor translation in a stationary environment, every point seems to expand from one
particular image location termed the Focus of Expansion (FOE). If the location of the FOE is
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known, then the relative depth of matched stationary image points can be found. If, in addition, the
velocity of the sensor and the elapsed time between frames are known, then the absolute range can
be computed using trigonometric formulas. Range to other image points can be estimated using
interpolation procedures. Accurate range estimates utilizing the above aporoach require long dis-
placement vectors. Issues raised here include accurate frame-to-frame correspondence, accurate
FOE location, and the magnitude of interpolation ambiguities. Inertial navigation sensor (INS)
integrated methods presented later in this paper alleviate these problems.

Structure and Motion Methods -- In these methods, both 3-D structure and motion are computed in one
integral step by solving a system of linear or nonlinear equations. 17. 28. 3 3 These methods, although
elegant, reportedly are sensitive to noise, require large amounts of computation, converge slowly, and
require many disparate views of the object

Stereo Techniques - These methods are widely studied for determining range passively. 4, 26 In order to use
stereo, feature matches must be made between the two images. The accuracy of these matches depends upon
the knowledge of relative sensor positions, the displacement between the sensors (the baseline), and the availa-
bility of prominent features to match. Once feature correspondences in the two images have been established,
the range to the corresponding world points can be computed using trigonometry. Range to other points can
then be estimated by using an interpolation procedure. One characteristic property of stereo methods is the
fact that, to a first approximation, the error in stereo depth measurements is directly proportional to the posi-
tional error of the matches and inversely proportional to the length of the baseline. 4 Thus, as in the case of
gradient based techniques, there are sources of error here which are in direct conflict with one another since
the longer the baseline is, the harder it is to obtain accurate matches. Potential solutions to this problem
include development of highly accurate feature matching techniques and statistical averaging over several
views. The statistical averaging method uses the concept of combining motion and stereo, which has the
advantage of providing complementary and cooperative information to a passive ranging system.

Other Techniques - Although the aforementioned techniques comprise the majority of methods used in pas-
sive ranging, various other approaches have also been suggested. 2' A spatio-temporal extension of the Marr-
Hildreth edge operator is one method which has been suggested by Buxton and Buxton. 12 The operator is used
to locate edges in time varying imagery. This technique can be considered as a type of hybrid between the
gradient and displacement methods. This technique suffers from certain disadvantages such as the Aperture
Effect 18 as compared to the wavefront region growing techniques developed by Bhanu and Burger.7 Hollister
has developed a technique for passive ranging to point sources using the bearing angles between the sensor
line of sight and the point source. 19 This technique is based on the assumption that all motion is in a plane
and no results on real data are given. Bowman and Gross have also developed a method for passive ranging
to targets using data from two different aircrafts, 1I but it is not applicable to the rotorcraft low-altitude flight
scenario. Techniques based on Kalman filtering are also being developed for general motion and passive rang-
ing.

36

2.2 ACTIVE RANGING

A variety of laser and Millimeter Wave (MMW) radar systems exist that can scan relatively large fields-of-view
and detect and determine the range to power lines, cables, and terrain obstacles. Currently, a number of 3-D laser
scanners using phase detection technology are available.6 ,31 One such sensor, developed for autonomous vehicle navi-
gation, has a field-of-view of ±400 horizontally and covers depression angles from 150 to 450 with a range resolution of
8 centimeters. More advanced systems with multiple lasers operating at multiple frequencies in the visible, near
infrared, and shortwave infrared wavelengths are also under development. The multiple wavelengths allow for range
and reflectance determination with a 60' x 800 field-of-view and a range resolution of 2 centimeters. Another commer-
cially available 3-D laser ranging system with a 60' x 60' field-of-view has similar range resolution. It allows a fixed
pattern radar scan with 128 x 128 pixel resolution and a frame rate of 0.8 seconds. Both of the above mentioned sys-
tems have phase ambiguities on the order of 40 feet in their range measurements.

Thomson CSF1 is developing a compact MMW radar system (Romeo 2) which uses a 3-second scan over a 900
sector to detect hazardous objects. Prototype systems have detected 3 millimeter diameter high tension cables at ranges
of 1000 meters in foggy weather. The system is designed to detect similar objects with small cross sections.

In general, lasers and MMW radar systems are able to detect and accurately determine the range of terrain obsta-
cles. Studies have demonstrated that both kinds of systems can successfully detect transmission cables at all angles,
polarizations, and surface conditions, although transmission line detection at all aspect angles with a MMW sensor
requires scanning.3 This study was conducted using four MMW frequencies (18, 34, 56, and 94 GHz), two laser
wavelengths (10.6, 1.06 jim), three polarizations (horizontal, vertical, and cross), various surface conditions (dry, wet,
rough, and smooth), five kinds of cables, and several aspect angles. Recent advances in C0 2 laser technology have led
to the development of fieldable LADAR system that can provide high resolution imagery suitable for automatic target
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recognition and obstacle detection such as wires, poles, etc.

Unfortunately, active systems are subject to threats through automatic detection by the enemy. They undoubtedly
provide good obstacle avoidance capability at the price of increased danger to the crew and the vehicle, regardless of
whether the active system is based on laser or MIMW radar ranging. Consequently, their use should be contingent on
the capabilities of passive obstacle detection/avoidance technology in near and far future systems. The report by Bhanu
and Roberts 9 presents detailed tradeoffs of passive/active ranging approaches for obstacle detection.

3. TECHNICAL PROBLEMS WITH MOTION ANALYSIS TECHNIQUES
In this section, we present a critical assessment of some of the problems in the area of motion analysis that

demand innovative solution concepts for success. The difficulties involved come from many sources. The general
problem areas which we consider important are (not necessarily in order of importance):

Inherent Quantization Error and Noise -- As mentioned earlier, techniques based on discrete differentiation
(optical flow with global constraints 20 ) are generally considered to be so sensitive to noise that they are unreli-
able in outdoor scenes. In addition, the identification of the same world point (interest point) within multiple
frames becomes unreliable due to noise and quantization.

Correspondence or Feature Matching Problem -- This problem has been studied quite extensively. 5 10 Solution
of this problem is necessary in a purely passive, image-based displacement method as well as for stereo tech-
niques. The great deal of effort which has been expended toward solving this problem and the lack of a tech-
nique that will insure a very high degree of matching accuracy implies that passive ranging systems which utilize
feature matching must be capable of tolerating a certain number of inaccurate (possibly highly inaccurate)
matches. One well known approach to increasing the accuracy of matches obtained by the correspondence prob-
lem is to use relaxation techniques to maintain certain consistencies in correspondences between neighboring
features. Another approach is to use input from a Ring Laser Gyro (RLG)/accelerometer apparatus to determine
the motion of the sensor between frames in the monocular case, or the relative motions of the sensors in the
stereo case, in order to register the images and locate the FOE without computation. This apparatus can provide
all the sensor attitude and velocity information needed to completely describe sensor motion. This information
also introduces a number of constraints on the search area required for matching. This approach will be
explained in more detail in Section 4.

Determining the Location of the FOE -- This is a major problem which must be addressed if one uses optical
flow methods and monocular sequences for passive ranging. Location of the FOE can be approximated by purely
image-based methods 8 or by using input from a RLG/accelerometer assembly. When using purely image-based
methods, bad correspondences, quantization effects (including roundoff error), and noisy data all contribute to the
inherent instability in attempting to solve a set of equations exactly for the FOE. The method of choice is to use
the inertial information provided by an RLG/accelerometer to calculate the FOE within each image frame,
thereby avoiding the uncertainties involved with passive methods.

Interpolation of the Range Map -- The desire to have range estimates to all points in the field-of-view is
another problem which should be addressed in order to develop accurate passive ranging systems. The previous
techniques for passive ranging will compute range only as subset of the available points in the field-of-view. In
order to solve the obstacle detection/avoidance problem via ranging, a much more dense set of points must have
range values available. An interpolation procedure can be used to estimate range over a dense set (possibly all)
of pixels that cover the field-of-view. There are some difficulties associated with this process. A standard prac-
tice has been to fit a smooth surface, such as a polynomial of two variables or a spline, through the computed
range points. Some problems with polynomials are that they are continuous whereas range maps, in general, are
discontinuous. Polynomials also have a predetermined shape. To obtain a high degree of variability, one must
use fairly high order polynomials, but then the least squares process becomes very computationally intensive.
Splines offer a better choice for fitting a smooth function through the points, since, although they are continuous,
a high degree of variation can be attained with reliable, less expensive computational methods. Unfortunately,
splines are not guaranteed to pass through the given range points. Scene analysis techniques can simplify this
process.9

Use of Artificial Intelligence and Qualitative Methods -- A final general issue to consider in motion analysis is
not a direct problem. The issue is how much, if any, do passive ranging via motion analysis methods need to be
augmented with intelligent, or qualitative, techniques. Range is a very concrete concept, and it is easy to under-
stand how and why to use range once it is available. It is true, however, that most humans and animals operate
passively with only a very fuzzy sense of absolute range. Motion cues, such as occlusion, a priori knowledge,
expectations concerning object sizes and characteristics, and contextual cues may be instrumental in enabling bio-
logical entities to detect obstacles while navigating through their environment, and may, in the final analysis, be
necessary in order to solve the obstacle detection problem satisfactorily using passive sensors. Encapsulating
these types of information, which are based on very abstract concepts, is very difficult and is an active area of
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research in artificial intelligence and image and motion understanding. The solution of a number of problems in
scene analysis and understanding as well as knowledge representation and utilization need to be solved before a
reliable method for obstacle detection using a significant amount of knowledge-based reasoning can be
developed.

The contents of section 4 describe our approach to motion analysis and describe some of our methods for dealing
with the problems listed above.

4. INERTIAL SENSOR INTEGRATED MOTION ANALYSIS
The purpose of this section is to describe the inertial sensor integrated motion analysis approach we have under-

taken. The block diagram of this system is illustrated in Figure 2. The system uses inertial sensor integrated optical
flow, scene analysis, and selective applications of active sensors to provide obstacle detection capability.9 In this paper,
we focus on the details of the inertial sensor integrated optical flow algorithm, which computes range to features within
the sensor's field of view. For a pair of image frames, the major steps that are involved within the optical flow algo-
rithm are give below:

(1) Input frames, frame A and frame B, are read in along with their associated inertial data.

(2) Interest points are extracted from each of the input frames.

(3) Location of the focus of expansion (FOE) (in tXbth frames) is computed.

(4) FOE and the interest points in frame B are projected onto an image plane that is parallel to the image
plane that captured frame A (derotation of frame B).

(5) Interest points in frame B are matched to those of frame A based upon four criteria.

(6) Range is computed to each interest point in frame B that has a match in frame A.

(7) A dense range map is created using context dependent scene analysis and interpolating between the com-
puted range values.

Before starting a detailed discussion of the major steps in the algorithm, let us first describe the coordinate sys-
tems that are used. The digitized imagery contains pixels addressed by row and column with the origin of the 2-D
coordinate system located in the upper left comer of the image. The horizontal axis, c, points to the right and the

Sess o t Imaeen en Sensor Range
Snos Imgti b Integrated Calculations RneDense

Characterization Optical to Image Range
FLIR, TV and Recognition w Interpolation Rangeof its Components Is Flow P / Map

Integrated Inertial Selective Application
Navigation Unit of

Active Scans (CO 2 Laser, MMW Radar)
Variable Fields-of-View
Stereo
Auxiliary Data

Figure 2: Inertial sensor integrated optical flow and scene analysis using both passive and selective
applications of active sensors provide robust image analysis useful for obstacle detection/avoidance by
a robotic land vehicle or helicopter.
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vertical axis, r, is in the downward direction. This image plane is perpendicular to the x axis of a 3-D coordinate sys-
tem and is located at a distance of the focal length, F, from the origin with the z axis in the downward direction.
Therefore, the pixels in the image plane can be described in the 2-D coordinate frame as (c, r) and in the 3-D coordi-
nate frame by the vector (F, y, z). The geometry described above is graphically illustrated in Figure 3.

As shown in Figure 4, the data input to the obstacle detection algorithm consists of a sequence of digitized video
or FLIR frames that are accompanied by inertial data consisting of rotational and translational velocities. Thi informa-
tion, coupled with the temporal sampling intemval between frames, is used to compute te distance vector, d, between
each pair of frames and the roll, pitch and yaw angles, (0,0,y), of each frame. Both d and (O,0,W') are crucial to the
success of the algorithm described in the following section. There are several other possible variations which we do
not discuss in this paper.

X

k

Figure 3: The coordinate system geometry of the sensor's image plane is perpendicular to the x axis,
located at the distance of the focal length, F, from the origin of the coordinate system.
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Figure 4: Inertial sensor integrated optical flow technique.
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4.1 DISTINGUISHED FEATURES

The features within the imagery (TV or FLIR) that are most prominent and distinguished, mark the world points
to which range measurements will be made. These prominent world points, known as interest points, are easy to
,'xtract from the imagery and have the highest promise of repeated extraction throughout multiple frames. The interest
points within the field-of-view of the monocular sensor are of fundamental and critical importance to optical flow cal-
culations. In the following subsections, the extraction and subsequent use of interest points is described in detail.

4.1.1 Interest Point Selection

The computation of distinguishable points is accomplished by passing a Moravec operator5 over each frame of
imagery. The operator is applied to each image pixel (within a desired offset from the image border) which was
identified as a strong edge pixel by a Sobel edge operator. The interest operator examines all pixels within a square
window, of side length L, that surrounds each edge pixel and computes the relative variance between pixel values. As
each pixel within the window is examined, the square of the difference between its value and the values of its neigh-
boring pixels is computed and summed. Actually, four different sums are recorded which correspond to the same 4
neighbors relative to each pixel within the window; there is a sum for the square of the difference between the current
pixel and its neighbor to the right and likewise for three other neighbors (below, below & right, below & left). After
each pixel under the window has contributed to the 4 sums, the smallest of the sums, S, is selected and stored as the
pixel's value. A pixel is deemed an interest point if its assigned value of S is greater than the corresponding sum gen-
erated at each pixel within a square window of side length K, centered on the pixel in question. In the discussion that
follows, a pixel's value of S will be referred to as its interestingness.

Our implementation of the Moravec operator ranks the detected interest points (pixels with a value of S which is
a local maximum) in the order of their computed interestingness. This interest point extraction routine divides the
image into M uniform regions and returns only the N points within each region which have the highest values of S,
where N and M are inputs to the program. The result of returning only the best interest points (in terms of S) in each
region is that the processed scene is more uniformly covered with interest points. If this were not the case, a small
number of occasionally adjacent regions will lay claim to the major portion of interest points.

Unfortunately, not all regions within a scene can contain reliable interest points (e.g. wave crests on a body of
water are not good interest points). Scene analysis techniques are used to ascertain the goodness of regions prior to
interest point selection.9 Moreover, interest point selection can be further improved by incorporation of Kalman filtering
techniques, .hich use inertial sensor data to track and predict interesting point features.

4.1.2 Interest Point Derotation

To aid the process of interest point matching, we must make it seem as though image plane B is parallel to
image plane A. If this is done, the FOE and pairs of interest points in frames A and B that match, would ideally be
colinear should the image planes be superimposed (see Figure 5). To make the image planes parallel, derotation is per-
formed for each vector, (F,yi,zi) that corresponds to each interest point in frame B. The equation for the derotation
transformation and projection (in homogeneous coordinates) is

i= P R-' R-' R-R = RC9 CRE
z AR9A 'A a R Bo Zi PCE i

where

1 0 0 0 coso 0-sinGO0 cosVsiny0 0 1 000
Ocoso sin40 0 1 0 0 -sinxV cos 0 0 1 0

R, 0-sino coso 0 R@=sin 0cosO 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 01 IF 0 0

and where NED (north, east, down) is the coordinate frame in which inertial measurements are made. Use of the NED
frame assumes that vehicle motion is "local" to a patch of Earth.

The matrix P proects a world point onto an image plane and is used to compute the FOE, FOE = P d, where
d= v'At. The matrix CNED converts points described in the NED coordinate frame into an equivalent description within
a coordinate frame parallel to the A coordinate frame. Likewise, the matrix C E° converts the descriptions of points in
the B coordinate frame into descriptions in a coordinate frame parallel to NED.

753



World YB
Point RB

VAAt
t ZB

I-UE

Superimposed Image Plants ..

-~ YA

FOE

IIII

L.A

A IA

;.B

Figure 5: An illustration of the sensor geqmetry that records two perspective views of a scene at two
positions separated by a distance V t) = 0I (with no rotation of the sensor between positions). When
there is no rotational change between image frames, there is a special property of the perspective pro-
jection of a world point onto the two image planes; the FOE and the projections of the world point
are all colinear.

4.1.3 Interest Point Matching

The matching of interest points is performed in two passes. The goal of the first pass is to identify and store the
top three candidate matches for each interest point in frame B, (FyB,zB). The second pass looks for multiple interest
points being matched to a single point in frame A. Hence, the result of the second pass is a one-to-one match between
the interest points in the two successive frames. For our application, a one-to-one match of interest points is necessary.
We acknowledge that the projection onto the sensor's image plane of an object in the world will grow in size as the
sensor moves toward the object. This situation might imply that a one-to-one match does not make sense since what
was one pixel in size in frame A might become two or more pixels in size in frame B. In this work, we assume that
the growth of objects, in terms of pixel size, is negligible in the passive ranging for obstacle detection scenario. All
objects are assumed to be at certain safe distances for vehicle maneuvering and one pixel (of interest point quality) in
two frames is all that is required of an object's surface for the range to the object to be computed.

Pass One:

To determine the candidate matches to (F,yB ,zB), each of the interest points in frame A is examined with the
successive use of four metrics. The first metric makes certain that candidate matches lie within a cone shaped region
bisected by the line joining the FOE and the interest point in frame B. This metric limits candidate matches to lie
within the cone with apex at the FOE, as shown in Figure 6(a). If an interest point in frame A, (FyA,zA,), passes the
first metric, then the second metric is applied to it. The second metric requires that the interestingness of candidate
matches is close to the interestingness of the point that we are trying to match.

The third metric restricts all candidate matches in frame A to lie closer to the FOE than the points in frame B (as
physical laws would predict for stationary objects). This metric involves the computation of the distances of the
interest points from the FOE, which can be computed in two different ways:
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(1) The direct euclidean distance, dl, between (F,yA,ZA.) and (F,yB,zB?, and

(2) the distance d2 which is the projection of d, onto the line joining (FyB,zB ) and the FOE.

The distance measures are graphically illustrated in Figure 6(b). Regardless of the way that the distance measure is
computed, it can be used to identify the closest candidate matches to (F,yB jzB).

The fourth metric constrains the distance between an interest point and its candidate matches. For an interest
point in frame A, A, to be a candidate match to point B,, it must lie within the shaded region of Figure 6(a). The
depth of the region is determined by this fourth metric while the width of the region is fixed by an earlier metric. By
limiting interest points A. to lie in the shaded region, we have effectively restricted the computed range of resulting
matches to lie between and R,.,. The reasoning behind this restriction is that world objects of range less than
Rmji should not occur due to autonomous or manual navigation of the vehicle, thus avoiding potential collisions. Like-
wise, objects at a range greater than Rm,, are not yet of concern to the vehicle.

The result of the first pass of interest point matching is a list, for each (F,yB,z 8 ), of three or fewer candidate
matches that pass all metrics and hav. the smallest distance measures of all possible matches.

Pass Two:

The goal of the second pass of the matching process is to take the matches provided by the first pass and gen-
erate a one-to-one mapping between the interest points in frames A and B. Initially, it can be assumed that the best
match to (F,YB.,ZB) will be the stored candidate match which has the smallest distance measure. Unfortunately, there
may be multip'le 'points, (F,yA ,zB), which match to a single (FyA,zA). Hence, the recorded list of best matches is
searched for multiple occurrences of an% of the interest points in frame A. If multiple interest points in frame B have
the same best match, then the point, B , which is at the minimum distance from the A i in question, will retain this
match and is removed from the matching process. The remaining B,'s are returned to the matching process for further
investigation after having Ai removed from their lists of best matches. This process continues until all of the interest
points in frame B either have a match, or are determined to be unmatchable by virtue of an empty candidate match list.
Hence, the final result of the matching process is a one-to-one mapping between the interest points in frames A and B.

4.2 RANGE CALCULATION AND INTERPLATION

Given the result of interest point matching, which is the optical flow, range can be computed to each match.
Given these sparse range measurements, a range or obstacle map can be constructed. The obstacle map can take many
forms, 13 , 34 the simplest of which consists of a display of bearing versus range. In what follows, range calculation is
described and the important issue of range interpolation is discussed.

Given pairs of interest point matches between two successive image frames and the translational velocity between
frames, it becomes possible to compute the range to the object on which the interest points lie. One approach to range,

dl 1

-----------X----- F Y
'z A )

(F,'YB,'ZB, )  (,Y1 ZBj),yn ,z

±T pixels u . W/i_

FOE "(F,yA,,Z,z )''" "--..

---- OE

(a) (b)

Figure 6: Constraints used to aid the process of matching interest points between frames. (a) Since
an interest point, the FOE, and a candidate match must be colinear after derotation, all candidate
matches to a point in frame B must lie within a cone with apex at the FOE and the shaded section.
(b) There are two ways to compute the distance between interest points, distance metric d, or d 2.
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R, computation is described by the equation

R = AZ x-xf
X -X

where

Xf = the distance between the FOE and the center of the image plane,

x - the distance between the pixel in frame A and the center of the image plane,

x' the distance between the pixel in frame B and the center of the image plane,

AZ = IllAt cosa = the distance traversed in one frame time, At, as measured along the axis of the line of sight,

ct = the angle between the velocity vector and the line of sight,

x' - xf = the distance in the image plane between (F,YBZB.) and the FOE, and

x' - x = the distance in the image plane between (F,yBj,zBa) and (F,YA.,ZA;).

These variables are illustrated in Figure 7.

An alternate approach involves the calculation of the angles aA and a8 between the translational velocity vector
and the vectors that describe the matched pair of interest points in frames A and B,

IvlAt sinatf
RA

sin(aB - aa)

as indicated in Figure 8. Both of the range calculating techniques compute the distance to a world point relative to the
lens center of frame A (similar equations would compute the distance from the lens center of frame B). The accuracy
of the range measurements that result from either approach is very sensitive to the accuracy of the matching process as
well as the accuracy of the inertial measurement unit (IMU) data.

The task of range interpolation is the last processing step required of the passive ranging system (this ignores any
postprocessing of the range that may be required before it gets passed to the automatic vehicle control and display sys-
tems). The purpose of this task is to create, by means of interpolation between the sparse range samples generated
from the optical flow measurements, a dense range map representing the objects within the field of view. Essentially,
this task is one of surface fitting to a sparse, nonuniform set of data points. To obtain an accurate surface fit that

X World Point as
Viewed from Frame B

World Point as
Viewed from Frame A

Lens.,C

Come' Direction of

X Translation 1v)

Image
an e RA = A Z. x'- xf z

COSaA X' - X (ing of sight)

Figure 7: The geometry involved in the first approach to range calculation is illustrated here. The
figure shows the imaged world point in motion rather than the sensor, thus simplifying the geometry.
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Figure 8: An alternate approach for range calculation which requires the computation of angles
between the linear velocity vector and the vectors that describe the matched pair of interest points.

physically corresponds to the scene within the field of view, it is necessary that the sparse set of range samples be as
uniformly spread throughout the field of view as possible. This will require processing steps hinted at in previous sec-
bons; scene understanding/segmentation must be used to create regions from which a desired number of interest points
are extracted.

The type of surface fitting is important because the resulting surface (i.e. the range map) must pass through each
of the range samples. It would be especially dangerous if the surface passed under any range samples. There are
many techniques of surface fitting available to our task. To date, we have explored a method of bivariate interpolation
nver irreg,,!Pr ,'pacel spmnies proposed by Akimo.2 This technique uses 5th degree polynomials to interpolate over the
triangular regions formed by the range samples. The major drawback associated with this approach is its assumption
that all of the given points fall within a convex region. A solution to this problem is to use an improved Delaurnay
based triangularization of the range samples, proposed by DeFloriani et al,15 which works over arbitrarily shaped
regions of interest.

A less elaborate technique of range interpolation consists of a fitting of planes to the available range samples.
This approach gets the job dene quickly and efficiently and does succeed in passing through each range sample. All
techniques of range interpolation should be careful to avoid interpolation over discontinuities thst occur between range
samples on the surface under investigation. With the use of scene analysis/segmentation, the smoothing of discontinui-
ties can be avoided by interpolating only over smooth regions or segments of the scene. Techniques of joining the
regions after interpolation have yet to be developed.

Finally, there is some concern as to the purpose of interpolation. Surely, interpolation will aid an operator/pilot
in the interpretation of the results of optical flow measurements, but its use by automatic vehicle control is question-
able. Also, a large number of interest points can be selected and matched, so there may not be any need for interpola-
tion. These issues are being explored further.

5. RESULTS

Our inertial navigation sensor integrated optical flow algorithm has been used to generate range samples using
both synthetic data and real data (imagery and INS information) obtained from a moving vehicle. In this section, we
describe the conditions under which the data was created/collected and provide images illustrating the results of the
major steps in the optical flow algorithm.
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The synthetic interest points were generated from a file containing the 3-D coordinates of 15 world points. Table
I shoxss the 3-D locations of these world points. In the same coordinate system as the interest points are located,
Table 2 lists the location, roll, pitch, and yaw of the camera at the two instances of time at which frames A and B were
aquired. The time between frame acquisition is 0.2 seconds. Figure 9(a) shows the locations (circles) of the projection
of the world points onto the first location of the image plane where the field of view of the synthesized camera model
is 52.0" x 48.75' with a focal length of 9 mm. Figure 9(b) shows the locations (squares) of the projections of the
,, rld points onto the second location of the image plane and shows the new locations (diamonds) of those projections
after derotation. Figure 9(c) shows the results of the matching process in which circles are connected to their
corresponding diamond with a straight line and the FOE is labeled and marked with an X. The final frame, Figure
9(d), shows the computed range to each point resulting from each of the matches.

A pair of real images was selected to test the capabilities of the optical flow algorithm using real imagery. Table
3 indicates the location, roll, pitch, and yaw of the camera associated with the pair of real image frames that were used.
The field of view of the camera for the real images is 52.1' x 40.30 and the focal length = 9 mm. The elapsed time
bctween the two frames for this experiment was 0.2 seconds. Figure 10(a) shows the locations of the extracted interest
points obtained from the first frame, drawn as circles. Similarly, Figure 10(b) indicates the location of extracted
interest points (squares) and the corresponding deroated locations (diamonds). Since the vehicle undergoes very little
rotation between frames, the derotatcd locations are nearly coincident with the original point locations. The results of
the point matching process for the real imagery is shown in Figure 10(c). Finally, the computed range to each of the
matched points is displayed in Figure 10(d).

6. CONCLUSIONS
\c have presented out initial work for INS integrated motion analysis. Future work will involve incorporating

ccntcxt dependent qualitative scene analysis, knowledge-based sensor management, and incorporation of Kalman filter-
imfl into our approach, as shown in Figure 2. Our ultimate goal is to develop the complete, fieldable system for obsta-
Je detection during rotorcraft low altitude flight. We are also applying this technology for land vehicle applications to
achieve robust obstacle detection, target motion detection, and target tracking.

x (ft) Y (ft) z (ft)

1 100 25 4
2 95 -30 4
3 90 -10 4
4 85 -5 4
5 80 2 4
6 75 8 4
7 70 -8 4
8 65 10 4
9 60 0 4

10 55 5 4
11 50 -15 4
12 35 10 4
13 30 3 4
14 25 -5 4
15 20 2 4

Table 1: Locations of interest points.

x (ft) y (ft) z (ft) roll (deg) pitch (deg) yaw (deg)

Frame A -70D-7 0 -15
Frame B 5 1 -6 5 -11 2

Table 2: Location, roll, pitch, and yaw of the camera for synthetic frames A and B.
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(a) (b)

(c) (d)

Figure 9: Optical flow results using synthetic data. (a) Locations of interest points in the first image,
indicated by circles. (b) Locations of interest points in the second image, shown using squares. Dia-
monds indicate the derotated interest point locations. (c) Matching process results in displacement
vectors between circles and diamonds. The FOE is indicated by a cross. (d) Computed range values
to the interest points.

x (ft) y (ft) z (ft) roll (deg) pitch (deg) yaw (deg)

F2ame A -f -0. 4 0.959 -1.1-79 --97.77
Frame B -231.7 -20.83 6.44 1,222 -1.231 -176.852

'lable 3: Location, roll, pitch, and yaw of the camera for two frame of real imagery.
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(C) (d)
PL ivare M) Opticali flow results using real data. (a) Locations of' interest points inl the first image, indi-
catewd h', circles. (b) Locations of' inte rest points in the second image, shown using squares. Dia-
mo1nds ind~icate the derotated interest point locations. (c) Matching process results in displacement
kectors bewcen circles and diamonds. The FOE is indicaied by a cross. ,'d) Computed rang~e values
to tile interest point,;.
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APPENDIX A

NAVIGATION ERROR CHARACTERISTICS
The passive ranging technique relies on attitude and position information provided by the inertial navigatiou sys-

tem (INS). The ptrpose of this appendix is to supply error models which are representative of a land vehicle/helicopter
navigation system. These error models can then be used to assess the impact of navigational errors on the passive
ranging performance. A short term navigation error model of a strapdown inertial navigation system has been
developed. The INS derives attitude, velocity, and position based on inputs from orthogonal triads of gyros and
accelerometers. Assuming that the only error of concern to the passive ranging technique is the drift between samples,
Table Al provides error estimates for the GG1328 Ring Laser Gyro (RLG) INS and the GG1342 RLG INS systems.
The error estimates in the table are based on the following assumptions:

30 Hz Sample Rate
45 Degree Latitude and Heading
10 Minute Gyrocompass Alignment
0.5 g X and Y Helicopter Acceleration
1.0 g Z Helicopter Acceleration
100 deg/sec Roll, Pitch, and Yaw Rates
H-764 Output Quantization Levels

As evident from Table Al, the most significant one sigma error source is the output quantization error. The out-
put quantization is a function of output requirements as internally the attitudes, velocities, and positions are all double
precision quantities. Thus, the small errors in attitude and velocity vectors obtained from the INS allow the location of
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the focus of expansion (FOE) in the original and derotated images to be accurate enough to perform robust motion
analysis. Further details of this analysis are given in the report by Bhanu and Roberts. 8

Gyro Miasagmn 0.91647e-04 0. 631e-04 0.91647e-04 0.163e-04

Heading Error -. 1404e-07 -. 1790e-08 ___________

RSS Total 0.2349e-02 0.9080e-03 0.2345e-02 0.9034e-03

Output Quantization 0.0 14 1e-00 0.0141e-00 0.0141e-O0 0.0 14 1e-00
RSS Total 0.0143e-00 0.0141e-0O 0.0143e-00 O.0141e-00

X - Y Velocity Error Z Velocity Error

Error Term GG1328 (p)GG1342 GG1328 (p)GG i342
Accel Bias 0. 1063e-03 0.5313e-04 0. 1063e-03 0.5313e-04
Accel Scalefactor 0.1063e-03 0.5313e-04 0.2125e-03 0. 1063e-03
Accel Misalignment 0.2576e-04 0. 1288e-04 0.2576e-04 O.1288e-04
Accel Misalignment 0. 1030e-03 0.5 152e-04 0.2576e-04 0. 1288e-04
Level Error 0. 1063e-03 0.5314e-04
RSS Total 0.2125e-03 0. 1063e-03 0.2404e-03 0.1202e-03

Outp~ut Quantization 0. 1409e-03 0. 1409e-03 0. 1409e-03 0. 1409e-03
I RSS Total 0.2550e-03 0. 1765e-03 0.2786e-03 0.1852e-03

X - Y Position Error Z Position Error
_______________(feet) (feet)

Error Term GG1328 GG 1342 GG1328 GG1342
Accel Bias 0.3507e-05 0. 1753e-05 0.3507e-05 0. 1753e-05
Accel Scalefactor 0.3507e-05 0. 1753e-05 0.7013e-05 0.3507e-05
Accel Misalignment 0.8500e-06 0.4250e-06 0.8500e-06 0.4250e-06
Accel Misalignment 0.3400e-05 0. 1700e-05 0.8500e-06 0.4250e-06
Level Error 0.3 508e-05 0. 1754e-05
RSS Total 0.701 3e-05 0.3506e-05 0.7933e-05 0.3966e-05

Output Quantization 0.2528e-00 0.2528e-00 0.2528e-00 0.2886e-00
IRSS Total 0.2528e-00 0.2528e-00 I0.2528e-00 0.2886e-00

Table Al: One Sigma, Short Term Navigation Errors
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Robust Geometric Computations for Vision and Robotics *

Victor J. Milenkovic
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

A new technique, the hidden variable method, is described for the creation of robust geometric algorithms:
algorithms which can be implemented with absolute reliability using rounded finite precision arithmetic.
The specific application given here is an algorithm for computing arrangements of line segments in two
dimensions: determining how a set of line segments subdivides the plane into vertices, line segments, and
polygons. Using rubber band curves, an implicit representation for the line segments, the algorithm can
generate an arrangement with N bits of accuracy using rounded arithmetic with just N + 6 bits of precision.
Applications of this algorithm to problems in vision and robotics are discussed.

1 Introduction

Shape, position, orientation, and velocity are all geometric properties, and reasoning about these properties
is an important part of vision and robotics. As much as possible, we wish to automate geometric reasoning
by means of geometric programs. In order that these programs be efficient, we use rounded finite precision
arithmetic. Unfortunately, when we write these programs we find that it is difficult to attain reasonable
reliability and almost impossible to obtain absolute reliability: there always seems to be one more special
case on which the program fails. Theoretical reasons are only now coming to light as to why geometric
programs are so much more difficult to make reliable than purely numerical or purely symbolic programs,
but this difficulty is very commonly experienced in practice.

We propose techniques for creating robust geometric programs: geometric programs with absolutely
reliable rounded arithmetic implementations. This paper will focus on the domain of line segments in
the plane, but the techniques presented here have broader applications. The techniques are based on two
principles. First, one should use a malleable representation. Specifically, replace each line segment with a
rubber band curve which can be modified as the computation proceeds to reconcile numerical error with the
symbolic structure. Second, one should keep as much of the representation implicit as is possible. In the
case of rubber band curves, their exact shapes are unknown at all stages of the computation. Put together,
these two principles make up the hidden variable method which allows us to generate correct geometric
information without the use of exact arithmetic. A certain amount of error is introduced by the use of
rubber band curves, but this can be made to be a small fraction of the error arising from sensor noise and
other measurement errors.

1.1 Outline

Section 2 reviews the pitfalls of using rounded arithmetic to do geometry. The cost of using exact arithmetic
instead is also considered. Section 3 formalizes the concept of single-precision arithmetic and explains why
we expect robust single-precision geometric algorithms to exist. Section 4 gives a robust single-precision
algorithm for reasoning about line segments in the plane. Given a set of line segments, we can determine

*This research was supported in part by DARPA, monitored by the Air Force Avionics Lab under contract F33615-87-C-1499.
Victor J. Milenkovic was supported in part by an IBM Manufacturing Research Fellowship. The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of the funding agencies. Author's current address: Aiken Computation Lab, Harvard University, Cambridge MA
02138.
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how they intersect and what polygons they form using rounded arithmetic. This algorithm avoids the pitfalls
discussed in Section 2, and it can be used for a variety of applications, such as modeling polygonal regions
in the plane.

1.2 Background

In order to qualify as robust under the definitions in the paper, a geometric algorithm must be implementable
using rounded (N+c)-bit arithmetic where N is the number of bits of accuracy in the output and c is constant
or perhaps logarithmic in N. The implementation is not allowed to simulate high precision arithmetic, and
it generates a solution for every well-formed input. The author has also created line arrangement and plane
arrangement algorithms that satisfy this definition 1101.

For a discussion of the more general problem of improving the reliability geometric computations using
rounded arithmetic, see [4,5[. Problems addressed include polygon [13,91 and polyhedron [6,7,141 modeling
and the calculation of convex hulls [121 and other problems in plane geometry [11). Karasick 1,j has the
most practical result to date, an ultra-reliable polyhedral modeling system that is provably safe: either it
generates a topologically consistent result or it indicates failure. Greene and Yao [3[ have addressed the
prublom of rounding the output of an exact algorithms, and rounding can also be accomplished using the
techniques in [10 and 1111.

2 Pitfalls of Using Rounded Arithmetic

The problems that arise as a result of using rounded arithmetic to implement geometric algorithms fall into
four areas: incomplete representation, ill-conditioned problems, incomplete information, and unexpected
incidences. Problems arlsing from these areas cause either unreliable behavior and/or unbounded error.
This section will cor.3;der each one in turn.

2.1 Incomplete Representation

Suppose we have a pair of line segments AB and CD whose endpoints are represented using standard single
precision floating point numbers. In general, the intersection I of AB and CD will not be representable
in single precision. It will in fact be a fraction, and if we carry out the division, the result is a repeating
decimal.

One way out of this difficulty is to round I to the nearest representable point. Thus we replace AB
by Al and 1B and similarly for CD. This replacement can have two effects. First, it adds error which is
ultimately proportional to the number of segments that AB intersects. Having error grow linearly with the
problem size is usually not practical.

Rounding I may also introduce new intersections. In particular, Al and 1B may intersect a segment EF
which was not intersected by AB. Actually, the algorithm of Section 4 has this property. The point is that
we must be careful to detect the consequences of the changes we make.

2.2 Ill-Conditioned Problems

If AB and CD intersect at a very small angle, it requires at least triple precision arithmetic (three tinies
input precision) in order to calculate I to the same accuracy as A, B, C and D. As Section 3 will show, we
should not need so much precision to generate a reasonable solution to the problem. However, from a naive
point of view, a solution in which I is calculated with less accuracy than A is incorrect.

Small angle intersections are common in practice because AB and CD may be equal or overlapping
segments which have been perturbed by measurement error or rounding.

2.3 Incomplete Information

Three segments A 1B1 , A 2 B 2 , and A 3B 3 can intersect in essentially three different ways: 112 (the intersection
of AIB1 and A 2 B2 ) lies left of, right of, or on A 3B 3. In order to correctly determine which case holds, we
must use more than six times the input precision for our calculations. If we do not use this much precision,
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we are left with situations in which we cannot know the correct answer, and thus one consequence of rounding
is incomplete information.

Let us see what can happen when we make an arbitrary choice in the case that we do not know the
correct answer. Figure 1 shows what happens when two local choices, 112 lies to the left of A3 B 3 and to the
right of A4 B 4 , lead to a global contradiction. If we attempt to trace out the boundary of the quadrilateral
A3A 4 12 4I2 3 , we end up with the following sequence: A 3 , A 4 , 124, 123, 113, 114 (!), B 4, B 3 , 123, 124, '14,

113, and (finally) back to A 3 . This is clearly an erroneous solution resulting from that fact that the local
choices we have made have caused an unacknowledged intersection between segments 123124 and 113114. If
we are to avoid this error, we must either avoid causing extra intersections or we must detect them.

2.4 Unexpected Incidences

In Figure 2 we see two polygons A 1 A 2 A 3 A 4 and BIB 2B 3 B 4 B5 B 6. Suppose we attempt to take the union
using a covered edge rule: remove any edge covered by the other polygon. Edge A4 B 5 is duplicated, and if we
naively apply the rule, either we remove both copies or we remove neither. Neither solution is satisfactory.

This problem arises because the rule does not cover a special case: overlapping edges. This failure, which
we refer to as an unexpected incidence, can occur whether we are using exact or rounded arithmetic. For the
domain of exact arithmetic, there is a general technique called simulation of simplicity 12,15] for removing
these special cases. In the domain of rounded arithmetic, we have no choice but to use careful programming.

3 Accuracy and Precision

In this section we will discuss the issues of precision and accuracy. We define single-precision arithmetic and
show that it is sufficient to generate accurate solutions to numerical problems. We will also see why it is
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hard to reliably compute single-precision solutions to geometric problems.

3.1 Definitions

Definition 1 (Accuracy) Suppose a E R is an approximate input to a numerical computation. If acorrect
is the correct value of a, we say that a has N bits of accuracy if,

la - acorrectl < 2Na.

A number E R is small with respect to a if 1 1 < 2Na.

Definition 2 (P-bit Arithmetic) An arithmetic has P bits of precision if any single operation has P bits
of accuracy. For example, Iab)R -a+ b)( _ 2"Ib,

where the subscript R denotes the rounded operation.

For a standard floating point arithmetic, P is the number of bits in the mantissa. We will say that
a computation uses single-precision arithmetic if it solves problems with N bits of accuracy using P-bit
arithmetic, where P - N.

3.2 Non-Geometric Numerical Computation
As an example of a non-geometric numerical computation, consider the problem of solving a system of D
linear equations in D variables. Using Gaussian elimination and single-precision arithmetic, we can safely
and 'fficiently generate a reasonable solution.

What do we mean by "safe"? The order in which Gaussian elimination eliminates variables depends on
what appears to be the largest coefficient in a column. Round-off error may increase the value of a coefficient
and thus alter the order in which variables are eliminated. In other words, Gaussian elimination acts on the
basis of incomplete information. Fortunately, no matter how the order comes out, the algorithm generates
a reasonable result.

What is efficient? If the coefficients have N bits of accuracy, arithmetic with P = N+2 log D bits suffices.
Since log D is small, this is basically "single" precision, P rt N. In order to solve the system exactly, we
would require at least P = DN bits, D-tuple precision. Furthermore, the rounded solution uses no more
operations than the exact solution, and obviously, single-precision operations are much cheaper than D-tuple
precision operations. We cannot hope to generate a solution with N bits of accuracy using arithmetic with
P < N, and therefore the rounded solution is as efficient as possible.

What is reasonable? In the case of an ill-conditioned problem, the single-precision implementation of
Gaussian elimination may generate a solution point that is very far from the correct solution. However, one
can prove that if the approximate single-precision solution is 2 = (c, c2 ,..., CD), then there exists some
small (Definition 1) perturbation of the coefficients such that X is the exact infinite-precision solution to the
perturbed system. Thus, given the accuracy to which we know the input coefficients, 2 may in fact be the
correct solution.

3.3 Geometric Problems

Our goal is to safely and efficiently generate reasonable solutions to geometric problems using single-precision
arithmetic. Arbitrary decisions in the face of incomplete information do not seem to have a significant effect
on Gaussian elimination. Unfortunately, arbitrary decisions do have a strong effect on geometric algorithms,
as we have seen in Section 2. Because of topological constraints, the decisions are highly interdependent.

Because geometric reasoning is so sensitive to arbitrary decisions, we must be careful how we define a
reasonable solution. In the case of line segments, one might think that we should allow each endpoint to vary
within a small disk, but this still appears to be too constrained. Recent theoretical work in computational
geometry [1 has shown that determining whether a particular topology can be generated by a set of segments
is a very hard problem.

Instead, we will fix the endpoints and allow the interior of the segment to vary into the shape of an
arbitrary monotonic curve. As we will see in the next section, we can still constrain the shape of the
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approximation to be roughly linear. This type of solution is reasonable because we can constrain the points
of the curve to approximate the points of the segment to N bits of accuracy. The solution is physically
meaningful because straight lines do not occur in the natural world. A sufficiently straight curve is as useful
a model as a straight line segment for most purposes.

4 Robust Reasoning about Line Segments

This section describes a technique for reasoning about line segments using an implicit approximation called
the rubber band curve. After a few basic definitions, we will describe a straightforward means for storing
topological information called a SIDE database. By imposing certain consistency conditions on the arbitrary
decisions we store in the database we can assure that there exist a set of rubber band curves consistent with
the decisions we have made. Next, we see how to detect implicit intersections among these curves by
examining the values in the database. This section ends with an algorithm that creates new vertices and
moves the intersection points of the rubber band curves to these explicit vertex locations.

4.1 Definitions

Definition 3 A coordinate rectangle is a rectangle whose sides are aligned with the coordinate axes. Let
AB be a line segment in the plane (with floating point endpoints). Let R(AB) be the coordinate rectangle
which has AB as one of its diagonals. In interval notation,

R(AB) = [A., B,] x [AY, BYI.

If a vertex C lies outside R(AB), then we can easily classify C with respect to AB. For example if
C E lA,, B,] and C, > max(A,, By), then C is clearly above AB.

If C E R(AB), we must look at the signed distance 6(C, AB) from C to AB,

6(C,AB) = (B -A) x (C- A)

IB- Al
where,

(B - A) x (C - A) = (Bz - A.)(Cy - Ay) - (By - Ay)(C. - A.).

Suppose we use arithmetic with P bits of precision. How accurate is 6(C, AB)R? (The subscript R refers
to the use of rounded arithmetic.) It can be shown that for C close to AB,

16(C, AB)R - 6(C,AB)j _ 3jC - Al,

where c = 2- P . We will assume that all reasoning occurs inside some bounding square [-M, M] x I-M, MI
where M is the maximum magnitude of any coordinate. Thus IC - Al < 2V2M, and the error in calculating
8(C, AB) is bounded by 6V'2/eM. We will refer to this constant as a.

4.2 Handling Incomplete Information

The fact that a 5 0 indicates that for 16(C, AB)R I _ a, we do not know whether C lies above, below or
on AB. We make arbitrary decisions and store them in a SIDE database: for each segment AB and each
vertex C E R(AB), SIDE(C, AB) equals ABOVE, BELOW or ON. Since A, B, C are vertices we are given
or ones we create, the database stores only a finite amount of information. The decisions we make may be
incorrect, but by imposing some consistency conditions, we can still generate useful results.

Definition 4 (Numerical Consistency) The SIDE database is numerically consistent if

f ABOVE I m 6(CAB) >-5a )5
SIDE(P, AB) = BELOW implies that 6(C,AB) _ .a

ON 1 I(C, AB)I : 5a "
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Figure 3: Examples of XY-Consistency

This definition states that the decisions may be incorrect, but not very incorrect. The reason we use a
multiple 5a will become apparent later. The value 5a represents about six bits of error.

As we know from Section 2, imposing arbitrary decisions in the face of incomplete information is a risky
business. Therefore we enforce another consistency condition on SIDE.

Definition 5 (XY-Consistency: Prototype Definition) Suppose we have A. < B, and A, < By and
P, Q E R(AB). If SIDE(P, AB) = ABOVE and if Q. _ P. and Qy _ Py, then SIDE(Q, AB) = ABOVE
(see Figure 3).

Imagine putting the origin at P. The fact that P is ABOVE AB forces everything in the second quadrant
to be ABOVE also. Even if we are wrong about SIDE(P, AB), we will still insist on xy-consistency. The
following is the complete definition.

Definition 6 (XY-Consistency: Complete Definition) Suppose we have A, < B, and A, < By and
P,Q e R(AB).

IfSIDE AB)= ON or ABOVE and Q Qy y
ON or BELOW" I Q. P. and P

then SIDE(Q, AB) ={ON or ABOVE
ON or BELOWj

If either of these two conditions holds, SIDE(Q,AB) can equal ON only in the case that

SIDE(P, AB) = ON and (Q. = Px or Qy = Py).

Finally, if Ay > By the definition is the same except that comparisons of y.coordinates are reversed.

4.3 Rubber Band Curves
The following theorem indicates that there is some reasonable curve satisfying the set of decisions we havec
made.

Theorem 1 (Hidden Variable Theorem) Lety : [0, 11 - '2 be the shortest rectifiable (actually polygo-
nal) curve satisfying y(o) = A, 7(1) = B, and for all vertices P G R(AB),

fABOVE I above or on
SIDE(P, AB) = BELOW implies that P is below or on }

ON on
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Then -1 is monotonic and close to AB:

Vt E 0, 1l: -'(t) -(B - A) > 0 and 16_ tAD a
The tangent -y'(t) may be undefined at a finite number of points.

For a proof, see [101. We call the curve -y the rubber band curve rbc(AB). Figure 4 gives two examples
in which P is ABOVE AB and Q is BELOW. The instance on the right shows what happens when xy-
monotonicity is violated; the rubber band curve (dashed) is not monotonic.

4.4 Detecting Intersections

Rubber band curves are impl;.kit. In the examples in Figure 4 we cannot know if P and Q actually deflect
rbc (AB) unless we know the signs of 8 (P, AB) and 6 (Q, AD), which we do not in the case of incomplete
information. Despite this implicitness, we can always tell whether or not two rubber band curves intersect
simply by looking at the SIDE database. This section shows how to accomplish this.

Definition 7 (Subsegment) PiP,+, is a (minimal) subsegment of segment AB if

" SIDE(P,, AB) = SIDE{P,+,, AB) = ON;

" Pi and P,+1 are neighbors: for every other vertex P E R(PiPw+,} SIDE(P, AD) 74 ON.

Define also rbcAB(PP,+' ) to be the portion of rbc(AB) joining Pi to Pi+,.

If a subsegment of AD crosses a subsegment of CD we expect to find evidence of the fact inl tihe SIDE
database.

Definition 8 (Evidence Vertices) Let PiP,+1 be a subsegment of segment AB and let QiQj+l be a
subsegment of segment CD such that R(PPi,) n R(QjQi+,) is non-empty. Let E be a vertex such that
Ex E (Pi,., Pi,,.] n [Q,. , Qy+,, .

Vertex E is an evidence vertex if SIDE(E, AB) j4 SIDE(E, CD). In particular E is evidence that
rbcAB(PP,+ ) is partially above rbccD(QyQy+l ) if

SIDE(E, AB) = BELOW or SIDE(E, CD) = ABOVE.

Otherwise it is evidence that rbcAB(PP,+) is partially below rbcCD(QyQy+ ) .

Lemma I Let PP,+l and QyQ+l be subsegments of AB and CD, respectively. Curve rbCAB(P, Pi+ )
crosses curve rbccD(QyQy+, ) if and only if there is an evidence vertex E. that indicates rbCA,PP+ )
is partially above rbcDQyQy+, } and there is an evidence vertex Eb that indicates rbcAB PPi+l) is
helou, rbccD (QjQy+ 1 (see Figure 5).

Thus if two subsegments cross, we can detect the fact looking only at the values in the SIDE database.
In the left half of Figure 5 E,, equals U3 and Eb equals U1l. This always happens if the slopes of AB and
CD have the same sign. For a proof of the lemma, see [10].
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Figure 5: Evidence for Intersection of Subsegments PiPi+1 and QjQ j +i

4.5 Creating Intersections

When two subsegments cross we must create an explicit vertex for this crossing and then add it to the SIDE
database. Eventually, we will find all intersections, and as the lemma of the previous section indicates, by
scrutinizing the SIDE database, we can be sure that we have not missed any intersections. When we have
finished, the SIDE database will contain all the topological information we need to know about the rubber
band curves. This section describes the intersection algorithm.

Lemma 1 implies the existence of evidence vertices E, and Eb whenever two subsegments P1Pj~j and
QjQj+j intersect. The specific task of the intersection algorithm is to create a,new vertex I such that
E < I, <_ Eb.x and such that it is numerically consistent and xy-consistent (Definitions 4 and 6) to set
SIDE(I, AB) and SIDE(l, CD) equal to ON. In order to be xy-consistent, it is necessary that,

I E R = ([E.,x, El. ] x [-oo, ool) n R(PiPi+1 ) n R(QjQj+,).

We call R the bounding rectangle for the intersection and denote its vertices by U1 , U 2 , U3 , and U4 .
The intersection algorithm is based on the following idea: if there are no vertices in the interior of R,

then it is possible to explicitly determine the shapes of the rubber band curves rbc(AB) and rbc(CD) inside
R. Unfortunately, there may be vertices inside R. To get around this problem, we will create a temporary
database which ignores these points.

We create a constant-sized temporary database SIDE',

SIDE' : {E., Ej), Pi, Pj+1 , Qi, Qj+l, U,, U 2, U 3 , U 4 } x {AB, CD} -* {ABOVE, BELOW, ON).

Initially, SIDE' agrees with SIDE on {E., Eb, Pi, Pi+l, Q,, Qi+i} x {AB, CD}. Otherwise, we choose values
that are xy-consistent and numerically consistent. Next, we change as many values to ON as possible: for
any vertex P in the domain of SIDE',

if SIDE'(P,AB) = I BE and 6 (P, AB) R 4 ,1then set SIDE'(P, AB) = ON.

Do the same thing for CD.
It may happen that there are P and Q in the domain of SIDE' such that PQ is a subset of the boundary

of R and such that

SIDE'(P,AB) = BELOW and SIDE'(O,AB) = ABOVE.

In this case we simply compute the intersection of this segment with AB using rounded arithmetic and
insert the new vertex into the SIDE' database.
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If after we do all this, there is some point I e R in the domain SIDE' such that

SIDE'(I, AB) = SIDE'(I, CD) = ON,

then I is the desired intersection. Otherwise, there will be a subsegment A'B' of AB which intersects
the interior of R. In this case, the desired vertex I is the intersection of A'B' (see Figure 5) with CD as
calculated using rounded arithmetic. This vertex will have accuracy 5a (Def'iition 4).

4.6 Updating SIDE
The previous section described how to generate a vertex I such that

SIDE'(I, AB) = SIDE'(I, CD) = ON.

Unfortunately, the SIDE' database was constructed ignoring any vertices lying inside R. What do we do it
there is a vertex P such that SIDE(P, AB) = ON and I,, < P, and I, P, (see Definition 6)? In this case
we cannot set SIDE(I, AB) equal to ON. What we do is that we throw away I and set SIDE(P, AB) equal
to ON.

If we are forced to throw away I, we do not add to the number of vertices. We also convert an ABOVE'
to an ON or a BELOW to an ON, which can happen only a finite number of times. Thus if we keep trying
to generate intersections, eventually we will succeed in generating an I that works.

5 Conclusion

In conclusion, we would like to answer some questions about the algorithm described above. What soit -I
applications does it have? Can its complexity be decreased? Are there other approaches?

5.1 Applications

The main application of the segnent algorithin is polygon modeling. We define a polygonal region in the
plane by listing the set of line segments that form its boundary. If wish to take a union, intersection, or
difference of two polygonal regions, the first step is to apply the segment algorithm to the sets of segments.
Given the completed SIDE database, generating the desired regions is purely a symbolic, not numerical.
process.

There are many applications of polygon modeling in vision and robotics. For example, given a polyhedral
scene, we can generate its projection into the image plane using polygon modeling. If we have extracted
a region from an image, we can compare it to the projection of a hypothesized model by applying the
symmetric set difference. In the field of robotics, we can represent the map used by a mobile robot as a
union of polygonal regions. Determining if the robot can fit in a certain location is a matter of taking a
polygon intersection. Many other applications surely exist.

5.2 Complexity

The segment algorithm is somewhat complicated. However, if a developer attempts to naively use floating
point to zolve a geometric problem, lie dooms himself to a large period of testing and patching. His final
product will be more c,,mplirated and less reliable. Correctness more than makes up for the extra complexity.

Rubber band curves are not the only way to approximate segments, and the hidden variable method is
not the only way to create robust programs. The real lesson is that there are techniques for creating rounded
arithmetic geometry programs that are theoretically well founded. One can also use exact ar-ithmetic even
though it appears to be very expensive. Karasick, Lieber and Nackman [81 have recently demonstrated
an exact Delaunay triangulation algorithm with empirical cost well below the worst case. In alny case, a
considerable amount of time and effort can be saved by the small investment of time it takes to investigate
these possibilities.
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Abstract

Existing machine vision techniques are not competent to reliably recognize objects in unconstrained
views of natural scenes. In this paper we identify a number of weaknesses in current recognition systems,
including an inability to solve the partitioning problem or to effectively use context and other types of
knowledge beyond that of immediate object appearance. We propose specific mechanisms for dealing
with some of these problems and describe the design of a vision system that incorporates these new
mechanisms. The system has been partially implemented and we include some experimental results
indicative of its operation and performance.1

1 Introduction

Most existing work in robotic vision has focused on issues directly related to the immediate geometry and
photometry of the scene and the imaging process, such as recovering the three-dimensional location and
orientation of scene surfaces from image data and recognizing objects by their geometric shape or by the
presence or absence of some prespecified collection of easily measured attributes (e.g., spectral reflectance,
texture, and area). On the other hand, most real-world objects are assigned names based largely on their
origin, function, purpose, or context. For example, we recognize an object as a bridge not because it has a
specific shape, intensity, or texture, but rather because it links the two sections of a road interrupted by an
intervening body of water.

This research effort is concerned with the design of a perception system that not only recovers shape
but also achieves a physical and semantic understanding of a scene. Such a development would form a
link between the low-level, quantitative geometric information currently produced by vision systems and the
stylized, symbolic representations that are the mainstay of formal reasoning and planning programs. Until
this competence is available, it will remain impossible to develop robots that react intelligently and flexibly
to natural environments.

Completely duplicating the human ability to recognize objects is probably equivalent to duplicating
human intelligence. An intermediate goal would be to recognize the objects that can occur in completely
natural settings (i.e., no human artifacts). Aside from only having to deal with a restricted class of objects
and phenomena (probably fewer than 1000 distinct entities), purpose and intent are reduced to recognizing
the requirements of vegetation for light, nourishment, and space, as well as the constraints physical forces
impose on both living objects and terrain formntion. This particular recognition domain derives special
interest and importance from the fact that all living creatures must contend with this world and, at least in
part, solve this particular recognition problem. Since human recognition abilities evolved in this context, it is
reasonable to assume that this domain is extendable (an attribute missing from most other limited "worlds"
chosen in the past for the exploration of machine recognition).

'Supported by the Defense Mapping Agency and the Defense Advanced Research Projects Agency under contracts MDA9O3-

86-C-0084 and DACA76-85-C-0004
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flow difficult is tit, lhilied probleni of recognition in the natural outdoor world? It is safe- io say that
few, if any, of the relevant objects can he reliably recognized with existing approaches; even worse, there
current ly is no credible story about how to proceed. For example, how do we recognize rocks in photographs,
what criteria/procedure can be offered to a person who has never seen a rock before (other than offering the
advice that after everything e!se is labeled, the remaining objects are rocks)? What is it that allows us to
(list inguish a river from a lake, a puddle, or a "run-off' channel, or standing water on a leaf, even after we
have locally identified the visible surfaces in a photo that correspond to water?

Th, Investigat ion we are conducting has a very practical ultimate goal: to enable aut onror iilOUs vehicles
to carry out meaningful work. The research itself has four components:

" To develop an approach that addresses the fundamental limitations of today's systems aiIld that could
serve as an architecture for a computational vision system that achieves both a geometric arid a semlantic
understanding of its environment.

" To choose a vocabulary for describing the outdoor world. This must include representations for de-
scribing a wide variety of shapes and physical attributes, as well as constructs for expressing sonlaitic
properties and relations among objects.

" To develop a system i hat can recognize instances of this vocabulary in imagery from air outdoor doirain.
This will involve building a knowledge base and suitable control structures to enable the systi Pn to
recognize inatural objects in that domain.

e To demoristrate the feasibilitv of tile approach by implementing a significant portion of tle proposed
a relhiecture ai performing experiments on representative imagery in the context of ani auit toroinous
robot.

Our intent ill this paper is to frame the recognition problem for natural scenes, offer a reasonable story
about how it cun be solved, and describe the progress we have made in building a vision system for this
purpose.

2 Framing the Problem

What is t that we want to recognize? What new and prior information do we require (e.g., with respect to
sensory input - a single photo, a sequence of photos, stereo or range information, passive or active sensing,
etc.)?

We almost invariably recognize things based on partial information. For example, in a photo, we never
see tie backs" of tie objects we recognize, but rather assume that they are there. If we recognize a tree in

a photo, we might actually see the trunk, or some branches and leaves, but typically (e.g., ini a forest scene),
even if most of the "parts" are visible, we couldn't correctly assign all the leaves to the correct, trunk. Thus,
even though we know that trees have trunks, branches, leaves, and roots, it is generally their parts that we
recognize and can localize; we then deduce the presence of the whole. It is quite possible that some of tile
reasonably intelligent animals that live in forested terrain do not partition the world the way we do, and
may not even have a concept corresponding to the coherent entity we call a tree. This, questions we must
address include: what is the vocabulary of objects we want to be able to recognize; and, to what extent
should we be able to delineate a recognized object?

What is it that we extract from image data that allows us to recognize natural objects? What, knowledge
nri.,t we have iii advance? Edges, contours, color, and texture are far from sufficient cues for recognizing
a river, and it is rinot clear what, it is that allows us to recognize a rock. In a sense, rivers are shaped
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and located by their environment, and it is difficult, if not impossible, to recognize them out of context -
i.e., without simultaneously recognizing both the geometry of the surrounding terrain and the co-occurring
natural objects. Trees, on the other hand, are shaped by a genetic "blueprint"; they satisfy a set of constraints
that are imposed on, rather than derived from, their surroundings. One can probably recognize a line drawing
of a tree in isolation, but not of a river. Rocks are intermediate between rivers and trees. They can often be
recognized in isolation, but not from a line drawing. They are positioned by their inmediate environment,
but not shaped by it; they do not conform to a genetic blueprint, but their appearance must reflect a rather
narrow set of formative conditions [10].

As a means of extracting a manageable subproblem for our initial effort, the implemented system is
intended to recognize a variety of scene components, but will primarily focus on the task of recognizing
trees. Given an image of terrain obtained by an autonomous vehicle, and a crude map of the area, the
system attempts to identify the obvious trees. We wish to focus on recognition, and will not be unduly
concerned with positional accuracy. Objects that are mislabeled are the pritiary errors that we wish to
avoid - mislabelings are the type of "ugly' mistakes that plague today's vision systenis.

3 Ingredients of a Solution

The realization of robust recognition in the natural outdoor world will require that four current limitations
of machine vision be overcome: the almost exclusive reliance upon shape, the ill-defined nature of the
partitioning problem, the lack of an effective way to use context, and the inability to control the growth and
complexity of the recognition search space.

The role of geometry -- In most existing approaches to machine recognition, the shape of an object or of
its parts has been the central issue. Indeed, many artifacts oi human technology can be recognized solely
on the basis of shape, and to a large degree this fact accounts for the limited success so far achievcd by
machine recognition systems [2, 4, 12, 13]. These techniques cannot be extended to the natural world
because shape alone is insufficient (even for people) to recognize most objects of interest (e.g., a rock
or a river). It is easy to recognize a line drawing of an isolated telephone, but, as previously discussed,
doubtful that one could correctly classify a river based upon a line drawing of the river alone. Indeed,
most natural objects fail this "line drawing test" - a test that requires identification based solely on
shape. The fact that very few natural objects have compact shape descriptions further complicates the
use of shape in describing natural scenes. Thus a rather complex and cumbersome description would
be required to describe the shape of something as common as a tree or a bush. It is obvious that shape
cannot be the sole basis for a general-purpose recognition system.

The role of scene partitioning - A common paradigm in machine vision has been to partition an image
into distinct regions that are uniform in intensity, texture, or some other easily computed attribute,
and then to assign labels to each such region. For natural scenes, however, it is seldom possible to
establish complete boundaries between objects of interest. We have already mentioned the difficulty
of associating leaves with the correct trees. Other examples are abundant - where does a trunk end
and a branch begin, what are the boundaries of a forest, is a partially exposed loot part of the ground
or the tree? Despite these difficulties, it remains necessary to perform some form of partitioning
to do recognition, otherwise we have nothing to refer to when making a classification. Because of
the impossibility of performing scene partitioning reliably (even if such a goal were well-defined), we
cannot rely on partitioning in the usual sense. Instead, we need an alternative view that allows object
recognition without requiring complete or precise object delineation.

The use of contextual information - It is widely known that. an object's setting can strongly influence
how that object. is recognized, what it is recognized as, and if it. is recognizable at all. Psychological
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studies have shown that people cannot understand a scene in the absence of sufficient context, yet when
such contextual information is present, recognition is unequivocal [91. Individual objects may project
as a multitude of appearances under different imaging conditions, and many different objects may have
the same image. From these studies it is clear that computational vision systems will be unable to
classify an object competently using only local information. A perceptual system must have the ability
to represent and use non-local information, to access a large store of knowledge about the geometric and
physical properties of the world, and to use that information in the course of recognition. However, the
few computational vision systems that make use of context do so superficially or in severely restricted
ways. In our work, we make the use of contextual information a central issue, and explicitly design a
system to identify and use context as an integral part of recognition.

A mechanism for control of complexity - The two standard architectures currently employed in scene
analysis are (1) top-down or model-driven interpretation, and (2) bottom-up, a breadth-first form of
sensor-driven interpretation. Both of these forms of image analysis (and various intermediate versions)
lack an essential attribute of intelligent behavior - an explicit mechanism for generating a (potential
or actual) problem solution without requiring some form of exhaustive search. In controlled or simple
environments, exhaustive search may be computationally feasible, but the complexity of the natural
world imposes the requirement for a more efficient solution mechanism. A key aspect of our approach
is the provision of an explicit mechanism for generating high-quality assertions about the scene without
the need for exhaustive search.

4 The Shape of a Solution

An effective scene-recognition system must provide:

" A "language" for making semantically meaningful assertions about a sceie.

* Computationally effective procedures for generating and evaluating hypotheses (assertions) about scene
objects and relations.

" Methods that permit validation of a scene description at a global level.

The key ideas underlying our approach are:

1. The selection of the outdoor navigation and mapping tasks as the basis for delimiting the semantic
knowledge the system must be able to employ in describing and understanding a scene (some relevant
vocabulary items are listed in Table 1).

geometric horizon sky ground
skyline thin vertical raised object occluding edge

raised object foliage tree trunk
tree crown bush tree

cloud ridge line branch

Table 1: Vocabulary of terms
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2. Explicitly encoding the different sets of conditions (contexts) under which the semantic objects we are
interested in canl be reliably compared and recognized. These recognition conditions, which typically
require the prior or co-determination of the presence of other semantic features, are called context sets.
Some of the criteria that comprise context sets are listed in Table 2. High-level knowledge must be
brought to bear if recognition is to be performed competently. As we will see, context sets are the
central knowledge source around which our recognition system is constructed.

GLOBAL CONTEXT:
foothills on San Francisco peninsula
daytime
cloudless sky

LOCATION:
local topography
touching the ground
coincident with a known tree

APPEARANCE:
geometric: shape, size, neighbors, depth, orientation
photometric: intensity, texture, color

FUNCTIONALITY:
supporting another object
bridging a stream
counterbalancing a tree limb

Table 2: Examples of criteria that comprise context sets

3. The design of a control structure to limit the computational complexity of the recognition process: (a)
control of the quality of hypothesis generation through a biased form of image partitioning, i.e., the
use of region delineation based on a context-set-adjusted homogeneity metric tailored to find portions
of an image associated with specific scene features; and (b) control of search (in recognition space) by
creating partial orderings of all of the hypotheses making assertions about the presence of a particular
type of scene feature.

4. Recognition is accomplished by finding mutually consistent groupings (cliques) of hypotheses about the
different semantic features. Cliques are formed by sequentially adding the highest ranking hypotheses
(with respect to the partial orderings) that are consistent with the current global interpretation.

5. Physical and imaging constraints, in the context of a 3-D spatial model, are employed as the primary
criteria for the consistency of a global interpretation (rather than probabilities for different arrange-
nients of semantic objects).

4.1 Scene Semantics

There are probably on the order of 100 to 1000 semantic object classes that an organism (such as a rabbit or
a robot) needs to be able to identify in order to move safely about in a relatively benign environment (such as
the grass- and tree-covered rolling hills in the San Francisco Bay area), but for our initial experiments we will
focus on finding trees and will recognize other scene features only to the extent of supporting this primary
objective (these additional scene features include sky, ground, thin raised objects, shadows, occlusion edges,
.. ). As indicated earlier, many of the naively chosen object classes we might deem appropriate for describing
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a nat ural scene require complex reasoning about those parts of the object that are directly observable; thus,
in our tirt ,xperinients, we will actually look for vertically oriented tree trunks rather than actual trees. The
determination of a semantic vocabulary that, matches the recognition capabilities of a given vision system
and satisfies the requirements of a specified task is a non-trivial issue that we are investigating but will not
further address in this paper.

4.2 Context Sets

Computer vision presents the following paradox: For natural scenes, in order to recognize an object, its
surroundings must first be recognized, but in order to recognize the surroundings the scene objects must
often be recognized first. Is it really necessary to recognize everything at once, or can some things be
recognized in relative isolation? If so, what are they, and how can they be recognized? It is certainly the
case that one does not have to know about everything in the universe to recognize (say) a tree; on the other
hand, trying to find the trees in an image by looking through a small "peep-hole" may be impossible. A
critical aspect of our approach is to define explicitly sets of conditions (context sets) under which various
seunant ic objects (such as trees) can be recognized - or at least ranked (in terms of their "tree-ness"). Typical
conditions employed in context sets are presented in Table 2. Our approach makes use of several forms of
coi text:

" Global context - Trees differ greatly from one climatic zone to another. Knowing whether the image is
of' an arctic or tropical environment should affect perceptual strategies.

" Locatioi - An object flying through the air is more likely a bird than a rabbit - and is almost certainly
not a tree. These facts can be deduced from context alone, without any reference to an object's shape,
color, or texture.

" .. pparace - Once a tree has been recognized, it is easy to recognize others, because neighboring trees
aro often similar in appearance.

* lunectionality - A tree trunk that has fallen across a stream can act as a bridge, but can be identified
as a bridge only after recognition of the stream.

There is a collection of context sets for each semantic category in the vocabulary and each context set is
associated with exactly one category. The system employs three kinds of context sets:

(1) A hypothesis generation context set is used to generate candidate hypotheses for the category it
is associated with. A hypothesis is an assertion that, for example, a certain specific region in an image
corresponds to a tree trunk. ifach context set contains the conditions under which a computational process
(operator) should be employed and supplies the particular parameter settings that should be used in that
context. The operator is only invoked when the conditions of the context set are satisfied. All hypothesis
generation context sets whose conditions are satsified are used to generate candidates.

(2) A hyupotlhesis validation context set is used to rule out certain candidate hypotheses from further
consideration as instances of a class. It specifies a set of conditions such that if the conditions are not
satisfied, the hypothesis could not denote a member of the class. For example, an object whose diameter
is greater than fifty feet could not be a tree trunk. These context sets eliminate the obviously erroneous
hypotheses that might have slipped through the earlier processing.

(3) A hypothesis ordering context set is used to rank order a pair of candidate hypotheses. It contains
conditions under which one hypothesis should he preferred over another as an instance of the class associated
with the context set. If any hypothesis ordering context set asserts a preference between two hypotheses,
that. preference is recorded. Otherwise, no preference is established. Pairwise comparison of all candidate
hypotheses for a class results in a partial ordering of hypotheses for that class.
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4.3 Control of Complexity: Hypothesis Generation and Ordering

Perception is appropriately considered a form of intelligent behavior because it nominally involves searching
an infinite "description space" to find an appropriate model of some imaged environment that conceivably
could have any one of an infinite number of arrangements of its components. Most current vision systems
avoid addressing this central problem by restricting the dimensionality of the relevant search space, for
example, by dealing exclusively with controlled environments where only a few, completely modeled, objects
can occur. That is, we have complete parameterized descriptions of the environment in advance; our task
is to find appropriate values for a relatively small number of numeric parameters. Because such systems
have no provision for handling the combinatorics of complex natural environments, they are not capable of
"scaling up" to real-world scenes.

It is apparent that a central consideration in the design of a "real world" vision system is the development
of some mechanism for controlling the quality (and thus the quantity) of the assertions/hypotheses that must
be filtered by the system. We deal with this problem by the use of prior knowledge, by context-set-controlled
partitioning, and by quality-based ordering of the generated hypothesis for preferential use in constructing
global descriptions.

4.3.1 The Use of Prior Knowledge

WVe envision the system we are constructing as being part of an autonomous robot situated in the world,
so a great deal of information will be available to it. Furthermore, the spatial and temporal continuity of
the world leads to added opportunities for a robot vision system to improve its performance based on its
experience.

The following facts are known by reasonably intelligent animals and are expected to be immediately
available to a robot as well. The approach we are taking is designed to make use of these items of information:

- Height of viewer above the groumnd: An animal knows its orientation intrinsically because its eyes
are fixed in relation to a given configuration of its body (assuming its feet are on the ground).
This value is fixed (or easily computed) for a robot as well.

- Orientation of the viewer (with respect to gravity): An animal knows this by virtue of its sense

of balance in the inner ear. A robot could know this by employing a simple sensor.

- Vertical vanishing point: Knowing the orientation of the viewer with respect to gravity allows one
to compute the vertical vanishing point in the image plane.

- A depth image: Through stereopsis, an animal can estimate the distance to the things that it sees,
although the quality, density of coverage, and accuracy are debatable, and the precision available
to it degrades with distance. A robot might employ several means to acquire depth data. Binocular
stereo techniques provide depths with various qualities. Laser rangefinders provide dense depth
images but have other limitations. Other techniques (motion, texture, shading) and sensors
(acoustic, structured light) are also available.

- The ground (at least one point in an image that can be labeled as ground): An animal can identify
at least one point that is known to be on the ground by looking at its feet (assuming the animal
is currently standing on the ground). A robot could perform the same action to locate a ground
point.

- The sky (at least one point in an image that can be labeled as sky): An animal can find at least
one point that is known to be sky by looking straight up (assuming it is not currently underneath
a tree, in a cave, etc.) A robot could do the same.
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- Erpertence: Unless the terrain is totally new, an animal has knowledge of the relative locations

and appearance of some features and can predict the appearance of parts of a scene. While the
vocabulary and representation of this information remain research issues, a robot should store

and use this type of information as well.

4.3.2 Context- Set- Controlled Pi7.rtitioning and Hypothesis Ordering

One of the unusual aspects of our -ipproach is its organization. Over the years, many different strategies

have been proposed for extracting information from images. It has become apparent that no single general-

purpose strategy will1 suffice to address the many requirements placed on vision systems. Our approach is
designed to choose low-level operations based on the semantics and context of each visual task. Rather
than applying a fixed operator in all circumstances, we make strong use of semantics to determine the most
appropriate low-level processing.

The underlying structure of the design is motivated by the following key observation:

Within any given inage, there is usually a relatively straightforward technique that will find
the object or feature of interest.

Of course, that particular technique may fail miserably when applied to some other image. However, given

a collection of simple techniques, one can generate a number of candidate features that will nearly always

contain the "correct" interpretation. It then remains to choose that feature from among all the candidates.

To accomplish this, we make use of a novel scheme:

First, we bias the feature (hypothesis) generation process to be more responsive to generating

good hypotheses relevant to a specific semantic category. Then we compare the candidates pair-
wise to find instances that are clearly "better" examples of the given class than their opponents.

Repeating this comparison process imposes a partial order on the candidate set for each label of

interest.

This departs from conventional approaches in two ways. First, comparing two candidates for a given label

requires knowledge of the semantics of that label only, whereas the customary approach of comparing two

labels for a given region requires knowledge of the relationships between many semantic categories. This

orientation provides a basis for believing that sufficient knowledge might be encoded in the system to allow

robust comparison. Second, we enforce the condition that the comparisons lead to a determination only if
one candidate is clearly a better choice than the other. With this conservative approach, we hope to avoid

the "ugly mistake" of misclassifying a candidate based on too little information.

The actual hypotheses generated by the system are motivated and shaped by the context sets in a manner

somewhat analogous to a collection of production rules. Separate partitions of an image are created for each

relevant semantic object class (e.g., sky, ground, trees ...), and in some cases, for each specific context

set. The basic mechanism for creating a partition is an operator that assigns to each pixel in the image a

homogeneity score which is a measure of its maximum "feature space distance" from any of its immediate

neighbors. The components of the feature space, and their relative weightings, are specified by the currently
active context set.

The output of the homogeneity operator is a gray-scale overlay of the original image that can be thresh-

olded (under context set control) to form a binary image in which the "zero points" either are discontinuities

or correspond to some feature other than the one associated with the context set; the "one points" are

accumulated into coherent regions that are indicative of the presence of the feature of interest (see Figures
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I - 4). The context set may require that other generic operations be performed on the detected regions; e.g.,
"'skeleton" generation as required for tree detection.

In actual practice, the context sets have varying degrees of specificity and precision. The more general
and low-resolution context sets will operate first (because their conditions are more easily satisfied), and
they typically use the output of the generic image operators with some standard set of parameter values.
Thus, it is only necessary to run a few generic operators over the image once in forming an initial scene
model. (Table 3 describes the collection of generic operators we currently employ.) Specialized operators
and generic operators with customized settings are typically required by the context sets that can only be
invoked after the initial model is formed - these context sets make more precise assertions about the scene,
or deal with known exceptions to the general rules for finding the relevant object instances. For example, the
system might require a special context set to recognize a lightning-struck tree that is known to be present,
but no longer looks like a normal tree.

TEXTURE - Measures the log-variance in a small window
STRIATION - Measures the orientation and strength of an oriented pattern
THRESHOLD - Creates a binary mask
SEGMENTATION - Partitions an image
ASSOCIATION - Groups contiguous clusters in a binary mask
EDGE DETECTION - Finds discontinuities
LINEAR DELINEATION - Finds line-like structure
HOMOGENEITY - Measures the maximum feature-space difference

between pixels in a small neighborhood

Table 3: Operators

The system constructs a global scene model by incrementally assembling mutually consistent collections
of hypotheses (generated by the process just described). The hypothesis generation context sets are used to
assure that only reasonable assertions are made; the hypothesis ordering context sets are used to provide an
ordering for selecting the most likely hypotheses to add to the model. There is a collection of context sets
for each class of objects the system is to recognize. If any one of them has a preference during a comparison
of two hypotheses, then that preference is taken into account by incorporating it in the partial order. If
no context set can establish a preference, or if several context sets disagree (which ideally should never
happen and would require a modification of the context sets involved), then no preference is recorded for
that comparison. In this way, a partial order is constructed from all hypotheses for each object class.

4.4 Constructing a Global Scene Model

Once partial orders have been constructed for the labels of interest, and for the additional labels that appear
as terms in the primary context sets, a search for a consistent interpretation of the scene is conducted.
Hypotheses are individually added to cliques, checking for consistency with those already present in the
clique. The search begins with those candidates at the tops of the partial orders and progresses until no
more ;.ypotheses can be added without causing a contradiction. The clique that explains the largest portion
of the :mage is offered as the best interpretation. The result should represent a reasonable explanation of
major portions of the image.
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4.5 Model Consistency

Determining the "'correctness" of a scene model is analogous to establishing the validity of a scientific theory
- one can never be assured that the model is valid: the best we can do is to filter out incorrect models
by showing they have some internal contradiction or violate some accepted fact. In the approach we have
described for constructing a scene model, the problem of assuring global consistency is addressed by the
mechanism for clique formation - the addition of a new assertion about the scene should not be able to cause
the satisfaction of the conditions of other context sets that cause rejection of already accepted hypotheses.

Assertions about the different semantic categories constrain each other in an absolute way in terms of
establishing 3-D geometric and physical relationships that must be consistent with known (a priori) facts
about the environment and the object categories (constraints on size; support; orientation; occupancy of
solid objects; and free-space imposed by the viewing geometry of the image). For example, if an object was
identified as a tree at some unknown distance, and a later assertion established the distance to the tree so as
to allow us to check its dimensions against known generic tree size limits, we might find that a contradiction
exists between the distance assertion and the tree identity assertion. Thus, if an object is identified as a
tree, then a region of the image completely occluding a portion of the trunk certainly cannot be sky. Even
if the system has enough knowledge to deduce this fact through activation of appropriate context sets (i.e.,
(1) an occluding object is closer than the object it occludes, (2) the sky is infinitely far away, (3) if the
sky occludes the tree trunk, the tree trunk is infinitely far away, (4) a visible object at infinite distance has
infinite size, (5) trees have finite size), explicit knowledge of this contradiction might remain unknown to
the system. Since there is no explicit mechanism for accomplishing the above reasoning, the contradiction
would only be recognized if we explicitly force the propagation of all distance and size assertions (i.e., make
explicit all physical assertions). Rather than attempting to achieve this purpose by random or exhaustive
expansion of our knowledge base, we build a (simulated) analogical model of the environment as a way of
directing the deductive process in evaluating global conisistency. Thus, consistency checking is accomplished
by 3-D model construction according to a set of conditions that prevent a non-physically-realizable situation
from occuring. The resulting 3-D model is one of the primary outputs of the system.

5 Progress

The adequacy of our approach is largely an empirical question which we address experimentally using real
imagery. The implementation (called CVS, for Contextual Vision System) is not complete, but enough has
been put in place to provide some preliminary results. The system is built on a number of other components
that we routinely use in our work. One of these, the Core Knowledge System (CKS), provides the primary
representation and storage mechanism for the actual and hypothesized scene entities derived by the CVS
[19, 20].

Our implementation strategy has been first to construct a control structure to carry out all phases of the
approach. This has been completed. Second, an instantiation of the knowledge base has been accomplished
for a thin slice of the knowledge that must be present in a fully functional system. We have used results
obtained from this partial system to guide the design of the remainder of the knowledge base and to provide
insight into the merits and limitations of our approach. Constructing the knowledge bases for a perceptual
system can be a tedious and difficult task. It is clear that some form of automated knowledge acquisition
(learning) is desirable and perhaps necessary. We are exploring ways to add such a facility to CVS.

5.1 Vocabulary

As mentioned earlier, the choice of vocabulary is crucial, and the best terms to include in the vocabulary
may not be the most obvious ones. The ierms we currently employ for the recognition of trees were listed in
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Table 1, They were chosen on the basis of three factors: (1) they can often be recognized in relative isolation
- knowledge of the presence of other classes is probably not necessary for finding potential candidates; (2)
they appear to be useful for setting the context for the recognition of other objects; and (3) operators can
be constructed to reliably locate candidate instances. As the system matures, we will introduce new terns
into the vocabulary.

5.2 Control of Complexity

In the customary machine vision paradigm, an image is partitioned into disjoint regions, and a unique label is
assigned to each one. If there are r regions and k labels, then r k possible labelings exist. Various constraints
and heuristics are employed to find the best labeling within this search space, which is exponential in the
number of potential labels.

Within CVS, each operator generates a small number of candidate regions, which are then ordered by
the applicable context sets and added to cliques. Suppose a correct interpretation of an image contains r
regions. Let p be the probability that a region that is about to be added to a clique is part of a consistent
interpretation. The probability of adding r such regions to a single clique is p'. On average, one would have
to try constructing p-r cliques before a valid one with r regions is obtained. Since each clique requires up to
r regions, the complexity of clique construction is O(rp-r). Thus, any contextual recognition scheme, such
as ours, is potentially exponential in the number of regions in the result. A coarse description I.- genelated
rather quickly - more detail can be added but at an exponentially increasing cost. The key to attaining a
manageable level of complexity is the ability to offer a candidate region to a clique with a high probability of
acceptance. If p = 1, then the complexity is 0(r). Obviously, the closer that p approaches 1, the longer one
can ward off a combinatoric explosion. The quality of the candidate generators certainly affects p - having
fewer incorrect candidate4 yields a higher probability of acceptance. The process of partial order construction
was designed to boost p even higher. By ensuring that the best examples of a label are introduced first, one
may avoid the need to introduce some of the less likely candidates.

5.3 Hypothesis Generators

A hypothesis generator is implemented as a combination of low-level operations that delineates in an image
one or more regions as candidates for a particular vocabulary term. Our strategy has largely been to employ
standard image-processing routines that have been developed by the vision comunmity through the years.
These are combined in various ways to tailor their output according to the specifications of the context sets.

Some of the operators we currently employ were listed in Table 3.

5.4 Hypothesis Ordering

Partial orders among candidate regions are created by pairwise comparison of candidates. Context sets
associated with each vocabulary term are employed to perform the pairwise comparison. A context set.
defines a collection of retlated criteria that is sufficient to prefer one candidate over another as an instance
of its class. Examples of such criteria are listed in Table 2. When some criterion is riot satisfied, a context
set will offer no preference between two candidp' cs. A preference relation will be added to the partial order
if any context set offers a preference. Examples of several partial orderings of candidate regions is shown in
Figures 5 - 7.

There is one special "context set," f'or each semantic category that enforces constraints on the physical
properties of the object (e.g. tree trunk width, maximum tree height, naximun branch lengths). If any
physical property of an object fails to satisfy a listed constraint, the object cannot be given the corresponding
label and is removed from the partial order.
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5.5 Global Consistency

A labeled region is not accepted until a mutually consistent set of labeled regions is identified that explains
the image features. Cliques of consistent regions are formed incrementally by nominating a candidate for
inclusion, evaluating it for consistency with the existing clique, and adding it to the clique. If a nominee
is found to be incompatible with a clique, it is removed from its partial order and an alternate nominee
is selected. If a nominee is consistent, it is added to the clique, and all context sets are (theoretically)
reevaluated in light of the new context represented by the expanded clique.2

A 3-D model of the evolving clique is created by inserting object tokens into the Core Knowledge System
[19, 20]. The spatial and semantic retrieval mechanisms of the CKS are employed to establish context for
further processing by other context sets. The CKS maintains the data associated with each clique as separate
opinions so that hypotheses maintained by one clique do not interfere with those of another clique.

Nominees are chosen according to various heuristics that attempt to maximize the chance that a candidate
will be accepted into a clique. Currently, we use the simple heuristic of choosing the largest region that is
atop any partial order. Later, we intend to allow the context to suggest which candidate from which class
should be nominated.

An initial consistency check is performed in the image plane. A nominee is checked for overlap with any
region already in the clique. If the overlap exceeds a threshold, the nominee is ruled to be inconsistent. This
simple-minded scheme is intended to serve as a place-bolder until a module capable of full three-dimensional
consistency checking is completed.

5.6 Illustration of Clique Formation

We now present an example showing the preprocessing and result of clique formation. Some aspects of the
examiple have been hand-edited for the sake of perspicuity. Figure 8 portrays an image of some trees on the
Stanford campus that has been presented to CVS for interpretation. After applying a number of context
sets and their associated hypothesis generators, partial orders for the vocabulary terms sky, foliage, ground,
and tree trunk have been created (see Figures 5 - 7).

Suppose that sky candidate number 593 (which was generated by a simple thresholding on intensity) is
nominated first. It is added to an empty clique and the corresponding volume is marked as sky in the CKS.
Any context sets that might now be satisfied are reevaluated. This reevaluation may cause the generation of
new candidates or may change some of the partial orders, but for the remainder of this example, we'll assume
that does not happen. Next, foliage candidate 543 is introduced. It overlaps somewhat with the sky region
in the clique, but not enough to flag an inconsistency. So 543 is added as foliage; its volume (estimated
using range from stereo) is inserted in CKS as foliage, context sets are reevaluated, and processing continues.
Next ground region 549 is nominated. Its overlap with the sky region already in the clique is greater than
the allowed threshold for ground-sky overlap and is ruled inconsistent. Candidate 549 is removed from the
ground partial order and processing continues. Suppose foliage candidate 545 is nominated next. Its overlap
with the sky region already in the clique is small enough, so its volume is computed and inserted in the CKS.
But, because it is completely contained in the sky volume it has no possibility for support, and is ruled as
inconsistent. It and all its inferiors in the foliage partial order are removed from consideration because there
are context sets that have already determined that 545 is a better example of foliage than 541 or 594. If 545
is not foliage, than 544 and 594 cannot be foliage either. Further nomination of candidates 554 (sky), 540
and 536 (ground), 546 (foliage) and 537 (tree trunk) yields a clique containing (536 537 540 543 5,16 593) -
its coverage of the image is portrayed in Figure 9(a).

fit mrw,-tice. a "lazy" evaluation scheme is employed to perfon the reevaluation efficiently.
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Now suppose a new clique is created, but that sky candidate 556 is the first nominated. Foliage candidate
543 is nominated and accepted. When ground candidate 549 is nominated, no overlap with the sky region
is found, so 5419 is accepted into the clique as ground. Foliage candidate 545 is now found to be supportable
by the ground, so it is accepted as well. Further processing results in a clique containing (536 537 540 543
544 545 546 549 556 595). The coverage of this clique is shown in Figure 9(b). Because it explains more of
the inage than the previous clique, it is accepted as the better interpretation.

6 Concluding Discussion

6.1 Prior Work

Nearly all of the existing work on recognition (by a robotic vision system) has been conducted in a context
where precise geometric models of the relevant objects are known beforehand, and the major goal has been
to find projections of the various models that best match sonic part of an image [2, 4, 12, 13]. To relax
the requirement for complete and accurate models, Fischler and Elschlager introduced the technique of
deformable (spring-loaded) templates [6], which represent objects as a combination of local appearances and
desired relations among them (the "springs"). An object. represented in this way is located in an image by
using a form of dynamic programming to simultaneously minimize local and global evaluation functions.
Some geometric recognition systems, such as ACRONYM [ .accept parameterized models to recognize a
class of objects, but these too are overly restrictive to be of much use with natural features.

For the natural world, precise geometric models of natural objects are not available, and existing tech-
niques offer little insight on how to proceed. There has been some work directed toward the goal of semantic
,nderstanding of natural outdoor scenes [1, 5, 7, 11, 14, 16, 17, 18, 21, 221, but surprisingly, very little new
work has been initiated in the last ten years.3 All of these approaches begin by partitioning the image into
regions, which presumably mirrors the "natural" decomposition of the scene into "objects." The regions are
then analyzed in one way or another to determine their interrelationships, to merge them into larger regions,
and ultimately, to assign each region a label that, categorizes it semantically.

6.2 Our Contribution

Some of the key differences between our work and previous efforts include recognition in the absence of
explicit, shape nmodels; no reliance on accurately partitioned and delineated objects; no requirement for
logically consistent absolute constraints; and no use of probabilistic models requiring a priori probability
values and independence assumptions.

The critical issue that must be resolved in formulating a viable control strategy is whether it is necessary
to recognize everything at once (e.g., via relaxation), or whether some critical scene elements can/must be
recognized first in relative isolation. If so, what are these elements and how can they be found? In a similar
sense, what volume of space, context, etc. constitutes a smallest interpretable unit,? We take a relatively
unique position based on the following assertion: almost nothing in nature can be visually identified in
isolation. Therefore, every interpretation rule must have aii explicitly stated contextual setting to which its
use is restricted.

The ability to generate "good" hypotheses and perform reliable comparisons of candidates for a particular
label is one of the most important aspects of our system. We have devised a new mechanism, known as
conterx sets, to support these functions. The name derives from the need to compile a set of information

3The major exception to this statement is the work sponsored by the DARPA Strategic Computing program. owever,
much of this work. such ws that described in this paper, has still not reached a full stage of maturity.
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sufficint for deciding whether one candidate should be preferred over another. This information, then,
constitutes the context for recognition in that circumstance. The context sets are the mechanism employed
to account for such factors as view angle, scale, and geographic location.

The context sets are the main repository of knowledge within our system. In addition to supporting
the ordering of hypotheses, and thus the efficient construction of a global model, they play a major role in
hypothesis generation and in checking global consistency- the context sets are thus an integrative mechanism
linking all the different knowledge levels the system must be concerned with.

A key idea in the way the system is organized is that we do not make direct decisions that choose between
two different class labels for a detected region in an image - the context sets and the partial orderings they
create deal only with one semantic category. Thus we avoid the combinatorics of having to (explicitly)
describe how to distinguish among combinations of different class labels for an unknown object. We also
avoid the need to make major modifications in our knowledge base when some new object type is added.
Rtecognition in the CVS is accomplished when a globally-consistent, labeled 3-D model has been constructed.
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Figure 1: Oit ptit of vario:is; operat ors applied to a nmat ural scene
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(a) B&W Image of some trees and (b) Homogeneity operator - Each (c) Striations operator - Line seg-
a stump pixel value is the maximum differ- ments show the orientation of any

ence in intensity between it and texture pattern in a small win-
all neighboring pixels. dow.

(d) Sky region hypotheses - The (e) Thin object hypotheses - (f) Ground region hypotheses -

entire scene was partitioned by A linear delineation operation Regions of horizontal striations
the KNIFE segmenter. There [8] was performed on the out- were extracted from (c) above.
were no relatively bright, untex- put of the homogeneity operator Small regions have been dis-
tured regions above the geometric (b) above. Short segments and carded. Notice how the stump is
horizon, highly-convoluted segments were not included.

removed. Portions of several tree
trunks have been identified.

Figure 2: Output of various operators applied to a natural scene
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(a) B&XV Image of some trees (b) Homogeneity operator - Each (c) Striations operator - Line seg-
near Stanford pixel value is the maximum differ- ments show the orientation of any

ence in intensity between it and texture pattern in a small window
all neighboring pixels

(d) Sky region hypotheses - The (e) Thin object hypotheses - (f) Ground region hypotheses -
entire scene was partitioned by A linear delineation operation Regions of horizontal striations
the KNIFE segmenter. Each re- was performed on the output were extracted from (c) above.
gion that is above the geomet- of the homogeneity operator (b) Small regions have been dis-
ric horizon, is relatively bright, above. Short segments and carded. Some branches of the
and is relatively untextured is dis- highly-convoluted segments were trees were picked up, but these
played. removed. The trunks of the trees candidates should be eliminated

were successfully delineated, al- during later processing.
though some spurious candidates
remain to be filtered out later.

Figure 3: Output of various operators applied to a natural scene
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(a) B&W Image of some trees (b) Homogeneity operator - Each (c) Striations operator - Line seg-
pixel value is the maximum differ- ments show the orientation of any
ence in intensity between it and texture pattern in a small window
all neighboring pixels

(d) Sky region hypotheses - The (e) Thin object hypotheses - (f) Ground region hypotheses -
entire scene was partitioned by A linear delineation operation Regions of horizontal striations
the KNIFE segmenter. Each re- was performed on the output were extracted from (c) above.
gion that is above the geomet- of the homogeneity operator (b) Small regions have been dis-
ric horizon, is relatively bright, above. Short segments and carded. Very little ground was
and is relatively untextured is dis- highly-convoluted segments were identified because the terrain is
played. No regions survived, removed. Many of the tree trunks covered with tall grass.

have been identified.

Figure 4: Output of various operators applied to a natural scene
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595.
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554. 544.

Figure 5: Partial order of sky candidates for the tree image of Figure 8
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545. 543.

544. 546.

594.

Figure 6: Partial order of foliage candidates for the tree image of Figure 8
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549. 540. 537.

I

536. 572.

(a) Ground candidates (b) Tree trunk candidates

Figure 7: Partial orders for the tree image of Figure 8
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Figure 8: A natural scene of a tree on the Stanford campus

(a) (b)

Figure 9: Region coverage maps for two cliques formed from the Stanford tree scene
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Abstract

The GeoMeter modeling system is described. The system is designed to manipulate solid models for a variety
of purposes. GeoMeter also supports polynomial and transcendental function manipulation, including methods
for solving systems of polynomial equations. The applications for such methods in the context of solid modeling
and computer vision are also discussed.

1 Introduction

GeoAeter [16] is a system written in Common Lisp for the purpose of modeling solid objects and providing tools for
algebraic manipulation. The original motivation for GeoMeter was as a library to support experiments in Computer
Vision, although its uses are by no means limited to that application. It is the result of several years of effort in
both the Image Understanding Laboratory at the GE Research and Development Center, and more recently in the
VISIONS Group at the University of Massachusetts in Amherst. Others who have been affiliated with this software
are now at the Rensselaer Polytechnic Institute and the State University of New York at Albany.

Existing uses of GeoMeter include robot navigation [17,181, model matching [33], model construction from image
data [32], proofs of geometry theorems using algebraic techniques (14[, and computation of generic view information
[19]. GeoMeter is written in Common Lisp, and has been compiled and tested on TI Explorers, Symbolics Lisp
Machines, VAXLisp, and Suns under Lucid Lisp. Work is underway to allow GeoMeter to run on the Sequent
Balance 2000 series computer.

Many of the functions and data structures in GeoAfeter have close counterparts in mathematics. The implementors
attempted to approach classical mathematical terminology in naming functions and data structures. The intent was
to keep interested users from being bewildered by a deluge of nonstandard terminology. In addition, it allows users
to resort to their own mathematical references for clarification of certain concepts, when desired.

1.1 Representations

There are many different representations for encoding the shape and three-dimensional structure of objects. All
of them impose some type of restriction on the surfaces that can be described. For example, ACRONYM uses
generalized cylinders as the basic primitive [5], SuperSketch uses superquadrics [29], some are specifically polhedral
[31] while others provide multiple primitives [6) For example, the Designer system [30] has rectangular blocks toget her
with spheres, cylinders, and tori.

In GeoMeter, the language of simplicial complexes in algebraic topology {15,201 has been adopted for describing
surfaces. It provides generality and an explicit representation of edges, vertices, and faces. Each of these serve as a
type of geometric primitive, and can be parameterized as a smooth function from a point, unit interval, and triangle

*University of Massachusetts at Amherst
tState University of New York at Albany

tGE Research and Development Center
ISupported in part by the following: NSF/CER (;rant i)('R8500332, DARPA Grant F30602-87-C-0140
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to R 3 , respectively. For example, a standard 0-simplex is a point, a 1-simplex is a straight line segment, and a
2-simplex is a triangle (see figure 1). In the usual mathematical approach, a smooth n-simplex is a differentiable
map from the standard n-simplex to a subset of R 3 , and the images of these 0-, 1-, and 2-simplices correspond to
the vertices, edges and faces of a surface. Surfaces are thus constructed as the union of these primitives, and are
denoted by an algebraic sum of simplices. This representation produces a triangulation of the surface, where the
triangles are not necessarily planar. Each smooth simplex determines an orientation on its image, i.e. a choice of the
direction of the normal at each point. It is worth noting that the theory of Algebraic Topology provides operations
for determining whether the triangles in a simplicial complex fit together to form a closed surface. This theory
provides the foundation for many of GeoAleter's operations.m

c W 10 ( 0.0.0)

2- sImpIc

I -sImplIC

Figure 1: 0-, 1-, and 2-simplices

2 GeoMeter Structure

GeoMeter has two basic parts: a geometric section, and an analytic section. The geometric section consists of those
functions and data structures which are used to describe physical objects. The analytic section consists of functions
and data structures used in manipulating polynomials and transcendental functions.

2.1 Geometric section

The three basic entities which GeoMeter uses to represent sets are the vertex, the edge, and the face. These entities
are composed to represent solid objects. The vertex is a 0-dinensional primitive which has an x, y, z position in
space. An edge is a 1-dimensional set defined by two vertices (if linear). Edges can also be defined by three bounded
univariate functions (if parametric) or as the planar zero set of a bivariate polynomial (if implicit). Linear edges
have a direction vector and a normal vector (defined with respect to the origin). A face is a 2-dimensional set defined
by a collection of edges. In GeoMeter, faces can also be defined parametrically and implicitly. l'lanar faces havc a
normal vector and a transformation matrix to define their coordinate system.

Interleaved with the faces, edges, and vertices are topological structures which are used to define the counectivitv
of sets in the model. A f-chain is a set of vertices from which an edge can be defined. A ]-chain is a set of edges fmu
which a face can be defined. A 2-chain is a set of faces which can be used to define -i surface. An important clncept
in forming closed surfaces, i.e. objects, is the definition of the boundarv. Every 2 chain has a boundary which is a
I-chain. If the boundary of a 2-chain is 0, then the 2-chain is said to be a 2-cycle. Similarly, if the boundary of a
I-chain or 0-chain is 0, it is a cycle. Each of GcoAletcr's chain structures can he used to represent cycles. A 1-cycle,
i.e., a chain in which everv vertex is used on exactly two edges, forms one or more polygons in the plane. ' Likewise,
a 2-cycle defines one or more polytopes.

Note that this differs slightly from the usual definition.
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Objects are built hierarchically starting with vertices. Vertices can be added together to form a 0-chain, a
0-chain with two points can be used to create an edge, edges can be added together to form a 1-chain, ]-chains
can be used to create faces, etc. Usually, for computational simplicity, straight lines are used for edges and planes
for faces, so that curved surfaces are approximated by polyhedra. Models can also be built by joining faces along
common edges. A hinge function enforces the constraints that the edges must be aligned. Due to the generality
of the mathematical framework, it is possible to represent semi-algebraic curves and surfaces, and there are some
procedures for manipulating these objects. There are plans for the future to expand this capability. In addition,
GeoMeter is capable of representing superquadrics and generalized cylinders.

2.2 Analytic section

A major section of Geoifeter is devoted to the manipulation of polynomials and transcendental functions. The
motivation for these functions is twofold. They permit the exact description of curved surfaces. They also provide
the mechanism for performing algebraic deduction, which is useful in reasoning about geometric relations. Geohfeter
provides polynomial arithmetic and various ordering and testing predicates for polynomials. A full set of utilities for
printing and evaluating polynomials and transcendental functions is also available.

GeoMeter allows several specialized operations on polynomials. Functions for performing polynomial arithmetic,
GCD, univariate factoring, remainder sequences, decomposition, resultant computation, and Gr6bner Basis [7] com-
putation are incorporated into GeoMeter. Functions are available for bounding the roots of univariate polynomials
and limited capabilities exist for performing Cylindrical Algebraic Decomposition [2]. Methods for triangulating sets
of polynomials are available, as well as functions for testing the consistency of a polynomial with a triangulated set.
Polynomials are represented in distributed form. Every polynomial is a list of monomials. In turn, each monomial
is a cons pair consisting of a coefficient and a term representing a power product of the variables of the polynomial.

Transcendental functions are represented as a pair (p, s) where p is an arbitrary polynomial, and s is a set of
substitutions mapping the variables of p to functions. For instance, a circular arc in GeoMeter is represented by a
pair of transcendental functions:

pl(X) TX + X, X - cosO
P2(Y) ry + y,, y- sin 0

where x,,, y,, is the center of the arc and r is its radius.

3 Applications

3.1 Representing curves and surfaces

As mentioned above, GeoMeter has the capability to define parametric surfaces and curves. Both are defined using
transcendental or polynomial functions in one or two variables over some interval. Parametric curves are defined
using three transcendental functions in one variable, u: x(u), y(u), z(u). The curve structure also has a slot for the
bounds on u and the sampling rate for displaying the curve. Parametric faces are defined similarly, but the defining
functions and interval are bivariate.

GeoMeter also supports algebraic curves and faces. Algebraic Faces are implicit surfaces defined by a polynomial
p(x, y, z) = 0. In conjunction with algebraic faces, Geoceter can also represent planar algebraic curves expressed
with bivariate polynomials. Decomposition techniques [1,2] are used for display and analysis of such curves and
surfaces. Figure 2 shows a sample GeoMeter frame displaying various objects.

3.2 Projection and Image Formation

There are a number of applications which require models of the imaging process. Modeling the projection process is
not only useful for display of objects. It has been used (via GeoAleter) to model appearances for robot navigati,,n
[18,17]. The projection process within GeoMeter is central projection, also known as perspective projection. The
projection is modeled in GeoAleter by a Camera entity, which contains the projection parameters. The prjecti,,n
is computed on points in R', which are represented by homogeneous coordinates in R .. Each point is rotated and
translated by a homogeneous 4x4 matrix that represents the transform from model coordinates to camera coordinates.
Then each point is projected onto the image plane according t,) the camera parameters: the camera lens focal length,
zoom, aspect ratio, and the image center.

In implementing the projection operation, we are not only interested in point sets, but also in the edges and
possibly the faces that constitute the model as well as their visibility. Geoteter contains a Viewer entity, which
stores information about what is to be projected and the camera entity parameters for performing the projection.
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Figure 2: A Planar, algebraic, and parametric surface, respectively

In addition, the Viewer contains the global, local, and projected coordinates of the points of the model, along with
incidence information that allows faces and edges to be selected and drawn. The global coordinates and the incidence
information are obtained from the faces, edges, and vertices of the model (or part thereof) that s being projected.

3.3 Model construction

GeoAlefer has been used for experiments in model construction at GE. Stenstrom, et al. [32] describe a method for
constructing volume models from image data. The technique involves the formation of volume sets from different
viewds and performing boolean intersection of the sets obtained. Most of the implementation of this technique is
carried out in GeoMeter. Other techniques have been developed [3] which use algebraic constraints to construct "pa-
rameterized models". Extensions of this work are reported later in section 4.3.2, and elsewhere in these proceedings
[27).

3.4 Robot Navigation

GeoMeter is also being used for robot navigation experiments at the University of Massachusetts (17,18]. In order to
meet the demands of a robot navigation system, GeoMeter had to satisfy several requirements. Geometric modeling
must be easily interfaced with other modules needed for specific tasks in navigation. In our work it is interfaced
directly with the high-level model matching functions used during model-to-image and image-to-modcl matching [4].
Components of the models are annotated with visual characteristics. A multilevel representation scheme is required
so that parts of objects can be isolated and named as landmarks for recognition.

For navigation through a complex domain, one needs to model the world in which objects can be located. In
our environment, buildings, lamp posts, and telephone poles must be modeled. Buildings have sub-objects such as
windows and doors. Elements at all levels may be annotated with information relevant to visual tasks. In order to
navigate from known landmarks, the environment must be modeled accurately. For the University of Massachusetts
campus, this was done using information obtained from a careful survey of the environment, building plans, and
direct measurements. Once the landmarks are identified, GeoAeter is used for pose refinement [25] to obtain rolrot
bearings from visual information and information provided by the campus model.

3.5 Matching

Both at GE and at the University of Massachusetts, experiments in object recognition are underway [8,33]. These
experiments use Geofeter for some of the geometric operations and data structures required for correspondence and
the computation of transformations. In both schemes, models are created, stored and displayed using GeoMeter.
Images are processed to obtain edge information which is then compared to the model data to identify objects and

800



their poses. In work described elsewher, in these proceedings, a method has also been devised for selecting and
verifying the best matches out of a finite set of possibilities 121

4 Solution Techniques

Solution of nonlinear systems of equations and optimization are two functions which are central to some of the
aforementioned application areas. GeoMeter supports methods for solving such problems. Much of this machinery
is oriented toward exact solution methods such as Wu's Method [3't, the Gr6bner Basis method [7,221 or algebraic
decomposition [2.91. There are also functions for computing approximate solutions.

4.i Numerical methods

Gcojllcter uses numerical methods for obtaining approximate solutions to nonlinear svstems of equations. Functions
exist for exact computation of the Jacobian, and for Newton's method for nonlinear systems. Morgan [261 has
recently developed a continuation method for solving algebraic systems numerically. This is a promising method
that avoids manv of the convergence problems to which Newton's method is susceptible. Work is being initiated
to incorporate this method into GeoMeter. In addition, most of the computation used for modeling purposes in
GeoMeter is numerical in nature (e.g., curve and surface intersection, boolean operations, transformation, etc.).

4.2 Support for Geometric Reasoning

Geofeter supports two different but related approaches to reasoning in algebraic geometry: a refutational method
based on the Gr6bner basis algorithm [23j and a direct method by Wit based on te Ritt principle. 2 Both methods
take polynomial equations as input. It is assumed that geometric relations have already been transformed into
polynomial equations.

4.2.1 Refutational approach based on the Gribner basis method

In the refutational method, the hypotheses of a geometry statement and the negation of the conjecture being proved
are input and it is checked using the Gr6bner basis algorithm that they are not satisfiable. If the algorithm detects
#hat the Gr6bner bz ,.is includes 1, it declares that the conjecture follows from the input. Otherwise, the Gr6bner
basis generated by GeoAfeter can be used to extract out additional conditions that must be imposed on the input
for the conjecture to follow from the input.

The refutational method has been shown to be complete for deciding whether a conjecture follows from the input
or not [231. In the case when the conjecture does not follow from the input, the method has also been shown to be
complete for computing conditions under which the conjecture would follow from the input. The method has been
successfully used to prove over a hundred geometry theorems including many nontrivial theorems which even humans
find very difficult to prove. The method is fully described with examples and theoretical foundations in [233.

4.2.2 The direct approach based on Wu's method

GeoMeter also supports Wi's method for geometric reasoning [34,36]. In contrast to the refutational approach based
on the Gr6bner basis algorithm, the method is direct. The hypotheses of a geometry statement are transformed
into a triangular form using the Wu-Ritt method. GeoMeter expects the user to specify the independent variables
as well as a total order on dependent variables; it currently does not provide any assistance in selecting dependent
variables. Independent variables correspond to the degree of freedom in a geometric configuration defined hv a
geometry statement. Intuitively, independent variables are those variables which can be assigned arbitrary value,
and which determine the values of dependent variables.

Qnce a triangular system of polynomials is computed, the polvnomial corresponding to the conjecture is pseud-
divided by each of the polynomial equations in the triangular form to successively eliminate each dependent variable
in the conjecture. If the remainder is 1t, then conjecture follows fromn the hypotheses. In this case, the method als,
identifies subsidiary conditions ruling out degenerate cases for the conjecture to foillow from the hvp0theses.

If the remainder is not t, then it is still possible that the conjecture follows from the hvpotheses. The triangular
form of the hypotheses must be checked for irreducibilitv. If polvnonmials in the triangular form cannot be factored
over successive extension fields, then the triangular form is irreducible. If the remainder of a conjecture with respect

2
1n fact, this portion of the software used to be called GFOMETER 1131 and the whole systen used to he called GEOCALC until we

discnvered that there was a commerical product with the name GEOCALC. It was then decided to call the whole system Geoceter.
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to an irreducible triangular form obtained from t h, hvpotthescs is not 0, then the conjecture does not follow from
the hypotheses. Otherwise, the polynomials in the triangular form must be factored generating a set of irreducible
triangular forms; the conjecture must then be checked over each of these irreducible triangular forms. GeoMeter
does not provide algorithms for checking the irreducibility of a triangular form, nor does it provide any algorithms
for factoring over extension fields. Theoretical foundations of Mi's method are discussed in [35]. An excellent
implementation of Wu's method and its success in proving nontrivial geometry theorems are discussed in [10,11]. An
informal discussion of Wui's method and its application to problems in perspective viewing is described in [24].

4.3 Hybrid Approaches

4.3.1 Hybrid Solution Methods

The power of purely exact methods for geometric reasoning and representation is limited to relatively small problems
see [9] for an analysis). By contrast, large model specifications consisting of thousands of entities can be successfully

processed quickly if numerical methods are used. While they are capable of fast solution of suc' systems, numerical
methods can be plagued with error accumulation. More importantly, Newton's method is only guaranteed to converge
under very strict conditions [28].

Using tools ia GeoMeter, an approach is being pursued where exact methods are used to improve the convergence
properties of numerical methods. The basic idea is to determine a set of independent model parameters which can
be freely varied with respect to the model constraints. Exact methods are then used to triangulate the constraint
equations, as in 'No's method described earlier. The triangulated constraints can then be easily differentiated to
determine the singularities of the Jacobian matrix. Thus, algebraic techniques can be used to implement restrained
versions of Newton's method which only operate in "safe" regions where gradients are always uniquely defined.
Experiments with this basic tccit,,ique have been successful on systems with up to eight parameters. Other experi-
ments are underway to examine the possibility of reduction and decomposition of the original system. This involves
decomposing the system into individual subproblems which can be solved more easily than the original problem.

4.3.2 Constraint-based modeling

One approach to constraint-based modeling is to represent geometric constraints in a relational database, along with
a numerical specification [121. Known relationships cart be retrieved using standard database techniques. Additional
relationships can be derived by computation on the numerical specification of the objects and object relationships,
or by logical inferences on the known relations. The power of automated logical inference techniques is limited
to relatively simple deductions. On the other hand, the inference of relationships by numerical processes alone
has limited robustness, particularly in the case of empirical data with significant errors. The numerically derived
relationships can be easily inconsistent with logically derived relations. SRI's CKS (Core Knowledge System) deals
with this uncertainty by providing a logic of belief which can handle multiple agents with various levels of reliability.

Another approach is to maintain a consistent set of geometric relationships that are maintained in a relational
network, but specified algebraically [30]. The algebraic equations and inequalities provide a parametric specification of
the objects and object relationships. The interaction with empirical data is taken as a problem in error minimization.
That is, the parameters of the model specification are to be adjusted such that the distance between model predictions
and actual image features, and other empirical data, is a minimum. The resulting model configuration maintains
the consistency of a priori constraints while accommodating empirical relationships as closely as possible. We refer
to this approach as constraint-based modeling [271.

The next major development of the constraint-based modeling technique in GeoMeter will be the integration of
the algebraically derived convergence strategy with classical nonlinear programming methods.

5 Conclusion

GeoAeter is a versatile tool for solid modeling and algebraic manipulation. It is publicly available via anonvmous
FTP from Internet host VAXI.CS.UMASS.EDU (128.119.40.1), from the directory

VIS$DISK: [GEOMETER]*.LISP

Documentation is available in LATEX form from the directory

VIS$DISK: [GEOMETER.DOC]
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Abstract

We present a new approach to the model base indexing stage of visual object recognition. The key
ideas in our approach are that we use the same processing and feature extraction steps during the
learning (model acquisition) and execution phase of visual object recognition, and that we encode the
relative spatial locations of features in a view compactly as a bit vector, the "combined feature vector".

As a consequence of these measures, model acquisition algorithms based on the combined feature vector
have a number of desirable properties: they do not make specific assumptions about the analytic
relationship between the viewing parameters and feature locations in the image; they can change the
degree of quantization (and thereby the degree of generalization to new viewpoint and new shapes)
adaptively; they represent object models as collections of compactly encoded object views ("object

signatures"), and therefore can represent partial object models easily; and they make the statistical
structure of the model acquisition and object recognition problem more explicit and thereby accessible
to standard statistical techniques.

Empirical results from applying our algorithm to the limited domain of wireframe polyhedral objects
are promising. In addition, we believe that it has relevance to psychological, psychophysical and
neurobiological theories of object recognition.

1 Introduction

Feature based visual object recognition is based on the following observation. Assume we know the shape
of an object and the positions of several points on the object. If we can identify at least three such points

(features) in an image, we can recover the parameters of the viewing transformation. If we can identify

more than three features, the equation for recovering the viewing transformation is overconstrained, and it
is very likely that the only object model that will allow an (approximately) consistent solution of the
equation for the viewing transformation is the object model corresponding to the object in the image.

Feature based approaches to visual object recognition have met with some success (without claiming

completeness, some recent relevant work on the subject can be found in Shirai, 1981, Grimson, 1984, Baird,

1985, Grimson and Lozano-Peres, 1985, Huttenlocher and Ullman, 1987, Goldberg and Lowe, 1987, Lowe,
1987, Grimson, 1988, Cass, 1988).

However, they have several undesirable properties:

1. They assume that features are rigidly attached to the surface of an object; they assume that the
viewing transformation takes a fixed, known parametric form. There are many kinds of features for

which this assumption does not hold, but which are nevertheless very useful for identifying objects

(see Figure 1). They require labels to be assigned to features consistently across different views.

They get rather complex if objects are parameterized.
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Figure 1: Examples of objects and features where features that are easily detected in images or even line
drawings are not fixed to the surface of the object.

2. They assume that features on the object and features in the image can be put into one-to-one
correspondence (labeled uniquely), or they require expensive search techniques to try out many such
correspondences.

3. They require 3D object models, or, at least, require that the relative 3D positions of the features on
the object are known. Many feature based approaches are therefore difficult to apply when object
models must be acquired automatically from images with sparse or no depth information.

4. They often use rather arbitrary metrics to determine whether the locations of the features in the
image are close enough to the locations predicted from the model and the viewing transformation.
But the degree to which a particular arrangement of features suggests the presence of a particular
object in the image depends on many factors, some of which are not even geometric in nature (see
Figure 2 for some examples).

In this paper, we describe an approach to feature based visual object recognition that addresses these
problems. We are primarily concerned with the model base indexing part of recognition, i.e. the
identification of candidate object models that may be present in a given image; these candidates are then
verified using other methods. Also, what we will refer to as an "object" may be considered an "object
part" by some.

2 The Method

We assume that the low level vision modules compute a collection of feature types and feature locations
that are used as input to our recognition (indexing) stage. By a "feature" we mean any localizable
property of the 2 D sketch (Marr, 1982), for example midpoints of line segments, intersections of line
segments (vertices, T-junctions, intersections of the extensions of three or more line segments, etc.), local
maxima of intensity (often corresponding to specular reflections), local depth maxima (viewer centered),
centers of gravity of regions and "blobs", intersections of occlusion boundaries, maxima of curvature on
occlusion boundaries (see Hoffman and Richards, 1983, for a discussion of the importance of such features),
and possibly many others. Some of these features are fully characterized by their type and their position in
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Figure 2: How well a particular arrangement of features in the image allows us to identify a particular
object can depend on non-geometric factors. The features shown in (a) are very characteristic of object (b);
however, if object (c) is also present in the model base, we need additional evidence to distinguish the two
objects.

the image, while others have additional properties associated with them, such as orientation in the case of
line segments, or second crder moments in the case of blobs.

Previous approaches to feature based object recognition assume that we have object models that allow us
to predict the locations and properties of the features in the image given the viewing transformation. To
find analytically an object model and viewing parameters consistent with the feature positions in a given
image, we have to decide on which image features correspond to which object features first, and we can
then try to find a solution to the equation relating viewing parameters, image features, and object features
(the *viewing equation").

If (at least some) features are distinguishal *" by "labels" or "types", we can use these to establish an
initial correspondence between image and object features (Huttenlocher and Ullman, 1987). If no such
information is available, we can use a search strategy (Grimson, 1984, Grimson and Lozano-Perez, 1985,
Grimson, 1988). A more recent approach that is implicit in our method and has been proposed
independently by Lamdan and Wolfson, 1988, is Geometric Hashing. Rather than trying to find a solution
to the viewing equation explicitly, the locations of features in the image plane are precomputed for each
object and for a significant number of different views and encoded in a hash table. When an object is to be
identified in an image, the precomputed views corresponding to the object models are matched against the
image using hashing and voting techniques. Geometric Hashing avoids some of the complexity problems of
the analytic techniques, but because of its reliance on explicit object models still has many of the
disadvantages mentioned in the introduction.

In order to avoid these problems, and in order to obtain a system that can acquire object models
incrementally, we proceed as follows. During the learning phase, the system is presented with real (or
realistic, synthesized images) from a variety of different viewpoints. Features are extracted from the
training images using the same mechanisms used later for the test images. Then the relative positions and
orientations of the features in the image are encoded (algorithm ENCODE) into a "combined feature vector"
using hashing and quantization techniques. All the feature vectors obtained during the learning phase are
stored and combined into a data base (algorithm STORE). During the ezecution phase, test images are
encoded using the same algorithm ENCODE that was used to build the data base, the resulting combined
feature vector is matched (algorithm KATCH) against the images in the data base, and the best match is
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1. Input: Some collection of features in the image plane

2. Compute a description of the features that is invariant under 2D translation, rotation, scale
angles-i: <27,39,45> relative-angle: 14 angles-2: <33,21>

3. Quantize (round) the description
angles-l-qt: <20,40,40> relative-angle-qt: 20 angles-2-qt: <40,20>

4. Convert the description into a number (a one-to-one function), giving the unhashed combined feature
18253100

5. Hash the number from the previous step down into a manageable range, giving the (hashed)
combined feature

701

6. Set the bit indexed by the combined feature in the combined feature vector

bit 01

Figure 3: Algorithm ENCODE: Encoding collections of image features into the combined feature vector.

returned.

By using the same processing steps to obtain the combined feature vector during the learning phase and
the execution phase, we avoid having to know or derive the explicit relation between object shape and
feature positions in the image. Furthermore, while we are building the model base, we obtain information
about the statistical properties of the combined feature vector; we can therefore use statistical techniques
to decide which dimensions of the combined feature vector are particularly significant for particular
recognition tasks (see also Figure 2; for a discussion of "Evidential Reasoning" in visual recognition, see
Lowe, 1986). And we can check on-line during the learning phase how well our data base performs and we
can dynamically modify the hashing and quantization parameters in algorithm ENCODE accordingly.

Algorithm ENCODE is illustrated in Figure 3 for the case of encoding vertices into a combined feature vector.
There are several important properties this encoding has:

The encoding is invariant under 2D translation, rotation, and scaling; since there are six parameters
describing the viewing transformation (assuming orthogonal or nearly orthogonal projection), this
leaves two parameters that need to be covered by storing individual encoded views of an object in the
data base. As a consequence, we expect the number of combined feature vectors per object to grow
quadratically in the quantization used in ENCODE.

" The amount by which the viewpoint may change before the combined feature vector changes depends
on the degree of quantization; the coarser the quantization, the larger is the area of the viewing
sphere that a particular combined feature vector corresponds to. The same relation holds for
variations in object shape: the coarser the quantization, the more the object shape may vary before
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1. Input: a combined feature vector from the training image, a label identifying the object in the
training image

2. Try to find the combined feature vector for the training example in the data base

3. If it is not present, add it with the given label

4. If it is present and has the given label, do nothing

5. If it is present and has a different label, repeat the same process using a finer level of quantization

Figure 4: Algorithm STORE: A simple algorithm to build a model base from training examples.

the combined feature vector changes. In different words, both the degree of generalization to novel
viewpoints and the degree of generalization to novel shapes are controlled by the quantization. This
means that as we make the quantization finer to distinguish more similar shapes, we need to obtain
more training examples and store more combined feature vectors to cover the viewing sphere.

" The encoding is not invertible; a given combined feature vector could correspond to many different
kinds of views of different objects (much of this is, of course, a consequence of the non-invertibiity of
the imaging procq). However, during the computation of the combined feature vector, we can keep
track of which combinations of features gave rise to which bits in the combined feature vector. This
information can be useful for a later model verification stage.

" The number of elementary features that go into a combined feature is often so large that it
overconstrains the six parameters that specify the viewing transformation.

A simple algorithm (STORE) for building a model base is shown in Figure 4. The algorithm assumes that
training examples consist of isolated objects together with a label giving the identity of the object in the
scene. The training image is encoded, and the encoded image is added to the data base, unless it is
redundant, or unless it conflicts with a previously stored encoded view; in the latter case, the process is
repeated with finer quantization in the ENCODE step.

We have not specified so far how to match (HiTCH) the combined feature vectors from a novel scene against
the combined feature vectors in the data base. Assume that an image consists of a number of features that
belong to an object in the data base and a number of spurious features. When we combine features
exclusively from the object, we get combined features that occur in the combined feature vector for the
object in the image. When we combine any spurious features with any other features, we get combined
features that are most likely not characteristic of any object.

The reasons why a combination of features that includes some spurious features may give rise to a valid
combined feature are that the arrangement may by chance be geometrically similar to an existing valid
combined feature, or because they get hashed to the save value during the hashing step in algorithm
ENCODE. The former problem is a purely geometrical problem, and any purely feature based algorithm has
to deal with the possibility that by chance a number of elementary features conspire to give the appearance
of an object part; we will analyze the latter problem more carefully later.

From the preceeding discussion, we can see that a good choice of a distance measure for how well a
combined feature vector of an image matches a combined feature in the data base is an asymmetric one,
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Objects:

Number of Views: 6 93 60 121 149

Figure 5: The number of distinct combined feature vectors (distinct "views") for the given objects. These
numbers were obtained by random sampling of the viewing sphere. The degree of quantization used is
sufficient to allow polyhedral objects of this kind to be distinguished with certainty. The size of the combined
feature vector (the hash function) was chosen such that less than about 10% of the bits in the combined
feature vectors were set.

obtained by counting the number of bits in the model combined feature vector that are also present in the
image, thereby disregarding all the feature combinations that arise from context (i.e. that involve spurious
features). In other words, the features originating on the object are combined to form a "signature" in the
combined feature vector, and we are looking for the presence or absence of this signature, ignoring any bits
contributed by context.

3 Theoretical and Empirical Results

3.1 Sample Complexity and Model Base Size

Since we store a separate combined feature vector for each "view" of an object, one might fear that the
number of training examples that needs to be obtained (the sample complexity) and the number of views
that needs to be stored per object is impractically large. To address this question, we have carried out
some numerical experiments.

We used randomly chosen orthogonal projections of wire frame polyhedra, extracted features (vertices) and
encoded the features using algorithm EICODE at various levels of quantization. For the resulting combined
feature vectors, we checked whether the degree of quantization was sufficient to distinguish objects reliably
and counted the number of distinct combined feature vectors; some representative results are shown in
Figure 5.

These are worst-case numbers, since two combined feature vectors were considered distinct even if they
differed in only one bit. For accurate recognition, it is sufficient that the collection of views stored in the
data base classify all new images correctly, i.e. that the combined feature vector for any new view of an
object differs less from one of the corresponding training examples than from any other combined feature
vector in the data base.

Our empirical results certainly do not prove that the sample complexity and storage requirements of a
visual object recognition system for realistic images based on object views encoded as combined feature
vectors is small; however, it does suggest that the approach might be feasible.
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3.2 Robustness when Features are Missing or Spurious Features are Present

We cannot rely on the early vision modules to detect all features in the image reliably or not to add some
spurious features to the image. Nor can we expect that grouping and saliency mechanisms will ensure that
only features belonging to one object are used as input for our model base indexing algorithm. Empirically
we find that these problems are manageable. However, we might like to obtain some theoretical worst-case
bounds.

As we have already discussed, there are two kinds of possible errors; collections of features originating not
from a single object could accidentally be arranged like some combined feature for an actual object, and
different combined features could be hashed to the same bit in the combined feature vector. We can avoid
the latter problem by making the combined feature vector large enough.

To determine how large we have to make the combined feature vector in order to keep the probability of
misidentifying an object low, consider the following simple analysis. Let

* A be the number of models in the data base. We assume that the feature vectors corresponding to
the models are statistically independent.

" L be the number of bits in a feature vector.

" r be the number of features in an unoccluded view of an object without any spurious features, i.e. a
view corresponding to a model feature vector in the data base (we assume for the sake of simplicity
that r is the same for all model feature vectors in the data base).

" n be the number of object-derived features present in the image to be classified (i.e. r - n features
are absent, perhaps because they are occluded or because the image is noisy).

* m be the number of spurious features in the image to be classified. We assume that the location and
type of the spurious features is independent of the object present in the image.

Each feature has some unhashed feature number, say f4, associated with it, and the same holds for the
spatial relationship between two features', say that feature number is fj. The combined feature vector v is
defined in terms of a hash function HASH(i, j, k) such that

I I E {HASH(f9,f9,f fi) :i,j= l...(n+m);ij} I=I...L(
VI= 0 otherwise I I.

We assume that the resolution of the features is sufficiently fine, that the hash function is sufficiently good,
and that L is sufficient large such that a features in an image would give rise to approximately distinct
s(i - 1) combined features.

With these assumptions, we can make the following statements:

" each model feature vector contains r(r - 1) bits

" the image feature vector contains n(n - 1) bits that correspond to bits in the model feature vectors

* the image feature vector contains m(n + m - 1) spurious bits

We consider combinations of two features only in this analysis; an analogous analysis goes through for combinations of

three or more features
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Our matching procedure consists of counting, for each model feature vector in the data base, the number of
bits in the model feature vector that are present in the image. The model feature vector that has the
largest number of correspondences wins.

It is straightforward to calculate the expected number of matches for each case:

" the correct model feature vector will have n(n - 1) certain matches with the image, plus n(m + n - 1)
random matches against the remaining r(r - 1) - n(n - 1) bits in the model feature vector.

" because of the assumed independence of model feature vectors, all other feature vectors will have
(n -t- m)(n + m - 1) random matches against the r(r - 1) bits in each model feature vector 2 .

In order to make a correct decision, we require that none of the incorrect model feature vectors have more
matches against the image than the correct model feature vector. This is certainly satisfied if we require
that all of the N - 1 incorrect model feature vectors have less than n(n - 1) matches against the image
feature vector with probability, say, 1 - e.

In essence, we are carrying out N - 1 independent Bernoulli trials. Using the Poisson approximation to the
binomial distribution, we require that in order to keep the likelihood of any success in the N - 1 trials
smaller than 1 - c:

1- e > e-  (2)

I' - E > e-(N -)P '  (3)

POW In(1 - e) (4)

- N-I

For small c, this is approximately:
p.'i" - - (5)

-N -1I

The probability P,,i is the probability that in any trial, more than n(n - 1) spurious features match the
r(r - 1) features of a model. The probability that exactly k spurious matches occur is again given by a
binomial distribution with r(r - 1) trials and probability of success of (n+,)(n+,&- ) Using Chebyshev's

L
inequality, we obtain as a bound on the probability of obtaining more tha n(n - 1) matches:

P,.. < r(r - 1)(n + m)(n + m - 1) < r 2 (n + m)2  (6)

Ln(n - 1) -L(n - 1)2

If we use this result together with Equation 5, we obtain for the size of L:

L 0 (N - 1)2(n + m)2) (7)

e(n - 1)2

Therefore, the required size of the feature vector is at most linear in the size of the data base and the
allowable error, and roughly quadratic in the number of features we expect in images or models.

The above has been a very simple statistical argument. We expect that the combined feature vector can be
significantly smaller in practice, because our bounds have been loose, because essentially we have made a

2 Actually, if the assumption of independence is not fulflled, this fact will work for us rather than against us, since it is likely

that mostly model feature vectors corresponding to the same object fail to be independent.
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worst-case analysis, because we have used a very simplistic matching procedure, and because similarities
among feature vectors belong to the same object model will work in our favor.

If we allow our system to make some number of mistakes b, the size of L decreases exponentially in b, i.e.:

L = O(e - b (N - 1)r'(n + m)2 )
E(n - 1)2

This is of interest if we have an independent means of verifying matches and can tolerate a small number of
potential false matches.

4 Conclusions and Discussion

The approach to visual model base indexing presented in this paper differs from other approaches in
several respects. Probably the greatest point of departure from current approaches is that it does not make
any explicit use of geometric facts in order to relate the locations of features in the image to the locations
of features on the object. Instead, it makes enough of the structure of the problem explicit and accessible
in the form of the combined feature vector that rather simple learning algorithms operating on the
combined feature vector can solve the classification task well.

Our approach was motivated by the same information processing constraints that motivate other feature
based object recognition algorithms-the viewing equation. However, as opposed to other approaches, it is
robust with respect to deviations from this model, because it only takes advantage of the dimensionality
and (piecewise) smoothness of the viewing transformation.

We believe that these key themes, using constraints that are robust with respect to model errors, using
representations that make the structure of a problem easily accessible, and using simple learning
algorithms, will be very important in many areas of machine perception. In fact, the current interest in
"artificial neural network" algorithms is motivated by the observation that many algorithms in artificial
intelligence and robotics make too strong assumptions about the structure of problems and as a
consequence work only in well-delineated toy worlds (unfortunately, "artificial neural network" algorithms
often err too far in the opposite direction and take advantage of no problem intrinsic constraints, resulting
in impractical sample- and computational complexity).

It is, of course, still an open question whether this approach will generalize to realistic images. We have
implemented a working system and applied it to the domain of wire frame objects; we have chosen this
restricted domain because images are easy to generate and features are easy to extract from line drawings
of wire frame objects. We are currently extending this work to arbitrary grey level images.

We feel that the empirical and theoretical results we have obtained so far look promising. In addition, we
believe that our approach has relevance to psychological, psychophysical and neurobiological theories of
object recognition.
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Optimization of 2-Dimensional Model Matching 1

J. Ross Beveridge R. Weiss E. M. Riseman

March 30, 1989

Abstract

A methodology for identifying known 2D models in broken and skewed line data is presented. Such data requires
matching techniques that involve one-to-many mappings between model and data line segments. The relevance of
this problem to 3D vision, in particular robot navigation, is demonstrated. At the heart of the matching process
is an effective measure of spatial fit for which a closed form solution is given. The problem of establishing the
correct correspondence between mode] and data lines is cast in terms of com'.binatorial optimization, and local
search is shown to be effective. A generalized Hough transform for determining model translation and rotation
parameters is used to determine promising initial matches for the local search process. Experimental results on
complex outdoor scenes are included.

1. Introduction

A central problem in computer vision is the identification of objects in the world via features derived from
digital images. This often involves matching an object model to data extracted from an image. For rigid objects the
model might be a 3D construct, for example a wire frame. The identification task has two parts: a) determining the
correct correspondence between object features and image features and, b) determining the position of the object
with respect to the camera. These sub-tasks are irterdepeuricnt, since an object's position cannot be determined
without assuming a correspondence to image features, while the correct correspondence depends on the object's 2D
appearance and hence its relative position and orientation in space.

1.1 Model Ma ,hing and Optimization in Two vs. Three Dimensions

We believe that there are strong incentives to solve as much of the identification problem as possible via
processing in the 2D image space. The combinatorics of establishing correspondences between object and image
features dominates the identification problem, and geometric computations integral to this process are simpler in 2D
than in 3D. In particular, this paper shows that the determination of the optimal position of an object's 2D projection
with respect to corresponding image features has an analytic solution in the two dimensions of image space. This
closed form solution is a new result and we believe it to be a significant contribution. It is highly doubtful that
the related 3D problem has an analytic solution for determining model positions that minimize point-to-line and
point-to-plane distances.

The reader should note that if point-to-point correspondences between model and image exist, there are analytic
solutions for optimization in both the 2D and 3D domains (Hor871. However, point-wise correspondences are generally
very difficult to obtain in a reliable manner. When line features are extracted, the location of their endpoints is
quite pronc tc, czr-. A typical technique, in fact, is to use vertices of line pairs to more accurately determine point
locations. However. such a strategy does not always work, and one can see examples in our experiments later in this
paper where line correspondences are possible but point correspondences are not feasible. In this paper we assume
that line tokens can be reasonably extracted from an image (with some errors of course), but that 2D points often
cannot be.

The combinatorial complexity of establishing a correspondence between object features and image featiures
would be high even if it could be assumed that for each and every object feature there existed a single corresponding
image feature. However, when the best straight line algorithms are applied to natural complex scenes, the ,qutput
almost always involves fragmented, overextended, and missing lines. lence, the correct correspondence often inv,,Ives
complex processing, for example associating several fragmented image line segments with a single model line. This
amounts to integrating the grouping of line fragments into the model matching task, thereby further adding to the
combinatorial complexity of the task.

Determining the 3D position of 3D models can be decomposed into a 2D matching problem followed by 31) pose
refinement. Tiiis is made easier when a rough estimate of the object position is available. Autonomous navigation

This work was supported by the Defense Advanced Research Projects Agency under grant F30602-87-C-0140 and by the National
Science Foundation under grant DCR-8500332.
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Figure 1: An example of the type of problem we wish to solve: a) a model of a rectangle,
b) broken and skewed data of the kind produced by bottom-up algorithms on
complex imagery. c) the desired match between model and data.

of a robot via landmark recognition is just such a problem and represents an important application of the methods
developed in this pap-r. The robot will update its estimated position by determining its relative position with respect
to the visible landmarks. The best way of estimating the 3D position of the camera (and hence robot position) given
the image lines corresponding to 3D landmarks is itself a research question. A robust method for performing this
task is presented in [Kum89. In this paper identifying the landmarks involves matching data line segments from
the image to 2D projections of these landmarks. Unless errors in the expected 3D position of the robot introduce
substantial 2D distortions in the landmark projection, this approach is reasonable. Presuming that a robot planner
is selecting which landmarks to observe it can generally select landmarks for which distortion will be minimal. For
more details on the integration of 2D landmark recognition and 3D navigation see [FHR89].

It should not be forgotten that some visual tasks are inherently or largely two-dimensional in nature. For such
tasks the methods presented here are directly appropriate. For example, distant aerial interpretation, although not
strictly a 2D problem domain, can often be treated as such; the viewing angle is constrained and objects are always
far from the camera. The matching techniques presented here may also be useful for certain industrial automatation
tasks.

1.2 Overview of the Correspondence and Spatial Fitting Problems

The type of 2D matching problem to be solved is illustrated in Figure 1. In the remainder of this paper the
term "model" will typically refer to a "2D line model" such as the rectangle in the Figure la, although in general the
model will be the projection of a 3D object as we have just described. Models will be assumed to be rigid, although
there is no assumption that model line segments must form a closed polygon. The term "data" will refer to "data line
segments" extracted from a digitized image by some low-level algorithm as illustrated in Figure lb. The problem, in

short, is to match the model to the data as illustrated in Figure Ic. The current example has been hand drawn for
the sake of illustration. Data derived from images will be presented along with results at the end of the paper.

The types of 'errors' in the line data shown in Figure 1 are illustrative of what can be expected from bottom-
up algorithms such as JBItR861. Data lines are often fragmented; they may extend beyond or fall short of thf
point predicted by the model, and often they are skewed. These discrepancies between model and data are a direct
consequence of several factors. In cluttered, unconstrained domains such as outdnor scenes, ambiguity in the data is
inevitable and hence model and data will rarely match perfectly. Sources of ambiguity include but are not limited
to variations in lighting, occlusion, and coincidental structure such as alignment between distinct objects. Morenver.
by necessity object models are simplifications of reality, hence unmodled structure will always be another source of
discrepancy. Probably the most significant factor is the limitations and idiosyncracies of line extraction algorithnms.

Given that riatches will seldom if ever be perfect, the emphasis must be on determining the 'best' of the imperfect

matches. Hence matching is naturally posed in terms of optimization over the possible matches. By establishing
an objective measure of match quality, the problem becomes one of determining the correspondence between model
elements and data line segments for which the measure is optimal. The correspondence problem is combinatorial,
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and generally involves mapping one model line to many data lines. A second optimization problem is implicit in
the correspondence problem. In order to measure the quality of a given set of model-data line correspondences, the
best 2D position of the model with respect to the data must be determined, and the extent to which they do not
spatially coincide must be measured- This we will call the fitting problem. Thus, a match involves both model-data
correspondence and an associated best-fit position. A change to the correspondence will, as a rule, change the optimal
fit between model and data, and therefore the model's position. Thus, for every possible correspondence between
model and data, there is an associated best fit postion. There is also a strong connection in the reverse direction.
The proper position of a model might be roughly constrained via knowledge (e.g. the location of the robot position
and orientation), or via some intermediate processing technique as we shall discuss shortly. If the location of the
model is roughly known, there are a limited number of reasonable correspondences; i.e. only those data lines that
are "near" the expected position of each model line would be considered as possible correspondences.

The following is a sketch of the basic steps used to obtain a good model match.

" Determine the search space of correspondences. Lacking constraints on model position, all data lines segments
possibly correspond to every model line segment. If constraints are available, only associations of model and
data lines satisfying these constraints need be considered.

" Determine promising umodel positions if the search spa-e is large. Use these positions to determine constrained
search subspaces made up of only correspondences consistent with the estimated position. A promising model
position may be found either through a generalized lough transform or by identifying proniinen; features. The
generalized Htough technique involves an analysis of the space of possible two-dimensional spatial transforms
to bring the model and data into alignment. Identifying a prominent feature may involve fnding a distinctive
part of a model such as a corner, and then using that to position the model as a whole.

" For each of the constrained search spaces (sets of possible model-data correspondences) obtained above, use
iterative refinement to determine a best match. Upon each iteration perturb the correspondence, adding or
deleting one or several data lines, and then determine the new best-fit model position and related match error.
If the match error is reduced adopt the improved match; stop when the match can no longer be improved. The
best of the resulting matches is taken as t|iH final match.

To review our use of terms: a "match" is a correspondence whose spatial fit has been optimized; a "globally
optimal imatch" is the correspondence in the search space which has the lowest match error; and a "locally optimal
niatch" is a correspondence which is optimal in a localized neighborhood of the search space of correspondences.
Generally "best match" will refer to a iocally optimal match that is likely, but not guaranteed, to be globally optimal.

After a brief survey of related work on line-based model matching, we will turn to the problem of finding the
best match. This will involve a standard technique from combinatorial optimization called local search. Next the
objective function used in 21) matching is presented. Special attention will be drawn to the problem of obtaining
the appropriate rueasure of spatial fit between model and data. We show that our choice of fit measure is superior
to the reasonable alternatives, and we present for the first time an analytic solution for optimizing model placement
using this measure. This analytic solution is particularly valuable since searching for the best match involves fitting
the model to the data for a number of possible correspondences. Since finding the best match is expedited by a
good initial estimate of model position, we will discuss briefly how to obtain such estimates. Finally, results will be
presented for robot landmark identification. Matches for this domain have been used to reliably determine robot
position over a sequence of six images. These results are presented in these proceedings [Kum891. One additional
result illustrates the strength of our technique at overcoming even dramatic weaknesses in the bottom-up line data.

2. Work Related to Line Based Model Matching

Object recognition can be thought of in two complementary ways. In one wva,. recogniti,,n neanIi' fimudin z a
correspondence between related parts of an object in the inodel base and related features in an image descriptiu.
a correspondence that satisfies tile constraints entailed by the strcture of the object and tile geomnetrv f i tage
formation. Methods based on this point of view rely on distinctive features that characteriUe each object, as exem-
plified by the local-feature-focus mnetlh-d of Bolles, and (ain 1( 21. The other approach is to find the parameters
of the transformation that maps an object into its appearance in an image. Me lithds based On this plint of vie
combine weak evidence from many features, as exemplified by the g -ralized Homgh transform (such as Ballard and
Sabbah IBS83), Silberberg t al.[SHI)8.,).

The feature focus nietlmod is based m matching a set of features starting with one ;hat is distinctive. A match
of the initial feature focusses the search to matching nearby features. The largest maximal clique of correspondences
between model and image features is used to generate a hYpothesis for the transformation. The distinctiveness of the
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Figure 2: Two distinct sequences leading to the sarrn. optimal match: a) starting from a

corner and, b) starting from a 'full' match, all lines found near the model in its
estimated (in this case correct) position. The sequences should be read left to
right, top to bottom.

features is important for limiting the size of the graph when searching for cliques. Aside from prediction from model
projection, another method for extending a match is perceptual organization. This makes it possible to form complex
features that are more distinctive for each object. The SCERPO system by Lowe (Low85 follows this approach.
In addition, as in ACRONYM [Bro8l,Bro82], this algorithm alternates between finding more correspondences and
updating the transformation. An issue that needs to be addressed is whether the reduction in the search space by
using distinctive features offsets the computational complexity of forming them.

A major problem with these methods is the exponential complexity of the search over all possible correspon-
dences. Goad [Goa831 does an analysis that permits pruning of the search tree for recognizing an object, based
only on the geometry of the object itself and the general constraints of the imaging geometry. This analysis can be
compiled ahead of time, before any images are interpreted. The work of Crimson and Lozano-P~rez [GL84J, in the
related area of object recognition by tactile sensing, is similar in intent.

The Hough transform is another method for eliminating an exhaustive search of all correspondences and has a
generalization implemented by Tucker et al. [TFF88 on the Connection Machine. Each image-model feature pair
votes for a model-to image tran, 'ormation. This requires that the feature pair determine the transformation uniquely;
this is easier for two dimensions than it is for three. Each transformation is a hypothesis, and using the entire model,
the hypotheses with the most votes are verified first. Thompson and Mundy[TM87] developed a parallel algorithm
for recognizing 3D objects using vertex pairs. This algorithm proved to be very efficient because it used only pairs of
features to compute the 3D pose of an object. The clusters or peaks are found in a 2D subspace of the 6D parameter
space. Another variation on the Hough transform is geometric hashing. This method was used by Schwartz and
Sharir [SS85] and Kalvin [KSS86] for 2D matching and described more generally by Wolfson and Lamson [LW88].

3. Local Search as a Means of Finding Best Matches

Local search is a promising means of establishing the optimal correspondence between model and data. A
formal introduction to local search may he found in [PS82]. Local search offers perhaps the most practical means ,f
solving many NP-complete problems, such as the Traveling Saleman Problem [LK731. The process of local search.
put simply, is an iterative generate-and-test procedure which moves from an initial solution via transformations t,
one that is locally optimal. Note that the common notions of hill-climbing and iterative refinement are in essence
local search. Formally characterizing our 2D matching problem as a combinatorial optimization problem allows us ti
utilize this general methodology. To do this we will define the objective function, the search space, the neighbor h,,,,d.
and the search strategy.

Before moving to general definitions however, let is illustrate with an exam-l how local search is applied to
2D matching. Referring back to F'r;ire I note that th- model and data lines are in quely identified by letters and
numbers respectively. For the mat,. shown in Figure ic, the implied correspondence or mapping between model and
data is: A , {1 2} B ,- {3} C .- {4} D " {5 6}. This is the intuitively obvious match, and as we are about
to see, it is also the optimal match.
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PAIRINGS, MODEL TO DATA LINE SEGMENTS
A B I C D

STEPS 1 2 1 9 1 3 1 10 J 11 1 4 1 8 1 12 1 14 1 15 1 5 1 6 7 1 13 EVALUATION 1

L _Search Path from Partial Match

Initial V/ I V/ 17.44
1 v /_., 15.31
2 V/ J12.47
3_ VV _ v/ V 10.52
4 ._2L V 7.47

5 V V/ _ VV 5.26
6 V _ V _ V V 2.67
7 V _ V/  

_ V VV 1.88

final V V V VI V V 1.61

F Search Path from Full Match

Initial V VVVV V / V V V V V 183.83
1 VVVV V V V V V V 161.89
2 , V V V V V V/ V V 159.72
3 V VVV V VVV 151.57
4 v V /  V/  I/ V V VV /  V V 139.85
5 V _ V V V V V 115.97
6 'V/ V V 113.48 1
7 V/ V /  VV VV VV 54.12
8 V _ V _ V V VV VV 38.96
9 V V V V V/V 37.34

10 V / V VV _ 24.10
11 V - v V 11.31
12 V_ V V 11.15
13 /V V/ V 5.40
14 V_ V LI IV V 5.14
1 V V V V V V 4.8
16 / V A- /-/ 4.28

final V V V _ V V V 1.61

Table 1: A trace of the local search process for the two parts of Figure 2. A V designates
a correspondence between a model line and a data line.

Figure 2 shows two distinct match sequences, each terminating with the optimal match. The sequence in
Figure 2a starts with the model matched to two data line segments which form a corner, as shown in the upper left
hand portion of the figure. Here the corner may be thought of as a key feature used to establish the initial position
of the model. However, note this particular corner is not part of the best match. The starting match in Figure 2b
might be the resuh of estimating model position, perhaps with a generalized hough transform, and then establishing
a correspondence between model and data line segments which are near each other and properly aligned.

The model, drawn in grey, is always shown in its optimal position with respect to the data. The result of applying
the objective function is written below the match. Details about the choice of model position and objective function
will be described in following sections; here our focus is on the local search process. Each successive match in these
sequences is an improvement over the previous match. Each sequence terminated when no additional improvement
was possible, and in each case with the same optimal match.

In both sequences successive matches differ by only one model-data line correspondence. In these illustrations
the exact choice of data line to add or delete in the correspondence set was a function of the order in which they were
tested, since the first change for which there was an improvement in the objective function was adopted. Alternatively.
the line for which there was the greatest improvement could have been selected. This distinction is reflected by tw,
of the most common strategies for local search, first improvement and steepest descent. Had steepest descent been
used (i.e. choose the change in model-line correspondence for which the improvement is greatest), the succession of
improved matches might have led more directly to the best match. However, when there are many possible changes
to the correspondence set to be examined, steepest descent can turn out to require significantly more tests than first
improvement. For this reason we favor first improvement. In the future we plan to conduct a thorough comparison
of these two strategies.

Table I traces the correspondence between model and data for matches in Figure 2, and provides insight into
our search space. In general, if there are M model line segments and L data line segments, then there are N = L. A
possible pairings between model and data line segments. This representation permits a many-to-many mapping,
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14.69 11.17

14.69 12.96 11.73 11.39 7.52 1.61

Figure 3: A local minimum for a k 1 add/delete neighborhood disappears for k = 2. a)
A first improvement search for k = I finds a local minimum after one tranfor-
mation. b) A firsi improvement search for k = 2 from the same initial match
finds the optimal match.

and the typical case is one model line mapping to two or more data lines. Mapping one data line to more than one
model line is penalized by the objective function, and could be precluded from the search space altogether. When the
model position is roughly known, then only data lines in correspondingly appropriate positions need to be considered.
Hence, as illustrated in Table 1 , N may be considerably smaller than L. M. For example, A -- {6} is not a possible
correspondence in Table 1..

In local search the neighborhood defines those matches which are related. Here, conceptualizing the search
space as a graph is helpful. Each correspondence in the search space is a node. A link is placed between nodes
which differ by a single transformation. Nodes with a link to a given node form its neighborhood. For example,
consider a transformation operator which adds or deletes k data lines from the model-data line correspondences. The
neighborhood of the correspondence of a given match consists of all matches which differ by k data lines.

Observe that a locally optimal match using one neighborhood definition may not be locally optimal if the
neighborhood is expanded. The neighborhood definition used in the above illustration corresponds to a k add/delete
transformation with k = 1. In common practice the k = 1 neighborhood has undesirable local minima. Such a local
minimum is shown in Figure 3a, in which B is initially matched with 11 and C is initially matched with 15 (using
labels from Figure 1). Using the k = 1 add/delete transformation leads to a local minimum after adding D - {5}
to the match correspondence set. In Figure 3b, using k = 2 for the same initial match and search strategy leads to
the optimal match. Thus, the local optimum with k = 1 disappears for k = 2.

Obviously larger k values are better; however, the neighborhood size using the k add/delete transformation is
O(N); the increase in computational cost associated with increasing k is dramatic. Our experience suggests that
a first improvement strategy on a k = 2 neighborhood usually leads to a globally optimal match when used in
conjunction with intelligently selected initial matches. More complete statistical studies will be reported in future
presentations.

The 2D matching problem differs from problems like the the traveling salesman problem in one significant
respect. When two cities swap position in a tour of the traveling salesman problem, the change in cost can be
computed from just those links associated directly with the change. There is no need to evaluate anew the entire
tour. However, any change to the correspondence in our 2D matching problem requires a spatial repositioning of lie
model with respect to the data. Consequently, the contribution from every pair of model and data lines to the overall
match quality in terms of fit error and omission (see Section 4.) must be recomputed based on this new position.

Heuristic tests may circumvent the need to recompute the global evaluation under certain conditions, and
these may represent valuable and pratical shortcuts, but the matching problem is b, definition inherently global if
model-data line correspondences are formally included in the definition of the optimization problem. On the positive
side, repositioning of the 2D model with respect to the data requires only rotation and translation in the image
plane. One of the contributions of this paper is an analytic solution to this optimization problem. With our current
implementation it is practical to test hundreds or thousands of possible matches, but not more. Hence, there is still
strong incentive to limit the neighborhood size and to start with relatively good initial matches, a topic that we will
return to in Section 5. At this point note that the global character of matching both encourages careful choice of
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0.86 6.70

Figure 4: The total percent omission taken over all four model lines is the same for each
match. However, since we consider the lefthand match to he better, the value
of the omission error is considerably lower than for the righthand match.

initial matches and provides a general means for obtaining them.

4. The Objective Function - Match Error

The objective function is the formal evaluation measure defining the quality of a match. No single, universal
objective function exists for all matching problems. The objective function might have to be varied or replaced
entirely to satisfy the dictates of a specific application. However, our objective function is general, practical, and we
believe appropriate for most 2D matching problems. It is based on the observation that a good match is one where
every portion of every line in the model is accounted for by data. Figuratively speaking, the model should be able
to be placed spatially over the data, and everywhere there is a model element there should be corresponding data.
A match can fail to meet this objective in two distinct ways: data lines may be displaced and skewed, or portions of
the model may be missing. For each line, the objective function or match error is defined as:

Ematch(l) = Efit(l) + aEomission(1)

where Efit measures the spatial fit between the model and corresponding data, and Eomission measures how much
of the model is missing from the data. A perfect match would yield an Ematch of zero.

Ematch for the model M is a sum of weighted errors, each associated with an individual model line segment 1:

Ematch = I: wlEmatchi(l)

1EM

This decomposition facilitates alternative choices of weights wi; two obvious alternatives are equal weight for all
model segments or weight proportional to length. To fully justify the choice of one over the other requires recourse
to the goals of the specific matching problem and the characteristics of the task domain. In recognizing navigational
landmarks, small line segments may be just as important as large ones; e.g. the short top crossbar of a teleplvne
pole is critical to distinguish among the vertical lines that are common to telephone poles, lamp posts, and some trce
trunks. Hence, we choose equal weighting for the task domain described in this paper.

The approach of attributing error by individual model segment is appropriate for dealing with omission of data
in evaluating matches. For each model line segment Eomission will be defined to be a non-linear function of the
percent of the line that is unaccounted for by data. The measure is constructed in this manner because even under
the best of circumstances a small amount of omission is to be expected (e.g. the ends of lines are often difficult to
extract). However, if large portions of a model segment are missing from tue data, the estimated quality of the match
should be substantially reduced. Consider the two alternative matches illustrated in Figure 4. Due to the nature of
bottom-up line extraction, the four sided match is preferable, even when the total percentage of model line length is
somewhat less. Letting P be the percent of the model line I omitted by the data, Eomission (l) is defined as:
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Figure 5: Lateral displacement in model projection is illustrated for the best match from
the previous example. Note that model lines are infinitely extended, and the
perpendicular distance from the end- points of data line segments to model lines
is minimized. Part b) shows an enlargement of the shaded area.

Eomission(L) = ell"

This formulation expresses the increasing importance of larger omission values. The change in omission is proportional
to the omission, specifically:

dEomission =JEomjssion

dP

Proper choice of the proportionality constants of the objective function, a and /, is of course an issue. Empir-
ically selected values for a and 0 along with the resulting best matches are presented below. For a given domain,
such as landmark recognition in our outdoor campus, one set of constants is used for all models. If specific tuning
were required for each model, the value of our approach would be undermined. However, there is every indication
that one choice of constants performs effectively for many models in a given domain. Nevertheless, some domain
dependency may be expected. For example, changes in the nature of the errors present in the line data may dictate
- -hange of a, which balances the tradeoff between fit and omission.

4.1 Optimization of the Spatial Fit of the Model

For a given set of model-data line correspondences, the error for spatial fit contributing to the objective function
should be derived from the model placed in the best possible position. Consequently, the spatial fit must be optimized
separately for every set of model-data line correspondences that is considered. Therefore, the computational form
for determining the optimized fit is of great importance, and only quadratic fit measures have been considered.

Simple quadratic measures of point-to-point distances for this problem are inappropriate. As we discussed
earlier, line segments produced by bottom-up algorithms will be fragmented and partially missing: therefore, a direct
mapping of model end-points to data end-points is impossible. To further complicate matters the exact point where ,1
line terminates is unreliable. Even if the two data line end-points most closely associated with a model line end-point
were identified, it would still be inappropriate to take Euclidean point-to-point distance as the measure of fit. A far
more effective approach is a point-to-line measure. The need for a point-to-line measure was identified clearly b"
Lowe [Low80,Low85l.

The most reliable quadratic point-to-line measure is model-projected lateral displacement, which is a weighted
sum-of-squared perpendicular distance from the end-points of the data lines to the corresponding model line. This
measure is illustrated in Figure 5, where the best model match from the earlier example is shown with the exitended
model lines explicitly drawn, and the projections of the end-points of data line segment onto the extended model
lines also explicitly drawn. In the enlargement the projection can be easily seen.

Efit is formally defined as:
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Figure 6: The three models in the study of alternative fitting methods. The data shown
is the result of the stochastic breaking and skewing process.

Efit fi E (ni'-(R(Pi) -T) -pi )2 l

Each term in the sum denotes the perpendicular distance from data line end-point pi ,) the corresponding model
line i. Note that 1i has unit normal ni, and its distance from the origin in the direction ni is pi. The contribution
from data line end-points is weighted by the length t, of the data line segment.

The problem of determining the 2D rotation and translation parameters which minimize Efit has an analytic
solution. The translation which minimizes Efit for a given angle of rotation 0 may be expressed as a linear system
of equations (B and V are both constant):

T =BR -V R? -Cosq (2)sin(

'We substitute the optimal T back into equation I and differentiate with repect 0, obtaining a fourth order polynomial
in cos 0: One of the roots of this quartic equation corresponds to the rotation which minimizes Efit. The roots of
the quartic can be solved for directly. We believe this closed form solution represents a significant contribution to
symbolic model matching, and its complete derivation is included in Appendix A. It is worth noting that others in
the literature found iterative methods necessary for solving the related 3D problem [Low85,LHF88.

A stochastic model of the breaking and skewing process has been used to compare model-projected lateral
displacement to two alternative fit measures. The two alternative measures were selected because they represent
previously published methods. The first alternative is data-projected lateral displacement and has been used by
Lowe [Low85]. As in our model-projected lateral displacement, Lowe's measure uses a point-to-line distance. However,
it reverses the roles of model and data. Hence, the sum-of-squared perpendicular distances from end-points of model
line segments to data lines is minimized. It can be shown that this lateral displacement is less reliable than our
model-projected measure. Consider a model line segnent matched to a data segment that is only half its length
and is skewed slightly. Extending the data line and measuring lateral displacement from the ends of the model line
segment to the extended data line amplifies the error introduced by skewing. In contrast, measuring distance from
the end-points of the data line segment to the extended model line will not stiffer from this problem. Since skewed
data lines are a fact of life, this turns out to be a rather important difference.

The second alternative measure considered here minimizes the sum-of- squared point-to-point distances between
corresponding model and data vertices. A model vertex is the point a. which two adjacent model lines intersect.
This type of vertex approach is essentially what is used by [TFF88] and [HU871. For testing this measure on
our data vertices were specified by hand. Even with the properly selected vertices, this method is less reliable
in our experimental tests than model-projected lateral displacement. Of course these results are a function of
the fragmentation and skewing that takes place in any particular straight line extraction algorithm, and to better
understand them more must be said about the experiment.

A statistical study of the alternative fit measures was performed using a stochastic model of the breaking and
skewing process. Three distinctive geometric shapes were selected: a rectangle, a star, and a telephone pole. The
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RECTANGLE, 1000 trials STAR, 100 trials POLE, 100 trials
Method Mean r Standard error \lean Standard error Mean Standard error

1 0.2148 0.0036 0.659 0.0063 0.1088 0.0067
2 0.3397 0.0057 01869 0.0074 0.7600 0.0403
3 0.2362 0.0034 0.2898 0.0182 1.3781 0.0967

Table 2: Comparison of three different fitting measures on three models shown in Figure
6. For each measure, the optimum position of the model with respect to noisy
data is found. The distance between this estimated position and the correct one
is computed. The mean and standard error is shown for a large number of trials,
and the mean for measure I is significantly less than for the others.

perfect model segments were randomly broken and skewed. An illustration of the models and corresponding data
is shown in Figure 6. The three distinct fitting methods were then used to position the model with respect to the
corrupted data and the deviation from the true position of the model was measured using the distances between
corresponding vertices. Note that an ideal measure of fit would be insensitive to this type of data corruption, and
hence would not change the model position. We found that our model-projected lateral displacement came closest
tc this ideal. The -esults over a large number of random trials are summarized in Tab,- 7- . It is worth noting that
the vertex method gave comparable results for the rectangle, but degraded seriously for the star and pole.

5. Generating Initial Matches

There are two basic approaches to the problem of finding good initial matches: a) Finding characteristic
substructure, i.e. key features, which indicate the presence of the model ([BC82,Low85]); b) Use of a generalized
hough transform which relate model and data ([Bal8l]).

Effective heuristics for identifying key features depend on characteristics of the models and the data. If a model
contains a prominent corner, then searching for corners in the data makes sense. The common theme is that a
portion of the model that is sufficient to uniquely determine position is identified in the data. The model position is
determined from this partial match, and this in turn restricts the additional data that can participate in the match.
The approach is effective when key features are readily and reliably identified, but when they are not, substantial
amounts of computation can be wasted.

Generalized hough tranform techniques involve voting in a transformation space. Correspondences of model and
data primitives, for instance pairs of model and data lines, independently indicate support for a particular transfor-
mation or family of transformations. The generalized hough is a global histogram that represents the accumulation
of the local information, and peaks represent globally interesting transformations. The transformation spaces and
primitives vary across applications. For the matching of 2D rigid models, the natural transformation space has three
dimensions. The axes are: u - the translation in the x direction, v - the translation in the y direction, and 0 - the
rotation in the plane.

The choice of the appropriate primitive is less obvious. It has been common practice to select primitives for
voting that uniquely determine a point in the transformation space. For 2D matching a correspondence between two
points or a point and a line is necessary to uniquely determine rotation and translation between model and data. For
example, the system presented in [TFF88 used pairs of lines forming a vertex as the primitive. Such primitives, like
key features, must possess sufficent structure to uniquely determine model position. However, as our implementation
illustrates, less constrained primitives may be used in a generalized hough transform.

Our primitive is a pair, one model line and one data line. The family of traiisformations associated with such
a pair is quite intuitive. To the extent that a given transformation places thei model line segment over the dala
component, that transformation is favored. Tile underlying idea, in keeping with -,!r matching objective function, is
that the best match position should have the model "on top oF as much of the data as possible. This approach has
proven quite effective. Note that our choice of a primitive facilitates matching even when extreme fragmentation and
skewing cause significant difficulty for any sort of vertex-based approach. An illustration of matching to extremelv
frdtgnteited dat.. i,", '.,, presented in the next section. For more details on our use of the generalized hough transform
see fBWR89).
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Figure 7: A 512x512 image from the robot domain

Figure 8: a) The six navigational landmarks projected onto the image plane. b) Data line
segments matching the landmark lines.

6. Model Matching Results

A system implementing the matching methods described above has been built on a T.I. Explorer It Lisp Machine.
The previous illustrations were all generated by this system. The bottom-up data line segments for this system are
generated by the Burns line algorithm [BHR861 and are then filtered by length and contrast.

For the robot's outdoor test area we have successfully demonstrated the updating of 3D rnbt position via
landmark identification followed by 3D pose refinement. A sequence of six 512x512 images were acquired. The first
of these images is shown in Figure 7. Our experiment involved projecting 3D landmarks onto the image plane using
an estimate of the robot's position. The landmark projections were then matched to bottom-up data. Using the
resulting matches the robot's position was recovered to within about a foot for each of the six images. The specific
results for the pose refinement portion of this experiment are presented in [Kum89J.

The landmark projections for the first image are shown in Figure 8a. The six landmarks are: two telephone
poles, a lamp post, a street lamp, the side of the walkway and the building. These projections were assumed to
be correct to within 30 pixels and 0.3 radians. All correspondences of single model line to single data line that
satisfy these constraints voted into the transformation space, and the largest peak in the space was used to initially
position the model. From this position, a restricted space of correspondences was formed; the same constraint was
used again so that only pairs of model and data line segments within 3 pixels and 0.3 radians of each other were
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a b

Figure 9: a) A challenging house recognit,: cene. b) The projection of the house.

included. Finally, the best match in this restricted space was found using a first-improvement local search strategy
on a k = 1 add/delete neighborhood. The data lines corresponding to the best matches on the first image are shown
in Figure 8b. The proportionality constants of the match error function were set to o = 0.5 and = 4 for all the
matches presented in this section.

In these experiments, the system was asked to find the six landmarks in each of the six images. In 26 of the 28
cases where the landmarks were visible the matching system found the correct matches. For landmarks not visible the
match error for the matches found by the system were so high that they were readily discarded. The first mismatch
returned by the system was the result of only starting local search using the single model position associated with the
highest peak in the transformation space. Initiating a local search from the second highest peak in the transformation
space led directly to the correct match, and the match error for the correct match was half that of the incorrect
match. This error simply points to the need to initiate local search from several distinct initial matches. However,
the second mismatch indicates a more serious source of potential problems. When the structure of a landmark is not
distinctive, such as is the case for two parallel vertical lines, there is a chance that the 'wrong' match will be found.
This happened for the telephone pole on the right, which was matched to the data line segments associated with the
street lamp. To correct this error we merged the righthand telephone pole and the street lamp into a single model,
and the resulting hybrid model was unambiguous and successfully matched. However, the general problems posed
by ambiguous models will demand more attention and study.

Note that several of the landmarks shown contain underconstrained 2D models where the optimal translation
is not fully determined: the lefthand telephone pole, the street lamp and the side of the walkway. In these cases all
model line segments are parallel, and the matrix M , defined in appendix A, is singular. The optimal translation,
which is computed using Al-, is therefore undefined. Since models of this type are important, the fitting scheme
must be modified to accommodate them. In these results an additional term was added to the spatial fit measure.
This term minimized distance, projected onto the model line, between data line segment end-points and the mid-point
of the model line. Problems arise for this approach when model lines are near, but not exactly parallel. The proper
solution is to check for ill-conditioning of M and independently to solve for the model's lateral and longitudinal
placement (along the axis of the model lines). For a more detailed discussion of these issues see [BWR89).

The last result we present demonstrates the power of our 2D matching system to overcome serious weaknesses
in the bottom-up line data. The 512x512 house scene image, Figure 9a, has been part of our house scene library
for over ten years. It has always represented an extremely difficult challenge for natural scene interpretation. The
bottom-up line data for this image is shown in Figure 10a. Note the tremendous amount of fragmentation is primarily
a consequence of ambiguity caused by the tree texture and shadows, not any inherent weakness of the line extraction
algorithm. A projection of the main portion of the house was specified by hand, including only the roof lines,
walls, and door frame (Figure 9b). The matching system was then applied to find this model in the line data
(Figure I0)a. Loose spatial constraints were assumed - 100 pixels and 0.3 radians of its true location. The peak
in the transform space indicated the correct transformation, and the local search process, applied in the resulting
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Figure 10: a) The bottom-up line data for the entire image. b) The optimal match to the

house projection.

Figure 11: A slice of 0 0 through the transformation space. The bright spot in thle

center is the largest peak and is associated with the optimal transformation.
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restricted correspondence space, produced the final match shown in Figure 10b. This is an exciting result.

Since the model was initially placed at the proper location, the peak in the transformation space should ideally
be at u, u, and (h all equal to 0. A slice of constant d- 0 through the transformation space is shown as an intensity
image in Figure 11. The bright spot at the center of the image is the peak in the space. Note that the peak lies on
a long horizontal ridge corresponding to those transformations in which the model roof lines lie over the fragmented
roof lines in the data. The vertical streaks are a consequence of the vertical model lines lying on top of vertical data
line segments associated with the tree trunks. Although it was fortuitous that the highest peak in the transformation
space corresponded to the optimal match, the optimal match would in general be found among the most significant
peaks.

7. Conclusion

The problem of matching 21) models to imperfect line data has been formalized as a combinatorial optimization
problem. At the heart of this formulation is a spatial fitting problem for registering model and data. We have
presented a fit measure demonstrably superior to the reasonable alternatives for imperfect data. Moreover, we have
presented a closed-form solution for determining the rotation and translation parameters that optimize this measure.
We have applied local search techniques. derived for solving difficult combinatorial optimization problems, to the
vision problem of 2D model matching Local search, combined with a means of generating reasonable initial matches,
has proven to be a powerful matching tool. Finally, the combined results of this paper and [Kum89] demonstrate that
2D matching followed by 31) pose refinement is an effective means of solving a class of 3D identification problems,
specifically the problem of updating robot position through landmark recognition.

A version of the matching system is being written in C for use on the Sequent MNulti-processor. The C system
will be used for real-time or near real-time robot navigation in our outdoor campus domain.

The study oif alternative objective functions for fitting the data lines to the model is interesting in its own right,
and a more complete discussion will be found in [BWR891. In addition, the generalized hough transform and the
case of models consisting only of parallel lines will receive more attention in the Tech Report.
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A. Closed Form Solution Minimizing Model Projection Lateral Displacement

As presented in Section 4. the error function to be minimized is written as-

- >J P, ( (p, T) P,)2  (3)

R cosq -sinqT (4)
sin cos ,)

Efit is the weighted sum of squared perpendicular distances between data line end-points pi = (Xi, y,) and corre-
sponding model lines 1,. Each model line, 1, has unit normal n,, length e,, and its distance from the origin in the
direction ,t, is p,. Differentiating with respect to T yields:

_,2 (,,. (1'p, ) p,
dTl

The following substitution is helpful:

R(p,) S,R where ', ., ' A 1? )1s
y, ill sund

Setting the first partial of Efit with respect to 7' equal to zero, and solving for the optimal T given & yields:
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4(n,. T) ni F2 > nj -sh) ni - tipifl, (7)
I I

Observe that
q,.T) ni =n fniTT and .n -Si ) ni n n,iT S' (8)

Finally

T 2= BR?- V (9)

Where B and V are defined as follows:

Al ZenntT B =MA-'J3 etniniTS, V =M-'ZEipini (10)
Ii ,.

The matrix Mt is singular or nearly singular, iff the lines in the model are parallel or nearly parallel. This case, as
noted in the body of the paper, requires an additional constraint to define the optimal translation.

Substituting T in terms of R? from equation 9 back into equation 4, we obtain E', the fit at the optimal -translation
for a specified rotation q0.

E' i (n i (I, ±?4V - p,) where I Vi S, -B (1

The optimal rotation is a root of the first derivative of E' with respect to ~

dE'

c, 2= Z4 (ni . l~;)(ni~ V,.2

C2 2= fe, ((n, . I i2)2 -(n, . W4T1)2)

WT'; is a vector formed from the column r, of matrix WiV.

Shifting terms involving sin 0 to one side of equation 13, squaring both sides, and substitute cos' 4,I for sin 2 o4

yields a fourth order equation in cos 4,.

COS 4 + ,±acos3 +a 2 COS2 4+ a 3 cos +a 4 2=0 (13)

a, 4clC3 + 2c2c4 -2(cjc. 3 + C2C4)
4c2 _F 4C2 03 2= 4c2 + C2

r- 4C2 + c2- c2  2 2

a 2  3 A
2  

2 01 C1C

4c2 + C2
2

The roots of equation 14 are found analytically and the optimal rotation 4, must correspond to one of these
four roots. The optimal translation follows directly from equation 9.
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Abstract.

1i report Igives an overview of several recent reults iii tin', ii veiopiii't of lie aspect graphl representation
forus ii itige undi~erstatndiig. First, a simpi~le 3-1~) oihj.'t recogiti on sySteritl 1015 ibei'i Implf~ementedl Which

uses the 'ispect graph as its hasic object representat eon. LxeiieiswithI this svsteitn show that the( aspect
graph offers some imriport anit ad vantages for recogiIt ion syst ei is in wich at,, opt im izat ion tech ni(1te is used to
es tmiiate, paranileters of t, slat ion andl orientation. Siconld. ani adgorlih in is (lesci bed for creating the perslpectiVe
projectiton xspe-ct graph of genreral polylhed ral objects. An im nplenient tat [in of this algorithm i is in progress whiiclh
will be able to take its inputt d~scription of objects fromnt ilie PA DL-2 solid modeler. Third, ant algorithm Is
(describedl for creating thle orthIographic project ion aspect ,raph of solids of revolition which have been defined
as right. circular, st raighit homogeneous generalized cv : Ind ers. Or fo-r efforts lin progr-ess are aimed at developing
algori t Iins to Create thle aspect gra pi, of a larger c asof cuirved objec 5 all(l i nrpleict'iting a more rob~ust object
reccgiiit i system for general polyhedral objects.

1 Introduction
The filli rot tioll of thle aspacl graph coiicept is geileraill c ri'iti, tl eK o 'eer inik and van lDoorn [16], who described

graph strmetunre which thiey actually referre to ashe iiiaou pet, nlilof ain obi'ect . 'iecomtmnonly agreedl tipri
' Ierlnts of thef defiiion of alt aspect graph arte thl ( ;I a itoh repr. seits a I beve of the ol-ject as seeni

front sonic maximal coniiected region of viewpoint space.- *'2' :i arc r'pr's.'rits a osbet ranisitiont between siuch
st aile views by crossinig fromt one such regioni of viewlo(iT spa;c 1i0 ;i teigihborinoig regioni. (:3) there Is a ntode for
each eweitl st arile view, arid (4) there is ant arc for each silth rr:iiit ion lit weeii such views. Figure 1 depicts anl
exaIupeI of tie aspect graph for a tetrahedron.

Tiii ;tsjo'ct graph coricepit seris.titit iveiv, to ber very p irfui 1'(r rise litii age rtrrterst aidingaitd hiaus
recri,,tly icomte a popular topic oif research. A :r iild owmiiig itiniher of' rese, tchters htave discussed algo-
rirlhmu for g'nirat rig sortie flavor of aispect gr fl re u'iii? iiim ;iie/or psi is for it. Figutre 2 (depicts a
c;it-gori.;ttiri] of the. a films I')it ivlpeu ti let'r ;oru-i 'ii wiratiiig the aspect graphu. Perhiaps rio('
tiost fiiilmiintd ii)itincltim rirweij ti'ifuit, n-ro- itl10,1 1i., %%hwittir viwplrriti'ac I!, it( 'led ;Is Iii'
/ ( . iI vi rugIl anl o lhe ilii /41( p it tf](( /' I , oI vtip/i. i r ;i, aill of 3-1) spae. iirijdviii lot io' ('/Iu(
pT(J/(I]o f, 71 1 p( Iq r (1p , f pr II IioirY aIv~i Iit ; ,,- f I rI ( ;a,-in jI i' ill d Is f t t it l:lows art ;iprominat'c

a.pfu'r gr;ijhi 1(, b, i-w r:tte-I lvN li r.s? 'r';it iiL ;I iiuul'i I ~ llt 1, I, 1111 fflt' plitr' anil thIwn groui n~irg facets (Ii
Ilii P re11a \tt w itei ' I t i ot o' W 1 , , ,ia I f Ii ,' -f ' A \it a 'ii liii o'lii'i )pv'ralv' 11 ;tI'ti i''' licis ran. it)

pririipe. Iw' l'ip w I( tof,1 ~ t s (of thy\ .'u i't wi I 1, butt f i] 1, v' r;il I '' i- lirs Ila\c tits' I lit F ru(t f aspl'
vrai a., tit,- ' iuur;tI olj''' I 'I -rip, iit fromt %\1,I'i' i it ;iiI Ii I ii r, i it iit t tritI i s e1 ,r i ,,,I ( I ii F1;1/ I ld/iil

thit r,13.t pI i ti ti hit raior/ti T . 41riflij trtit, i oe ii hIt '211. /R, -;ir'ii'r i , o, d , vIpel several
iihl''ru1,r 1.,rrii i rt i,(rtirii r~, 1 1% II tr 'p t!ln iii ,tl 'rr;ipti if L i'r;dI- tiflral I ,

h 'I 'It anvil t A I ire i l fI 1 ' ob ['I %- I 11 l h, u ' t_.,it i iiit''i fi'. t~t' Ri i:11\ 1.%



Figure 1 - Aspect Graph for Tetrahedron.
The structure of the aspect graph depicted here, using only the bold arcs, follows
the convention of [Koenderink and van Doom, 1979]. Addition of the dotted arcs
would modify the graph to follow the convention of [Plantinga and Dyer, 19861.

less work has been done in applying this flavor of aspect graph in object recognition systems, in part because
implementation of such an algorithm is a non-trivial task i;: and of itself.

Section 2 of this paper describes a simple recognition system which uses the perspective projection aspect
graph as its basic object representation. This system illustrates some of the advantages of using the aspect graph
for object recognition. Section 3 outlines an algorithm for creating the perspective projection aspect graph of
general polyhedral objects. This algorithm is being implemented (in C on a SUN workstation) and an interface has
been developed to read PADL-2 object definition files. The implementation will be made available to interested
research groups. Section 4 describes an algorithm to create the orthographic projection aspect graph of solids of
revolution. To our knowledge, this is tire first algorithm to automatically create the exact aspect graph for any
class of curved objects. We also believe this algorithm illustrates a general conceptual approach which can be
applied to other classes of curved objects. Section 5 discusses certain problems with using the aspect graph for
object recognition and suggests some lines of future research.

2 A Simple Recognition System Using Aspect Graphs

Several researchers have described approaches to object recognition which use an iterative technique to recognize
an object from a library of models and estimate the parameters of translation and orientation [12, 17, 32]. The
major prob' ms encountered are (1) how to choose starting parameter estimates, and (2) how to know when the
global minimum has been found. Since the aspect graph is based on a parcellation of viewpoint space into cells
from which fundamentally different views are seen, it seems that it should provide a solution to these problems.
In order to investigate empirically whether this is true, we implemen 'd a simple recognition system using our
early algorithm to create the aspect graph of convex polyhedra. There are three basic modules to the system [273.

One module takes the boundary surface description of a convex polyhedral object & its input and creates
the perspective projection aspect graph. The important elements of the aspect graph representation for our
purposes are that each node is attributed with (1) a definition of the corresponding 3-D cell of viewing space, (2)
a definition of the object, faies visible front that cell, arid (3) the coordinates of a 'central viewpoint' in the cell.
T he individual aspect graphs of all the models in the datal,ase are merged into an equivalence class graph which
distinctly represents only the aspect- and/or cell-equivalent classes of views [30]. Two nodes are aspect equivalent
itf the faces visible in the aspect for one node can be exactly mapped onto the visible faces for the other node
by a suitable change in scale :Lnd orientation. Two nodes are cell equivalent iff (I) they are aspect equivalent,
aril (2) the cell of viewing space for one node can be exactly mapped onto the cell of viewing space for the other
by the same change in scale and orientation used for asp,ct equivalence. Further, the equivalence class graph is
arranged by levels, where all nodes in a given level have the same number -,f visible faces.

A seco(l 1od1le itriplients a Founrir Descriptor (FI)) based fature extraction ai(l matIching strategy. First,
a line d rwing image is converted to a graph dlescrilIimon where arcs correspond to edges and nodes corresponid
to verticefs. Then a i. iqile subset of circuits iii this graph. representing the fa(e outlines, is s'lected. The ceiter
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General I S~awman & Bowyer, 19881
Polyhedral [Plantinga & Dyer, 19871

General I Stewinan & Bowyer, 1987b)
3-D Convex X (Plantinga & Dyer, 19871
PolyhedralI [Wauis, i9871

3-D ConvexViewpoint space Trihedral I 1tewman & Bowyer, 1987a)
as all of 3-space Polyhedra

P- oher [Werman et at., 1986]

Solids of

,.Revolution [Eggert & Bowyer, 1988]
(RCSJ IGCI

Object General IGigus & Malik, 1988]
Dependent Polhdr [Planting& & Dyer, 1986, 1987]

Partiionin [Gigus, Canny & Seidel, 1988]

[Ikeuchi, 1987]
PlConvex [Plantinga & Dyer, 19861

Poyer [Werman et al., 1986]

surface of a sphere 2.5-D [Castore, 1984)
Polyhedra [Castore & Crawford, 1984]

[Shapiro, 19881
[Hansen & Henderson, 1987]

Uniform ________ [Korn & Dyer, 1987]
Tessellation [Ikeuchi, 1987]

[Burns & Kitchen, 1987)
]Goad, 1984, 1986]
[1-tebert & Kanade, 1985]

Figure 2 - Algorithms for Aspect Graph Creation.
References which describe an algorithm for automatically creating
the aspect graph for any object in some defined class are categorized
by model of viewpoint space and class of object geometry.

of mass of the centers of these circuits is found, and a pattern of rays fromn the center of mass to the individual
circuit centers is created. An analogous ray pattern for a model is rotated, translated and scaled to best fi,
the pattern fromn the image. The figure of merit for the mnatch is the sum of the squares differences of the FDs
for each of the model-object circuit pairs. Thus, the feature matchitng reports a figure of merit for the match,
along with the 2-D rotation, 2-D translation, and scale used in the best fit of model projection to observed line
drawing. WVhile this particular strategy may not extendl t~o a robust., practical recognition system, it does allow
uts to explore tradeoffs which are representative of a broader class of pos., ible strategies. In principle, any feature
matching strategy which provides a suitable figure of merit coilId be usea.

The third module uses anl Iterative techntique to search the database al)( recognize the object. Since the
equivalence class graph is arranged by levels, only aspects whose number of visible faces matches the ntumber
of circuits found in thle line dIrawing are, considleredl :,z; caindidates. For each such node, an iterative technique
(damtped least squares) is used to find( thle beost.-mat cl v-iewpoilnt withlin thle corresponding cell. The search for a
mnatch involves a six-paramneter space: three parameters of translation, [N, Y, Z], and three parameters of rotation.
[[?,. My, J. Tile feat nre tmat ching modultle provides iinformnat ion oil the change in scale, rot ation, and translation
ulsed to give the best inatchl of circuits from t(lie model [project ion to circuits from the image. These four values
have a loose corrospondeiice to four of the six pa-.nieters in thle search: the 2-D scale change t~o Z. the 2-1) rotation
to R_. . and thle '2-D t ranslat ion to X\ and( 1' I. silig Iieevales in the search process allows the optimization
algorit hiii to search a t wc( Vralter sp~are (fl?, and 1ey). Oiie, it erat ion in the search process consists of tmaking
a 2-1) ft-at ure iat cl. Mootn d'at cl updait ing V. Y, Z. and /?. based oii thle resits.. of the 2-1) feattire match, and
IIsing hJallpedl least squares to fidl( nw xaliis for the reluainillig p)aranmeters.

The. basic idea behindl 11siiig aspect grapdhs to gii111d recogii n is fairly simpljle. Assiiiie that we have a
(t baeIn which ea-h ob s-ct I., ri-ri.rsIlteh byN its (perspe-ct ivc ])r,)jfct )il) aspect graph, and that we are given

am ll g In whir ic unai liknown objecrt froim II, l ~Ie ah ];Ise ;IJ] ] ;1rs al iii i knowli orient at ion and tranuslat ion. W

;~e I a s- parate solut ii for e-ach nod-, lv picking a t ;irl Ig poinit iside each viewing cell and constraining
III.- rerat ive t.'ciniqiue to find] a solujioh W wlhil [that [c' 11 hi addlr% e- t li first prihlein withI using ani Iterative

I,,, 11114w for r.'gitoi. tit of how t o tI'~ si ;rtmL pui mw , i-nnr estiliiates. \"e I 111l selecltilie hest soli loll
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Y A (0.5,1.0,2.0)
- B (-0.5,1.0,-2.0)
.... D (0.5,1.0,-2.0)

Z E (2.0,-2.0,-2.0)
E F I(2.0,-2.0,2.0)

G F G (-2.0,-2.0,2.0)
H (-2.0,-2.0,-2.0) C 4 Cell 33 Cell 21 Cell 49 Cell 57

(a) Truncated wedge and vertex coordinates (b) Initial viewas of 1, 2, 3, and 4 face aspects

Figure 3 - Truncated wedge model with representative one, two, three and four-face aspects.

Table I - Summary of viewpoint percent error (VP) for results of matching to simulated views.
Each cell was tested with 100 randomly generated simulated views. VP is calculated as the ratio of the distance from
the recognized viewpoint to the correct viewpoir. , divided by the distance from the correct viewpoint to the origin.
Thus VP is a measure of the aggregate error in the three parameters of translation and three parameters ofrotation.

Aspects 1E-6 !5 VP < IE-4 IE-4 _< VP < IE-2 0.01 _< VP < 1.0

1 face view (cell 4) 6 92 2

2 face view (cell 33) 5 87 8

3face view (cell 21) 88 12 0

3 face view (cell 49) 76 19 5

4 face view (cell 57) 94 6 0

across all nodes as the recognized view of the object.. This addiesses the second problem with using an iterative
technique, that of knowing when the global minimum has been found.

The validity of this approach rests on two assumptions. First it must be the case that, for the viewing cell
which does contain the correct viewpoint, the search process for that cell converges to the correct point. Second,
it must be the case that the solution found in the correct viewing cell has a better figure of merit than the solution
found in any other cell.

2.1 Testing the Validity of the Approach

In order to assess the validity of using the aspect graph to guide the search process for recognition, a series of
sinmulated recognition experiments was carried out. One set, of recognition trials was aimed at assessing how well
the search process converges to the correct viewpoint parameters v .e correct viewpoint is, in fact, in the
viewing cell under consideration. Another set of trials was ai. -GSsessing how well the approach does at
recognizing the correct object by selecting the lowest objective function value across a set of candidate aspects.

2.1.1 R.eacliiiig the Correct Solution Within a Cell

For the first set of recognition experiments, we ranldornly generated 100 simulated views within representative
one-, two-, three-, and four-face aspects of a truncated wedge, as illustrated in Figure 3. The simulated views
were generated as follows. First, assuming a maximill viewer-to-object distance, points were randomly generated
within a sphere centered around the object and the first 100 points falling inside each cell were kept. Each point
generated in this way specifies three of the viewing parani'irs: /?,. [?, and Z. Additionally, for each point, the
rotation around the line of sight, H.., was varied randomly betweei 0 and 360 degrees. Also, a random offset in
the range of plus or nintis 5 percent of the distance frolin tlie simulated viewpoint to tie origin was selected for
each of the X and Y paramieters. The viewing paramtiers ginir:ited 1 th Iis way were used to create 100 simulated
views for each of the five aspects. For each of the 100 sinilited views of each of tie five selected aspects, the
search procedure was begun wit h standard init ial l araiintr est llate's for thlat coll.

Table I summarizes the results of this first exp,rinient. Nose of tIfh," 500 trials (100 trials each for 5 cells)
ronverged to a viewpoint est inate that was off by Iniore I Flit oe half of one' percent of H ie distanc" from Ilie
corre'ct viewpoint to the origin. and the va.st mtajority wi slsetanli;tllv closer W' elieve this data stroiigly
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AYA (2.0,2.0,2.0) A A (1.5,1.75,2.0)
C DB (-2.0,2.0,2.0) CB (-1.5,1.75,2.0)

C (-.,2.0,-2.0) C (-1.5,1.75,-2.0)
BD (2.0,2.0,-2.0) BD (1.5,1.75,-2.0)I LX E (.2.0,2.0,-2.0) H (1l.5,-1.75,-2.0)
z FF (2.0,-2.0,-2.0) EA (1.5,43.5,-2.0)

G (-2.0,-2.0,2.0) G" F (-1.5,-1.75,2.0)G FH (20,20,20) H (41.5,4.75,2.0)

(a) cube model and vertex coordinates (b) rectangular block model and vertex coordinates

A (-1.732,1.0,2.0) A (0.0,1.266,0.0) 1
B (-.721.0,2.0) B (0.0,-2.0,2.3094) I

(0.02.0,.0)C (-2.0,-2.0,-1. 1547)1
D (1.732,1.0,2.0) z" D (2.0,-2.0,-1.1547)J

A IF (0.0,-2.0,2.0)

F X G (-l.732,-1.0,-2.0) (d) tetrahedron model and vertex coordinates
.... JH (-1.732,1.0,-2.0)_________

z 1 0.0,.0,2.0)A A (0.0,1.266,2.3094)
E .J (1.732,1.0,-2.0)B 0,2.2394

K (1.732,-1.0,-2.0) c B (-.0,-2.0,2.154)
A] (-2.0,22.-,1.1547

(00,20,2.)ZA D (2.0,-2.0,-1.1547)

(c) hexagonal prism model and vertex coordinates (e) right tetrahedron model and vertex coordinates

Tmunc. Wedge Tninc. Wedge Tninc. Wedge Trunc. Wedge Trunc. Wedge Rectangular Block Rectangular Block Cube
Cell 22 Cell 37 Cell 38 Cell 49 Ccli 2f Cell 21 Cell 37 Cell 21

Right Tetrahedron Right Tetrahedron Right Tetrahedron Right Tetrahedron Hlex. Prism Hex. Prism Tetrahedxun

Cell 7 Cell I I Cell 13 Cell 14 Cell 28 Cell 25 Cell I1I

(f) set of 15 3-face aspects used in tests

Figure 4 - Additional object models used in tests along with 15 representative 3-face aspects.

supports the assumption that the search process ill converge to the correct viewing parameters when started in
the correct viewing cell, suggesting that the aspect, graph canl be used to enumerate a complete set of starting
points for a search process.

2.1.2 Recognition by a Mitiinittin Across Cells

For this experiment, we generated (in the samne miaiiier as described anove) 25 random simulated views for each
of 15 three-face aspects taken from the aspect graphs ofSix (different ob~jects. These 15 aspects iepresent all of the
three-face equivalence classes for thel( six objects. Trhe additional object models and views are depicted in Figure
4. For each of the 25 sinmlated views in each of the 13 aspects, we executel the search process for each of the 15
aspects. [hus, for each of 375 siniulated views, we have one recognition solution found in the correct viewing cell

andl fourteen solutions found in different incorrect viewing cells. We are interested lin how often the result from
the correct cell has a better figure of mnerit than that from any of thfe incorrect cells. WXit bout exception for each
of the 375 simulated views, the best, figure of mnerit was t ho one fouinmd iii thle correct cell. Furt her, the best, figure
of merit fromt any of the incorrect cells was alway .s sevoral orders of muagnit ude different fromn that found in the(
correct cell1 (see T1able 2). T[hus the assumpt ion that I Ii, figure of mwerit can he comtpared across cells also seemis
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Table 2 - Comparison of error values for correct and incorrect matches of simulated views to model aspects.

Object and Aspect in Largest en-or of 25 matches Smallest error of 350 matches Incorrect model aspect which
the simulated view to correct model aspect to incorrect model aspects resulted in smallest error

Truncated Wedge (Cell 21) 5.1 1E- 1I 4.51E-1 Rectangular Block (Cell 21)

Truncated Wedge (Cell 22) 1.1 lE-10 8.28E-1 Truncated Wedge (Cell 21)

Truncated Wedge (Cell 37) 4.97E-13 1.92E+O Rectangular Block (Cell 37)

Truncated Wedge (Cell 38) 8.25E- II 3.57E-1 Truncated Wedge (Cell 22)
Truncated Wedge (Cell 49) 1.85E-9 1.75E+3 Hexagonal Prism (Cell 28)

Cube (Cell 21) 3.06E- 14 1.56E+O Rectangular Block (Cell 21)

Rectangular Block (Cell 21) 2.07E-13 1.06E-1 Truncated Wedge (Cell 21)

Rectangular Block (Cell 37) 7.27E-12 4.43E-1 Rectangular Block (Cell 21)

Tetrahedron (Cell 11) 1.29E-13 1.16E-3 Right Tetrahedron (Cell 11)

Right Tetrahedron (Cell 7) 2.OOE-11 5.55E-1 Right Tetrahedron (Cell 11)

Right Tetrahedron (Cell 11) 1.45E- 11 1.31E-3 Tetrahedron (Cell 11)

Right Tetrahedron (Cell 13) 1.77E-12 5.28E+ 1 Right Tetrahedron (Cell 7)

Right Tetrahedron (Cell 14) 2.19E- 11 2.48E+1 Right Tetrahedron (Cell 7)

Hexagonal Prism (Cell 25) 2.19E-1 1 5.87E+2 Truncated Wedge (Cell 22)

Hexagonal Prism (Cell 28) 2.56E-1 2.54E+4 Truncated Wedge (Cell 49)

strongly supported by empirical data.

2.2 Discussion

The results of our simulated recognition experiments show that the perspective projection aspect graph provides
a rational means of choosing a set of starting parameter estimates for each fundamentally different view of each
object. This approach is more reasonable than generating initial parameter estimates at uniform increments
in some of the parameters [121, generating a succession of random initial parameter estimates [32], or choosing
starting parameter estimates from manually identified quasi-invariant features [17].

The system implemented for our simulated recognition experiments has a limited domain of competence, and
is intended as a demonstration of concept rather than as a practical system. We have run some experiments
with real data [27], but most of our effort is going into development of a new prototype system which will handle
general polyhedral objects and use a more practical and efficient feature matching strategy.

3 Creating the Aspect Graph of Polyhedral Objects

At least three different approaches can be used to construct the perspective prejection aspect graph of polyhedral
objects. Stewman and Bowyer [29] presented an algorithm which creates the perspective projection aspect graph
of convex polyhedra by finding all the lines and point-s of intersection between the planes in which the faces of
the object lie and then enumerating all the nonempty cells in this parcellation of viewpoint space. Watts [33]
presented another algorithm for this problem, based on using a "plane sweep" approach. Also, Edelsbrunner et
al. [4] presented an algorithm for creating the geometric incidence latlice describing an arrangement of planes.
For a convex polyhedral object, the geometric incidence lattice created for the planes in which th6 faces of the
object lie correctly describes the parcellatioi of viewpoint space for the aspect graph. In this case, essentially all
that is reeded to derive the aspect graph from the incidence lattice is to distinguish one node as representing the
object and to record the faces visible from each other node.

It is possitble to extend any of these three alp roaches to handle general polyhedral objects. In view of
tli ,lfganrct and rigor of Ed,'lsbrunner's work, we coins' to us,, the geonietric Incidence lattice as the basis for
,developing aii algorithli t create the persl,,etiv e proje'ction aspect graph of general polyhedral objects [31].

Plant inga and Dlyr [20] ,h,scrie ii algonrithin som'what sinilar to this, but using a different model of visibility.)

836



3.1 From Geometric Incidence Lattice to Aspect Graph

Tile geometric incidence lattice is a data structure which represents tile arrangement of a set of hyperplanes in
n-dimensional space. The geometric incidence lattice for a set of planes in 3-space has nodes representing 3-faces
(bounded subsets of 3-space), 2-faces (bounded planar regions), 1-faces (line segments or half-lines), and 0-faces
(points). Further, each k-face is linked to each of the (k-1)-faces which bound it, and to each of the (k+1) faces
which it bounds.

The important differe-lces between the geometric incidence lattice and the parcellation of space for an aspect
graph are:

1. The planes in which the faces of a non-convex polyhedron lie are not sufficient to form the appropriate
geometric incidence lattice. Additional surfaces arise due to self-occlusions. An auxiliary plane is introduced
when a vertex visibly projects onto an edge which does not lie on the same face. For an object with N faces,
there are 0(N, 2 ) combinatorially possible edge-vertex pairs. An auxiliary quadric surface is introduced when
the projection of three edges intersects at a point. There are O(N 3 ) combinatorially possible edge triplets.
To create an incidence lattice which can be used to derive the aspect graph, all of the object bounding
planes, auxiliary planes and auxiliary quadric surfaces must be considered.

2. For nodes of the lattice which correspond to viewing cells, no record of what is visible in the associated
view is inherent in the incidence lattice. Pa-t of this information can be computed as the incidence lattice
is constructed, but it seenis that it can only be completely determined after the lattice is finished.

3. There is no distinction between object and viewpoint space in the geometric incidence lattice. In the lattice
derived from the planes bounding a convex polyhedron, there is a single 3-face representing the interior of
the object and all other 3-faces represent viewing cells. However, in the lattice for a non-convex polyhedron,
there is a connected set of 3-faces which represents the object interior. Also, individual viewing cells may
be represented by either a single 3-face or by a connected set of 3-faces.

Thus it is clear that the geometric incidence lattice and the aspect graph are related, but quite different,
entities and that the use of the geometric incidence lattice to derive the aspect graph is not trivial. In principle,
the required extensions and enhancements could be computed in a variety of different ways. However, in practice
it becomes very important to compute things in an order such that the size of the intermediate data structures is
kept to a minimum. Due to the possible existence of O(N 3 ) auxiliary surfaces, the worst-case size of the incidence
lattice is O(N 9 ). Even if no auxiliary quadric surfaces are generated, the auxiliary planes may create a worst-case
data structure of size O(N 6 ). Our algorithm for the aspect graph of general polyhedral objects can be viewed as
operating in four stages: (1) construction of the geometric incidence lattice for the planes in which the faces of
the object lie, (2) updating this lattice with the necessary auxiliary planes, (3) determining the quadric surfaces
involved in the lattice, and (4) finalizing the various attributes attached to the nodes of the aspect graph.

3.2 Constructing the Incidence Lattice for the Object Planes

The first stage in the algorithm is to construct the geoimetric incidence lattice for the arrangement of the planes in
which the faces of the object lie. There are four steps to this stage: (1) listing the object planes, (2) constructing
an initial spanning lattice, (3) adding the remainder of the object planes to the !-.ire, and (4) distinguishing
object and viewpoint space in the lattice.

The first step, listing the planes associated with the faces of the object, is relatively simple. However, note
that for non-convex polyhedra, (1) several faces may lie in the same plane, and (2) when this happens, a different
subset of the faces may be visible to each side of the plane.

The second step is to construct an initial minimal lattice, .4(1Io), which spans 3-space. (See Figure 5.) Each
k-face in the lattice is given an object/viewspace attribute which can take on one of four values: boundary,
interior, viewspace, or unknown. All k-faces in A(110 ) are initially marked unknown.

The third step is to update A(Ito) to represent t lie arrangement defined by the complete set of object bounding
planes, resulting in an expanded incidence lattice, .(I ) For each plane, h, not already in A(lo) perform the
following three steps:

1. Locate a 1-fat,. of the curreit lattice whose closure Iut esect s h.

2. Using the 1-face found in the first step to enter tie lh a tice, mark each face in tile current lattice whose
closure irntersects h.
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A(H)

Mae

0-facess

_ (-1I)-face

Figure 5 - Initial Incidence Lattice Spanning 3-Space - A(H0 ).
As planes are added to the set H the incidence lattice will be updated to reflect the arrangement A(HI) of the N planes in 1H. Each node is
labeled with a face word w(f) = {d t d 2... d N1 such that each digit represents the relationship of that node to each of the N planes in H.

3. Update the marked faces in the lattice and integrate the new faces contained in Ii into the lattice.

With each new object bounding plane that is added to the lattice, some existing faces are split and some new ones
are added. Each face that is split or added must have its object/viewspace attribute initialized to unknown.

We also follow Edelsbrunner's notation in marking each node in the lattice, representing some k-face, f, with
a face word, w(f), within which each digit is -, 0 or +. These symbols represent the notions of inside, on, and
outside, respectively. The face word is used to indicate the location of every k-face in the arrangement with
respect to each of the planes. In addition, the closure of a k-face is the set of lower order faces whose face word
differs from that of the k-face only where the lower order face word has a 0. In physical terms, the closure of a
3-face (volume) includes the surface patches, edges, and vertices that bound it. The closure of a surface patch
includes the edges and vertices which form its border. The closure of an edge includes the vertices that are its
end points.

The fourth step in this stage is to distinguish between object and viewpoint space. It is perhaps worth noting
that there is no common relationship between the various face words which describe the interior 3-faces of a
non-convex object.. The process used to distinguish nodes representing object and viewpoint space is as follows:

1. Determine the boundary of the object in the lattice.
The process is started by selecting a vertex, Vo, which is part of the original object description and using
it to enter the lattice. At the completion of this process, the object/viewspace attributes of all nodes in
the lattice are either boundary or unknown, so that the nodes which correspond to the boundary surface
description of the object have been marked. Note that a non-convex object will have more face, edge and
vertex nodes in the lattice than it does in the boundary surface description used to define the object.

2. Determine the interior 3-faces of the object.
First locate a set of 3-faces which lie inside the object. This can be done by examining the 3-faces which lie
to either side of one of the 2-faces on the boundary. Use these 3-faces with a process analogous to a seed
fill algorithnt to locate all other interior 3-faces, 2-faces, 1-faces, and 0-faces. Once the surface and interior
of the object have been identified in this mannor, ho remaining nodes in the incidence lattice, those still
marked unknown, crroprise thi- viewing space. These can now be marked viewspace.

If tihe object is convex, then the lattice is correct and complete at the end of this stage of the algorithm. If
the objct is not convex, then there are auxiliary planes, aud possibly auxiliary qu.adric surfaces, which must be
determined and ilroduced into the lattice.

838



(a) e-v pair which passes edge shadow (b) e-v pair which passes convex hull (c) e-v pair which passes both convex hull
test but not convex hull test. test but not edge shadow test. and edge shadow tests but not triangle test.

Figure 6 - e-v pairs which pass / fail different tests.

3.3 Introducing Auxiliary Planes Into the Lattice

A given edge, e, and vertex, v, generate an active auxiliary plane interaction iff a line can be drawn from v
to some part of e without passing through the object. Thus the active auxiliary planes represent visible e-v
interactions. For most objects, only a small fraction of the combinatorially possible e-v pairs generate active
auxiliary planes. In principle, it is possible to either (1) form the incidence lattice using all potential autxiliary
planes and then later group together cells which see equivalent views of the object, or (2) determine which of
the potential auxiliary pla-es are active, and construct the incidence lattice using oi y these. In practice, the
intermediate size of the lattice when all potential auxiliary planes are introduced makes it imperative to introduce
only the active auxiliary planes. Therefore the second stage of the algorithm generates exactly the set of active
auxiliary planes and introduces them into the lattice. The actual introduction of these planes into the lattice is
done in the same way as for object planes, but a sequence of several different tests is used to efficiently generate
exactly the set of active auxiliary planes.

An exact test for whether a given e-v pair generates an active visible interaction can be formulated as follows.
Consider the triangle formed by e and v. This triangle represents all the possible lines of sight along which v
projects on top of e. The test determines whether or not the object volume blocks all of the lines of sight from
v to any point on e. The test is made by checking the e-v triangle against all the (convex) 3-faces of the object
volume, as marked in the current lattice. If the ,bject does block all the lines of sight, then the potential auxiliary
plane is not active. If it does not, then the auxiliary plane is active and should be introduced ino the lattice.
We will call this the triangle test. Because the triangle test is relatively expensive to perform, we first use two
cheaper, inexact tests to eliminate many e-v pairs from consideration. These tests are inexact in that they do
not eliminate all e-v pairs which do not have a visible interaction.

One inexact test for active e-v pairs uses the convex hull of the object. Only those edges and vertices which lie
on the boundary of faces which are not part of the convex hull of the object can possibly generate an active visual
interaction. Thus, for "mostly convex" objects we can eliminate many of the e-v combinations by computing the
convex hull of the object and only considering edges and vertices which are part of at least one face which is not
on the convex hull.

Another inexact test is, for a given e, consider a given v for possible interaction only if it does not lie in the ed,
shadow of v. The edge shadow test [6] checks the position of v with respect to the planes of the two faces which
share e. The edge shadow is defined as the spatial volumes from which one or both of the faces sharing the edge
cannot be seen. For this discussion, assume that a single face is visible from the 'front' side of the plane containing
it and not visible from 'behind.' For a convex edge, the edge shadow is the single 'quadrant' which is 'behind'
both of the planes. For a concave edge, the edge shadow is the three 'quadrants' which are behind one or both of
the planes. If v lies in the edge shadow of e, then the auxiliary plane for this e-v pair cannot be active. Examples
of e-v combinations which pass/fail these various tests are depicted in Figure 6. The effects of the various tests
on cutting down the number of potential auxiliary planes for some sample objects are tabulated in Table 3. The
first column gives the numbers of faces, edges, vertices and object planes for eight different nonconvex objects.
The objects range from those having a single simple concavity to those having multiple through holes. The second
column gives numbers of auxiliary planes that would be found if the object were treated as transparent. The
third and fourth columns give the numbers of e-v pairs which pass the convex hull test or the edge shadow test,
respectively. The fifth column shows the numbers which pass both tests together. The sixth column shows the
results after use of the triangle test, representing exactly the number of active auxiliary planes.

3.4 Handling Quadric Surfaces

An auxiliary quadric surface is defined by the locus of viewpoints from which three non-coplanar edges project
on top of each other. (Visual interaction of more than three edges occurs only at the intersection of surfaces
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Table 3 - Effects of different tests on the number of auxiliary planes.

OBJECTS Number of e-v pairs which pass test TOTAL
cne ede c.h. PLANES

Name Description * no test convex edge & trianglehull shadow es. ___
e. s.

block.00 [8{8},18,12] 21 5 5 5 5 13

peak.00 [9{9},19,12] 42 23 13 12 8 17

ell.00 [8{8},17,111 28 3 6 3 3 11

ell.01 [11{11},23,151 118 45 16 7 3 14

ell.02 [14{ 13},29,191 200 86 36 21 3 16

house.00 [11{11},27,18] 99 6 22 6 6 17

house.01 [15{15},39,26] 207 52 92 48 40 55

wedge.00 [16{15},39,26] 153 123 82 74 29 44
*form of description is [faces{object planes },edges,vertices] on object surface

ell.00 house.00 hue0

ell.00 f
# indicates how many
holes in back of ell

defined by the interaction of three edges.) If the three edges are skew to one another, then the surface is a
hyperboloid of one sheet. If the three edges are parallel to a common plane, then the surface is a hyperbolic
paraboloid. While there are O(N 3 ) coinbinatorially possible c-e-e triplets, most typical objects will have very
few, if any, quadric surfaces in their parcellation of viewpoint space. The tipper bound is only approached with
very irregularly-shaped transparent objects or unusual polyhedral scenes. (See the example given by Plantinga
and Dyer [20].)

Given that the incidence lattice has already been constructed for the object bounding planes and the active
auxi,.ary planes. the set of possible edge triplets to consider for visual interaction defining an auxiliary quadric
surface is greatly constrained. There are, in general, four planes created by the four edge-vertex pairs formed from
two skew edges and their four vertices. These auxiliary planes bound two volumes of the viewing space which are
of particular interest to us. These two volumes include cells from which the two edges appear to intersect. In one
volume, one edge partially occludes the second. In the other volume, the second edge partially occludes the first.
Outside of these two volumes neither edge occludes the other. The smallest sublattice containing fach of these
volumes can be identified, and marked as having a view where a partial occlusion of one edge by another exists.

An exact test for whether an e-e-e triplet generates an active quadric surface can be devised as follows. Given
a pair of edges from different faces, such that neither edge lies completely in the edge shadow of the other, find
the tetrahedron that represents the locus of all lines of sight from points on one edge to points on the other. In
a fashion similar to the triangle test, the tetrahedron is tested against each of the interior 3-faces in the lattice
to see if all lines of sight from one edge to the other are blocked. If so, then there is no visible intersection
of the pair of edges, and so no e-e-e triplet containing that edge pair can generate an active quadric surface.
A necessary condition for an e-e-e triplet to generate an active quadric surface is that all three pairs of edges
pass this "tetrahedron test." For an e-e-e triplet where all three edge pairs visually interact, we then determine
whether the volumes from which tile interactions are visible have any mutual intersection. If so, then the Ce-e-
triplet generates an active quadric surface, whose relevance is restricted to the volume of mutual intersection. The
quadric surface need only be introduced into tihe smallest sublattice containing this volume of mutual intersection.

3.5 Postprocessing to Finalize the Aspect Graph Structure

Once all of the ojtt planes, auxiliary planes anld auxiliary quadric surfaces have been added to the set oh surfaces
II, the arrangement of surfaces represents the underly An, t ruct uire of both t lie object and t he parcellat ion of the
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viewing space. Since the viewing space and object regions are attributed as such we can take the set of viewing
space nodes (3-faces) and form from them cells in the aspect graph. To do so we must determine what the visible
line drawing configuration is for each node. If tile line drawing configuration does not change from one node to
another then the two nodes are part of the same cell of viewing space for tile aspect graph.

To determine which singularities are actually visible in the perspective projection of the object that is seen
from a particular node in the lattice we use the following approach. We know for certain that no visual event
occurs between any two viewpoints within the 3-face associated with a given node. In other words, a particular
event is either visible from all viewpoints within tile 3-face or is visible from none. Thus it is sufficient to determine
the visibility of a particular event from a single representative viewpoint in the cell. We know from the object
feature visibility attributes what faces are potentially visible from within a 3-face and what edge-edge occlusions
are potentially visible from that same 3-face. To determine which of the potential occlusions actually occur in
the projected image we can construct a line from a representative viewpoint in the 3-face to the point of apparent
occlusion. If the line intersects any of the potentially visible faces in the interval between the representatr :
viewpoint and the point of apparent occlusion along the first edge then that face prevents the occlusion from
being actually visible from any viewpoint in tile 3-face. Otherwise, the occlusion is visible from all viewpoints in
the 3-face. All of the potentially visible events associated with each 3-face can be tested in this manner. Again.
if the actually visible events differ between two 3-faces then they are in different cells, otherwise they are in the
same cell.

3.6 Discussion

The algorithm is being implemented on a SUN workstation. Tile implementation currently produces tile correct
lattice for any object which does not, have e-e-e triplets which generate auxiliary quadric surfaces. Including a
variety of display routines which use SunCore graphics, tile size of the source program is approximately 11,000
lines of C, representing an executable file of approximately 1 MB in size. The size of the aspect graph data
file produced ranges from approximately 10K to 672K for the example objects shown in Table 3. A separate
program has been implemented to read the object data files created by PAI)L-2 and format the boundary surface
description of the object for input to tile program which creates the aspect graph.

4 Creating the Aspect Graph of Solids of Revolution

Constructing the aspect graph for curved objects is more complex than for polyhedral objects. Th. is because,
in addition to viewpoint-independent lines which arise due to object edges (discontinuities in surfac, lormal), we
must also consider viewpoint-dependent lines, called linibs. A limb is a contour in the image which arises from a
locus of points on the object surface, called a contlour generator, where tho line of sight is tangent to the object
surface. Thus tile configuration of the lile drawing for a particular view of a curved object may be specified by
a graph in which the nodes represent junctions in the line drawing and the arcs represent lines due to object
edges and limbs. This is basically the image structure graph described by Malik [18]. The types of junctions
which can occur include those described by Malik [181 and one additional type of pseudo-junction, which we
call a transition-S, where the continuous curvature along a line changes between positive and negative. A visual
event occurs whenever the image structure graph representing the view of the object changes. Several authors
have discussed the classes of visual events which call occur for transparent, piecewise-smooth surfaces under
orthographic projection and how they might relate to a partitioning of the viewing sphere [2, 22]. However, the
algorithm outlined here is the first for automatically constructing the aspect graph for a defined class of curved
objects.

The class of objects which we have chosen for initial study is opaque solids of revolution, where the geometric
definition is given as that of a generalized cylinder. This subclass of generalized cylinders has been termed Right,
Circular, Straight. IHomogeneous, Generalized Cylinders (IICSIIGCs) by Shafer [25]. Ponce and Chelberg [21]
have recently given an extensive analysis of the properties of RCSIIGCs, including the derivation of equations
for tile contour generators under orthographic and perspective projection. For solids of revolution defined as
[(SIIGCs. the formation of limbs and tie ways in which limbs arid edges interact in visual events are rather
tightly restricted. It is thus possible to exploit, the elements of the ICSIICC definition to formulate an algorithlm
to generate the orthographic projection aspect graph [5].

To see how the problem iiight be approached, a.ssuiiin that we have a .(CSIIGC whose spine is aligned, by
rono, t io i .ith the axis of the (Iaussian sphere, which represents viewpoint space for the object. First consider

the vi,-w from a Ii rection orthogonal to tile spine (i.e., froi 0 soinei point onl the equator of the Gaussian sphere).
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limb contour hyperbolic sections

Figure 7 - Side view of solid of revolution depicting types of contours and initial sectioning ot object.

The line drawing will be a simple boundary outline, composed of lines for the edges at each of the ends of the
object, joined by two limbs generated by continuous contours on the object surface. The shape of the limbs
directly corresponds to the sweeping rule of the RCSHGC definition. (See Figure 7.) If the viewing direction is
not orthogonal to the spine, then the line drawing becomes more complex, due to the emergence of additional
limbs as the contour generators on the object surface become segmented. The problem, then, is to use the
RCSItGC definition to enumerate the ways in which the contour generator becomes segmented, as well as the
ways in which interactions of the limbs and/or edges occur. Since a RCSIIGC is rotationally symmetric about its
spine, each visual event will occur for a set of viewing directions which lie along a specific latitude of 'he Gaussian
sphere, and hence can oe represented by an angle from the (assumed "north") pole. Thus the partitioning of the
Gaussian sphere for the orthographic projection aspect graph of a RCSIIGC will take the form of a sequence of
latitudinal bands.

4.1 Enumerating the Primitive Visual Events

To enumerate the set of primitive visual events for RCSIIGCs, we must first determine all of the possible individual
limbs which can be generated. Then the visn.l events for each of these limbs in isolation can be calculated. In
addition, we consider all possible interactions between pairs of ndividual limbs, followed by interactions between
triplets of limbs, followed by pair and triple, "nteractions which involve both limbs and edges of the object. The
completeness of this set of visual events 'ecome apparent as they are described.

4.1.1 Iudividual Limbs

The places on the object surface where individual contour generators segment and join are the transitions between
convex (elliptic) and concave (hyperbolic) sections of the object. The contour generator is undefined at points on
the object surface where the magnitude of the tangent to the surface is greater than that of the tangent of the
viewing angle. Thus the transition points, being places of maximum tangent magnitude, correspond to the first
positions that the contour generator becomes undefined as the viewing angle sweeps from the equator to one of
the poles. Therefore, the first step in determining the aspect graph for a particular object is to divide it into a
sequence of elliptic and hyperbolic sections by analyzing the sweeping rule. The zeroes of the second derivative
of the sweeping rule correspond to changes in curvature which divide the elliptic and hyperbolic sections. For a
RCSIIGC whose sweeping rule is given by a (positive, continuous, single-valued) polynomial of degree N, there
are at most N-i sections defined in this way. (See Figure 7.)

The pzssible visual events for a limb arising from a single elliptic section of the object, in isolation from
limbs arising from other sertions, are simply that it may "form" (the viewing angle becomes such that a contour
generator exists) or "disintegrate" (the viewing angle becomes such that the contour generator is lost). These
events happen only for sections which do not have a local maximum in the sweeping rule within the section.
(Sections which do have a local maximum have a contour generator defined over all viewing angles.) The angles
at which these events happen are defined by the limits of the range of the surface tangent for the section. For
example, for the elliptic section shown in Figure 8.a, viewing angles less than 01 and greater than 02 have tangent
magnitudes less than the smallest surface tangent, and hence no contour generator exists for such viewing angles.
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(a) visual event for single elliptic section

0 0. 0 0 1 13--12 =0 g=3 03 03=134 f3-180"

(b) visual interaction between two separated elliptic limbs
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o  .' -

3- 0. = 1 2 0 " go 3 )=4 3=180.

(c) visual interaction between two neighboring hyperbolic limbs

3 g3o-1l 13 =90 13 =180

(d) visual interaction between three separated elliptic limbs

P =0" P=013 P3 =90 go = 5 2 P = 180"

(e) visual interaction between neighboring edge and elliptic limb

Figure 8 - Example visual interactions for single, pairs, and triplets of limbs and edges.
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I'le possible v islial evenlts for a lii a ;risinig froimi a sinrgle lhypierbolic sect ion of the object, in isolation fromt
li mus arisinig front other sectioris, are, d iffererut t han for air ellitic sect ion, due to thle fact that the limb will
culsp ." We will say t hat a linmb (mriore precisely, thle contour generator) cuisps when itfirst forms a cusp point (a

p)omi t at whi chi thet( arigen t of tie( con tour genrerat or is parallel to thle view ing direction). Cusping occurs only in
hype rbolic: sections. For this reason, anl analysis simiilair to t lie following is niot necessary for elliptic sections. Thre
Clr Tlrrg is associrated with a particular v iewig angle. To one( side of thIis angle, a Single continuous linib appears
il thle fimage. To tile ot her side of thIis angle, thre visible limirb is segmented inito two pieces. Whle the limb has
segilnented. tilie contouir generator ia~s riot. Thre contour generators of the two visible pieces of limib are actually
two sect ions of tie, samle coilrt 1irruorS contour generator, anid are connrected by anl invisible section of the generator.

iih inisbl sect ion is thre project ion of tarngenrts of tie viewing direction to thre inside of the object surface rather
ilan the, out side. 'File points at which a visible limb cusps niay be found using anl equation derived by Ponce [211.
Local iruaxitluiris of thle crisl) equation are used to segment thre hyperbolic section in a mnanner analogous to tire
.ri vkius division of tIre, object as a whole. For a RCSHGCW with polyrromrial sweeping rule of dlegree N there are at

imost N- 1 of thlese nu axirnurruils, corresponding to viewing angles at which a visible limb may cusp. hlowover, these
are not ne-cessarily evenly distributed among thre N-1 sections of tire object. Successive cuspings in one hyperbolic
sectinon will result lin mint iple visible linb segment s for that hyperbolic section, each corresponding to a portion
of t ie con torir generator contalied witht litre subsection1.

A fter a hyperbolic sect ion is dividled into suibsect ions accordl ig to crispirug events. thre viewing angles of tIre-
vi.iiruI events at which the( limbs for each subsect ion forr ir/d]isirutegrat e can be found. Thre range over which the
cont onr generator of a silbsect ion Is (lefil edl is (deterirned li tIt(e sam ie miarnner as for an elliptic se" tion . However,
lie, ranuge of potern ial visiiliity. for thle linrib is nmore re-strnetive iii thle case of a hyperbolic section. Thie ends of a

hirn1 segment must -it her be joined withI a rneighrbori ng Iribl segmlenit ill which'l case crisping has not yet occurred.
or teriirite iii ;A ciispI. Thuis, if we exaiiie thre local 0rifliriuo' thre cusp equation within a subsection, it will
lectrirmire ltre low~ st viewing angle at whlich il endpoint of tIre, liimb segment exists, which is the angle at which
lhe imb segment forris/disintegrates. [)rrirg one forruat oni of such a lirib, terriinat ion junctions ( correspornding

to the, cusr'p points) w.ill be Introduced into lie image structunre graphI.
Tos~immuia-rize, t here is pot entiallva separate contouirgenerator dlefined for each elliptic and hyperbolic section

of thre objet. F or eachI sect ion, tiere, iay be a vie wing angle at whichI the contour generator formis/disintegrates.
Addit ionaiy, tinere mnay be ipl to N-i different viewing angles at whrichr cuspirig first, occurs, distributed across
all ti( hy ixperbolice sect ions. A fter subdividing thle hyperbolic sectiotis at these crisp points, a possible total of
2 x ' 2 Iiffi renlt limb ,egmuents will have been isolated, wich canl their interact withI each ot her ii thle image.

4.1.2 Itrteractiorrs lItvolving Pairs of Lirrubs

A pair of Ilimrbs whrich init erac t iii tire iinre nmust arise from e ither (1) con tou r genierators fromt (sill))sections
sepanrated by oiie or more ot her (sub )sect ions, or (2) conitour genuerat ors fromt two neighboring (sub)sections of
Ireo object.

W~e first consider tire ca-se of limrbs dlerivedl froni two con tour generators fromn separated sections of thle ob~ject.
Ireare thIiree relevant sriIc ases:

LILimbs from two d ifferenrt elliptic soct roirs-
Surie the object is opa(ilre. if th1 e pair of elliptic sectiotis have a thIird elliptic section inbletween them, and
Iris t hind sectiori lias a greater local tilaxironriri ill tire, sweeping rule than either of tire two sections in the

pair, ther ftre limrbs frorm tire pair rannot interact

2. One, liruib fromi air elli1ptic sect ont arid oire- frorm ai lihu'rbolmc subsection.
Sirlirlar to Ire( .Ititatjoin witll) thI'. caLse of two ellhiptic -oct ions, if there is air intervenring elliptic section with
a greater local muaximumii lin tIre- sweeping rule. theni the lirris c'anntot interact.

3. Two lirrbs front srrbsct bns of thre saine liherboli( sect iOl.
lit Iris cas, the-re is rio interveningeulliit ic section to coiiidcr. (LIimrbs fronr two different hyperbolic sections,-
cannot interact at all. since thIree murrst always h-e air iritervetrirg elliptic sect ion which, will occlude all of the
%isrial evenlts

Ill all thlree( slihicasus. tllre two limibs go fromn a -onifitiratmorn li whnich t hey dlo riot init ersect (one( may' coinpletely
owrid-, tire it her). thiriough a visuial ev ent where- t liv just le-giri to torich. to a connfigrirat ion in which threy
irri,rr arid p.art of one, is occlridd .. Also. ii ll tlr siihicascs, t liest' irtiracti bus restilt ii tIre Fornmat ion of

1-y unt t ionms rt fr.,enni Iig lm ris I.ni hioi iirrdh;tr ies A \it ex irii f of Ires, eventIs fu r Ireif iterac tion ofI i li it bs fron t Iwo
h~. v in nsis showri ill Vigure s, lwr alirgb' pair,, .1 J; ;mi I,, 33 aresitliuir v hieie' only mun froini
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each pair need be calculated. This is done by setting the coordinates of points along the limbs equal to one
another and solving for the intersection condition. Unfortunately, a direct analytic solution does not exist and so
an iterative search is necessary.

Now we consider the case of two limbs which arise from neighboring object (sub)sections. Here, there are two
relevant subcases:

1. Limbs from neighboring elliptic and hyperbolic sections.

2. Limbs from neighboring subsections within one hyperbolic section.

In the case of limbs from neighboring elliptic and hyperbolic sections, there is a single joining relation. The
reason there is no occlusion of one by the other is that the viewing angle at which the joining occurs coincides
with the angle at which the limb from the hyperbolic subsection is formed. Prior to the joiling, there is a single
continuous elliptic limb. On the other side of the visual event, the elliptic limb is split and each half is joined to
a limb from the hyperbolic section through the transition pseudo-junction which we call a transition-S. There is
also necessarily the introduction of termination junctions corresponding to the cusp points of the hyperbolic limb.
The analogous visual event from the supplementary viewing angle represents the disintegration of these junctions.
The joining of two limbs from hyperbolic subsections includes an occlusion event prior to the joining event. In this
case, the joining does not form a junction, since both limbs have positive curvature. The termination junctions
corresponding to the cusps are also disintegrated. The entire process for this type of joining is depicted in Figure
8.c. Occlusion events are determined in the manner mentioned above. The joimiing of elliptic and hyperbolic limbs
occurs at a viewing angle with tangent equal to the surface tangent at the transition point between the elliptic
and hyperbolic sections. The joining of hyperbolic limbs occurs at the viewing angle given by the cusp equation
at the appropriate maximum.

Now we consider what further visual events might occur between larger groups of limibs. Visual events must
be either of the joining variety or the occlusion variety. Visual events of the joining variety cannot occur with
groups of limbs greater than pairs, since only two limbs can join together at one point. This leaves the occlusion
type of visual event. Each limb in the image has a corresponding contour generator on the object, and all the
contour generators occur in some order along the length of the spine. Since the spine of the RCSHGC is, by
definition, straight and the cross-sections are, by definition, homogeneous in shape, any one limb in the image
may be visibly occluded by at most one other. Therefore the only additional event involving limbs which would
change the image structure graph would be when the visible occluder of a limb changes. This event involves a
triplet of limbs.

4.1.3 Interactions Involving Triplets of Limbs

A line drawing configuration in which a limb, L1 , visibly occludes part of a second limb, L2 , which in turn visibly
occludes part of a third limb, L 3 , may go through a visual event where the intersection of L, and L 2 projects on
top of the intersection of L 2 and L3 , into a new configuration in which L, is the visible occluder of both L 2 and
L3. (The projected intersection of L2 and L 3 is now occluded by L1.) There are four subcases for which this can
happen:

1. Limbs from three elliptic sections of the object.

2. Limbs from two elliptic sections and one hyperbolic (sub)section.

3. Two limbs from within a single hyperbolic section and a limb from an elliptic section.

4. Three limbs from within a hyperbolic section.

Since limbs from two different hyperbolic sections cannot interact, no triplet interaction can exist involving limbs
from more than one hyperbolic section. An example of the triplet interaction involving three elliptic limbs is
shown in Figure 8.d. In order for the triplet interaction to occur, there must be an intersection of the three ranges
in which the individual pair interactions occur. Once again, a search process is required to find the viewing angle
at which all three of the limb pair intersections project on top of each other.

4.1.4 Interactions Involving Edges

The edge at each end of the RCSItGC generates an elliptic outline which, being object-dependent rather than
viewpoint-dependent, is potentially visible from all viewing directions. Thus there is no visual event in which it
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forms or disintegrates. Since the outline is elliptic, the edge acts similar to a limb from an elliptic section. For
pair interactions, a limb from an elliptic section may be replaced by one of the edges. Thus the additional pair
types are edge-elliptic limb, edge-edge, and edge-hyperbolic limb. The edge-edge pair is necessarily an occlusion
relation, since the two edges cannot touch on the surface of the object. The other pair interactions involving
edges may involve eithi.t occlusion or joining events. The joining events give rise to two other junction types, the
curvature-L and the three-tangent, depending on the angle from which the join is viewed. The visual events for an
edge-elliptic limb interact ion of neighboring sections is shown in Figure 8.e. The calculation of visual event angles
for occlusion events is done in the same manner as before except that the equation for the edge point coordinates
is now used. The tangents of viewing angles for joining events coincide with the surface tangent at the join.

In triplet interactions, one or both edges may again replace elliptic section limbs, with the events then found
basically as described before.

4.2 Traversing the Viewing Sphere
As each visual event is enuminerated, the angle at which it occurs and the type of the event are recorded, so that

we build up a partitioniing of tile Gaussian sphere into latitudinal bands. Any visual events which are apparently

more complex than those eunierated are actually made uip of combinations of these primitive events, where the
latitudes for the primitive events coincide.

The result of this step is the correct partitioning for a Iranspareit object, given the visual events that we have
considere(d. However. this may be an over-partitioning of the Gaussian sphere for an opaque object, due to some
of the enumerated visual events not actually being visible because of occlusion. The relevant partitions for an
opaque object mav be extracted aF fols.vs Begin at ,ne pole of the Gaussian sphere. Thu liiic drawing for this
view will he a set of concentric circles corresponding to limbs from elliptic sections and the edges. Determine the
linibs and edges which generate these visible outlines by checking the sequence of maximums in the sweeping rule.
Traverse the spiiere toward the other pole, keeping ati updated image structure graph for both the transparent
and opaque version of the object using the recorded visual events, and eliminating boundary latitudes for events
which are not actually visible.

4.3 Discussion

In summary, the algorithm for constructing the aspect graph of a RCSIIGC operates as follows. First, divide the
object, into elliptic and hyperbolic sections. For a RCSIIGC with polynomial sweeping rule of degree N, this results
in at most N-1 sections. Then further subdivide the hyperbolic sections based on cusping conditions, yielding a
maximum total of 2 x N - 2 sections. Next, enumerate the visible events for individual limbs. There are clearly
at most O(N) of these (exactly, at most 4 x N - 4). Next, enumerate all the possible interactions of limb pairs.
There are clearly at most O(N 2 ) of these. Next, enumerate all the possible interactions of limb triplets. There
are clearly at most O(N a ) of these. Next, enumerate all the possible limb-edge pairs (at most O(N) of these) and
the edge-limb triplets (at most O(N2 ) of these). The resulting partitioning of the Gaussian sphere thus has at
most 0(N 3 ) latitudinal bands. Finally, traverse the (over-)partitioned viewing sphere to remove the latitudes for
occluded visual events and determine the structure of the image structure graph for each aspect. As an example,
the results of the algorithm are depicted for a simple flower-vase shape object ii Figure 9. As call be seen, this
object has a number of different aspects, though many occur only over a very small band on the Gaussian sphere.
Examples of most of the event types discussed are demonstrated by this object.

To our knowledge, this is the first algorithm developed to directly calculate the aspect graph for any class
of curved objects. Beyond the algorithm itself, we believe that this work is valuable as a demonstration of a
general framework for developing such algorithms. Future research topics include generalizing the algorithm to
handle a broader class of objects, modeling viewpoint, space as 3-D space rather than the Gaussian sphere, and
implementing the representation for experimentation with its use in object recognition.

5 Future Research Directions

The main advantages of the aspect graph representation are that (1) it is a well-defined concept imi mathematical
terms, and (2) it provides a complete summary of the different visual appearances of the object (at least, those
which are due to object geometry). We believe that these advantages are quite fundamental, and will be necessary
in any object recognition system which is to achieve reasonable performance in a "non-toy" domain of competence.

846



5. 430 - 6.5

6. 43.8* - 44905

X 31. 4115' - 12'

4. 41.20 - 3.50
____ 1. 13.50 - 3.8

46. 13.80 - 16.50

r (z = 2 -1.48 z+ 0092--- 02 z 1. 635 - 100

(a)~~~0 side vie ofexmpesoido
revolution ~ ~ ~ ~ ~ ~ ~ 11 with7 deie sweigrue()Sgmne5iwigshr

.................................. .5 - 135T00. 13.. -, 13.

o © 14 03.*-165

.......................I c ........
o_....Q. .............

. . . . . . . . . . . . . . . . . . . . . . . . . ..................... ..............................

. _ ........ . ©40 (©' ....

.~................. .......

..... ©. ....... ©

(c)~~~~~~~ iews 
...

f. obetfr mcnta.ie pi .sw. inec.apc

Figure~( 9(Deuto setgap eeainpoesfo lwrvs bet

847............



The main disadvantages of the aspect graph representation are that (1) algorithns to create the (exact)
asp,'ct graph representation are dilicult to develop and implenent, and (2) the complexity of the raw aspect
graph representation is overwhelming Since we believe that tile advantages are fundamental and necessary, we
must look on the (current) disadvantages as the seeds of future research topics. The problem of developing aspect
graph algorithms for broader classes of objects is, in fact, dilicult. We do not expect the problem to become easy,
but we do cxpcct progress from sustained, serious research effort. In the next few years, we expect that it will be
possible to automatically produce the aspect graph of objects designed using solid modelers such as PADL-2. The
problem of the large complexity of the aspect graph seems daunting and might lead one to consider abandoning
the representation altogether. But, the large complexity is tied to the visual completeness, and completeness is
a fundamental advantage which is not to be dismissed. The true problem is to find ways to efficiently manage
the complexity. One possible partial solution is to exploit the fact that not all views represented in an aspect
graph are equally likely. Kender and Freudenstein [15] have suggested the idea of probabilities of views based
on relative surface areas on the Gaussian sphere. Less formally, Rosenfeld [23] has conjectured that humans
achieve "'immediate" recognition of "familiar" objects by using a representation with only a small number of
the most commonly occurring aspects. Another possible partial solution is to exploit the fact that many views
represented individually in the raw aspect graph representation are in fact very similar. Shapiro [26] discusses
a possible method of defining zzeu, classes which can have different levels of similarity. Many ol these ideas
converge in the suggestion of some sort of hierarchical aspect graph representation. This representation would
represent the subdivision of viewpoint space by the *'biggest" or "most important" visual events at its highest
level, and successively finer subdivisions at, lower levels. (Again, this echoes some of Rosenfeld's conjecture [23].)
The hierarchical representation would aid in handling the time complexity of searching a large database. If the
representation could be dynamically expanded, then the prohlen of handling the space complexity is also aided.
Perhaps the most important question here is just what principle(s) should be used to establish the hierarchy.
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Qualitative shape from stereo

Daphna Weinshall
CBIP, MIT, E25-201, Cambridge MA 02139

Abstract
Vision is sometimes described as a problem of inverse optics, which makes its solution mathematically

cumbersome and unstable. Human vision does not seem to involve the computation of the inverse mapping
of the projection of 3D world onto a 2D retina but something more qualitative. This work concentrates on
qualitative shape information that can be obtained from stereo disparities with little computation. Local
surface patches are classified as convex, concave, hyperbolic or parabolic, using a simple function of image
disparities. The axes of minimum, maximum, and zero curvatures are also obtained. The algorithm works
well with synthetic images and exact disparities. It is used to compute axes of zero curvature on a real image.

1 Introduction

When two different cameras record the same scene, objects are projected into different locations in each image,
depending on the relative locations of the two cameras with respect to each other and to the object. This
disparity in position between the two images may be used to obtain the exact coordinates of the object if
the relative transformation between the two cameras coordinate systems is known. This view of stereo vision
regards the problem as a problem of inverse optics, namely, the goal is to find the inverse transformation of
the optical process (perspective projection). Thus stereo is divided to two main subproblems. The first is the
correspondence, matching the two images to find the appropriate disparity in position for each object or feature.
The secind is the determination of the distance to objects in space using geometrical transformation.

The matching problem turned out to be very difficult to solve for the general case. Thus most of the research
concerning stereo vision deals with new algorithms or approaches to obtain and improve the matching (e.g.,
[1], [2] and [3]). The transformation between stereo disparity and depth requires the knowledge of the current
viewing geometry. This part is often ignored, assuming the imaging geometry is known or can be computed a
priori using test images for calibration. The calibration problem, the computation of the imaging geometry fiorn
images disparities, is generally difficult (possibly more so than the matching problem) and involves the solution
of a nonlinear set of equations with many unknowns (see [4]). Constraining the geometry allows for simpler
solutions to this problem (e.g., [5]). It would not be surprising if biological vision avoid solving the calibration
problem in light of its computational difficulty. Human depth perception is rather approximate, so if the inverse
optics (that is, exact depth) is being calculated, this information is not retrievable.

Recently some doubt has been cast on the need for inverse optics (see, e.g., [6], [7] and [8]). More qualitative
approaches to navigation have been proposed (see [9] and [10]). An alternative theoretical approach to the
analysis of stereo and motion (assuming matching is given) has been proposed by Koenderink and Van-Doorn
(e.g., [11], [12] and [13]). They show how various qualitative properties of objects and the motion field can
be obtained from invariants of vector fields (the optical flow or disparity field). Such results shed light on
characteristic quantities that could be easily derived from disparities and optical flow. These results, however.
are derived using vector field analysis and therefore the existence of a differentiable vector field is assumed
(though singularities are addressed by the authors in different ways). The meaning of such results for a discrete
image and vector fields is not always clear.

The purpose of this work is to explore possible qualitative shape information that can be obtained directly
and simply from disparities without further computation (namely, independent of the imaging geometry). The
classification of local surface patches as convex, concave, parabolic (cylindrical), hyperbolic (saddle point) or
planar is computed from image disparities only (in fact only disparities in polar angles are needed). The directions
of the axes of principal curvature are obtained as well as the axes of zero curvature when they exist. The aialysis
does not depend upon special constraints on the nature of objects in the environment, such as assuming sinoot hly
curved surfaces or a particular analytic representation of the surface. The results hold for a family of surfaces that
correspond to some continuous interpolation between the points considered for the calculations. The classification
may not give the "correct" differential type of a surface patch when the surface changes irregularly between the
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points where disparities are given. An earlier version of the algorithm is used to compute axes of zero curvature
for cylindrical objects in a real image of cans at various orientations.

2 Local shape descriptors

The curvature of any curve on a regular surfac- through some point can be writteu as a linear combination of

two principal curvatures K, and tK?. These are the curvatures of two perpendicular curves on the surface that

ol lain the extrema of the curvatures of all curves on the surface passing through the same point. If ,, is the
norial curvature of some curve on the surface and 0 is its angle with the first principal axis, then

= = - cos2 0 + K, .2sin2 0.• (I)

This the local behavior (curvature) of a local surface patch can be described in terms of two numbers, K, and

K . The product of these two numbers ,K K, is called the Gaussian curvature and its sign characterizes the local
structure oi the surface ii an intuitive way. Distinct surface types are defined as follows:

1. elliptic (Ki .K, > 0)

" convex, see figure la-left (K 1 , K 2 > 0)

" concave, see figure la-right (K1,K 2 < 0)

2. parabolic (cylindrical), see figure lb (KI • K 2 = 0, K, > 0 or K- < 0)

3. hyperbolic (saddle point), see figure Ic (Ki tc) < 0, namely KI > 0 and K, < 0)

4. planar (K- K) = 0, K, = K =0)

convex concave

elliptic parabolic hyperbolic
a) b) c)

Figure 1: An illustration of the different surface types used for classification of surfaces, see text.

It follows from equation (1) that the number of asymptotes, or the number of curves on the surface with
zPro-curvature, determines the local behavior of the surface. Specifically:

1. elliptic: no asymptote

2. parabolic: one asymptote

3. hyperbolic: two asymptotes

4. planar: infinite number of asymptotes

Thus for surfaces where the asymptotes are locally straight lines on the surface, the number of straight lines on

the surface that cross a point will determine the local behavior of the surface. As will be shown in section 4, t he
decision whether a straight line in the image originated from a straight line on the surface can be made giVti
image coordinates only, without the need to compute exact 3D coordinates, and with very simple calculat ions.
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3 Basic geometrical derivations

Given two cameras, assume that the principal rays intersect at a fixation point. Also, assume that the epipolar
plane of the fixation point (the plane through the principal rays of the cameras, henceforth "base plane") includes
the X-axes of both cameras. Thus rotation about the principal rays of the cameras is fixed. We will use the
following coordinate system (see figure 2): let the fixation point be the origin, the base plane (which passes
through this point) be the A - Z plane, and the line perpendicular to this plane through the origin be the
Y-axis. On the X - Z plane, the principal rays of both cameras intersect at the origin and create an angle 211
between them. Let the Z-axis be the angle-bisector of 2p, and the X-axis perpendicular to the Z-axis. A similar
system can be defined for motion if the fixation point is kept constant, that is, the cameras follow a single object.

For a given point P let a denote the angle of tilt and #3 denote the angle of slant (see figure 2). Thus the
Cartesian representation of P is (tz-, tz, z), where z is its depth relative to the fixation point in the above
coordinate system. Let (xi, yl) and (xr, y,) be the Cartesian coordinates of the projection of P on the left and
right images respectively (see lower part of figure 2). Using polar coordinates, the two projections can be written
as (Ri, 01) and (R,, t7,) respectively. Then the following holds (see [14]):

1 t cotot9 -cot cot t9 , - cot ttana = a
tanp cot 0,+cott1 , tan23= 2sinIt

Thus, the two angles a and 3 (of P) depend only on the angle of convergence 2pi and the polar angle of the
projection (P') on each image. It can be shown that the polar angles are preserved under projection, through
any point on the principal ray, onto either a spherical body (like the eye) or a planar one (a camera). There is
no dependence on other parameters of the cameras, their relative positions or the angle of gaze v.

4 Computation of local shape descriptors from disparities

Let PO and Pi be two points on the surface of some object. Po z0ta( , tan, 1) and Pi = zi an a,, tal
1a ' a ,,

Let

N= Px 1 (2)

N i is perpendicular to the plane passing through P0, P and the origin (the fixation poiht), assuming the), are
not collinear. This plane is not related to the surface we wish to characterize. However, If two points Pi and Pj
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Figure 3: Two points on the surface PO and Pi are projected to points O0 and Oi on the image. I =o ×
is perpendicular to the plane passing through PO, P and the origin (the fixation point).

are collinear with PO, by definition N' = N'. Thus N' can be used to determined whether three points that are
collinear in the image originate from a straight line (an asymptote) or not. Since we know that a straight line

is always projected to a straight line in the image, 117 = Ni is a necessary and sufficient condition for being an
axes of zero curvature.

Therefore we have shown the following: Let 00, 01 and 02 be the projections of P0, P and P2 , where 01
and 02 lie on different sides of 00. Then PI, P and P 2 are on an asymptote (are collinear in space) if and only
if two conditions hold:

1. 00, 01 and 02 are collirear in the image,

2. N' =-N and N' -N.

The second condition can be verified using the polar angles only of the projections of PO, P and P2 onto the
two images. This follows from the following expression for N':

1 0 0IN'=z(-nN(t, i,t,,t,) ,1N' i(9, r,)9i9) , 1)
Z(tan ' sin I rIr

where

N' = (cot di - cot d' ) - (cot di - cot do) cott t cot0?-cot di cot 790

(cot i - cot9) + (cot?)'- cot ° ) ' (cot4 i - cot 9° ) +(cot9 - cotr) (3)

The computation of asymptotes can be made more robust in that it can be verified from other cues beside
stereo. Pentland ([15]), for example, has argued that d2 1 = 0 along an axes of zero curvature, where I is the
intensity. This information may also be deduced from motion (straight lines in motion remain straight) or linear
perspective. In any case, using condition (2) or either of these methods to count the number of zero-curvature
axes is extremely sensitive to noise since they require counting zero crossings.

Let P0 be a point on the surface whose neighborhood we wish to characterize. Let P, and P2 be two points
whose projections dre collinear with the projection of PO in the image and which lie on different sides of PO as
we had before. Let

AN,, = N' +N2

ANx is the difference in the x component of N' and N 2 and, once again, it depends only on the polar angles
of the projections of PO, P and P 2 on the two images (see equation (3)). (The plus in the definition is due to
the fact that N' and N 2 are defined with opposite signs by the vector multiplication in equation (2) since 01
and 02 lie on different sides of O0.) It can be shown that, the sign of AN, is equal to the sign of the normal
curvature of a smooth curve passing through P0 , P and P2 . We approximate this normal by the angle bisector
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of the angle created at Po by connecting it to Pi and P2 . More specifically, the following proposition can be
proved (proof is onitted):

proposition: Let 00 be the slope of O0 in the image (its polar coordinate). Let ANO be AN defined for
P0, P and P2 such that the slope of the line in the image passing through their projections O, O and 02 is 0.
Then for all directions 0 around 00, 0 < 0 < 0o + 1800:

AN < 0 = negative normal curvature
AzN = 0 = zero normal curvature
AN JV> 0 = positive normal curvature

The signs reverse (negative AN. implies positive normal curvature and vice-versa) if Oo - 1800 < 0 < 0o. This
proposition holds as long as the points Po, P and P2 are not collinear with the origin (0 0 Oo).

Thus it is possible to classify the surface around point P0 using the following algorithm. For each direction 0
around 00, 00 < 0 < 00 + 180', choose two points in the image 0. and 02 on both sides of O0 that are collinear
with each other and define a slope 0. It is assumed that 01 and 02 are the projections of points lying on the
same surface as P0. Compute ANf for each 0, thus defining a function of 0 to be denoted by D(O). Then:

* D(O) = 0 VO :>, surface is planar.

" D(0) > 0 VO => surface is convex.

" D(O) < 0 VO =, surface is concave.

" D(O) > 0 VO or D(O) < 0 VO => surface is parabolic (cylindrical). The axis of zero curvature is the axis
for which D(O) = 0.

" D(0) changes sign => surface is hyperbolic. In this case the asymptotes are the directions for which
D(O) = 0. The principal directions (direction of minimum and maximum curvature) are the lines that
cross the two angles defined by the asymptotes.

In the presense of noise some threshold should be used instead of 0, which may cause regions whose curvature
is low to be all classified as planar. Then the directions of the axes of zero curvature and principal axes cannot
be computed exactly.

5 Examples
Figure 4 shows the results as obtained for synthetic data of a torus, a cylinder, a cone, a hyperbola and a sphere.
The shadings are explained in the legend of the figure. The results are accurate both for surface classification
and directions of important axes. Note the emergence of the parabolic line on the torus (the line separating
the hyperbolic region from the convex/concave region, whose type is parabolic). It is often argued that these
parabolic lines are important for image representation (see [16]).

An early version of this algorithm (see [14]) has been used to compute axes of zero curvature for known
cylindrical objects in a real image of cans at different orientations (see figure 5). In this example the camera
was moved manually to obtain a stereo pair. The fixation point (and hence the origin of each image coordinate
system) was taken to be the center of the right image and the corresponding point in the left image (which in
the above "bad" example is a few pixels to the left of the center of the left image). The two 256x256 images have
been matched using a parallel motion algorithm implemented on the Connection Machine ([17]). Its output has
been smoothed by averaging with a 3x3 window over neighboring pixels. In a fixed region at the center of each
object, the direction of the zero-curvature axis has been estimated at each pixel. The direction obtained by the
largest number of pixels in the region was selected as a final estimate. In an image containing four cylindrical
objects at various orientations, the true axis of zero-curvature has been obtained for three (figure 5). A rather
good approximation has been obtained for the fourth, where the "second best" direction has been selected (we
have used a rather coarse quantization of directions). Additional errors may occur if the central region is not
chosen "appropriately", that is, if it lies too close to the boundary of an object or if it covers area with little
texture.
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6 Summary

This work has been motivated by two observations. First, in order to obtain precisely a surface z = f(x, y) it
is necessary to solve first for the imaging geometry (calibration) for each image pair. The calibration problem
is generally difficult, possibly more so than the matching problem usually considered the core of the stereo
problem. Second, humnans apparently do not compute the exact depth from stereo disparities and probably do
not compute exactly the imaging geometry. Therefore we have looked for some more qualitative information
that can be obtained from disparities only and with few additional computations. One measure of the behavior
of local surface patches is obtained directly from disparities with a simple computation. It is the classification of
surfaces as convex, concave, cylindrical, planar or hyperbolic. In addition, directions of principal curvature axes
and asymptotes are obtained.
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ABSTRACT

We present a Stereo Vision System which attempts to achieve robustness with respect to scene characteristics, from

textured outdoor: scenes to environments composed of highly regular man-made objects. It offers the advantages of
both area-based (dense map) and feature-based (accurate disparity) processing by combining them whenever possible.

In the current version, the area-based process occurs first and is refined by the integration of edge information. It

is based on our observation that whenever there is enough "texture" (measured as intensity variation in a small

window), then a correct correspondence can be obtained by a local process. The area-based process therefore
proceeds by computing a texture measure for each image view and performing a simple cross correlation between

them. A match is accepted if both views agree on a peak and this peak is high enough. The resulting dense disparity

image with a few holes and incorrect matches is then filtered using the smoothness assumption to fill small gaps

and remove small spikes. Note that contrary to the case of feature-based stereo, this smoothness assumption is

justified since we reason about patches of opaque objects, and that we can make inferences about occlusion and

detect 'penumbral" areas (visible in only one of the views). This disparity map is a smoothed version of the true

one, however, because of the finite width of the windows used in processing. The problem is most acute at Co
(depth) and C, (crease) discontinuities, but can be solved by introducing the edge information: the disparity map is

adaptively smoothed subject to the constraint that the disparity at edgels is fixed. It is important to note that this

method gives an active role to edgels parallel to the epipolar lines, whereas they are discarded in most feature-based

systems. We have obtained very good results on complex scenes in different domains.

1 INTRODUCTION

Humans are able to perceive depth in 2-D "monocular" images and in an enhanced form by the stereoscopic combi-
nation of a pair of images. The process used by the human visual system to do this, however, is not well understood.
Much research has been devoted to the automatic abstraction of information about objects in images, in order

to produce autonomous systems which are able to "perceive," and operate upon their environments and, in some
cases, to gain insight about the operation of the human visual system. In 1982 Barnard and Fischler [1] defined six

steps necessary to stereo analysis: Image acquisition, camera modeling, feature acquisition, image matching, depth

reconstruction, and interpolation.

Of these steps, image matching is widely considered to be the most difficult to solve, and is clearly dependent on
the choice of feature primitives. Given two views of a scene, a correspondence must be established between those

points which are visible in both scenes. When the matched features are low-level and dense, such as the intensity,
we call the matching strategy an "r.-ea-based" process; while for sparse and usually more abstract features, such

as edge-segments, we use the term "feature-based." Some systems, like ours, use a hybrid approach with multiple
features both sparse and dense.

The problem of matching the selected Ir-, • is made difficult by several problems, the most important of which

are:
- Photometric variation at a point --ewed n two different angles,
- Occlusior of some points in the image, .e only from one view,
- Presence of a repetitive texture. Ltte, -,,d
- Lack of texture in a region.

'This research was supported by the Defense Advanced Research Projects Agency under contract F33615-87-1436, moni-
tored by the Air Force Wright Aeronautical Laboratories.
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In the system we are building we attempt to provide answers to each one of these problems:

To overcome the photometric variation, as well as some of the digitization noise, we need a feature which is as
invariant as possible to changes in viewpoint from two different angles. However, since we desire a dense match, we
also need a dense feature. We havw chen a measure of local intensity variation, since this will be less subject to
photometric variation and digitization noise while also providing a simple measure of local texture.

To overcome the problem presented by occlusion, we utilize the fact that those points that are not hidden or out-
of-scene must, necessarily, be visible f'rom both v'iews. Thus if the two views do not agree on the location of the
point then either one of them is wrong, or the point is visible only from one camera (and therefore most likely also
wrong, since there should exist no possible stereo correspondence). The few points for which the two views agree

on an incorrect disparity are discarded through the use of the smoothness assumption, and by imposing an order

constraint on the final match.

In general, errors due to repetitive texture are more difficult to handle, as they require a global rather than local
analysis. We currently treat such false matches, as above, by the application of an order constraint. Other approaches,
such as using the edge matches to provide this disparity limit (and a "more global" match estimate), or multi-level
processing to give a local "vergence," should be used in order to provide a better solution.

In the case of insufficient texture, where there is no possible match, it is important to know where such areas are
and to mark them as being unmatchable locally (as opposed to forcing a random match).

In the remainder of this paper, we start by giving a brief summary of related systems, then present our approach in
detail and illustrate the step-by-step processing on a stereo pair of the Renauit part: First we apply a local variation
operator to the individual intensity images, then perform a cross-correlation on the result from which the "best"
peaks are selected. The smoothness assumption and an order constraint are used to detect and correct errors in this
initial disparity map, subject to the verification by agreement from each of the two views. While this gives a good
area-based match, we use the (monocular) edgels from the two views to further correct for "blurring" across the
discontinuities. Finally, we are able to accurately label visible and hidden points, and to apply a final interpolation.
We then present reconstructions of the original scene.

In the end, we present our conclusions as to the usefulness of the above ideas to stereo analysis and our plans for
further integration of area and feature based stereo strategies.

2 RELATED WORK

Area-based methods have been applied successfully to the analysis of aerial terrain images, where the surface varies
smoothly and continuously. Such systems, however, often have difficulty with scenes that contain orientation and
depth discontinuities. This is because the correlation windows that cross surface discontinuities cannot usually be
correctly matched. In addition, the area-based techniques are more sensitive to noise than the feature-based ones.
Most area-based methods make the assumptions that the intensity-texture nearby a point in the scene is invariant
from both points of view and that each such neighborhood is detectably different from other neighborhoods in the
sccne. THese methods break down when either of the above two assumptions are false within the search region.
Surface discontinuities and photometric variations can cause the first assumption to be false, while the second is
violated when the scene has either a lack of texture or when the texture repeats through the scene. The area-based
methods offer the advantage of directly generating a dense disparity map.

Mori, et. al. (21 attempted to make the correlation adaptive by varying the size of the window and they used edgels to
verify the prediction. Hanna [3, 4, 5] showed improvement in the cross-correlation by using dense features abstracted
from the intensity data, and has implemented a complete system for stereo processing with little or no operator

intervention.

The currently preferred approach in the vision research community is to match more abstract features, rather than
match texture regions in the two images, since such features are less sensitive to noise. Feature-based analysis
provides more precise positioning (for the feature) in the individual images and it can attain correspondingly higher
accuracy for its correspondences in 3-D (Arnold [6, 71). The mt. commonly used features are points along the edges
of intensity discontinuities. These points, termed edgels for edge-elements, are useful because they represent the
points at which most of the scene information is available. However, the feature-based methods provide only sparse

matches and require interpolation as well as some method for modeling occlusion. In addition, the feature-based
process may be confused by large local change in disparity, and it is very difficult to incorporate the smoothness
assumption into the matching strategy since it is most likely to be violated at edges.
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Mart and Poggio [8] proposed a computational model of human stereo vision, using zero-crossings in the Laplacian
of the Gaussian of the intensity, as a matching feature. They suggest that three constraints should be satisfied in
choosing global correspondence: Compatibility, Uniqueness, and Continuity. The latter is the same as the Figural
Continuity constraint proposed by Mayhew and Frisby [9]. Grimson [10] implemented an improved version of this
model, which gives good results when there is a sufficiently dense set of features, but cannot deal very well with
real images or when discontinuities occur. Arnold [6], and Baker [11 used various forms of the Viterbi dynamic
programming algorithm to match edges, and Ohta and Kanade [12] extended Baker's inter-scanline search, again
using dynamic programming, to find an optional matching surface (however their three-dimensional search is very
expensive). Medioni and Nevatia [13] match linear edge segments which cut through the epipolar lines and thus
automatically insure inter-scanline continuity. Their matching is based on a minimum differential disparity criterion
which attempts to preserve the local disparity and thus enforce a smoothness assumption. Hoff and Ahuja [14]
attempt to combine the feature matching, contour detection, and surface interpolation into one process. Their
results are very impressive, but they fail when their matching feature (zero-crossings) are too sparse, also they
cannot accurately locate the contours.

In both area and feature based stereo correspondence methods, it is often necessary to interpolate values for those
regions for which no disparity can be found. Some methods such as those by Hoff and Ahuja [14] and Boult and Chen
[151 have combined the interpolation into the normal processing. In addition to interpolating, these methods are also
used to smooth surfaces and to isolate discontinuities. Grimson [10] interpolated surfaces from sparse depth data by
fitting a surface which represents a minimization of what he called "quadratic variation," Terzopoulos [16] extended
this approach by compiling a complete computational theory of visible-surface representations. He attempted to
locate discontinuities by locating significant inflection points on the resultant surface. Blake and Zisserman [17]
introduced their "Graduated Non-Convexity" algorithms for the weak membrane and the weak plate. These allow
the search for depth discontinuities and orientation discontinuities respectively. Saint-Marc and Medioni [18] present
another method which smooths the surface while preserving discontinuities and which facilitates the detection of
discontinuities.

Any of these interpolation methods may be used to extract the discontinuities in the manner that we suggest, by
adding a strong preference for the existence of the discontinuity contour (either depth or orientation) to occur at
edgels or along edges.

3 DESCRIPTION OF THE METHOD

The methodology used in this research can be understood from the analysis of the pictures in Figure 1. This figure
shows the cross-correlation of a pair of corresponding rows (row 191, see Figure 2) from the Renault Part image. The
peaks of the cross-correlation (bright areas) represent the best matches. Figure lb shows the extracted peaks which
have been overlaid with the matched (solid) and unmatched (dashed) edgels (see Figure 6). These two images show
the line-of-sight from the two images so that the left image view is vertical, while the right image view crosses it at
an angle of -45' . The horizontal dashed line through the center corresponds to zero disparity (that is, the point at
which the crossing lines of view are from the same column of each image). By looking at Figures la and b it should
be clear to the reader that, for most points, the correct disparity can be found by simply extracting the peaks in the
cross-correlation array. O1. this is done, we nced only to focus our attention on the problem areas.

The first occurs in areas without measurable texture. For these, it is important simply not to generate matches
from the cross-correlation information. Where multiple matches (peaks) occur, we prefer the highest peak that both
views can agree on. It is possible (although unlikely) for the correct peak not to be selected, so we also must impose
a smoothness constraint on the surfaces and we assume that order reversals cannot occur due to the spatial shift
between viewpoints. These last two constraints also correct most of the "wrong" matches. The remaining unmatched
areas represent points that are either eccluded in one of the views or "visible" points for which the two views cannot
agree. Finally, there is the "blurring" beyond the actual edge, which can be seen in Figure lb.

The entire processing, which we illustrate on the Renault part of Figure 2, is therefore as follows: First we compute
our matchable "feature," and generate the cross-correlation for the entire image. Then we extract peaks, subject
to agreement from both views, this provides us with the correct matching at most textured points that are visible
from both views. Next we apply a smoothness assumption and the ordering constraint and remove the conflicting
"matches." Next we attempt to fill the gaps in the image from the lesser peaks in the cross-correlation and repeat our
checks until we cannot improve the matching. Finally we extract the edgels from the original intensity image and use
then as (monocular) cues as to the location of possible depth discontinuities during an adaptive smoothing process
which trims surfaces which have overrun into the wrong surface. This gives us a very good set of matches, which
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(a) Left View of the Cross-Correlation.
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(b) Correlation Peaks and Edge Matches.

-ig~rt- 1: (ross-(orrelation slice (Row 191 of the Renault Pair in Figure 3). The corresponding edge matches from the samne
r. i I~igure 6 are shown i -b.

further improve by labeling all of the points as being visible or not, and marking the depth discontinuity
contours. The following subsections present a detailed account of these steps.

3.1 AREA-BASED PROCESS

Fi. area-based processing matches the texture in the image pair to produce a dense disparity map. By performing
thf, matching both from left-to-right, then again from right-to-left and finally requiring that the two solutions agree,
wt. can obtain a much better estimate.

Choice of Primitive

We developed the idea of using a local variation operator because intensity was not sufficiently invariant to photo-
1n,.t ri," changes and to digitization. Local variance has been used in the past, but did not give a very robust measure.
We i,e Eq,,ation (1) which provides a real value between 0, where there the intensity is constant, to a theoretical
imiaximiimi of 1 where there is the most variation (the actual value is a little less). Also, since it is possible for the
int,.insity to be zero, the special case of all zero values in a window is defined to be zero. Empirical analysis has
shown that a 5 x 3 window is a good size, providing good sampling without causing too much smoothing.

X0n- I - (1)

where

x mean of the intensity values in a local window
0 2 =standard deviation of the intensity values in the window

it number of pixels in the window (we use 5 x 3)

E'tuation (1), like simple variance, still does not provide clear peaks when the local variation is small (such as the
hackvrounl of Figure 2). So it does not yet reflect the ideal feature that we desiie. One alternative is to adaptively
adjust the cross-correlation, but instead, we choose to flatten the histogram of the above measure of variation. We
pref,r to use a local (16 x 16) window for a parallel machine, and the entire image on a serial machine. Both methods
vive good results and produce the desired feature for matching using the cross-correlation. One other adjustment
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was found to be necessary for robustness, and that was that we should know when there is too little texture for the
cross-correlation to give a reasonable match. This is difficult to do with the equalized values, so we use a threshold,
usu'.ly 10- ', to mask off the locally unmatchable values.

Figure 2 shows the Renault part stereo pair.' The image is 256 x 256 x 8 and the disparity ranges from -30 (near) to
15 (far) pixels. The right image has been adjusted to bring the image pu*Xi6t into alignment with the corresponding
image points in the left image on the same scan lines.

Figure 3 shows the Renault part stereo pair after being filtered using the local variation operator. Note the enhance-
ment of the very slight texture in the background and on the table while preserving sufficient texture to match the
Renault part. These images are easier to free-fuse than the original, but are slightly blurred.

Correlation and Peak Extraction

We generate the cross-correlation using a normalized cross-correlation bounded by manually supplied minimum and
maximum overall disparity. In the special case where there are no features within the correlation window, a value of
zero is assigned.

Figure la shows a slice through this cross-correlation volume at row 191 from the bottom which cuts through the
two lobes of the Renault part. Figure lb shows the peaks selected from this slice provided that the value at that
point:

1. Is less than or equal to predecessor and successor values along the view line-of-sight.
2. has a magnitude of at least half that of the largest peak along this path.

Two-Views

The advantage of using two views along with the enforcement of opacity and uniqueness assumptions has been
discussed before by Drumheller and Poggio [19], and Yuille and Poggio [201. We extend this notion beyond the
enforcement of a "forbidden zone," and use it to first clean up the image by removing conflicts (points not in agreement
from both views and those generating order-reversals), and then fill-in unmatched points using the correlation peaks.

First, the peaks, extracted from the cross-correlation, are used to construct an initial match estimate as shown in
Figure 4 by selecting a single maximum peak from each view such that both views agree as to its disparity. This
initial estimate is a good, but noisy, estimate of the disparity. Most of the noise occurs in those areas which are
visible in only one of the views.

Next we remove those pixels which violate the smoothness assumption or the order constraint. The gaps are then
filled with cross-correlation peaks which are exactly in agreement by both views and which adjoin existing agreed
upon points (these may not be the maximum peaks). We repeat this process, but this time we fill with peaks which
are within a bounded (e.g. ±1 pixel) agreement from both views and which adjoin existing points. A final repeat
step completes the process but now fills with non-peak points which are within a bounded (e.g. ±1 pixel) agreement
from both views and which adjoin existing points. Figure 5 shows the results of this process starting from the initial
matches in Figure 4. This figure represents an impressive result for an area-based process, but does not have the
accuracy that we desire due to the "blurring" across the discontinuity edges.

3.2 DISPARITY-MAP REFINEMENT

The area-based disparity maps define a dense surface which is reasonably accurate, except for a tendency to "blur"
beyond the object contours (the more textured surface leaks into the less textured region). This can be refined using
edge information. We can use edgels (or edges) from any source. For this paper we have used edgels from the Canny
Edge Detector [21]. Figure 6 shows the edges resulting from the intensity images in Figure 2.

Instead of using edgels matched by an independent feature-based process (which could give rise to possible conflicts),
we use edgels in the 2-D image and associate to them the disparity obtained from the area-based process. Since
edges are likely to correspond to depth or surface orientation discontinuities, we smooth the disparity map, keeping
the disparity at the edgels fixed. This is implemented using the adaptive smoothing formalism developed Saint-Marc
and Medioni [18]. All points whose disparity shifts by more than a constant amount (we use 1.0 pixels) are discarded,
removing the "blurred" fringe around the actual contour edges. Note that we are using the edgels as monocular

1Throughout this paper, the left and right images of stereo pairs have been reversed for free fusing.
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(a) Intensity (Right) (b) Intensity (Left)

Figure 2: Renault intensity image pair, with row 191 highlighted.

!ii:"'".. .... ..... .:[ii

:..:~~~~~~~~~~~~~~~~~~~ ..:::::! ........::::: ' . .::i ~: !~:i!i i!i

(a) Variation (Right) (b) Variation (Left)

Figure 3: Local variation from Figure 2

. . . .
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(a) Disparity (Right) (b) Disparity (Left)

Figure 4: Initial disparity estimate derived by selecting the best peaks of the cross-correlation of the images in Figure 3.
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cues, so that even the edges with orientation close to the epipolar line directions play an active role, whereas they
are discarded in all feature- based approaches.

Figure 7 illustrates the result of this process on the results of the refined disparity map in Figure 5. From this, we
can now label the pixels into four groups, as listed below and shown in Figure 8, and mark the depth discontinuities.

1. Known disparity values are white.
2. Penumbral points, visible only from this view, are black.
3. Points which were not, but should be matchable are light gray.
-. Points visible only from this view because of image clipping in the other view (or initial masking) are dark

gray.

Given this data we now attempt to reproduce the original object as shown in Figure 2. First we interpolate along
those regions labeled in Figure 8 as being visible. This interpolated disparity image is shown in Figures 9ab. The
shaded representations of tl.:se are shown in Figures 9cd. These were produced by assigning the surface a simple
reflectance function and por;tioning an imaginary light in space.

Figure 9e is a 3-D plot of the left-image-disparity data from Figure 9b plotted at each fourth pixel. The disparity
ranges from -16 (far) to +31 (near) and the zero-plane of the plot is moved backward 27 from the zero-plane of the
image. A rendered view is also shown in Figure 9f in which the original intensity values (Figure 2b) were projected
onto the surface rotated 45' about the Y-axis and scaled x7 in the original Z-axis.

4 ANOTHER RESULT

Here we demonstrate the results of the Stereo Vision System on an an aerial view of the Pentagon, shown in
Figures 10ab. This stereo pair was was obtained from Professor Takeo Kanade of the Carnegie-Mellon University
Computer Science Department. The image is 512 x 512 x 8 and the disparity ranges from -9 (near) to 8 (far) pixels.
Figures 10c-f show the results following the integration of the area and feature based processing. The results are
quite impressive, but also point out two weaknesses with the method. The first is that when the disparity difference
between two surfaces is only about 1 pixel, they cannot be accurately separated as can be seen around the underpass
of the bridge in the upper left corner. Also, when two edges are very close together, the "blurring" can extend past
more than one edge. We have no solution for this except to work at a higher level of resolution. Note that the
occluded areas around the walls are well localized except for a false match in the area-based processing of the upper
right corner. Figure 10g shows a 3-D plot of the Figure 10d and Figure 10h shows a rendered view of the same figure.

5 CONCLUSION

We have presented some key ideas whose use in standard stereo correspondence provides some impressive results
on several images. In particular, we show one use of those edgels which are aligned parallel to the epipolar lines
which, along with all edgels, serve as loci to limit the search for discontinuities in depth or orientation. We have also
introduced a new low-level feature, which allows standard cross-correlation to automatically adapt to local levels of
variation. Finally, we have demonstrated an important paradigm in stereo matching: the agreement by two views
for each disparity value to resolve the ambiguity and verify the matches.

These have allowed us to produce a system which infers more than the disparity at each point, we can also accurately
label those points as to whether or not they are visible from one or both views and to mark those boundary contours
which form the depth-discontinuity. This methodology is robust. When there are no edge features, it acts as a good
area-based process, and when there is no texture, as a feature based system.

6 FUTURE RESEARCH

So far we have only used the simplest integration of area and feature-based methods. We plan to extend the
interact;on using abstract monocular and stereo cues to guide the area-based stereo matching. We especially want
to reduce the possibility of false matches and blurring. Also, we feel that the orientation discontinuities should, now,
be nearly as easily detectable as the depth discontinuities.

Another area that we feel needs more work is the determination of the best approach for interpolation through those
areas of the image which cannot be matched due to having too little texture.
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(a) Smoothed (Right) (b) Smoothed (Left)

Figure 5: Refined disparity map after smoothness and order constraints.

(a) Edges (Right) (b) Edges (Left)

Figure 6: Edges from Canny's operator applied to the images of Figure 2.

.... ...........

(a) Integrated Results (Right) (b) Integrated Results (Left)

Figure 7- Disparity map after incorporation of edge information.
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(a) Labeled Regions (Right) (b) Labeled Regions (Left)

Figure 8 Labeled points from Figure 7.

(a) Interpolated (Right) (b) Interpolated (Left)

~Ox....... , .

........ ....
(c) Shaded (Right) (d) Shaded (Left)

Figure 9: Final disparity maps and their shaded representation.
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(e) 3-D Plot of the final result.

(f) 3-D Rendering of the final result.

Figure 9: (cont.) Renault Part - Reconstructions
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(a) Intensity (Right) (b) Intensity (Left)

(c) Integrated Results (Right) (d) Integrated Results (Left)
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Determination of Camera Location and Orientation

Rakesh Kumar

Computer and Information Science Dept.
University of Massachusetts at Amherst, MA. 01002.

Abstract

This paper describes a solution and mathematical analy.sis of the problem of estimating camera location and
orientation from a set of recognized landmarks appearing in the image, sometimes refered to as pose determination.
The landmarks we use are real or virtual 3D lines represented in a world coordinate system. Given correspondences
between these 3D lines and 2D lines found in the image. the goal is to find the Rotation and Translation which map
the world coordinate system to the camera coordinate system. The camera model assumes perspective projection.

We develop two algorithms "R-thenT" and "R-and.T" to estimate tite camera location and orientation.
Algorithm "R-thenT" solves for rotation first and uses the result to solve for translation. It is a variation of an
aigorithm developed by Liu, Huang and Faugeras [111. The second algorithm "R-andT" solves for both rotat on
and translation, simultaneously. The results from the second algorithm are much better that those of the first.
We also discuss the performance of our algorithm with respect to other error measures. A closed form expression
is developed for the uncertainty in the output parameters as a function of the variance of the noise in the input
parameters. Based on this analysis, statements are made about the kind of errors to expect in different situations.

1 Introduction

This paper describes a solution and mathematical analysis of the problem of estimating camera location and orien-
tation from a set of recognized landmarks appearing in the image. The landmarks employed are real or virtual 3D
lines represented in a world coordinate system. Given correspondences between these 3D lines and 2D lines found in
the image, the goal is to find the Rotation and Translation which map the world coordinate system to the camera
coordinate system. We assume that correspondences established between model and data are line correspondences
and not endpoint correspondences. The camera model assumes perspective projection. In addition, intrinsic camera
parameters, such as focal length, field of view, center of the image, size of image etc. are assumed to be known

We are interested in applying our algorithm to aid in the navigation of a robot moving in a known outdoor
environment. The results which we present will be for situations where the landmarks are distant from the camera,
to the order of hurdreds of feet.

A mathematical analysis of an uncertainty measure is developed, which relates the variance in the output
parameters to the noise present in the input parameters. For this analysis, we assume that there is no noise in the
3D model data and the only input noise is in the image data. To our knowledge this is the first paper which provides
a mathematical analysis of the uncertainty in output parameters for the "camera location determination" problem.

1.1 Previous Work

The problem of "determination of camera location and orientation" has been referred to by various other names,
"exterior orientation", "pose determination" or "pose refinement". We prefer the first name and will henceforth refer
to it by its abbreviated form, "camera location determination". There have been many papers on camera location
determination, but most assume point data is available and only a few have presented techniques for line data. Most
solutions are also iterative in nature and require an initial estimate.

Fischler and Bolles [5' assume point data and solve for the "legs" of the points (the lengths of rays from the
optical center of the camera to the points in 3D space). The closed form solution they present is quite complex and
involves solving a quartic equation iteratively- Their technique is one of the very few which attempts to deal with
the "outlier" problem, i.e. situations where gross errors are present and smoothing by least squares will not work.

"This research was supported by the following Defense Advanced Research Projects Agency grants F30602-87-C-0140, DACA76-85-
C-0008, DACA76-86-C-O015 and National Science Foundation grant DCR8500332.
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Recently. Linnainniaa et. al. have come up with a generalized hough transform approach to find the coordinates of
the 3D points in camera coordinates 10.

Lowe 12 presents iterative techniques for both point and line data. However, he does not assume perspective
projection and therefore his solution is not applicable to our problem of camera location determination in outdoor
scenes. His technique is similar to that of Wolf [16' appearing in the photogrammetry literature. Ganapathy 16!
presents a linear closed form solution for point data. Besides solving for the rotation and translation parameters,
he alsk. solves for the center of the image and scaling along "x" and "y" directions in the image. We have an
itiplenientation of his technique and find it extremely susceptible to noise. probably due to his linear least squares
minimization where he assumes all his parameters are independent when they are not. Recently, Faugeras et.
al. .3 have come up with a technique to solve a similar system of equations with appropriate constraints. Here
it is important to draw the distinction between techniques for "camera calibration" '9,15,3. also called "interior
orientation" versus the techniques for "camera location determination". Camera calibration techniques solve for
intrinsic camera parameters along with the rotation and translation. The techniques for camera calibration require
very precise inage measurements and are less tolerant to noise. Camera location determination techniques are less
susceptihie t,, image noise but one needs to know the intrinsic camera parameters very accurately.

Liu. Huang and Faugeras present a solution to the "camera location determination" problem which works for
both point and line data 11. Our work is based on th,! constraints formulated by them. Their constraint uses the
fact that the 3D lines in the camera coordinate system must lie on the projection plane formed by the corresponding
iniage line and the optical center. Using this fact, constraints for rotation can be separated from those of translation.
They first solve for the rotation and then use the rotation result to solve for the translation. They suggest two
methods to. solve for the rotation constraint. In the first method, they represent the rotation as an orthonormal
matrix and devise an eigenvalue solution. However. they do not enforce the six orthonormality constraints for an
orthonormal tnatrix. It is not clear how they would find the nearest orthonormal matrix to the matrix their algorithm
returns, and whether they then would have a solution to the earlier problem. The second method represents rotation
by Euler angles. and is a non-linear iterative solution obtained by linearizing the problem about the current estimate
of the output parameters. The translation constraint is solved by a linear least-squares method.

1.2 Our approach

One of the main results of this paper is that the decomposition of the solution into the two stages of solving first for
rotation and then translation does not use the set of constraints effectively. This same observation was made by other
researchers working in the structure from motion problem '2'. The rotation and translation constraints, when used
separately. are very weak constraints. When solving for them separately, even small errors in the rotation stage get
amplified to large errors in the translation stage. This is particularly true with the large distances of the landmarks
from the camera in our application. If we solve for them simultaneoulsy, we get much better noise immunity.

We use the same constraints as Liu, Huang and Faugeras, but a different non-linear technique. The technique
we use was adapted from one used by Horn '8i to solve the problem of relative orientation (similar to structure
from mo-tion). We believe that the application of Horn's technique gives us much better convergence properties
than their solution using Euler angles. With Horn's technique an implementation has been developed where a
solution for rotation is obtained first, and then is used to solve for translation. We call this algorithm "R-thenT".
Again using Horn's technique. anotber algorithm "R-andT" was developed to solve for the rotation and translation
simultaneously. We also discuss using other error functions based on similar constraints for minimization. Algorithm
"R-andT" gives the best performance in all cases.

Liu. Huang and Faugeras extend their technique to point data by drawing virtual lines between pairs of points
"11. They use the same rotational constraint; however, the translation constraint is different from that of lines. The
techniques and mathematical analysis developed here apply equally well to 3D/2D point data. We have developed
algorithms which use point data. These algorithms can be extended to deal with combinations of point and line data.
To limit the length of the paper, only the analysis and results for the line data will be presented here. We will make
the following comments about using point data. Firstly for points too, we find that solving rotation and translation
simultaneously instead of separately (as they propose) gives much better results. Another observation we make is
that a point algorithm using "n" points seems to be more robust than a line algorithm using "n" lines. The results
for both points and lines depends on the particular data set one has. The point algorithm returns better results
chiefly because the results of the first stage, i.e. the rotation stage, are much better. Intuitively, this is because using
"n" points we can draw O(n) lines.
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1.3 Minimum number of lines

Both rotation and translation in the 3D world can be represented by three parameters each. Each line or point data
gives us 2 constraints. Thus. a minimum of three lines or points are needed. However, in many cases, with three lines
or points, there is no unique solution. If the three lines are parallel in 3D space or lie on the same projection plane.
then an infinite number of solutions can be found. If the three lines meet at a common point in 3D space, then we
can get two solutions for rotation (the Necker cube phenomena) and an infinite number of solutions for translation.

When the 3D lines or points lie on a plane there are always at least two global minimas (solutions) and two
local minimas. The second solution can be got by reflecting the camera about the 3D plane and rotating it by 180
deg. about its axis. Fischler and Bolles !5 provide another geometric construction, where there could be up to four
solutions for 3 points or lines in a plane. The same construction can be used to demonstrate more than one solution
for cases of four and five points. Given a solution, they demonstrate that another solution can be constructed if
the two normals drawn to a side of the triangle (formed by the 3 points or lines) from the optical center and the
opposite vertex meet at a common point on the side. In this manner, for each side, we could possibly construct
another solution therefore getting a maximum of four possible solutions. In general for 3D plane data, there could
be a maximum of 8 solutions.

2 Rotation and Translation Constraints

The rigid body transformation from the world coordinate system to the camera coordinate system can be represented
as a rotation (R) followed by a translation (T). The i'th point p, in world coordinates gets mapped to the point pr,
in camera coordinates. Lines in 3D can be represented by two points p and p[ or a point p, and a direction d,.
The mapping is represented by the following equation.

Pc, = R(pi) - T (1)

In the above equation, except for the rotation R, all the other terms are column vectors with 3 components
each. We refer to the components by the subscripts x, y and z. R is the rotation operator and can be expressed
in many ways. e.g. orthonormal matrices, quarternions, axis and angle, etc. Fig. I shows the camera and world
coordinate systems. X,.,. Y,, and Z,, represent the axes of the world coordinate system. 0 is the optical center of the
lens and the origin of the camera coordinate system OXCYCZC. OZ, is the optical axis. The 3D line "AB" projects
to the image line "ab". A 3D point pci projects to an image pixel I, by the following equations:

_. = SxpC, /pC, z Iy = SyPciy/Pciz (2)

where s, and s. are the scale factors along the "X" and "Y" directions respectively. They are related to the field of
view angles (t, 0, and the image size N, (number of rows or columns, assuming a square image)

s, = (N,/2)cot(¢z/2) sy = (N,/2)cot(Oy/2)

A line in the image plane can be represented in (p, 0) parameters by the following equation

I, cos 6, - I,, sin 0i = p, (3)

Substiuting 1,, and I,,, from equation (2) into equation (3) we get the equation of the projection plane formed by
the image line and the optical center :

(Sr cos Ot)pcti - (s, sin Oi)pc~i: - PiPc,, = 0 (4)

In Fig. 1. the projection plane formed by the image line "ab" is given by the plane "Oab" and the 3D line "AB"
must lie in this plane. "N" is the normal to the projection plane, given by the vector Ni

N, = (s, cos 6i, sy sin 0,, _p,)T (5)

N, can be normalized to be a unit vector and henceforth we shall assume that N, is the unit normal vector to the
projection plane.

The rotation constraint for lines, formulated by Liu, Huang and Faugeras ',II, that the 3D line must lie in the
projection plane formed by its corresponding image line is :

N, . R(d,) = 0 (6)
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We noted above that a rigid body transformation can be represented as a rotation followed by a translation.
The translation does not change the direction of the line. Therefore, the direction of the 3D line after rotation must
be perpendicular to the normal of the projection plane of the image line.

The translation constraint formulated by Liu et. al. uses the fact that any point on the 3D line in camera
coordinates must lie on the projection plane. The vector formed from the origin (optical center) to this point must
be perpendicular to the normal of the projection plane. Note, we can choose any point p, on the 3D line. This can
be expressed as follows :

- T) = 0 or N, . T = -N, . R(p,) (7)

At this point, we would like to make clear the two algorithms we have developed and will be comparing in
this paper. In the first algorithm "R-thenT" we solve for rotation using the constraint in equation (6). Then, the
rotation result returned from this step, is used in conjunction with equation (7) to solve for translation.

In the second algorithm "R-andT", only equation (7) is used to solve for both rotation and translation simul-
taneously. For each line. two points are used which must satisfy equation (7). As the tables in our results section
will show. "R.andT" performs much better then "RthenT".

3 Least Square Solution methods

Ideally we would like to find the rotation "R" and translation "T" by which equation (7) is satisfied for each line.
With noise, however, this -ill not be possible. In the "R-and.T" case, the objective function "El" we minimize is
given by

2n

E, = ,(N . (R(pi) + T)) 2  (8)

For each image line two 3D points are used and therefore, each line contributes twice to the objective function.
A physical interpretation of the objective function above is that it is the sum-of-the-squares of the perpendicular
distances from the end-points of the 3D lines to their corresponding projection planes formed using the image lines.
We minmize "El" to find an "R" and "T" such that the end-points of the 3D lines are mapped as close as possible
(in terms of sum of squares of perpendicular distances) to their corresponding projection planes.

The above objective function E1 gives higher weighting to endpoints of 3D lines which are further away from
the camera. In order to give equal weighting to all endpoints, the following objective function is to be minimized

2nE 2 = , p ) T)- ( 9 )

E 2 , unlike El, is a rational function and therefore more difficult to optimize. To minimize E 2 , at each iteration in
our non-linear technique, we hold the denominator R(pi) + T ; for each point to be constant. In the next iteration,
the value of' R(p!) -T ] is updated with the new "R" and "T". Therefore, we are able to employ the same algorithm
as used for El. This seems to work for all the cases we have run our algorithm on.

In contrast to E1 and E 2, we could construct an objective function E 3 , which minimizes the sum-of-the-squares
of the perpendicular distances of the end-points of the image lines to the projection plane formed using the 3D line
and the optical center.

Pil -T. Pi2 -T. .(RTI,;)) 2  
(10)E3= (i~pil _T.[ p,-,

where T, and RT are the translation and rotation in the world coordinate system. We minimize E 3 by a method
similar to the techniques used for E1 and E 2. We found the performance of algorithm optimizing E3 to be poorer,
with respect to noise, than algorithms minimizing E 1 and E2 . We suspect this is because the numerator of E 3 is a
fourth order function of "R" and "T" as compared to the second order numerators of E1 and E 2.

Finally, in the "R-thenT" case, the rotation objective function ER and translation objective function ET are
n n

ER = E(Ni " R(di))2  ET = E(Ni " (R(pi) + T))' (11)
t=1 i=1

We first find the "R" that minimizes ER and then use that "R" to find a "T" which minimizes ET.

-1, E 2, E 3 and ER are all minimized by modifiying the same basic non-linear technique. Therefore only the
technique for minimizing Ei is presented. ET is minimized by a straight-forward linear least squares.
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3.1 Non-linear Technique for "R-andT"

To minimize "El", we adapt an iterative technique formulated by Horn 8'1 to solve the problem of Relative Orien-
tation. it needs an initial estimate for both "R" and "T". The technique linearizes the error term about the current
estimate for "R" and "T". It is then possible to determine how the overall error is affected by small changes in
rotation and translation. This allows one to make iterative adjustments to the rotation and translation that reduce
"El". These iterations are continued until the algorithm converges to a minimum. Note that the algorithm, like all
such descent algorithms, does not guarantee a global minimum.

Assume we have a current estimate "R" for rotation. The coordinates p' of a rotated 3D point is given by
p' = R(p,). We add an incremental rotation vector 6w to the rotation estimate "R". The direction of this incrementai
vector is parallel to the axis of rotation, while its magnitude is the angle of rotation. This incremental rotation takes

to
p 6 = p x 6W X p' (12)

This follows from Rodrigue's formula 18] for the rotation of a vector "r" by angle "0" about axis "w"

r' = r(cosO) + sinO(w x r) - (1 - cosO)(w . r)w (13)

where8 = !6.b and 6w = 6w!:'6w ,
Let AT represent a small translation added to the current translation estimate T. Thus, the linearized energy

function about the current estimate "R" and "T" becomes

2n

E Z(N: -(p' + 6w x p, - T - AT))2  (14)
L=1

Let b, = p' x N,. Using thc chain rule of triple scalar product for vectors, differentiating the objective function
with respect to AT and &w respectively, and setting the results equal to 0, after some manipulation the following
two equations ar ootained :

2n 2n

V(N. AT - 6Lw. b)N, = - E(N, (p' - T))N (15)

2n 2n

E (N, AT - 6,bw b,)b, = - Z:,(N, . (p' + T))b, (16)
i= 1 t=1

Together, the above two vector equations constitute 6 linear scalar equations in the 6 unknown components of
AT and 6w. We can rewrite them in the more compact matrix form:

CAT - F6w = -

FT AT + Dbw =-d (17)

where C = ' NiNtT D=Z2 1 bibT F=Z 1  N bT
2n = nlN

while E= E=(N,. (p - T))N, , d = - (p(N ' 4- T)),.
Solving the above set of 6 linear equations gives a way of finding small changes in rotation and translation that

reduce the overall objective function. The algorithm can therefore be expressed in the following four steps.

Step 1 Guess an initial estimate for rotation "R" and translation "T".

Step 2 Compute the coefficients of the matrices in equation (17). Solve the linear system for AT and 6w.

Step 3 Compose 6w with the current estimate R of rotation to get the new estimate. Add AT to T to get the next
estimate for translation.

Step 4 If the algorithm has converged or has exceeded a maximum number of iterations, else go back to Step 2.

We compose the 6w and AT to the current estimate and iterate. We stop iterating when either a maximum
number of iterations is exceeded or when the difference in the result between two successive iterations is less than
a prespecified minimum. The algorithm seems to converge for initial estimates which differ considerably from the
correct solution. Incremental adjustments cannot be computed if the six-by-six coefficient matrix becomes singular.
This will happen when we have a situation for which there are infinite solutions. To compose the 6w with the current
estimate of the Rotation R, the current rotation is represented as a quarternion [8].
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4 Uncertainty Analysis

Noise is assumed to be in the image data only; and the 3D model data is assumed to accurate. In this section closed
form expressions are developed for the variance of the error in the output parameters (rotation and translation)
as a function of the input data and variance of the noise and the output translation and rotation values. In the
analysis, as in all such statistical analyses "13,1'. the basic assumption is that the returned output parameter is the
true or correct output parameter and the uncertainity region is centered around it. The analysis is local in nature.
We assume our solution is at the global minimum and near the true solution. This condition could be violated by
our algorithm if the initial estimate was poorly chosen. In our domain of robot navigation using landmarks, this
is unlikely to happen because the "camera location determination" step is used to refine the position of the robot,
which has moved a few feet from its previous known position.

The image data for lines can be specified by two parameters pi and Oi as in equation (3). For the analysis, we
asstiine the noise for both p, and 0, is Gaussian distributed, zero mean and uncorrelated with variance ap, ,dd 52

• respectively. Instead of assuming zero-mean gaussian noise for the (p,,Oi) parameters of the noise, the assumption
could be made that the endpoints of the line are zero-mean gaussian. The following derivation can be easily modified
for that case.

The error in translation AT and rotation &, is expressed as a function of the input data, output translation
and rotation values and input noise. The objective function is linearized around the computed Rotation"R" and
Translation "T". Minimizing the linearized energy function enables us to express AT and bw as linear functions of
-,,, and A. the error in the input data.

The variances of -T and 6,, are computed using the linear functions. We also compute the expected value of
the objective function. Finally, we check if the linearization is valid by determining whether or not if the actual
objective function value is of the order of the computed expected value (as predicted by linearizing). If not. we
disregard the output variances we have computed.

4.1 Error expression for normals of the projection planes

The image data in the rotation and translation constraints appears in the form of the normals of the projection
planes formed by the image lines and the focal point. Therefore, we represent small errors in the p, 6 specifications
of the image lines as errors in the normals of the projection plane. The normal vector is given in equation (5). Let
us consider the errors in p. 0 to be small and given by Ap, AO respectively. Equation (5) then becomes :

N" = (s, cos(0i - A0), s, sin(0i - Ai), -pi - Api) (18)

N,' is to be normalized. After normalizing the error in the normal vector, ANi can be expressed as follows

'IN, = 1/Mi(-s, sin(0i)_610i, sy cos(0i)A,, -Apt) (19)

where "M,' is the magnitude of N,'. We approximate "M," by :

Mi : ((s, cos 0i)2 - (s, sin 0,)2 + p2)1/2 (20)

Two observations can be made

1. The components of AN, are scaled by Al,. One of the terms in M is the square of p,. The larger the pi of
a line, the smaller the components of ANi will be. Thus, our algorithms would be more tolerant to noise in
lines, which have a larger pi. The effects of this are not too significant, because the sum of the other terms in
Ml, will be larger than the square of p,. Nevertheless, it is an outcome of forming normals of projection planes
from image lines.

2. Rotation of image lines due to noise is more harmful than translation of image lines. The rotation terms
involving A6 are scaled by s, and s.. The translation term Ap will be generally smaller. This is borne out by
our experiments, as can be seen in Table 1 in the result section for the 5 line case.

4.2 Variance in output parameters for Algorithm R-and-T

Our algorithm tries to minimize the energy term E1 given by equation (8). Let us assume that N,, R, T and p, are
the correct or true normals, rotation, translation and 3D points respectively. If we subsitute them into equation (8),
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E1 should exactly be equal to zero. Now, we add noise ANM to the normals N . We wish to find the expressions
which relate the noise in the output parameters, 6w for rotation and AT for translation to the input noise. We
assume the error, at least for rotation, is small, that is, less than 20 deg. around each axis. The energy term E1
can be rewritten in terms of AN, 6w and AT. N, R, T and P, are assumed to be constant and represent the true
values. Given AN,, we can solve for 6w and AT by minimizing the new energy term E'. Based on equation (12) and
(14) the energy term E' can be rewritten as

2n
E' = E((Ni + AN,) -(pi' + 6u) x p' + T + AT))' (21)

i=1

where, as before p' = RPp,. Now, from our above assumptions Ni • (p' + T) = 0. Therefore ignoring second order
terms, E' now becomes:

2n

E' E(.I',. (p' - T) + V{. (6w x p' + AT)) 2  (22)
1=1

Ignoring the second order terms in (21) basically means assuming that N • (6w x p' + AT) is approximately equal
to (N + AN ) (6w x p' + AT).

After differentiating E' in the above equation with 6w and AT respectively and setting the result equal to zero,
the following two functions for AT and 6w are obtained :

AT = -GI6 - G2d (23)

6w = -G2T76- G4d (24)

where G1 = (C- 1 - C-IFG2T) G2 = -(C-FG4) G4 = (D - FTC-'F)- '
,= (AN . pci)Ni d = Z2n1 (AN.i. i=l , "p(i)bi

C =z i= N7N, D = i= brb. F = 2n NTb

b{= p x N, P = R(pi + T. Pci

We introduce two more symbols Ui and ':

Ui = GlilNix + Gli2Niy + Gli3Ni. + G2ilbi, + G2i2biy + G2i3 bi.

V, = G2TN": + G2N 4. + G2T N, + 434i l b, NN G4i2biy + G4 3 biz

Using the above two expressions for Ui and Vi, equation (24) and the expansions for 3 and d we can write
expressions for AT and 6w in terms of Api and A6{.

2n

A = ( (pi s= sin 9, - pcis, cos 9i)AO + p,i,Api)) (25)

2n
i

bwj = V(i (pis. sint9, - P,iys, cos O)AO, + p,i2 Api) (26)
i=l

From statistics [1], we know that the variance of a parameter "z" which is a function of input parameters "Y,"
is given by 2 6z

a 2 a i(27)

Note, that each line will contribute two terms, one for each point, to the summation in the two equations
(25,26). Let us denote the two points we use for a line to be p and piL. For both these 3D points, the corresponding
projection plane normals would be the same and so would AT and 6wi. Using the above equations (25), (26) and
(27) we can write the following closed form expressions for the variance in the output parameters.

= Ia((U p + Up 6)s, sin 0i O)) 2 :  
. +

0-2 2

(U'po{, + U ,PR.") 2 - )- (28)
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o = ~ ((lp~, -,. VR )s s - ( +' , ) cos

ZLpL 1 R '2 (29)

Note 0,T, for 1..3 corresponds to oLT., aAT, and 01T. respectively, and a6 for i .. 3 corresponds to C6'.,
L6, and o6-, respectively.

From equations (28,29), it can be seen that the squares of both CTT and a6,i have a quadratic dependence on pR

and pL, the location of the 3D endpoints in camera coordinates. Therefore, 3D lines which are closer to the camera,
will contribute less to the error variance in the output parameters. This is to be expected, since the projections of
these lines changes the most for a small change in translation. Lines parrallel to the x-axis will not constrain the
translation along the x-axis or rotation about it. Similiarly, lines parrallel to the y-axis and z-axis, will not constrain
the output parameters along the y-axis and z-axis, respectively.

5 Results and Discussion

The development of the algorithms presented here is part of a larger effort to have the UMASS robot "Harv"
navigating the sidewalks of the UMASS campus [4]. We tested our algorithm using a 3D model of the campus
environment around the Graduate Research Center. Fig. 2a and Fig. 3a are example images on which we tested
our algorithm. Experiments were conducted with both real image data and simulated data with noise added to it.
The landmarks used were the 3D lines forming the visible corner of the building, window lines, lampposts, telephone
poles and one sidewalk line. The experiments for both synthetic and real data were conducted with the camera being
about 300 feet distant from the building in Figs. 2a and 3a. The synthetic data experiments were conducted with
projections of 3D lines from the model. The camera was assumed to be placed at the same location as the first frame
of the real data experiments. For that frame, there was one telephone pole 50 feet away from the camera. The rest
were in the range of 150 to 300 feet away.

We used a SONY B/W camera, model AVC-DI. Linked to a GOULD frame grabber, 512 by 484 size images
are obtained, with field of view of 24.0 deg. by 23.0 deg.. Knowledge of the intrinsic parameters of the camera are
extremely important for our real data experiments.

The 3D model was built over two passes. In the first pass, it was built using blueprints of the campus. These
blueprints are drawn to a scale of 40 feet to an inch. We found errors of up to 10 feet in this 3D model. In the second
pass, we surveyed the landmarks using theodolites. We believe most of our 3D model is now accurate to within 0.3
feet. Some landmarks, such as poles and posts, are difficult to position accurately, because of their cylindrical shape
and no good distinguishing points. Accuracy of the 3D model is very important for our present experiments. An
error of 1 foot in the location of a 3D landmark, 50 feet away from the camera, can cause it to be displaced by 24
pixels in the image.

5.1 Synthetic Data experiments

The synthetic data experiments were conducted for both algorithms "R.and.t" and "R-then-t". The two algorithms
were run with four different sets of lines, each set being perturbed by atleast two different amounts of noise. Zero
mean uniform noise was added to the p and 6 of each image line. In Tables 1 and 2 the noise for each simulation is
specified in the p and 6 columns. One pixel noise in p means that to the p of each line, we added a Ap, which was a
random number anywhere in the range [-i,+1]. Similiarly, one deg. noise in 0 means that to the 6 of each line, we
added a AO, which was a random number anywhere in the range [-1,+1]. We did our simulations for 1 deg. or 5 deg.
noise in 0 and I pixel or 5 pixel noise in p. For each set of lines and each specification of input noise, we created 100
data samples, by starting our random number generator each time with a different seed point. The results presented
in the Tables, are the average absolute error of the computed rotation and translation over these 100 data samples,
for each set of lines and each noise specification. The results for the "R-thenT" and "R-andT" algorithm are in
Table 2 and Table 1, respectively. Rotations and translation errors in the Tables for synthetic data are specified with
respect to the camera coordinate system (Fig 1). The rotation errors are specified in terms of error in degrees of the
axis-angle 3D rotation vector. AT corresponds to error in translation in the direction of the rows in the image plane
(in camera coordinates). AT,, corresponds to error in translation in the vertical direction in camera coordinates.
AT, corresponds to error in translation along the direction of the optical axis in camera coordinates.
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The first set of 5 lines consisted of the 4 corner edges of the building visible in Fig. 2 and one window line
in that same building. The second set of 10 lines consisted of the 4 corner edges of the building, as above, and 6
lampposts and telephone pole lines. The third set of 14 lines consisted of these 10 lines plus three more lines on the
building and one side walk line. The fourth set of 30 lines consisted of the above 14 lines. Plus, we assumed we had
been able to identify 6 vertices, e.g. the corner of the building and drew virtual lines between these vertices if they
were not already joined.

As. can be seen by comparing the Tables, the results of "R-andT" algorithm in Table 1 are much better then
the results of "R-thenT" algorithm in Table 2. With zero noise specified, both algorithms gave the correct result.
For each set of lines and each specification of noise, "R-andT" performs much better than "R-thenT". The results
for "R-thenT" are particularly bad for the 5 and 10 line simulations. This can be explained by the observation
that. in the 5 line case, 3 of the lines form a trihedral junction. As noted before, for trihedral junctions we can have
an infinite number of translations. Thus, the translation is pinned from this infinite set by just the remaining two
lines, both of which are vertical and not too far from each other. With noise, therefore we would expect large errors
in translation. Similiariy, in the 10 line simulation, most of the lines are vertical. Vertical lines, do not disamiguate
rotations about the x-axis and translations along the y-axis. This problem is even more compounded when the
rotation stage is separated from the translation stage.

In the Tables for both algorithms, we notice that the error decreases appreciably. decreases as the number of
lines increases. In the "R-andTT" Table, we give results of experiments with the 5 line data set for two extra cases. If
we look in Table 1 at the results of the 5 line data sets, we find appreciably larger error when the noise in 0 is 5 deg..
However, when the noise in p is 5 pixels and the noise in 0 1 deg., the errors are much smaller. This demonstrates
what we had predicted via the uncertainity analysis section: noise in 6 for lines is much more harmful than noise in
p. Finally, in all experiments, the error in AT, was found to be often larger than the errors in AT and AT, This
is because of the fact that the majority of our 3D lines are vertical.

5.2 Real Data Results

The real data experiment used only the "R-andT" algorithm. A sequence of 6 frames was used for this experiment.
The camera was moved in an approximate translatory motion 25 feet along the walkway. Each subsequent frame
was taken after a movement of 5 feet down the walkway. The sidewalk line is close to parallel to the x-axis in the
world coordinate system. The z-axis is the vertical axis in the world coordinate system. The 2D images lines were
taken from the output of a 2D line matching system [14], this is part of our mobile robot project. For each frame.
column 2 in table 3 gives the number of lines the 2D line matcher was able to correctly match. Fig. 2a and Fig. 3a
are images with the 2D lines of frame 2 and frame 4, respectively, as returned by the line matcher. These were used
as input to our algorithm along with the 3D model.

Table 3 gives the estimated error of our algorithm for translation in world coordinates. In most cases, the robot
is located to within a foot. The errors in table 3 are approximate to 0.5 feet. The Drecise location of the camera is
not known. It is better to judge the performance of the algorithm by looking at the projections of the 3D landmarks
on the image after the pose has been estimated. Fig. 2b and Fig. 3b are the projections of the 3D andmark lines
from the position returned by algorithm "R-andT". As mentioned earlier, the 2D data used is the output of the 2D
line matcher. We get better results when the image lines are found by a sub-pixel line locator.

The results can be improved by the following four measures. (1) Use more lines, some of which can be obtained
by drawing virtual lines from the corner of the building to the tops of lampposts. (2) Use closer landmarks. The
most accurate result is for frame 1; this is probably, because it is the only frame in which there is a telephone pole
50 feet away. (3) We may not know all our intrinsic camera parameters accurately. Work is underway to calibrate
the camera very precisely. (4) Improve the 3D positioning of the lampposts and poles.

Finally, the algorithm as it stands is not able to handle outliers. Sometimes the 2D line matcher errs and
matches a wrong set of telephone lines. In the case of the telephone poles this introduces an error of 50 pixels or so.
Our algorithm cannot recover from this by just looking at the residue errors for each line, from a least mean square
analysis. More robust methods have to be employed to detect outliers. This is part of our current research.
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Table 1: Average Absolute Error of Translation and Rotation for algorithm "R-andT" The average for
each experiment is taken over 100 samples of uniform noise.

NOISE ROTATION ERROR TRANSLATION ERRORNo.1 6 I  p 6, 1w, 1 £, AT.1 ATV AT,
Lines deg. pixes deg. deg. deg. feet feet feet

Correct 0.00 0.00 0.00 0.00 0.00 0.00

5 1.0 1.0 0.24 0.15 0.04 0.21 2.03 1.16
5 5.0 5.0 1.20 0.79 0.19 1.08 10.14 6.20
5 1.0 5.0 0.24 0.16 0.04 0.21 2.04 1.18
5 5.0 1.0 1.19 0.78 0.19 1.08 10.14 6.20

10 1.0 1.0 0.21 0.08 0.05 0.02 1.73 0.08
10 5 5.0 ]0.72 _0.27 0.31 0.18 6.33 0.48t 14 1. 1.0 .10.0710.061 0.08 0.031 0.77 1  0.02
14 5.0 5.0 0.34 0.30 0.39 0.17 3.80 n-12
30 1.0 1.0 0.03 0.05 0.06 0.06 0.48 0.06

30 5.01 5.0 0.16 0.24 0.31 0.32 2.39 0 0.3

Table 2: Average Absolute Error of Translation and Rotation for algorithm "RthenT" The average
for each experiment is taken over 100 samples of uniform noise.

NOISE _ _ROTATION ERROR TRANSLATION ERROR

No. 61 p 6W w AT1 6 AT , AT,
Lines deg. pixels deg. deg. deg. feet feet feet

Correct 1 0.00 0.00 0.00 0.00 0.00 0.00
5 1.0- 1.01.081 506 1 .62111.44 113.96 1 51.16

1 5.0 5.0 3.19114.65 1.62 32.69 J39.85 149.40
10 1.0 I 1.0 0.50 2.26 0.31 9.24 8.83 8.84

10 , 5.0 j 5.0 2.44 j 1045 J 1.28 j 40.83 40.03 38.6514 1.0 1.0 0.29 1 0,29 0.18 0.35 2.37 0.23
14 5.0 501.50 I 0.91 1.92 112.44 1.27
301 1.0 1.0 0.09 1 0.10 0.131 0.40 11.011 0.36
30 5.01 5.0 0.45[ 0,50[ 0.66] 2.09 J 5.05 1.82

Table 3: Real Data results for a
sequence of 6 frames.

o Estimated Errors of
Translation for "R and T"

. Frame Num. TRANSLATION ERROR
No. Lines &T. ATV AT,

1 17 0.10 0.06 .0.03
2 15 0.38 -0.25 0.13
3 12 -1.1 0.3 0.10
4 7 0.57 0.86 0.65

j 5 13 1.60 0.72 0.54
6 13 1.87 1.10 0.72Figure 1. Camera and world coordinate

system (perspective projection).
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Fig 2a. Input lines from 2D Fig 2b. Projected Lines
Line matcher for after estimation
Frame 2. of pose for Frame 2.

Fig 3a. Input lines from 2D Fig 3b. Projected Lines
Line matcher for after estimation

Frame 4. of pose for Frame 4.

881



CONSTRAINTS FOR INTERPRETATION OF PERSPECTIVE IMAGES *

Fatih Uluptnar and Ramakant Nevatia
Institute for Robotics and Intelligent Systems

University of Southern California
Los Angeles, California 90089-0273

ABSTRACT

Problem of surface orientation recovery from line drawings in a single image, obtained under perspective projec-
tion is studied. Two constraints, shared boundary constraint and the orthogonality constraint previously used in
orthographic projection are extended to perspective projection. New constraints are derived from observations of
parallelism and a new kind of symmetry that we define, called the convergent symmetry. Convergent symmetry
is the type of symmetry we get when we project a symmetric object under perspective projection. Unlike skew
symmetry, convergent symmetry provides sufficient constraints to recover unique surface orientations. The set of
techniques given should allow extension of all previous orthographic analysis and provides new tools for additional,
more constrained analysis. An example illustrating the use of our techniques is provided. Finally, extension of the
constraints for some class of curved surfaces is discussed.

1 INTRODUCTION

Inferring the 3-d shape of an object by using only the contours of its image has be a problem of prime interest in
computer vision. The problem is, of course, inherently ambiguous as many objects caii give rise to the same contours
under different imaging conditions. However, some constraints on the 3-d positions and orientations do follow from
the image, and even unique answers can be found in some cases if certain regularity assumptions can be made. This
paper provides some new constraints that apply in the case of perspective projection.

The problem of line interpretation was first studied in depth for scenes of polyhedra. Pioneering contributions
were made by Huffman and Clowes [Huf7l] [Clo7l] in rules for line labeling. Mackworth [Mac73], based partly on
work of Huffman, derived some quantitative constraints on orientations of the planes in the line drawings. Kanade
[Kan8l] showed how incorporating some regularity constraints, particularly symmetry constraints, allowed for unique
interpretations in some cases. More recently Sugihara [Sug86] has developed a comprehensive set of techniques to
analyze polyhedral scenes.

Several researchers have also attempted to develop methods that apply to non-polygonal and non-planar curves and
surfaces also [BY84] [BT81] [Wei88] [Asa87] [Ste8l] [TX87] [UN88]. In [UN88] we provide a comprehensive review
of these techniques and some new techniques for analysis of a broad class of curved surface scenes.

Usually, such analysis assumes orthographic projection. In this paper, we derive constraints that apply to the more
general perspective projection. It has been conventionally thought that constraints for perspective projection would
be too unwieldy as the image appearance depends not only on the viewing angle but also the viewing position. We
show that the resulting constraints, though more complex, are quite usable. Orthographic projection may be a good
enough approximation when the viewing angle is small but perspective analysis may be necessary in other cases.
However, we find that the perspective constraints actually carry more information and can provide more constrained
or even unique interpretations.

Some researchers have investigated perspective projection before. Draper [Dra81] gave a constraint that derives from
boundary between two faces. Sugihara [Sug86] gives a linear programming method to determine the realizability of
a line drawing under orthographic projection. His formulation can also be carried out under perspective projection.
However, this method leaves many degrees of freedom undetermined for surface orientations and does not provide

.This research was supported by the Defense Advanced Research Projects Agency under contract number F 33615-87-C-
1436 monitored by the Air Force Wright Aeronautical Laboratories, Darpa Order No. 3119.
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a way of incorporating other geometric constraints like symmetries. Sugihara does show how to use additional
constraints such as shape from shading in an optimization scheme.

In this paper, we provide a set of techniques for perspective projection that parallel many of the traditional techniques
for orthographic projection and hence can be applied where the latter techniques apply. Some of the constraints we
describe have been previously presented by Shafer, Kanade and Kender [Sha83I; we will make specific references to
their work in the appropriate places.

In section 2, we define some terms for perspective projection that are used to develop the constraints for perspective
projection. Some of these constraints are generalizations of the constraints for orthographic projection, however,
some are new and apply to perspective projection only. One of our contributions is the definition of a new kind
of symmetry in the image that we call convergent symmetry that can provide unique orientations for such figures
directly without using any other constraints! In section 4, we show how to apply the mathematical constraints we
have derived for an example. In section 5, we give an analysis for curved surfaces.

2 PERSPECTIVE PROJECTION

Perspective projection is the exact projection model for the pinhole camera and a very good approximation for the
lens systems used on cameras for objects in focus. In perspective projection there is a focal point, let it be the origin
of the coordinate system. Any point, (x, y, z), in 3-D forms a ray passing through the point and the focal point (the
origin). We can represent this ray as (u,v, 1) where u - x/z and v = y/z. The intersection of this ray with the z = 1
plane forms the image of this point, then the intersection has coordinates (u, v) on that plane. Note that any point
(u, v) on the u - v plane is also a point or a vector (u, v, 1) in the x - y - z coordinate system. This duality of the
points will be used throughout the paper. Hereon the z = 1 plane is called the image plane, the projective plane or
the u - v plane.

Consider a line, L = Rt + P, in 3-D, parameterized in t, where R = (r,, ry, r,) is the orientation of the line and

P (p, py, p.) is any point on the line. From just the image of L on the projective plane we can not recover the
parameters R or P. But we can extract some other useful parameters. The image, Li = R~t + Pi, of the line L, can
be considered as a line in 3-D which lies on the u - v plane. Say Li has equation au + by + c = 0 on the u - v plane,
then

Ri = (-b,a,O) Pi = (pu,,pv,1) (1)

where P, is any point on the line L, and Ri is the 3-D orientation of the line Li. Note that Ri and Pi are the only
observables of the line L from the image of it, and they are not unique but scalable.

We define another useful observable. If the line L does not pass through the origin' then we can define a plane by
the line L and the origin. This plane has the property that the image, Li, of the line L is the intersection of this
plane and the image plane. This plane will be called the image generating plane or IGP (this plane is called the
interpretation plane by Macworth [Mac73]). IGP of L can also be constructed by using the line Li and the origin.
The normal of IGP (hereon it is called NIGP of the line L) A is given by:

A = RxP - RixP,

= (a, b, -pua - p~b) (2)

The - symbol indicates the parallelity of the vectors which implies componentwise equality up to a common scale.
For u = (u., uy, u,) and V = (v,, vy, v,), if U = V then (u., u., u,) = (Ave, Avy, Av,). The NIGP of a line is called
the vanishing gradient of a line in [Sha83]. Note that (-p,a - pub) is equal to c since (pu, P,, 1) is on the line Li. In
fact c is proportional to the minimum distance of the line from the origin of the u - v plane. Then A is equal to:

A = (a, b, c) (3)

The NIGP, A, of the line L is a very simple quantity that we can obtain directly from the equation of Li on the
image plane.

'If the line passes through the origin then it projects as a point on the image plane, therefore this plane is defined for every
line visible on the image plane.
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3 CONSTRAINTS UNDER PERSPECTIVE PROJECTION

We now derive several constraints that follow from the properties of lines and surfaces under perspective projection.

3.1 Choosing a representation for Surface Orientation

Consider a plane in 3-D having equation:

ax + by + cz + d = 0 (4)

The normal of this plane is N = (a, b, c). However, as the normal of the plane has only two degrees of of freedom,
we can normalize the normal vector as N = (p, q, 1), where p = a/c and q = b/c (note that this excludes cases
where c - 0). (p, q) can be viewed as a point in the gradient space. Gradient space has been useful for orthographic
analysis since the degeneracies of gradient space (normals of the planes parallel to the z axis) also corresponds to the
degeneiacies of the orthographic projection (those planes project as lines). However, planes that are unrepresentable
by the gradient space may be present in perspective images. Unfortunately, up to date we were unable to find a
representation for the normal of a plane having only two components and the condition that the equation of the
plane be linear in these components. We will derive our constraints first in abstract vector notation and then give
two different representations. First representation is the regular gradient space; it has the advantage of simplicity
but contains important singularities. The second one is just a regular vector (p, q, r) in 3-D with the constraint that:

p2 +q 2 +r 2 =1 (5)

This can represent normal of any plane in 3-D, with the added complexity that equation 5, a quadratic equation,
should'be included among equations to be solved.

3.2 Shared Boundary Constraint

This constraint relates the orientation of two planes intersecting using the image of the line of intersection. Similar
results has been derived previously in [Sha83]. Say two planes have normals N1 and N 2 , then the line, L = Rt + P,
formed by intersection of these planes has orientation:

R = N 1 x N2  (6)

If the image Li = Rit + Pi has the equation au + by + c = 0 on the u - v plane then the NIGP of the line is
A = (a, b, c). Also note that A = R x P, that is ALR, therefore:

A.R = 0

A.N xN 2  = 0 (7)

This is the shared boundary constraint in the form of a vector equation. Depending on the representation for N1
and N 2 the final equation changes, but the vector equation remains the same. If the gradient space is used with
N1 - (pi, q1, 1) and N 2 = (P2, q2, 1) then the shared boundary constraint becomes:

a(q2 - ql) - b(p2 -- Pl) + c(p2ql - plq2) = 0 (8)

Here a, b and c are known and unique quantities up to a scale factor. This equation defines a line in p - q space when
we fix one of the normals N1 or N 2.

If the (p, q, r) representation is used, then N1 = (pl, q1, rl), N 2 = (p2, q2, r 2) and the constraint equation is:

a(qlr2 - q 2rl) + b(rIp2 - p1 r2 ) + c(plq2 - qIP 2 ) = 0 (9)

This equation defines a plane in terms of (pl,q1,rl) when (p 2,q 2 ,r2) is fixed or vice versa. In this representation
there are actually three constraint equations, one is the above and two others are obtained by substituting (pi, q1, rl)
and (P2, q2, r 2 ) in equation 5.

884



3.3 Parallelity Theorem

In orthographic projection, parallel lines in 3-d project into parallel lines in the image. This, is not the case, in
general, under perspective projection. However, if we are given the information that two image lines are ,n fact
parallel in 3-D, we can infer some important information about their orientations.

Theorem 1 If two lines L, = Rlt + P1 and L 2 = R 2t + P2 are known to be parallel in 3-D (i.e. R 1 - R2 - R).
Then the orientation of the lines, R, is given by R = A, x A 2 where A 1 and A 2 are the NIGPs of the lines L 1 and
L2.

Proof This is not an entirely new result but has been used previously in [Bar83], [Sha83]. A 1 and A 2 are computable
from the image of the lines L. and L 2 as given by equation 3. Also from equation 2, A1 = R x P, and A 2 = R x P 2.,
then we get:

A, x A 2  (R x PI) x (R x P2 )

- (R. (P1 x P 2))R- (P . (R x R))P 2

- (R. (PI x P ))R

R (10)

Unless the lines L1 and L 2 are parallel to the image plane, their images intersect and the intersection point, I, is
given by I - A1 x A 2 . Note that this theorem does not have any analogy in orthographic projection.

3.4 Orthogonality Constraint

This constraint is derived from the knowledge that two lines in a plane are orthogonal in 3-D. In orthographic
projection, this hint may come from the observation of a skew symmetry. For perspective projection, we will assume
the orthogonality knowledge to be given for now, in the next sub-section, we show how it may be inferred from a new
form of symmetry that we call the convergent symmetry. This constraint could also be applied to curved surfaces
where we may have some means of detecting lines of minimum and maximum curvatures.

Consider a plane 1-1 having normal N, and two orthogonal lines on the plane

L, = R1 t + Pi L 2 = R 2 t + P2  (11)

These lines have the NIGPs A, = (a,,bl,ct) and A 2 = (a2 ,b 2,c 2). Since A, is the normal of the plane containing
L, and the origin and also L 1 is on the plane II then Li is the intersection of these two planes. Therefore

R 1=A xN R 2 =A 2 xlN (12)

By the orthogonality constraint (i.e. R 1LR 2 ) we get:

R, •R = 0

(Ai xN).(A 2 xN) = 0 (13)

This is the orthogonality constraint in the form of a vector equation. This constraint takes slightly different form
depending on the representation used. If we use the gradient space, then N = (p, q, 1) and the constraint equation
is:

(aia 2 + cIc 2)q
2 + (bib 2 + cic2)p' - (arb 2 + a2 b,)pq-

(blc 2 + b2c1 )q - (arc2 - a2c,)p + bib2 + a, +a2 = 0 (14)

This is a quadratic equation in terms of the gradient (p, q) of the plane Il. For most choices of parameters, this will
represent a hyperbola on the p - q plane, as for orthographic projection, but not necessarily centered at the origin.

If we use the (p, q, r) representation then N = (p, q, r) and the constraint equation is:

(brb 2 + ala 2)r
2 + (cc2 + aa 2)q

2 + (clc 2 + brb2 )p+

((bc 2 - b2c1)q + (-ac 2 - a2 -, )p)r + (-aIb2 - a2br)pq = 0 (15)

Note that p and q in this representation are not the same as for the gradient space. This is a quadratic surface in
p - q - r space. As in the case of shared boundary constraint, this equation should be used in conjunction with the
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constraint equation 5 which is a sphere. With these constraints only one degree of freedom is left for the orientation
of the plane 1l.

As in the case of orthographic projection, the orthogonality constraint by itself does not give unique orientations.
As before, some ad hoc choices could be made, or this constraint needs to be used in conjunction with others.

3.5 Convergent Symmetry

In this section an object refers to a planar surface in 3-D bounded with a piecewise linear boundary, and a figure
refers to the projection of the boundary. An object is called symmetric in 3-D if there are lines on the object joining
the points of the boundary, called lines of symmetry, such that the locus of the mid points of these lines forms another

line, called axis of symmetry, and that the axis of symmetry is orthogonal to the lines of symmetry. An arrow like
object and its symmetry axis with the lines of symmetry are shown in figure 1(a). If we project a symmetric object

using orthographic projection we get a figure having skew symmetry as proposed by Kanade [Kan8l]. If we use
perspective projection then we get a figure having a new symmetry called convergent symmetry.

Definition: A figure is said to be convergent symmetric if there exist point to point correspondences between all
points of the figure such that:

(a) All lines joining points of correspondence, called lines of symmetry, intersect in a common point on the image
plane.

(b) The projection of the mid-points of the 3-D lines of symmetry lie along a straight line on the image plane.

Under perspective projection, projections of parallel lines meet at a point on the image plane. Therefore the pro-
jections of the lines of symmetry should meet at a point when extended on the image plane, that is they should
be convergent. The axis of symmetry is, however, no longer defined by the locus of the mid points of the lines of

symmetry in the image plane. Instead, we require that the midpoints of the lines of symmetry, in 3-D be along a
straight line. We show how this 3-D computation can be performed in the following. Figure 1 (b) shows an example

of an arrow like object under perspective projection with its axis and lines of symmetry. First, we give a formal

definition for convergent symmetry and then a procedure for checking it.

The corresponding points would be easier to determine in a figure with several corners, as each corner must correspond

to another corner. However, the above definition is general and applies to any figure (including curved figures). In
general, of course, we can first choose the point of convergence, and then define lines of symmetry from it. The
following procedure is to check that the second part of the definition is also satisfied.

For every line of symmetry we can find the projection of its 3-D mid point. Consider figure 1 (b). Let L = Rit + P
be one of the lines of symmetry, and let E and F be the two corresponding points on this line with image coordinates

of (Ue,ve) and (uf,vf) respectively. Let (uc, v,) be the point of convergence for the lines of symmetry. Then
R1 = (u,, v,, 1) from the parallelity theorem, and P = (ue, ve, 1) as Ll passes through E. With these values for RI
and P the u - v coordinates of the image of a point on the line Ll is given by:

(Ue + tuc ve + tvc (16)
1 + ' I~ + (1

The coordinates of the image of the 3-D mid point of the line Ll between the points E and F is

((2u, - uc)uf - uu,~ (2v, - v,)Vf - Vcee
uf +u. 2u t V + e -2vc(17)

This gives us a procedure for finding the projection of the 3-D mid-point of any given line of symmetry. To check
whether a given figure is convergent symmetric, we simply need to find the projections of mid-points of all lines of

symmetry and check that they lie on a straight line, say L, (L, is the projection of the 3-D axis of symmetry). The

NIGP value for L,, A = (a, b, c), can be obtained by

A =- T x P (18)

where T and P are midpoints of any two distinct lines of symmetry (the mid-points are given by equation 17).
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Figure 1: (a) An arrow like planar object with its axis of symmetry, solid vertical line, and lines of symmetry, dashed horizontal
lines. (b) Projection of the arrow like object and its convergent symmetry lines; dashed lines are the lines of symmetry meeting
at the point (uc, vC), L1 is one of the lines of symmetry meeting the boundary at points E and F. The vertical solid line is
the axis of symmetry, L,, having NIGP of A = (a, b,c).

Computing Orientation Using Convergent Symmetry

Now we will apply the constraint that the axis of symmetry is orthogonal to the lines of symmetry in 3-D. First, we
state a theorem related to this.

Theorem 2 If a convergent symmetric figure is assumed to be a perspective projection of an orthogonal symmetric
planar object, then the orientation of the planar object can be determined uniquely (unless the convergent symmetry
is actually a skew symmetry with point of convergence at infinity, the axis of symmetry goes through the origin of the
image plane and the lines of symmetry are orthogonal to the axis of symmetry on the image plane).

We will give a constructive proof of this theorem in the following. Note that the theorem asserts that the constraints
provided by convergent symmetry are much stronger than those provided by skew symmetry. The process is similar
to that of skew symmetry analysis, but unlike in the case of orthographic projection, in perspective projection the
axis of symmetry intersects every line of symmetry at a different angle than the others on the image plane. This
results in a different constraint equation at every point on the axis of symmetry. Every equation gives a different
constraints hyperbola on the p- q plane (if p- q space is used). But all of these hyperbolas goes through one point
on the p - q spac- and this point is the only solution to all of these constraints equation. Therefore, we get a unique
answer for the surface normal by using convergent symmetry, except for some special cases noted in the theorem. In
gradient space (p, q) representation, we can find a close form solution. And the degeneracies of p - q space can be
compensated as will be clear later. Consider the object in figure 1. Axis of symmetry has the NIGP of A = (a, b, c)
and assume that A is normalized (i.e. JAI = 1). There are infinitely many lines of symmetry all of which pass through
the point (ut, vc) on the image plane. Say the intersection of these lines with the v axis has the coordinate (0, k)
where k is a parameter having a range that covers the figure. Then these lines have the NIGP:

Al = (0, k, 1) x (u ,vc,1)

= (k-v ,u,-uck) (19)

Say the normal of the plane containing the object is N = (p, q, 1), then from the orthogonality constraint we have:

(A x N)- (A x N) = 0 (20)
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k((-cq2 + bq - cp 2 + ap)uc + aq2 - bpq - cp + a)+

(-aq2 + bpq + cp-a)v c + ((-ap-c)q + bp 2 + b)u, = 0 (21)

This constraint should be satisfied independent of the value of k, then we get two constraints of the form:

(-cq2 + bq - cp 2 + ap)uc + aq2 - bpq - cp + a = 0

(-aq2 + bpq + c p - a)vc + ((-ap - c)q + bp2 + b)uc = 0 (22)

There is only one real solution to these equations tien by:

(ab2 + a3 )v + (-b 3 - a b)uovc + (-b 2 - a2 )cu, - ac2 + a
p (b2 + a2 )cv2 + (bc 2 - b)vc + (b2 + a2 )cU, + (ac2 

- a)uo

((ab 2 + a3 )uc + (b + a2 )c)vo + (-b' - a2b)U2 + bc' - bq = C(23)
(b2 + a2)CV2 + (bc2 - b)vc + (b2 + a2 )cu2 + (aC2 - a)uc

This gives us the normal, N = (p, q, 1), of the plane containing the object in terms of the observables, A (a, b, c),
and the intersection point, (ut, vc), of lines of symmetry on the image plane. As mentioned before in the gradient
space representation normal of the planes that are parallel to z axis are not representable, that is because those
planes have the third component of the normal vectors equal to zero, and equivalent of a vector, V = (f, g, 1), under
this representation is obtained by dividing the vector by the third component of the vector, (f/1, g/l, 1). However,
the expressions for p and q in equaticn 23 have the property that the denominator for p and q are the same then by
multiplying the N vector with this denominator we get another vector, N', having the same orientation as N but
have no singularity as for representing planes parallel to z axis. Then the vector N' is :

N' = ((ab2 + a3 )v2 + (-b 3 - a2 b)UVo + (-b 2 - a')cu, - ac' + a,

-((ab' + a')u, + (b2 + a2 )C)Vo + (-b3 - a2b)u2 + be2 - b,

(b2 + a2 )cV2 + (be2 - b)v, + (b2 + a2)CU2 + (ac2 - a)uc) (24)

Unlike the skew symmetry under orthographic projection, for a convergent symmetric figure in perspective projection
we can compute the orientation of the planar surface completely. That is, we even do not have the neckers reversal,
this is also in agreement with human perception. For example the cube in figure 2 can be reversed if one tries but the
reversed figure does not look symmetric at all. Therefore if we want to bias towards symmetric objects then there is
only one answer for a convergent symmetry figure. This is another instance in which the perspective projection can
be used to give more information than the orthographic projection.

All of the above derivations assume that the intersection point (ut, v,) is not at infinity. In the latter case, we can
obtain the solution using the limits of the solutions. Let us say the slope of the lines of symmetry is m, then we
can obtain the solution by replacing v. by muc in equation 23 and taking the limit as uc goes to infinity. Then the
solution in 3-component vector form is:

N' = (am 2 - bin, -am + b, cm 2 + c) (25)

In the theorem of convergent symmetry, we mentioned that we get a unique orientation from convergent symmetry
except under some special cases. In fact, if lines of symmetry are parallel to each other on the image plane, and
image of the axis of symmetry is passing through the origin of the image plane (i.e. c = 0), and on the image plane
the axis of symmetry is orthogonal to the lines of symmetry (i.e. b/a = m), then N' becomes a zero vector. However
this requires a very specific viewing angle and thus can be ignored under normal viewing conditions. This is the case
that convergent symmetry acts like the skew symmetry of orthographic projection, that is, now it is a constraint
leaving one degree of freedom, which is basically the orthogonality constraint given in equation 13.

4 USAGE OF THE CONSTRAINTS FOR POLYHEDRAL OBJECTS

In the previous section we have derived four constraints under perspective projection (however, not all four are
independent as parallelity and orthogonality constraint are used in the convergent symmetry). For a given figure, we
need to determine which constraints are applicable. Note that the shared boundary constraints make no regularity
assumptions about the figure and must always apply (ignoring any "errors" in the line drawing).
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Figure 2: A cube under perspective projection (a), and computed orientations for the faces shown as points on the p - q space
with the shared boundary constraints overlaied, dashed lines, (b).

Other constraints, however, require observation of some regularity in the image and assumption that the 3-D object
obeys corresponding regularity also. Of these regularities, symmetric convergence is quite stringent, i.e. it is
unlikely to be caused by accident, though we still can not guarantee that the 3-D object is orthogonally symmetric.
Unfortunately, symmetric convergence is strong only when at least three lines converge on the image plane, as two
lines always converge (unless they are parallel to eachother on the image plane). Thus, a planar object .iaving
four sides to a face can always be construed to be symmetric convergent. Observations about parallelism and
orthogonality may also not be apparent in the image. In orthographic projection, parallel lines remain parallel; in
perspective projection they do not. On the other hand, however, in perspective projection we have much tighter
constraints. Thus, one way to solve the interpretation problem is to make regularity assumptions and verify by using
the constraints. We illustrate this by an example.

Figure 2(a) shows the image of a cube under perspective projection (the reader will get a better perception of the
figure if the picture is held very close to the eye). Applying the shared boundary constraint (in the gradient space
for the sake of illustration here) gives us a triangle, say G1 G 2G 3 in figure 2(b) which specifies the orientations of the
three faces. Note that in perspective projection, the shape of the triangle may depend both on its position and its
size (both of which need to be determined). Additional constraints can come from the symmetry of the faces. As
described earlier, any quadrilateral can be viewed as being convergent symmetric. Assuming that the three faces are
projections of orthogonally symmetric shapes (i.e. rectangles), we can get unique orientations for the three faces.
In this example, these values happen to be consistent with the shared boundary constraints (and with the known
correct answers from which the example was constructed). Alternately, we could have used the parallelity constraints
between opposite sides of the faces. For this example, this regularity Is suggested by the observation that groups of
three lines (corresponding to parallel lines on two faces) do intersect in common points. Using this constraint, the
answers turn out to be the same as before and hence consistent.

Of course, in general, we can not expect all constraints to be satisfied simultaneously for all figures. If the image had
been derived from a rhombus, instead of a cube, the convergent symmetric results would not agree with the shared
boundary constraints. Now, we can make several choices. We can either make all faces equally non-symmetric (by
some measure), or still achieve consistency by making two faces (any two) symmetric and the third non-symmetric.
In general, it should be possible to define a penalty function and find "optimal" solutions. However, we have not
investigated such approaches. Our feeling is that the only time we can get strong interpretations is when some of the
evidence is overwhelmingly strong and that this is the evidence we would use at the exclusion of the other constraints
(those that require some assumptions).

5 EXTENSIONS TO CURVED SURFACES

In a recent paper we [UN881 described methods for recovery of surface orientation of curved surfaces from contours
under orthographic projection. The analysis was based on observation of a form of symmetry that we called parallel
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Figure 3: Contours of a conic surface under perspective projection, with the point of convergence for the rulings P, and the
line It(s).

symmetry. Two planar curves are defined to be parallel symmetric if there exist a one to one correspondence between
the points on the curves such that the tangents to the curves at corresponding points are parallel. The importance
of the parallel symmetry is that, if we cut a zero gaussian curvature surface with two parallel planes. Then it can
be shown that we get two parallel symmetric curves from the intersection of the planes with the surface such that
corresponding points of these curves are joined by the rulings of the zero gaussian curvature surface.

Two curves that are parallel symmetric in 3-D also project into parallel symmetric curves in the image under
orthographic projection. However, this is not the case under perspective projection. In the following, we give
conditions that curves in a perspective image must satisfy if they are projections of parallel symmetric 3-D curves.
Then we give a method for computing parallel symmetry for certain class of images (those that are projections of
conic surfaces) and show how this can be used for surface reconstruction.

5.1 Parallel Symmetry

Say there are two curves a, and a 2 on the image plane generated by the two planar 3-D curves /31 and J32 in planes
parallel to plane, call it 11, which passes through the origin. We have the relation:

G2(8) 1 32(3) (26)
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were 3iz is the third coordinate of the curve 3i. The curves )31 and )32 are parallel symmetric iff we can form a
monotonic correspondence function f(s) such that:

)3 (s) = 0'2(UW) (27)

where 3i(s) is the tangent vector of the curve Oi(s). For each point of the curve a, the NIGP of the tangent line
(i.e. the line passing from the point ai(s) in the direction a'(s)) of the curve is Ai = ai(s) x a'(s). Since the
curves 01 and 32 have parallel tangents at the corresponding points. From the prallelity theorem the vector function
I(s) = A,(s) x A 2 (f(s)) gives the orientation of the tangents of the curves 01 and 32. That is

,3'(s) -3(f(s)) = I(s) = Au(s) x A 2 (f(s)) = (ai(s) X a (s)) X (a2(f(s)) X a)(f(s))) (28)

Since the curves f1 and 32 are planar curves resting on planes parallel to H, their tangents should be on the plane H1.
Therefore every orientation given by the function I(s) (i.e. the vector from the origin to the points of I(s)) should
be on the plane H. The image of I(s), Ii(s), is the curve on the image plane that can be obtained by projecting
the points of I(s) on to the image plane. Since I(s) is on the plane II which passes through the origin its image has
to be a line. li(s) being a line is the necessary condition that two curves a, and a2 are projections of the parallel
symmetric curves 31 and 32. Also the orientation of the plane 1H is just the NIGP of the line !i(s) since I1 is the
IGP of this line. Also the curve Id(s) is the locus of intersection points of the tangent lines of the curves al(s) and
a 2 (f(s)) see figure 3.

5.2 Analysis of a Conic Surface

We now concentrate on conic surfaces (or linear straight homogeneous generalized cones in generalized cones termi-
nology) cut by two parallel planes (say parallel to plane II) to form curves, say 1(s) and 32(s). Let a, and a2 be
the projections of 31 and 32- In this case, the curves 31 (s) and 32 (s) are parallel symmetric; let the correspondence
function be f(s) as before. The lines joining the corresponding points on the curves 3 and 132 are the rulings of the
surface. For a conic surface, these rulings intersect in a single point in 3-D. For a cylindrical surface, these rulings are
parallel to each other. In either case, the projections of the rulings intersect at a point, say P, in the image plane.

Point P can be found by the intersection of the lines joining the end-points of a, and a 2 . Now draw lines from P
such that they intersect curves a, and a2; the intersection points are the corresponding points on the two curves.
With this correspondence we can construct the curve I(s) and check if 12(s) is straight as in figure 3. If it is, we can

interpret the figure as a conic surface. (Note: point P can also be found by a search process if the end-points of the
curves are not reliable.)

Now we have the plane 11 containing I(s), we can reconstruct 31 and 132 by backprojecting a 1 and a 2 onto planes
parallel to II (up to a scale). However, this is not sufficient to reconstruct the conic surface; the distance between
the planes containing the two curves still remains as a one degree of freedom.

This degree of freedom can be fixed if we interprete the surface as being cylindrical (under perspective, a conic surface
can always be interpreted as being cylindrical). Given the orientation N of the plane II containing 3-D curves 01(s)
and 132(s), the 3-D tangent O3 (s) is given by:

o3'(s) = A1 (s) x N (29)

where Ai(s) is the NIGP of the line passing through a,(s) in the direction ai(s) Ai(s) = a (s) x at(s), therefore

13=(s) (as(s) x a'(s)) x N (30)

Now we have the orientation of 3i(s) at any point. The orientation of the surface is given by

13(s) x R(s) (31)

where R(s) is the 3-D orientation of the rulings. Since the surface is cylindrical, R(s) is constant (i.e. R(s) = R)
and is equal to the intersection point P of the rulings on the image plane (c.f. parallelity theorem). That is R = P
and the orientation of the surface at any point is given by:

((al(s) x al(s)) x N) x P (32)
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We conjecture that if the resulting surface corresponds to a right cylindrical surface2 humans will accept this inter-
pretation as being the most preferred. If the figure is to be interpreted as a non-cylindrical conic surface, further
assumptions need to be made. One alternative is to assume that the surface belongs to a right, generalized cone. We
have not studied the human preferences in such cases, and such experiments are in fact difficult to perform.

6 CONCLUSION

We have derived some constraints on the interpretations of line drawings under perspective projection. Some of
the constraints are analogous to the constraints used in orthographic analysis. However, in perspective analysis, we
typically need to use one more variable in representing orientations; this makes some of the equations more complex
and non-linear. The observation of the regularities may also be not as clear with perspective as it is with orthography.
However, when such regularities can be inferred from some other, perhaps external, context, our constraints can be
used directly.

Our major observation, however, is that when regularity is discovered in perspective, it provides much stronger
constraints than under orthographic projection. We demonstrated this for the case of convergent symmetric figures.
For the case of curved surfaces, too, perspective projection provides considerable amount of information. If the
surface is cylindrical, (or can be interpreted as being cylindrical), than we can reconstruct the surface just from its
contours. For conic surfaces one degree of freedom is left if do rot make additional assumptions. We hope that these
observations will lead to increased use, and exploitation, of perspective projection rather than regarding perspective
as a complicating agent that can be ignored under "normal" viewing conditions.
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ABSTRACT

We present a new approach to the problem of sensor placement planning satisfying the visibility
constraint, namely where the camera should be placed so that a target can be viewed without being
occluded. The approach uses a new way of decomposing the general visibility planning problem
into convex subtasks, and a new way of doing these convex subtasks. The decomposition not only
drastically reduces the number of convex subtasks needed, but it also provides a natural pruning
mechanism for further reducing their number by making the viewing region more conservative, that
is, the resultant viewing region is a filtered version of the true one, but is contained completely in-
side the true one. Extensive implementation results are presented. The validity of the method is
tested by placing the viewpoint inside the experimentally constructed viewing region, and seeing
whether the target is truly visible. The accuracy of the boundary of the constructed viewing region
is tested by placing viewpoints at the critical locations where the target is barely seen and observing
whether the side wall of the viewing region is tangent to the line of sight. The results confirm that
the method is accurate and valid.

Introduction
One of the major factors contributing to the development cost and time for machine vision appli-
cations is the determination of the placement of the camera and the associated optical setup. Being
able to automatically determine the sensor placement is very important for reducing the develop-
ment cycle and cost in today's manufacturing environment. Furthermore, with the increasing em-
phasis on process control and the associated measurements, it has become more and more
important to have a machine vision system that automatically adapts itself to the changing process
requirements, which are updated frequently during process optimization. The ability to automat-
ically determine sensor placement given any process requirement is therefore desirable.

In this paper, we describe a new approach for planning sensor placement that avoids optical oc-
clusion given any specified polyhedral target and occluding polyhedral solid opaque object. The
algorithm applies to the general situation where the occluding object need not be convex, but the
target is assumed to be convex. In Ref. 3, we describe the algorithm for the general case where both
the occluding object and the target are non-convex.

Outline of The New Approach
'[he algorithm described in this section is not intended to be complete. The details are given in the
sections "Algorithms for the Decompositions" and "Convex Visibility Subproblems".

Existing approaches to this problem can be found in Ref. I and Ref. 2.

Motivation
Since the general non-convex viewpoint planning problem is very difficult, decomposing it into
convex subtasks is a useful thing to do. I lowever, using existing schemes, one formidable obstacle
is the immense number of convex partitions of the target and occluding object that may exist in a
real situation. So, one of the original motivations for the new approach described in this paper is
to find a new way of decomposing the problem into convex subtasks that is generally more feasible.
We found a decomposition called "Material-Ilolc Decomposition" that is ideal for this purpose, to

this author was supported in part by DARPA contract N00039-84-C-165
and in part by ManuFacturing Research, IBM 1.1 Watson Research Center.
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be described in the next section. It yields a vastly smaller number of convex subtasks. As for the
convex viewpoint planning subtask itself, we also found a new scheme called "the Rolling Method"
that is far more efficient and simpler than the general half space intersection approach used in Ref.
1.

Alaterial-Hole Decomposition (Loop Decomposition)

Figure I shows an occluding polygon with a hole in it. A straightforward decomposition (e.g. tri-
angulation) will result in a large number of convex subtasks. lowever, we can actually do it with
only two convex subtasks. This follows from the observation that the occluded region for viewing
a target T with an occluding polygon B containing a hole II in it is equal to the occluded region
caused by B (shown in Figure 2) ILESS the region in space where the camera can view the target
'F through the hole II (shown in Figure 3). The first subtask is to determine the occluded region
caused by the material polygon 13. The second subtask is to determine the viewing region through
the hole II. The resultant occluded region is equal to the difference of the above two regions, shown
in Figure 4. In general, the following formula holds:

Occluded Rcgionreltant = Occluded Region.aterial - ViewiigRegionhol, within material (I)

I lowever, we actually need two levels of decomposition to accomplish the task in general. Observe
that if the occluding polygon 13 or the hole II within B or the target T are not convex, then the two
subtasks are still not convex, and therefore, we need another level of decomposition, as shown in
the next section.

Con vex Material-Gulf Decomposition (Con vex Decomposition)
Consider the situation in Figure I discussed earlier. Suppose that the occluding polygon B is not
convex and is shaped like that in Figure 5. Then it is necessary to decompose 13 into its convex
hull B, and a gulf B,.r such that

Polygon = Convex lull - Gulfs or B = B11 I -
13g,If (2)

One might think that just as in the material-hole situation, the following should hold:

Occluded Region,,,,l,,,,, = Occluded Regionvex hull - Viwing Region.,yt

However, this is actually not quite right. Figure 6 shows the resultant occluded region. Clearly,
the region viewed through the gulf is enclosed, which is not intuitively true. Actually, had the above
been true, the resultant viewing region would have been the same as if the gulf in Figure 5 had its
opening or mouth enclosed with an edge or line. Clearly this is not correct since there are valid
viewpoints such that the target is fully visible but it is viewed only partially through the gulf and
partially through the space outside the convex hull B,,,. To obtain the correct viewing region, the
gulf should be enlarged to be B1 ,,/t' ,,,, or B).qw.,,,, as shown in Figure 7. Although Bqu,._hnle is not
convex, the viewing region can still be simply computed, as to be shown in "Gulf Viewing Region
Computation". The resultant viewing region through the gulf is shown in Figure 8, and the re-
sultant occluded region is shown in Figure 9.

Convex Visibility Planning
After the above two decompositions (loop and convex), what remains is the basic convex visibility
planning task. There are two kinds of convex tasks, one is for occluded region computation, and
the other for viewing region computation. We have found a new Rolling Method that computes
the occluded region efficiently. A "hinge-and-swing" method is used to compute the viewing reg" n.
In either case, no general half space intersection is needed.
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Algorithms for the Decompositions

Loop Decomposition
Polygons in general may contain loops (cycles of edges) inside their outermost boundary. These
loops can be nested, as shown in the polygon of Figure 10 . The loop decomposition partitions
the oniginal polygon into the loops that it contains and builds a tree that represents their nesting
explicitly.

Consider the polygon in ligure 10 . I.oops pl through p8 are nested as shown in the loop tree
of Figure 10 . An edge of this tree indicates that the child loop, p3 for instance, is contained in its
parent loop, p1. As a result, the height of the loop tree represents the degree of nesting inside the
polygon.

In addition, the interior of loops at odd levels of the tree, like p l,p5,p6 and p7, are material regions,
while loops at even levels, such as p2,p3,p4 and p8, are holes. We name the former, material loops
and the latter, hole loops.

Con 'ex Decomposition

After the loop decomposition is done, another level of decomposition, the convex decomposition,
is needed to divide the task into convex viewing subtasks.

The convex decomposition algorithm approximate., a simple polygon (a polygon with a single loop)
by a sum of convex polygons. These convex polygons can be added and subtracted in an alter-
nating sequence to construct the original polygon.

Consider the polygon of Figure II . As a first step, the convex hull C, , shown in Figure 12 ap-
proximates the initial polygon and is convex. H[owever, this clearly overestimates the polygon by
the area equal to the difference between its convex hull and the polygon itself. In general, this dif-
ference consists of concave polygons which in turn can be decomposed in a similar fashion. At the
second stage then, the convex hull of each polygon in this difference is computed, resulting in the
convex polygons C2, C1 3, and C, shown in Figure 13 . At this point, when the convex polygons
of stage two are subtracted from the convex polygon of stage one, the initial polygon is underesti-
mated. The difference is again computed and the algorithm proceeds similarly, as shown in
Figure 14 and Figure 15.

The result of this decomposition is a set of convex polygons that can be arranged in a tree, which
we call the convex tree. The original concave polygon can be generated by subtracting the convex
polygons corresponding to children nodes from the convex polygon of their parent node, in a
bottom-up fashion. In this way, convex polygons at odd levels of the tree are added to the sum that
generates the original concave polygon (material polygons), while convex polygons at even levels
of the convex tree (gulf polygons) are subtracted from this sum.

Applying this convex decomposition to the polygon of 1Figurc II generates the convex tree shown
in the same figure. In general, the height of the convex tree can be considered to represent the degree
of concavity of the polygon.

Convex Visibility Subproblems
The general visibility problem between a target and an occluding polygon can now be reduced, after
the above decompositions, to visibility subproblems between convex polygons.

T[here are three types of convex visibility subproblems that result:

" Occluding region computation

* lole viewing region computation

* Gulf viewing region computation

Once these individual subproblems are sol'.ed, what remains is to combine in an appropriate
manner the component viewing and occluding regions for a particular occluding polygon and target
pair. It is intuitively true that at any stage in the computation, occludcd regions arc added, while
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viewing regions are subtracted, to compute the final occluded volume. lowever, it is important
that these component regions be considered in the proper order to guarantee correctness of the end
result. The visibility computations need to start from the lowest levels ofboth the loop and convex
trees ascending in a breadth-first manner to the root. This method builds the result in a "smallest-
first" approach that ensures that regions are first combined locally. The global algorithm is given
in more detail in Ref. 3.

Occluded Region Computation

Consider the occluding polygon and target shown in Figure I . Any plane that partitions three-
dimensional space into two half-spaces, a half-space containing the target and the other, which
subsumes the occluding polygon, has the property that the target is visible from any viewpoint
chosen in the first half-space. In the limit, this plane may share an edge with the target and a vertex
with the occluding polygon or vice-versa, in which case the viewing region attains a maximum.
''he occluding region is therefore bounded by a family of such limiting separating planes that are
defined by an edge and a vertex, one from each polygon (in cases where tile target and occluding
polygon are properly aligned, the limiting separating plane is defined by two edges, one from each
polygon).

We determine these separating planes by using a "rolling" method. In this approach, a separating
plane is "rolled" between the target and the occluding polygon remaining tangent to both contin-
uously. The limiting positions of this plane define the bounding planes of the occluded region.

A first limiting separating plane is found in the following way: The plane of the target is rotated
around one of its edges until a vertex on the occluding polygon is encountered. At this point, a
limiting separating plane is found. This plane, shown in Figure 16 to pass through the points A,
B and C, is then rotated around the line BC constructed between the limiting vertex C and any of
the two edge vertices, B in this case. The direction of rotation is shown in Figure 16. If the other
edge vertex, A, was chosen, the rotation direction would be reversed. During this rotation either
vertex DI of thc occluding polygon or D2 of the target will be encountered first by this plane. The
rotation axis together with this vertex define the second limiting separating plane shown in
Figure 16 to pass through points B, C and D1. A similar rotation is then applied to this new plane
to determine the next separating plane.

After the family of separating planes is found, they are then intersected sequentially, thus avoiding
any general half-space intersection. These lines of intersection together with the occluding polygon
itself define the occluded region.

At this point, it is clear why the convexity of the target and occluding polygons is an inherent re-
quirement for the rolling procedure. Only then do the limiting separating planes truly partition the
viewing space into a visible region on one side of this plane and an occluded region on the other
side.

Hole Viewing Region Computation

Consider now the hole polygon and target shown in Figure 1 . If, for each edge of the hole polygon,
a plane is constructed that contains this edge and partitions thrce-dimcnsional space into two half-
spaces, one of which contains both the target and the hole, then the target is visible from any
viewpoint chosen in the intersection of these half-spaces. In the limit, these planes may share a
vertex with the target in which case the viewing region attains a maximum. The viewing region is
therefore bounded by a family of such limiting planes that are defined by an edge of the hole
polygon and the associated limiting vertex on the target.

We find these limiting planes in the following way:

[Ihe plane of the hole is rotated around each of the edges of the hole until the last vertex on the
target polygon is encountered. At this point a limiting separating plane has been found. In this
case, the limiting planes are such that the target and hole are now in the same half-space, as opposed
to different half-spaces in the occluding case.
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I'hese limiting planes are then intersected sequentially, again avoiding any general half-space inter-
section. The lines of intersection together with the hole polygon itself define the viewing region.

Gulf Viewing Region Computation

Consider the gulf and target shown in Figure 5 . As explained in "Convex Material-Gulf I)ecom-
position (Convex Decomposition)" , we reduce the problem of determining the viewing region as-
sociated with a gulf to that of computing the viewing region of an equivalent hole.

The equivalent hole is larger than the gulf, and is extended from the the gulf to the outside of the
convex hull of the occluding polygon (see Figure 7). The algorithm for the construction of the
equivalent hole can be found in Ref 3.

The equivalent hole shown in Figure 7 is clearly concave and is therefore decomposed, like any
other hole loop, into its convex parts. In turn, the visibility regions of these convex parts are then
combined to determine the viewing region of the equivalent hole, shown in Figure 8 .

The Advantages of the New Method
It has been described earlier that the global task as well as the occluding object are represented by
a tree-within-a-tree structure. This tree provides a good mechanism for pruning for the sake of
speed. Since the nodes close to the bottom of the tree (especially the convex tree) represent fine
details both for the final viewing region and for the occluding object, pruning the tree by eliminating
nodes close to the bottom becomes a natural 'filtering" process both for the task and for the final
viewing region. This is useful since for computing the viewing region, it is not necessary to deter-
mine the boundary of the viewing region very precisely, although it should be conservative , in the
sense that the viewing region can be slightly smaller and simpler than the true viewing region, but
for all points inside the viewing region, the visibility constraint is satisfied. Therefore, the prining
must start from the level of the tree that represents holes (holes increase the viewing region while
material does the opposite). For objects with many minute details, pruning becomes quite impor-
tant to make the computation feasible.

Another advantage of the new method is its speed. There are two factors that contribute to the
speed. The first comes from the fact that the new method produces much fewer convex subtasks
than existing methods, as explained in "Outline of The New Approach". The second comes from
the pruning mechanism explained above.

Test Results

We have implemented a working system for visibility planning. In this section, we seek to demon-
strate that the results produced by the working system, which incorporates the new method de-
scribed in this paper, arc correct. We do this two ways. One is to show the 3-I) view of the occluded
region for some typical examples of occluding .D polyhedra and targets, so that visually, these re-
sults seem plausible and reasonable. Then, we demonstrate the validity of the results by moving the
viewpoint to some spot in the computed viewing region, and show the perspective view of the
occluding object and the target. If the computation for the viewing region is correct, then the target
should be visible. In the following, we first describe the environment and experimental setup. [hCn,
we present the two ways of showing the corrct ne-s of the working system described above.

Environment

Our algorithm was implemented in AMI,/X, an object-orientcd programming language intended
for use in design and manufacturing applications. The programs are run in the TGMS (licred
Geometric Modeling System) environment (Rcf. 4.). 'I'iMS provides an object-oriented pro-
gramming interface to our in-house solid modeling system, GIDP (Geometric Design Procc';or)
(Ref. 5), as well as many geometry classes and methods.
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In this framework, the occluding and target objects as well as the viewing and occluded regions, are
represented as solids and any operations on them (e.g. convex hull, boolean set operations), are
conveniently developed.

Test Results when the Occluding Object is Three-Dimensional

In Figure 17 an occluding polyhedron and a target are shown. The occluding polyhedron is first
decomposed into faces. E~ach face is then treated as a separate occluding polygon.

Consider faces F, and I'b, in Figure 17 . Their corresponding occluded regions are shown super-
imposed in Figure 18. After the union of these two regions is taken, then the viewing region as-
-ociated with the hole is reduced to the region where the target can be viewed through both the top
and bottom faces of the polyhedron. The union of this partial result with the occluded regions of
the remaining faces of the polyhedron produces the final occluded volume of the polyhedron (see
Figure 19).

Validation

As mentioned earlier, the purpose of validation is to place the viewpoint inside the experimentally
constructed viewing region, and see whether the target is truly visible. We are going to use the three
dimensional example of the previous paragraph and shown in Figure 17. The viewing area through
the hole is considered and for this area, we are going to show two views. One view is the
comfortable view where the target is viewed with some margin of clearance between the occluding
object and the target. Another view is the critical view where the occluding object just barely clears
the target. The purpose for choosing the critical view is for validating the preciseness of the
boundary of the viewing region. If the boundary is precise, then the side wall of the viewing region
should be tangent to the line of sight, making the side wall invisible. Such is indeed the case, as
we shall see.

Figure 19 and FiLAirc 20 show the comfortable view and the critical view respectively. It is seen that
the target is clearly visible, and that the side wall of the viewing region for the critical viewing con-
dition vanishes, confirming that the boundary of the viewing region is accurate.

Other test results and a more extensive validation of the computed occluded region can be found
in Ref. 3.

Conclusion
A new method for viewpoint planning satisfying the visibility constraint as well as results of ex-
perimentation and validation have been presented. The method applies to the general case where
the occluding object need not be convex. In this paper, the target is assumed to be convex. In Ref.
3, we describe the algorithm for the general case where the target is not convex. We will also con-
sider extending the method to include curved surfaces. Currently, if the method described in this
paper is to be applied as is, then curved surfaces must be approximated by polyhedra containing
the curved surfaces completely so that the viewing region is conservative and valid.
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Figure 10. A polygon with loops nested
Figure 9. "Ihe resultant occluded region. within it and its loop tree.

Figure iI. Concave polygon and its
convex tree.

Figure 12. |First level of the convex
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ABSTRACT

A multi-level approach for reasoning about nonlinear algebraic inequality constraints is proposed. The
approach improves upon Brooks' extension of Bledsoe-Shostak's SUP-INF method. The approach involves
abstracting a nonlinear problem to a linear problem and to a problem in qualitative reasoning about the
signs of nonlinear terms. The results of these two abstractions of a nonlinear problem are used to refine
bounds for nonlinear terms and finally, to compute bounds for variables. The approach is motivated by our
work on using algebraic and geometric constraints in model-based vision. It is also likely to have applications
in constraint logic programming and constraint-based languages.

MOTIVATION

Constraints arise naturally in many artificial intelligence applications including model-based vision [Sugi-
hara, 1984; Brooks. 1981; Barry et al, 1988; Cyrluk et al, 1987; Cyrluk et al, 1988], simulation and graphics
[Borning, 1979], solid and geometric modeling, robotics, design [de Kleer and Brown, 1984], qualitative rea-
soning and algebra [de Kleer and Brown, 1984; Williams, 1988], data bases, theorem proving and natural
language understanding. Constraints are also being incorporated in logic programming languages to enhance
their expressive power, especially for engineering design and other applications. Constraint solving is per-
haps the most computationally intensive operation in constraint logic programming languages [Jaffar and
Lassez, 1987; Heintz et al, 1986]. Constraint-based programming has been proposed as a new paradigm for
programming which is especially found to be helpful for graphics applications [Leler, 1987].

This paper discusses a multi-level approach for reasoning about nonlinear algebraic inequality constraints.
Our work is motivated by the use of these constraints in model-based vision, constraint logic programming,
and reasoning about computations and their specifications. The problem under consideration is:

Given a finite set of nonlinear inequality constraints over variables ranging over the reals, find whether the
constraints can be satisfied. If the answer is yes, then determine intervals of values which the variables must

*The work reported here was partially supported by the DARPA Strategic Computing Program under the Army Engineer
Tcpographic Laboratories, Contract No. DACA76-86-C-0007, and by the Air Force Office of Scientific Research (AFSC), under
Contract F49620-89-C-0033.
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take to satisfy the constraints.

This problem falls in the theory of real closed fields and there exist many complete decision procedures for
this theory and an interested reader may look at [Tarski, 1948; Arnon et al, 1984; Canny, 1987] for details.
However, our experience is that these procedures are so general purpose that even simple problems which can
be easily done using heuristics by hand, sometimes cannot be done using these procedures in a reasonable
amount of computer time and space (see [Davenport et al, 1988] for examples of such problems).

Our goal is not to develop a method that solves the above problem completely, since we suspect a complete
method is very likely to be extremely inefficient. Instead, we are interested in a method which can satis-
factorily solve significant instances of this problem arising in the above-mentioned application domains. In
particular, we would like the method to be sound; that is, if the method declares that the constraints are
unsatisfiable, then they indeed should be unsatisfiable. However, the method may not be able to determine
unsatisfiability in all cases. In cases where the method does not find the constraints to be unsatisfiable,
we would like it to (i) compute the intervals of possible values which individual variables must take for the
constraints to be (possibly) satisfied, and (ii) generate additional information in the form of bounds on terms
and polynomials which can be used incrementally, i.e., to refine these intervals for individual variables when
additional constraints are imposed.

We propose a multi-level approach for reasoning about nonlinear constraints. The approach involves (i)
abstracting a nonlinear problem to a linear problem, (ii) qualitative reasoning, (iii) propagating bounds on
nonlinear terms, and (iv) solving nonlinear constraints. If the unsatisfiability of constraints is detected in
any of these steps, the original problem is then unsatisfiable.

By considering each term in a nonlinear problem as a distinct variable and ignoring any relationship between
nonlinear terms, nonlinear constraints can be abstracted as linear constraints. Linear constraints can be
solved using a number of methods including methods for linear progamming or other methods proposed for
this problem in the automated reasoning and program verification literature [Bledsoe, 1975; Shostak, 1977].
Nonlinear terms can now be further abstracted by considering their signs instead of their values. This gives
rise to the following subproblem:

From the sign constraints on nonlinear terms, decide the sign of an arbitrary nonlinear term.

A similar problem arises in qualitative reasoning [Williams, 1988]. Once the sign information about arbitrary
nonlinear terms is available, it can be used to obtain tighter bounds on subterms including the individual
variables.

We discuss below how nonlinear constraints arise in different application domains. We give an overview
of Brooks' extension of the SUP-INF method for reasoning about nonlinear constraints. We discuss the
limitations of the method as well as improvements made to the method to enhance its applicability. Finally
we discuss the multi-level approach to reasoning about nonlinear constraints, and illustrate it using an
example.

APPLICATIONS

The need for reasoning about nonlinear constraints arises in different aspects of machine vision, qualitative
reasoning, reasoning about computations and specifications, and constraint programming.

Many aspects of machine vision require manipulating algebraic constraints, in particular, for generating
models from descriptions, for matching a parameterized model specified as a set of constraints against
an image with errors, as well as for recovering three dimensional topological information about objects.
Brooks and Sugihara pioneered the approach of using algebrain constraints in machine vision. Sugihara
[Sugihara, 1984] showed how labeling line drawings of polyhedral objects can be interpreted as solving
linear constraints. Brooks [Brooks, 1981] demonstrated the use of his extension of the SUP-INF method for
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matching parameterized models based on generalized cylinders, lie also illustrated how prediction and error
,orrection can be performed by constraint solving.

In jCyrluk et al, 1987] we began investigating formal approaches to model formation and model matching
uing algebraic and geometric reasoning methods. In particular, we defined the view consistency problem,
which uses geometric constraints deduced from an image for matching against another image. Nonlinear
constraints (equalities and inequalities) naturally arise as projection constraints, constraints due to vertices
Ielonging to a common face or surface, parameterization constraints and constraints introduced to model
incrtainity and errors. The work reported in this paper is motivated by these applications; preliminary
investigations were described in [Cyrluk et al, 1987] as well as in [Barry et al, 1988].

In qualitative reasoning and its use in diagnostics and design one is often not interested in quantitative values
but more in the nature of values such as whether they are positive, negative, increasing, or decreasing. Given
qualitative information about certain quantities, one is interested in deducing qualitative information about
other quantities which are useful in making proper design decisions. The multi-level approach presented in
thc paper employs an efficient qualitative reasoning algorithm to decide the sign problem of nonlinear terms
from the signs of a given set of nonlinear terms.

Nonlinear constraints also arise while reasoning about the behavior of hardware and software. An example
is checking whether an index in an array falls within its bounds. In fact, many algorithms for deciding the
satisfiability of formulas over the integers (Pressburger arithmetic) were motivated by their application in
reasoning about programs and specifications [Bledsoe, 1975; Shostak, 1977] An interested reader may consult
these papers for details.

In the application of constraint programming in the logical or equational paradigm, nonlinear algebraic
constraints arise while modeling graphics examples as well as solving engineering problems and other appli-
cations, including option trading [HIeintz et al, 1986; Jaffar and Lassez, 1987]. Incremental algorithms for
solving nonlinear constraints are needed. The reader may consult [Ileintz et al, 1986] as well as [Jaffar and
Lassez, 1987] for a good discussion of properties that such constraint solving algorithm must satisfy.

SUP-INF METHOD AND ITS EXTENSION

As stated above, the problem of solving nonlinear constraints falls withini' the theory of real closed fields. This
theory was shown to be decidable by Tarski in the 1930's. Since then there has been considerable research
done in improving his decision procedure. In particular, the work of Collins and his students, and Canny
are worth mentioning. There e:xists an elegant implementation of Collins' cylindrical algebraic decomposition
method in the computer algebra system SAC-2. We are, however, not aware of any implementation of
these uniform decision procedures which can be satisfactorily used for solving nonlinear constraints arising
in applicatio~n dcnii . . in p .rf;"il,1 n1a,-hb- vision. This is due to the large number of
variables in constraints for these applications.

An example of a particularly interesting incomplete procedure for solving nonlinear constraints is Brooks'
adaptation of the SUP-INF method for solving linear constraints developed by Bledsoe and modified by
Shostak. The original SUP-INF method was developed for deciding the unsatisfiability of linear constraints
over the integers. Brooks adapted the SUP-INF method to nonlinear constraints including trigonometric
functions to be used for parameterized model matching in a model-based vision system ACRONYM. lie
claimed that this extension worked quite well on the examples arising in his application. Others have
also reported the use of Brooks' method for solving algebraic and geometric constraints arising in image
understanding applications [Fisher and Orr, 1987]. A hierarchical approach to reasoning about inequality
constraints which combines different methods was proposed in [Sacks, 1987]. Some of the limitations of
Brooks' method were pointed out in that paper.

Below, we first give an overview of the SUP-INF method. We then discuss Brooks' extension for considering
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nonlinear constraints and discuss our findings regarding the limitation of this method and modifications to
the method which significantly improved the performance of the method.

BROOKS' EXTENSION OF THE SUP-INF METHOD

The input to the SUP-INF method is a conjunction of linear inequalities with rational (or integer) coefficients
(an equality constraint p, = 0 is transformed into a conjunction of two inequalities pi < 0 and Pi >_ 0). The
goal is to decide whether these inequalities can be satisfied. If satisfiable, the method produces lower and
upper bounds for each variable appearing in the set of inequalities. A set of inequalities is unsatisfiable if
and only if there is a variable for which its lower bound is greater than its upper bound.

The method is based on transforming inequalities such that each variable x can be expressed as x < ubi or
x > lbi, where ubi and Ibi are, in general, linear expressions in terms of the rest of the variables. An upper
bound for x, SUP(x), is then the minimum over ubi's, whereas a lower bound for x, INF(x), is the maximum
over lbi. To compute the minimum of ubi's, say, the algorithm is called rccursively on each ubi in an attempt
to compute the lower and upper bounds on ubi in terms of the variable x. Finally, linear equations in terms
of x are obtained for these bounds, which can be solved. A dual technique is used for computing the lower
bounds. In this way, the algorithm computes rational upper and lower bounds for each variable.

Shostak proved that these bounds are tight, and improved this method for deciding satisfiability over the
integers. If the inequalities do not have a rational solution, then they do not have an integer solution either.
However, if they do have a rational solution, i.e., if the method produces satisfiable intervals of upper and
lower bounds for each varipble, it can be checked whether each interval has an integer. If for some variable,
its interval does not include an integer, the inequalities do not have an integer solution. Otherwise, the
procedure has to search over integers in the satisfiable interval of each variable.

Brooks extended Bledsoe-Shostak's SUP-INF method to be applicable to nonlinear inequalities. The basic
approach is the same as in the linear case. For each variable x, inequalities are transformed so that all terms
in which x appears have lower bounds lbi's and upper bounds ubi's expressed in terms of other variables.
The variable x is then factored out and lbi's and ubi's are divided by appropriate polynomials to compute
a lower bound as the maximum over rational functions and an upper bound as the minumum over rational
functions (a rational function is a -,olynomial divided by another polynomial). The main distinction is that
before dividing a polynomial by .nother polynomial, the extended algorithm performs qualitative reasoning
to determine the sign of the polynomial used as a divisor. For that, the method attempts to determine the
sign of variables - whether the value is always positive, zero or negative. Sign constraints from nonlinear
terms are propagated to generate sign constraints on variables, which in turn, constrain the signs of other
nonlinear terms involving these variables. For instance, if the sign of xy is known to be positive, then x and
y will have the same sign, either both are positive or both are negative.

Modifications

Brooks' method is limited for a number of reasons. The method deals with each nonlinear term separately
without constraining other terms in which common variables appear. For instance, as pointed out by [Sacks,
1987], for computing an upper bound of X2 - x when x is unconstrained, an upper bound for x2 and a lower
bound for x are computed independently and the same value of x is not used for determining bounds of
x2 -x.

Since Brooks had found his method to be quite useful for parameterized model matching, we implemented
Brooks' extended SUP-INF method in GEOMETER, an algebraic and geometric reasoning system for image
understanding applications [Harris et al, 1988; Barry et al, 1988]. We experimented with it on a number of
examples including examples from model matching and model formation. We tried the method on simple
examples arising in parameterized model matching. Our experience with the method was not positive. We
then analyzed Brooks' method and investigated the following heuristics to improve its performance:

1. ilandling equational constraints by simplification using the Gr6bner basis algorithm.
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2. Storing the results of intermediate computations.

3. Identifying a subset of variables as parameters.

4. Propagating sign information about variables by multiple runs of the method.

5. Computing disjoint intervals for variables by case analysis on the signs of variables.

Below, we briefly review each of the improvements; details, with examples can be found in [Cyrluk et al,
1988].

One of the first modifications was to combine Brooks' extended SUP-INF method with the Gr6bner basis
algorithm [iBuchberger, 1985], which is already implemented in GEOMETER [Harris et al, 1988]. The
basic idea is to first manipulate equality constraints using the Grobner basis algorithm, possibly deducing
additional equality constraints. Equality constraints are then used as rewrite rules to simplify the inequality
constraints. All constraints (input as well as deduced) are then transformed into inequalities and the SUP-
INF method is invoked. If any new equality constraint is detected (when the satisfiable interval for some
variable or term includes only one value, i.e., its upper bound and lower bound are identical), then that
equality constraint is further propagated using the Gr6bner basis algorithm. This improved the performance
since the worst-case complexity of Bledsoe-Shostak's method is exponential in the number of variables and
handling equality constraints using rewriting techniques can reduce the number of variables needed to be
considered.

Another modification made to Brooks' method is to specify a subset of the variables as input variables. When
SUP and INF are called on these variables, no extra computation takes place, rather the user provided bounds
are used. This modification is especially useful in parameterized model matching problems where there are
a large number of variables involved [Cyrluk et al, 1988].

The SUP-INF method is highly recursive. We observed that many computations in the method were being
repeated, so storing intermediate computations improved the performance, i.e., SUP and INF of a variable
in terms of other variables can be stored for future use. This memory feature, which Brooks also mentioned
in his paper, improved the performance of the algorithm by two orders of magnitude on some nontrivial
examples; see [Cyrluk et al, 1988] for details.

The above modifications improved the performance of the method significantly. Despite this, the method
still was not good enough to be useful for large examples with more than 20 variables; further, most of these
variables are in almost every constraint. The main reason for the poor performance is the highly recursive
nature of the SUP-INF method. The interaction graph of the subproblems considered in the recursive calls
indicates that in the worst case there are O(n') subproblems being generated. By identifying redundant
computations, it is possible to ensure that all the constraints are taken into account by generating 0(n 3)
subproblems. Note that the algorithm is still exponential due to the symbolic addition and subtraction
of terms involving min and max. Handling rational functions of the form max(pl,. . ,pk)/min(ql... q1),
where pi, qi are nonlinear polynomials, arising in the extension for the nonlinear case made the performance
worse.

Brooks had observed in his paper, "in practice we have not encountered any case where the method failed
to detect any inconsistency." However, he could not identify what class of problems could be solved by his
method. We identified simple examples of unsatisfiable nonlinear inequalities which required more than one
run of the method [Cyrluk et al, 1988]. It is possible to design a family of examples which require arbitrary
many runs to detect inconsistency. Further, we were able to design examples of satisfiable inequalities such
that the bounds on variables could be improved by multiple runs. This phenomenon has to do with the
inability to compute the sign information about variables and terms in a single run since variables are
considered in the method in some order.

For linear inequalities, Shostak proved that the SUP-INF method computes tight lowe, -nd upper bounds
for variables. But for nonlinear inequalities, the extended SUP-INF method may not generate good bounds
in a single run; in fact, there are examples for which better bounds exist (in the form of more than one
interval) but the SUP-INF method cannot find them [Cyrluk et al, 1988]. One possible way to deal with
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this limitation is to perform case analysis on the possible values of selected variables, i.e., whether a variable
is zero, positive or negative. This modification resulted in decomposing the original problem into many
subproblems and gave better (but disjoint) intervals for variables.

A MULTI-LEVEL APPROACH

In this approach, the satisfiability of nonlinear algebraic constraints is not directly determined. Rather, the
problem is abstracted at two different levels. It is assumed that the equality constraints have already been
processed using the Gr6bner basis algorithm as explained above and that they have been tranformed into a
conjunction of inequality constraints. Initially, every nonlinear term appearing in the problem is abstracted
to be a distinct variable. Thus nonlinear terms with common variables will be abstracted to distinct variables
as though there is no relation between them. This transformation abstracts the nonlinear problem to a linear
problem, which can be solved using well known techniques for solving linear constraints. If the linear problem
is not satisfiable then the nonlinear problem is also not satisfiable, but not necessarily vice versa.

Using the solutions obtained from the linear problem, which are intervals of values each nonlinear term
can take, we now perform a qualitative abstraction and analyze the relationship between various nonlinear
terms by examining their signs. If these signs are not consistent, then the original problem is unsatisfiable.
Otherwise, the sign information is used to further refine the crude bounds obtained from the first level. This
also can be done using linear programming techniques. Finally, Brooks' extension of the SUP-INF method
can be used for getting better bounds using the sign information obtained from an earlier step.

Here is a top-level description of our heuristic procedure.

Input: C: A set of nonlinear constraints.
Output: B: Bounds on the variables appearing in C including bounds on nonlinear terms as well as poly-
nomials.

Step 1 (Variable Abstraction): CVA := variable.abstract(C). Treat each distinct nonlinear term as
a new distinct variable.
Step 2 (Solving Linear Constraints): If CVA is inconsistent, then C is inconsistent. Otherwise,
BVA := Bounds on the variables in CVA (the terms in C). If ti is a term in C, then BVA will consist
of bounds of the form 1i < ti < ui.
Step 3 (Sign Reasoning): From the bounds of the nonlinear terms in BVA, get their signs and check for
their consistency. If signs are inconsistent, then C is inconsistent. If signs are consistent, then use these
signs to deduce the signs of arbitrary subterms needed in the following steps.
Step 4 (Bound Propagation): From the signs in step 3, refine the bounds obtained in step 2 and compute
bounds on the original variables appearing in C.
Step 5 (Further Refinement): Use techniques for reasoning about nonlinear constraints to further refine
these bounds.

VARIABLE ABSTRACTION: TRANSFORMING NONLINEAR PROBLEMS TO LINEAR
PROBLEMS

This step is straightforward. Every nonlinear term is replaced by a distinct variable. This transforms a
nonlinear problem into a linear problem. As an example consider the following constraints:

2uv3 xy 2 + vx 5 yz 4  > 1

2uv3 xy 2 - 3vx5yz4  > 1
-uv3xy 2 + 2vX5 yz 4 

- uz - 4uxy > -6
-3uv3Xy 2 + vx 5 yz4 + 3uz + 5uxy > -8
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After variable zbstiaction, the following linear constraints are obtained:

2tj +t2 > 1
-4tj-3t2 > 1

-tj + 2t2 - t 3 - 4t4  _ -6
-3ti + t2 + 3t3 + 5t4  _ -8

Solving Linear Constraints

Given the set of linear constraints of the form Zi(ci * ti) > c, where the ci and c are rational numbers,
and ti are real valued variables; determine whether the set of constraints is satisfiable, and if so find tight
bounds: li < ti _ ui. By the following proposition, if the linear problem is unsatisfiable, then the original
nonlinear problem is unsatisfiable, but the converse does not hold. The bounds obtained in this step are
usually cruder, because the relationship between different nonlinear terms is not considered. The remaining
steps attempt to refine these bounds further.

Proposition 1: Given a set of nonlinear constraints C, if variableabstract(C) is unsatisfiable, then C is
unsatisfiable.

We have explored the use of three methods: (i) linear SUP-INF, (ii) a modification to the linear SUP-INF
in which equality constraints are handled using rewriting techniques [Buchberger, 1985; Cyrluk et al, 1988],
and (iii) the Simplex linear programming algorithm. For large problems such as those arising in in the model
formation and parameterized model matching applications of machine vision, the simplex method performed
the best because the performance of the SUP-INF method and its modification gets worse as the number of
variables in a problem increases.

In the example above linear programming produces the following bounds:

t1 > 2 t2 < -3 t 3  < -2 t4 > 1

If a variable has the same lower and upper bound implying that its value is uniquely determined, that
variable can be eliminated by uniformly substituting its value.

QUALITATIVE REASONING: SIGN CONSISTENCY AND COMPUTING SIGNS

From the crude bounds on nonlinear terms obtained in the previous step, we abstract the values to their
signs. We would like to decide whether the constraints in C can restrict each term (including the original
variables in C) to one of the following five signs: zero, positive, negative, nonnegative (only if the term can
have 0 as well as positive values), and nonpositive (only if the term can have 0 as well as negative values).'
For the case when a term lies within the range of a negative and positive real, it is said to have the unknown
sign. By the following proposition, if the signs of terms are not consistent, then the original set C of nonlinear
constraints is not satisfiable.

Proposition 2: Let {l <_ 11=I x- -' < I 1 < i < m} be the bounds obtained by solving variable -abstract(C).
If the terms in {fJt 1 xe I 1 < i < m} cannot be consistently assigned unique signs (i.e., zero, positive,
negative, nonnegative, nonpositive, unknown), then C is unsatisfiable.

The sign consistency check is done in two parts. First, we assume that none of the variables is zero, and
determine whether terms can be consistently assigned positive and negative signs under that assumption. If
not, there are two possibilities: there are terms whose value is zero, or the sign constraints are inconsistent

'A term that takes the value 0 is assumed to have the sign zero, and not both the nonnegative and nonpositive signs.
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thus implying that the original set of constraints is inconsistent. To disambiguate these two cases, another
qualitative reasoning check for determining whether terms can take zero values is performed.

Positive and Negative signs

Assuming that all variables are nonzero we give a polynomial time decision procedure for deciding whether
terms can have negative or positive signs and if so computing their signs. This decision procedure can be
used to deduce, for any nonlinear term involving variables which satisfy the sign constraints, whether the
term has the negative or positive sign. The key observation is that multiplication on reals when applied
to positive and negative signs behaves exactly as the boolean equivalence connective *. This observation
allows us to transform the sign constraint problem to solving linear boolean equations over a boolean ring
(or the field Z 2 ), in which the addition operator is the exclusive-or connective. We identify the negative sign
with 0 (false) and the positive sign with 1 (true).

Corresponding to each variable x in C, we introduce a corresponding boolean variable, sx, which has the
value 0 (1) iff x is negative (positive). Given a term t = xi , we generate a propositional formula,
sign-prop(t) using -t* as follows:
1. remove all variables with even exponents.
2. make all odd exponents one.
3. replace * with * and xi with sr,.
The €* connective in a propositional constraint can be converted into E (exclusive-or connective).

For example, sign-prop(uv3 y 2 ) is s, * (sv * SX).

For constraints of the form Ii  ti < ui we generate sign constraints as follows:

1. If li > 0 then generate sign-prop(ti) = 1.

2. If ui < 0 then generate sign.prop(ti) 0.

3. Otherwise the sign of ti is unknown and no sign constraint is generated.

Note that this translation works because we are assuming that the signs of all the variables are nonzero.

For example, uv 3Xy 2 > 0 is equivalent to (su '*' (sv . sr)) = 1. When €* is changed to E, we get
SU e SV, E) S = 1.

Proposition 3: Assuming that all the xi are nonzero, the sign of a term t = H1I x" is positive (negative)
iff sign-prop(t) is 1(0).

Given {1 < H1-I xe' < ui 1 < i < m}, for every positive or negative term, associate a proposition
constructed using sign-prop with it. We obtain a finite set (in general < m) of boolean equations. These
boolean equations can be solved using Gaussian elimination (an n3 algorithm where n is the number of
boolean variables) or more efficient algorithms based on matrix multiplication and inversion [Baase, 1978].

From the constraints for the above example: uv3 xy 2 > 2, vx 5 yz 4 < -3, uz < -2, and uyx > 1, the fol-
lowing boolean equations are obtained: su D sV e Sz = 1, Sv ® sX E sy = 0, S( s, = 1, sU e sy D sT = 1.
Using Gaussian elimination to generate a triangular system gives: syEGs = 0, sx = 0, sv sz = 0, su Es, = 1.

Theorem 4: Let PC be the set of propositional constraints generated from {li < [j'=1 x~j < u, I 1 < i <
ml. A term t is positive (negative) if and only if PC = signprop(t) = 1 (or PC 1 sign-prop(t) = 0).

An n3 algorithmm can also be obtained by converting equations into rewrite rules. Note that the xor
operator, (b, satisfies the equations x D x = 0. By converting equations into rewrite rules using an ordering
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SY > s, > s, > s, > s: we get: s,. - s,, e s, e 1 from the first equation. Using this rule, the second
equation simplifies to: s1 -, s, = I which gives a rewrite rule sy - s,, + 1. The third equation givs the

rewrite rule: s,, - s.. + 1. These tlree rules simplify the fourth equation to: s, + = 0 thus giving a rule
,s - s. If the rules are interreduced, then we get a reduced set of rewrite rules: sy Sz , Sr - 0, s, - s,
s,, - s: 1, which are the rules corresponding to the reduced triangular system generated by Gaussian
elimination. These rewrite rules can be used as a decision procedure to determine the sign of arbitrary
terms. For example, given the term uv, sign prop(uv) = s,, J) s, e 1, which can be rewritten using these
rules to: 4, 4-, s, 1 - ! ;4 s, 1 - s4 s. ± 1 e 1 = 0, thus indicating that uv is negative.

If the sign constraints are satisfiable, then the sign information can be used in steps 4 and 5 to refine the
bounds on terms. If the sign constraints are unsatisfiable, this inconsistency could be because a term is 0,
or the original constraints are unsatisfiable. To check for the first case of terms being 0, a different sign
constraint satisfaction problem in which terms can have either 0 or nonzero values, is solved.

Zero and Non-zero Values

From the above sign reasoning step, we have additional information that the product of all the variables
appearing in the constraints is 0, which we add as an additional constraint. From the intervals obtained for
terms by solving the linear constraint problem, it is known what variables (and hence terms) cannot be 0,

i.e.. if a term t is < 0 or > 0, then each of the variables in t must be nonzero. From each constrained term
which has a nonnegative, nonpositive or an unknown sign, the nonzero variables can be eliminated without
changing their qualitative value being zero or nonzero. After this elimination, if there are certain subterms
left which could possibly take 0 as their values, then the sign consistency check succeeds. This check can be
done in linear time.

The qualitative information thus obtained is not. necessarily complete. For instance the above algorithm

i:iav say that xyzu = 0 meaning that at least one of the variables x, y, z and u is 0. However it might be
the case that both xy = 0 and zu = 0 can be deduced. Minimal terms that are 0 can be computed using an
exponential time algorithm.

Relationship to Williams' Qaalitative Algebra

Williams [Williams, 1988] also needs to reason about signs in a qualitative reasoning application. The main
difference between his method and ours is that we restrict our sign algebra to deal only with multiplication.
This allows us to come up with an efficient decision procedure to decide the sign problem, whereas his
qualitative sign algebra in general cannot be solved. The purpose of our two systems is vastly different.
Williams' ultimate goal is to reason about thresholds. Ours is to reason about signs to aid us in deriving
better numerical bounds.

PROPAGATING BOUNDS ON TERMS USING SIGN INFORMATION

Given a set BvAt of bounds on terms of the form I _< ti < vi, where ti = I-I1 x', find optimal bounds
Ij < xj < uj

This problem is anost the dual of the linear problem of step 2 (with multiplication replacing addition). The
difference is that when dividing, the sign of variables must be taken into account, whereas when subtracting,
it does not have to be.

In linear algebra, given, 112 < tl +12 .< U12 and 11 S tl K ul then 112 -il <5 T 2 < 1112 -11. But with products:
given, 112 < tl * 12 ! U12 and 11 < l1 < Ui then

1. if t1 is positive then 112/li < 12 < U12/11,

2. if tj is negative then u12/1Ll 5 t2 < 112/Ut
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Positive Variables W\hen the sign of all the variables arc positive simplle modifications of the methods
used lin ;tep 2 canl be used. or thle problem call be converted to one Involving linear constraints. This can be
done by taking the logarithm of thle termis (products) to obtain sums. This is only dlefinled when the signs of
all thle variab~les are p~osit ive. Thiiis is sumrmarized inl the following theorems.

Pr-oposit ionl 5: The inlct ion. o :' - log( .r) is anl isomorphnism bet weeen (a+,{* ,>,ioiix})and
) . { -, -, >n Min) MiX) 4), where )R+ does not iiiclude 0.

Defiiiition: C vnhe se(t flu A in which thle sign of every xj is positive. Define LOG(1 V A) to be tile set
of linear constraints of thle form, log( 1,) < Si < log( ui), where Si Z>e, * log-xj , and log-xi are new
va-:riales.

Propositionl 6: Let I, K xi < Ili be the set, of optimal bounds of Bj A (again withl only positive variables),
anl Iclt I11 < loyq. K Illy be the set of opt imal bounds for LOG( 2 VA ). Then Ili log(l, ) and I= log( ul ).

Negative 'Varialbles Whlen the signs of all the variables are determined but are not, all positive, an equiv-
alent set of constraiits canl be obtained in whlichi they are all positive. For each negative variable, xi, replace

it with Ii positive variable. x' = -xi and mod ify thle constraints accordingly.

Defitii~on: Lt 11-A be a set, of bounds onl ternms where somne of thle variables miighmt be negative, but thle

s ign of all the, variables are known. Define POS(13'. to be the set of constraints lin which all the variables
are positive. obt ainedl fromt I3j, * t hroiugh thle transformation described above.

For examiple lie set of const raints:
-3 < x K -< 1 , K<' 3

2 < y K 5 iseqialn to. 2K K y
-4 < xy q -l I tt~~~ I < X'Y < 4

< r '2y < :32 3 K x u 2 y < 32

Prop~ositioni 8: Let, x be a variable that is negative in BVA, and x' be its corresponding variable in
J O.S(B,-,,). If I K j K It is the optimal bouind for xc' in POS( BtA ), then - u K x K -1 is thle optimal
hound for x in BA.

II us Whleni t he sgn of all thle va riables are known the problem of propagating bounnds thbroughi t ernis canl be
solved as a liiiear programming problem.

Uniknowii Sigiis W\hnen the sign of only a few variables are unknown then multiple linear programnming

p'roblenis can he getierat ed by per fortiii ng case an alysis onl the signs of those variables. After solving t lie
line-ar programmling p~roblenms thle bounds oil the(' original variables can be obtained by taking thle antilog of
ihe new-% bounds.

Defiinition: Let Ut-,, be a set of bouti ts on t ermts, butII with variahles oIXI, 1.'k having unnown signs.
'l111,u dofilue C A( flt'.,A) to be the( set of bouittds obtainled from IBv,, in which thle sign of all thle variables are
k nowni. ('4 1 V A ) conlsists of :l bound(s and is obtained by conside rutg all possible signs (positive, negative,
aind ,.ero) of thle k variables III lit.,t with Innown signs,
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Proposition 9: Let 1i !_ x < ui be the set of optimal bounds for z in each of the problems in CA(BVvA).
Then the optimal bound for x in BVA is:

min i <. K max u1 .
i - i

FURTHER REFINEMENTS AND OTHER HEURISTICS

If an inconsistency of the constraints is not detected in the above steps, the result is lower and upper bounds
for terms and variables. Additional heuristics can be used to refine these bounds further. In particular, if a
univariate polynomial is generated during the computation, its roots can be found using numerical methods
or by Sturm sequences [Davenport et al, 1988], which can be used to get better bounds on the variable and
terms in which the variable appears. Finally, using the sign information about terms, Brooks' extension of
the SUP-INF method can be used i iore effectively on polynomial inequalities.

914



REFERENCES

Arnon, D.S., Collins, G.E., and McCallum, S., "Cylindrical Algebraic Decomposition 1, 11," SIAM J. of

Computing 13, 865-877; 878-889, 1984.

Baase, S., Computer Algorithms: Introduction to Design and Analysis. Addison-Wesley, 19i6.

Barry, M., Cyrluk, D., Kapur, D., Mundy, J., Nguyen, V.D., "A Multi-level Geometric Reasoning System
for Vision," Proc. of an NSF Workshop on Geometric Reasoning, Oxford, England, June 1986. Also in a
special issue of the Artificial Intelligence Journal on Geometric Reasoning Dec. 1988.

Bledsoe, \V.W., "A New Method for Proving Certain Pressburger Formulas," Advance Papers, Fourth Intl.
Joint Conf. on Artificial Intelligence, Tibilisi, Russia, Sept. 1975, 15-21.

Borning, A., THINGLAB: A Constraint-oriented Simulation Laboratory. Stanford CS Report STAN-CS-79-
746, July 1979.

Brooks, R.A., "Symbolic Reasoning Among 3D Models and 2D Images," Artificial Intelligence 17, 1981.

Buchberger, B "Gr6bner Bases: An Algorithmic Method in Polynomial Ideal Theory," in: N.K. Bose (ed.)
Multidimensional Systems Theory, Reidel, 184-232, 1985.

Canny, J.F., The Complexity of Robot Motion Planning, PhD. Thesis, Massachusetts Institute of Technology,
May, 1987.

Cyrluk, D., Kapur, D., Mundy, J., and Nguyen, V., "Formation of Partial 3D Models from 2D Projections
- An Application of Algebraic Reasoning," 1987 DARPA Image Understanding Workshop, Feb. 1987, Los
Angeles, Calif.

Cyrluk, D., ',apur, D., and Mundy, J., "Geometric and Algebraic Reasoning for View Consistency and
Parameterzied Model Matching," 1988 DARPA Image Understanding Workshop, April 1988, Cambridge,
MA.

Davenport, J.H, Siret, Y., and Tournier, E., Computer Algebra: Systems and Algorithms for Algebraic
Computation. Academic Press, 1988.

de Kleer, J., and Brown, J., "A Qualitative Physics Based on Confluences," Artificial Intelligence 24, 1984.

Fisher, R.B., and Orr, M.J.L., "Solving Geometric Constraints in a Parallel Network," Proc. of 1987 Alvey
Vision Conference, Cambridge, England, 1987.

Harris, R., Cyrluk, D., and Kapur, D., "GEOMETER: A Theorem Prover for Algebraic Geometry," Proc.
of Ninth International Conference on Automated Deduction, Argonne, Illinois, May 1988.

Heintze, N.C., Jaffar, J., Lim, C.S., Michaylov, S., Stuckey, P.J., Yap, R., and Yee, C.N., "The CLP(R)
Programmer's Manual," Monash University Technical Reporl No. 73, June 1986.

Jaffar, J., and Lassez, J-L., "Constraint Logic Programming," Proc. of Conference on Principles of Pro-
gramming Languages, Munich, Germany, 1987.

Leler, W., Constraint Programming Languages: Their Specification and Generation. Addison-Wesley, 1987.

Sacks, E.P., "lierarchical Inequality Reasoning," Proc. the National Conf. on Artificial Intelligence, 1987.

Shostak. R., "On the SUP-INF Method for Proving Pressburger Formulas," J. ACM 24 (4), Oct. 1977.

Sugihara, K., "An Algebraic Approach to Shape From Image Problems," Artificial Intelligence 23, 1984.

Tarski, A., A Decision Method for Elementary Algebra and Geometry, University of California Press, Berke-
ley, 1918.

Williamris, B., "MINIMA: A Symbolic Approach to Qualitative algebraic reasoning," Proc. of AAAI 88. St.
Paul, Minnesota, 264-269, August 1988.

915



Measuring the Effectiveness of Task-Level Parallelism
for High-Level Vision

Wilson Harvey, Dirk Kalp, Milind Tambe,
David McKeown, Allen Newell

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania
15213-3890

1. Abstract
Large production systems (rule-based systems) continue to suffer from extremely slow execution

which limits their utility in practical applications as well as in research settings. Most efforts at
speeding up these systems have focused on match or knowledge-search parallelism in production
systems. Though good speed-ups have been achieved in this process, the total speed-up available from
this source is not sufficient to alleviate the problem of slow execution in large-scale production system
implementations. Such large-scale tasks can be expected to increase as researchers develop increasingly
more competent rule-based systems.

In this paper, we focus on task-level parallelism, which is obtained by a high-level decomposition of
the production system. Speed-ups obtained from task-level parallelism will multiply with the speed-ups
obtained from match parallelism. Our vehicle for the investigation of task-level parallelism is SPAM, a
high-level vision system, implemented in a production system architecture. SPAM is a mature research
system having over 600 productions, with a typical scene analysis task having between 50,000 to
400,000 production firings and an execution time of the order of 10 to 100 cpu hours.

We present a characterization of task-level parallelism in production systems and, from that, select an
explicit, data-driven approach for exploiting task-level parallelism. We describe a methodology for
applying the chosen approach to obtain a parallel task decomposition of SPAM and to arrive at our
parallel implementation, SPAM/PSM. We present the results of that implementation that show near linear
speed-ups of over 12 fold using 14 processors and that point the way to substantial speed-ups from
task-level parallelism'.

2. Introduction
Large production systems (rule-based systems) continue to suffer from extremely slow execution

which limits their utility in practical applications as well as research settings. Most efforts at speeding
up these systems have focused on match, i.e., knowledge-search, parallelism in production
systems 13, 5, 7, 14, 19, 20]. Though good speed-ups have been achieved in this process, the total
speed-up available from this source is limited. Therefore, match parallelism alone will not alleviate the
problem of slow execution in production systems.

In this paper, we focus on task-level parallelism, which is obtained by a high-level decomposition of
the production system. Speed-ups obtained from task-level parallelism will multiply with the speed-ups
obtained from match parallelism. Our vehicle for the investigation of task-level parallelism is
SPAM [11, 12, 131, a high-level vision system, implemented in a production system architecture. SPAM

'This research was partially supported by the Air Force Office of Scientific Research, under Grant AFOSR-89-0199, and
by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976, monitored by the Air Force Avionics
Laboratory Under Contract F33615-87-C-1499. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or implied, of the Air Force Office
of Scientific Research, of the Defense Advanced Research Projects Agency, or the US Government.
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is a mature research system having over 600 productions, with a typical scene analysis task requiring
between 50,000 to 400,000 production firings and an execution time of the order of 10 to 100 cpu
hours2 . Unlike most other production systems examined for studies in parallelism, it has embedded in it
a large computational demand related to the vision task that it performs. This task-related computation
is separate from the computation performed for knowledge-search in the system. This is evident in the
large RHS processing time for this system. While many production systems spend up to 90% of their
time in knowledge-search, SPAM spends only about 30-50% of its time there.

In this paper, we show that the opportunities for task-level parallelism in SPAM are high and provide a
much larger payoff in speed-up than match parallelism. We present a methodology and a set of
principles to arrive at a suitable parallel decomposition of the SPAM task that results in near linear speed-
ups of over 12 fold using 14 processors on a 16-processor shared-memory multiprocessor. Our results
also indicate that a potential speed-up of 50 to 100 fold may be achievable due to task-level parallelism.
We further show that match parallelism, when used in conjunction with task-level parallelism, gives
another multiplicative factor of speed-up which is proportional to the size of the match component in the
overall execution time. In the SPAM system, this additional multiplicative factor is around 1.5 to 2.

This paper is organized as follows: Section 3 provides some background about production systems
and SPAM, the image interpretation system that is the focus of our analysis of task-level parallelism.
Section 4 discusses match parallelism and task-level parallelism in production systems. We describe a
new organization to compare previous work in task-level parallelism along several independent
dimensions. Section 5 discusses the implementation methodology used to determine appropriate levels
for task-level parallelism. We also describe a set of experiments and measurements on SPAM that
allowed us to select an appropriate grain of decomposition. These techniques should be applicable to
the analysis of other large production systems for evaluating the opportunities for task-level parallelism.

A new system, SPAM/PSM, resulted from the apitlication of this methodology and its implementation is
described in Section 6. Section 7 presents a detai ,d analysis of the results of experiments across several
dimensions including grain of decomposition, speed-ups due to processor allocation for match-level and
task-level parallelism. Finally, Section 8 presents a summary of our research results and Section 9
discusses some issues for future work.

3. Background
In this section we provide a brief overview of OPS5 and SPAM. SPAM is implemented in OPS5, hence

the description of OPS5 will be useful in understanding some of the issues in how SPAM represents
knowledge about spatial and structural constraints used in computer vision. Besides providing
background information, this section introduces the terminology that will be used in the rest of this
paper.

3.1. OPS5
An OPS5 [2] production system is composed of a set of if-then rules, called productions, that make up

the production memory, and a database of temporary data structures, called the working memory. The
individual data structures are called working memory elements (WMEs), and are lists of attribute-value
pairs. Each production consisL3 of a conjunction of condition elements (CEs) corresponding to the if
part of the rule (also called the left-hand side or LHS), and a set of actions corresponding to the then part
of the rule (also called the right-hand side or RHS).

The CEs in a production consist of attribute-value tests, where some attributes may contain variables
as values. The attribute-value tests of a CE must all be matched by a WME for the CE to match; the
variables in the condition element may match any value, but if the variable occurs in more than one CE
of a production, then all occurrences of the variable must match identical values. When all the CEs of a
production are matched, the production is satisfied, and an instantiation of the production (a list of
WMEs that matched it), is created and entered into the conflict set. The production system uses a
selection procedure called conflict-resolution to choose a production from the conflict set, which is then

2These measurements are taken from the Lisp-based version of OPS5 running on a VAX/785 processor.
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fired. When a production fires, the RHS actions associated with that production are executed. The RHS
actions can add, remove or modify WMEs, or perform 1/0.

The production system is executed by an interpreter that repeatedly cycles through three steps:
1. Match
2. Conflict-resolution
3. Act

The matching procedure determines the set of satisfied productions, the conflict-resolution procedure
selects a single instantiation, and the act procedure executes its RHS. These three steps are collectively
called the recognize-act cycle.

3.2. SPAM: A Production System Architecture For Scene Interpretation
SPAM [11, 12, 13] is a production system architecture for the interpretation of aerial imagery with

applications to automated cartography and digital mapping. It tests the hypothesis that the interpretation
of aerial imagery requires substantial knowledge about the scene under consideration. Knowledge about
the type of scene - airport, suburban housing development, urban city - aids in low-level and
intermediate level image analysis, and will drive high-level interpretation by constraining search for
plausible consistent scene models. SPAM has been applied in two task areas: airport and suburban house
scene analysis. In the remainder of this section we describe the SPAM architecture, and give run-time
statistics that lead us to focus on one phase for our studies in parallelism.

As with many vision systems, SPAM attempts to interpret the 2-dimensional image of a 3-dimensional
scene. A typical input image is shown in Figure 1. The particular goal of the SPAM system is to
interpret an image segmentation, composed of image regions, as a collection of real-world objects. For
example, the output for the image in Figure 1 would be a model of the airport scene, describing where
the runway, taxiways, terminal-building(s), etc., are all located. SPAM uses four basic types of scene
interpretation primitives: regions, fragments, functional areas, and models. SPAM performs scene
interpretation by transforming image regions into scene fragment interpretations. It then aggregates
these fragments into consistent and compatible collections called functional areas. Finally, it selects
sets of functional areas to form models of the scene.

Phase 4 Model Generation
(MODEL) and

Evaluation

Phase 3 [Functional Area
(FA)

.Phase 2 [Local Consistency(LCC)

.0 ~Phase 1
(RTF) Region-to-Fragment

Segmentation Region

Figure 1: Aerial image of San Francisco Airport Figure 2: Interpretation phases in SPAM.

As shown in Figure 2, each interpretation phase is executed in the order given. SPAM drives from a
local, low-level set of interpretations to a more global, high-level, scene interpretation. There is a set of
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hard-wired productions for each phase that control the order of rule executions, the forking of processes,
and other domain-independent tasks. However, this "bottom-up" organization does not preclude
interactions between phases. For example, prediction of a fragment interpretation in functional-area
(FA) phase will automatically cause SPAM to reenter local-consistency check (LCC) phase for that
fragment. Other forms of top-down activity include stereo verification to disambiguate conflicting
hypotheses in model-generation (MODEL) phase and to perform linear alignment in region-to-fragment
(RTF) phase.

Another way to view the flow of processing in SPAM is that knowledge is used to check for
consistency among hypotheses; contexts are created based on collections of consistent hypotheses, and
are then used to predict missing components. A collection of hypotheses must combine to create a
context from which a prediction can be made. These contexts are refinements or spatial aggregations in
the scene. For example, a collection of mutually consistent runways and taxiways might combine to
generate a runway functional area. Rules that encode knowledge about runway functional areas may
predict that certain sub-areas within that functional area are good candidates for finding grassy areas or
tarmac regions. However, an isolated runway or taxiway hypothesis cannot directly make these
predictions. In SPAM the context determines the prediction. This serves to decrease the combinatorics
of hypothesis generation and to allow the system to focus on those areas with strong support at each
level of the interpretation.

SPAM Phase RTF LCC FA MODEL Total

Total CPU Time (hours) 1.5 144.5 7.3 0.71 154.01

Total Productions Fired 11274 185950 10447 3085 210756

Effective Productions/Second 2.08 0.357 0.397 1.20 0.380

Total Hypotheses 466 N/A 44 1 N/A

Table 1: San Francisco Airport (log #63)

SPAM Phase RTF LCC FA MODEL Total
Total CPU Time (hours) 2.5 17.9 7.3 0.33 28.03

Total Productions Fired 18319 32751 1483 1516 54069

Effective Productions/Second 2.03 0.508 0.056 1.27 0.536

Total Hypotheses 247 N/A 57 1 N/A

Table 2: Washington National Airport (log #405)

SPAM Phase RTF LCC FA MODEL Total

Total CPU Time (hours) 0.25 4.12 2.33 0.33 7.03

Total Productions Fired 4713 36949 1503 3774 46939

Effective Productions/Second 5.24 2.30 0.160 3.02 1.85

Total Hypotheses 199 N/A 27 1 N/A

Table 3: NASA Ames Moffett Field (log #415)

Tables 1, 2, and 3 give statistics for run-time and number of production firings for each interpretation
phase in SPAM for each of the three airports used in this study: San Francisco International (SF),
Washington National (DC), and NASA Ames Moffett Field (MOFF) . It is interesting to note that LCC
and FA phases account for most of the overall time in a complete run. Further, within these phases
much of the RHS evaluation is performed outside OPS5 using external processes. For example, FA
spends much of its time doing RHS evaluation outside of OPS5. RTF, on the other hand, spends most
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of its time within the traditional OPS5 evaluation model and consumes less time than FA, even though it
executes a comparable number of productions. It is also clear from these tables that the application of
spatial constraints in LCC makes it by far the most expensive phase in terms of amount of time spent,
number of productions, as well as number of production firings.

During the LCC phase, knowledge of the structure or layout of the task domain (i.e. airports or
suburban housing developments) is used to provide spatial constraints for evaluating consistency among
fragment hypotheses. For example, runways intersect taxiways and terminal buildings are adjacent to
parking apron are examples of the kinds of constraints that are applied to the airport scene
segmentation. It is important to assemble a large collection of such consistency knowledge since the
results of these tests are used to assemble fragment hypotheses found to be mutually consistent as
contexts for further interpretation within the functional area phase.

As a result of this preliminary analysis we decided to focus our initial efforts on the parallel
implementation of the LCC phase. Another rationale for this approach is the observation that this phase
has the largest potential for growth. If a single new scene primitive is added within the RTF phase,
many constraints may be added in the LCC phase in order to describe the spatial relationships (and
constraints) between each of the other primitives. For these reasons, we believe that as new knowledge
is added to the existing SPAM system, the proportion of time can only increase in the LCC phase.

4. Sources of Parallelism in Production Systems
There are two sources of parallelism in production systems: match parallelism (MP) and task-level

parallelism (TLP). In this section we first discuss existing results in match parallelism. We then discuss
task-level parallelism and introduce a taxonomy for describing various approaches to achieving effective
speed-ups.

4.1. Match Parallelism
In general, production systems spend most of their time (> 90%) in the match phase of the recognize-

act cycle. This makes it imperative that we speed up the match as much as possible. In the past few
years, an increzasing number of researchers have explored many alternative ways to speed up the match
in production systems using parallelism [3, 5, 7, 14, 16, 19, 20].

Our own efforts in speeding up the match have culminated in ParaOPS5 [7, 9], a highly optimized
C-based parallel implementation of OPS5 for shared memory multi-processors. ParaOPS5 represents
our current technology for achieving match parallelism within systems such as SPAM. This
implementation parallelizes the highly efficient Rete [4] match algorithm. ParaOPS5 exploits
parallelism at a fine granularity: subtasks execute only about 100 instructions. ParaOPS5 has been able
to provide significant speed-ups for OPS5 systems that are match-intensive. Figure 3 shows the speed-
ups achieved with our current implementation for three different match intensive systems: Rubik,
Weaver and Tourney. The speed-ups are for an implementation on the Encore Multimax and are
reproduced from [7]. Though Rubik and Weaver are seen to achieve good speed-ups, the speed-up in
Tourney is quite low. The speed-ups are a function of the characteristics of the productions in the
production system (see [6, 71.)

Although systems such as ParaOPS5 have achieved good speed-ups, the total possible speed-up via
MP in current production systems is limited (only 20 to 40 fold [5]). This limit is imposed by:

1. The recognize-act cycle of OPS5: The OPS5 model requires a synchronization in it's
resolve phase. Thus MP is limited to individual cycles; we cannot extract MP across
cycles.

2. Limited match effort per cycle: In every recognize-act cycle, only a limited number of
productions are affected, i.e., the match effort per cycle is also quite limited.

Furthermore, MP is based on the assumption that the match phase dominates the entire computation.
However, it is possible that the system under consideration is embedded in some other computationally
demanding environment. In such cases, it is necessary to parallelize the rest of the computation besides
match. Consider a system that spends only 50% of its time in match. Even if the match is made infinitely
fast, the total speed-up possible will be only a factor of two (Amdahl's law).
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Figure 3: Speed-ups for OPS5 on the Encore Multimax [7].

4.2. Task-Level Parallelism
The limitations of match parallelism described in the previous section encourage the investigation of

task-level parallelism. TLP has also been referred to as application parallelism [5], concept
parallelism [17], and parallel rule firings [8]. The idea is to use knowledge about the problem domain to
create a task decomposition suitable for parallel execution. Our choice of the term TLP for this source
of parallelism is partly historical and partly dictated by the inadequacy of the other terms to cover the
kind of parallelism provided by production systems like Soar [10].

A system exploiting TLP would be implemented on top of a system exploiting MP. The speed-ups
obtained from these two sources can be independent and therefore multiply. We can understand TLP by
considering the possible dimensions in which TLP can be divided. These dimensions are:

9 Synchronous/Asynchronous: Synchronous production-firing systems always require a
synchronization in the resolve phase of the recognize-act cycle. All the productions are
matched in parallel. In the resolve phase, one or more of the productions are selected for
firing. In the act phase, the selected productions are fired in parallel.

In asynchronous production-firing systems there is no requirement for a synchronization in
the resolve phase across processors. Thus, these systems do not have distinct match, resolve
and act phases across the parallel system.

Synchronous systems are less capable of handling variances in processing times for
subtasks [151. As shown in [15], given a fixed amount of work, in the presence of variance,
a synchronous system quickly reaches saturation speed-ups, while an asynchronous system
can continue to exploit linear speed-ups. So, in a production system embedded in an
computationally intensive environment, if executing the RHS of certain productions takes
much longer than others, the performance of the synchronous system will degrade heavily.
However, synchronous systems may be preferred in the development and debugging stages.
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" Implicit/Explicit: The parallelism is implicit if the system or the compiler has to extract
parallelism out of the existing OPS5 code. This requires an analysis of the interference
caused by firing productions in parallel. Thus, this is taking a dusty deck view of OPS5
programs.

Explicit parallelism refers to providing explicit information to the system for exploiting
TLP. Thus, the system may be supplied with the information that certain parts of a given
task can be solved in parallel, or that certain productions can always be fired in parallel.

In implicit parallelism, if the system engages in extracting this parallelism at compile-time,
then its extraction of parallelism has to be very conservative, as the variable-bindings are
unknown. If parallelism is extracted at run-time, then there are overhead costs payed at
run-time. These overheads are sequential, and hence can cause considerable slowdowns. A
system for exploiting explicit parallelism is able to avoid these problems.

When the parallelism is implicit, the granularity is usually at the level of productions; it
seems difficult to discover a higher level of granularity with implicit parallelism. With
explicit parallelism, the user has the freedom to choose the right granularity. The level of
granularity is a complex tradeoff of the number of processors available, architectural
parameters, variances, data structures and task management overheads. We will discuss the
granularity issue in detail in Section 5.

" Rule distribution/working memory element distribution/No distributiot,. This separation is
related to the implementation of a parallel rule firing system. In the implementation of a
parallel rule-firing system, it is possible to distribute the productions (rules) among
processors, where each production set has its own conflict set. This distribution could be
done automatically or with the help of the user. However, optimal distribution of
productions among processors is a difficult problem.

A second approach is to allocate all the productions to each processor; the working memory
elements are then distributed among the processors. A third approach involves no
distribution at all. Here, the parallel rule-firing is built into the control structure of the
system.

Table 4 shows the various dimensions and the classification of various parallel rule-firing systems
along these dimensions. These dimensions will help to investigate the TLP in SPAM/PSM. The table
uses the names of authors to represent systems that do not have any names. Superscripting each system
name, we indicate the third dimension that classifies the type of distribution used: rule-distribution,
working memory element distribution, or none.

The SPAM/PSM system is the system described in this paper; we will discuss our design choice in detail
in Section 5. These dimensions are not intended to be binary; rather, different systems could take
different positions along a continuum in these dimensions. However, in the interests of clarity, the table
makes a binary division. For instance, the system in [171 is classified as using implicit parallelism -
however, it uses some explicit parallelism. It should be noted that except for Soar and SPAM/PSM, all
other systems present simulation results on mini-production systems (with 50 or less productions).

Dimensions Synchronous :: Distribution Asynchronous :: Distribution

Implicit Ishida &
Stolfo [81 :: Rule
Oshisanwo &
Dasiewicz [171 :: Rule

Explicit Soar [51 [101 :: None SPAM/PSM :: WME

Table 4: Dimensions of task-level parallelism.
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5. Implementation Methodology
In this section, we develop a methodology for applying task-level parallelism within the context of

SPAM. We use knowledge about the task domain to specify several hierarchical task decompositions of
the problem in which parallelism can be exploited. Thus, the characteristics of the SPAM task fit the
requirements for exploiting task-level parallelism along the explicit dimension described in Section 4.2.

As described in Section 3.2, we will concentrate on the local-consistency phase (LCC) of SPAM for
parallelization 3. The LCC phase applies geometric knowledge (constraints) from the selected domain to
the set of interpretations made from the dataset. This application of geometric knowledge can be
logically decomposed into several levels, where the tasks within each level are independent and can be
performed in parallel. This is illustrated in Figure 4.

Grain of
Computation Icon Description

Phase _ .............. Complete Phase....P ...... , . . . . . . . . . . . . . ................................ . ......... .. .. . .......
Level Four I IF Entire Class Check

Level Three Group of Ruleset Executions
. ................................................................. ...................................

LvlTwo H 1 ~ ~ 1 Singe Ruleset Execution

Level One 1II 1 If F [II I U f 1O11 ILII I I]U[I 1111 I D[I Single Constraint Check

Figure 4: Levels of processing in SPAM LCC.

These levels of decomposition are described below:
* LCC Phase: At the highest phase level, the computation is for the entire LCC phase.
" Level 4: The phase level computation may be decomposed into tasks at Level 4, where each

task applies multiple constraints to a single class of objects. For instance, a task may apply
multiple constraints to all objects of class terminal building.

" Level 3: A single task at Level 4 may be decomposed into multiple tasks at Level 3. A task
at Level 3 applies multiple constraints to a single object within the class of objects selected
at Level 4. For example, a Level 3 task may apply multiple constraints to a single terminal
building object.

* Level 2: A single task at Level 2 involves applying a single constraint to a single object.
Thus, a task at Level 2 may apply a constraint such as, access roads lead to terminal
buildings, to a single terminal building chosen for a task at Level 3.

" Level 1: A single task at Level 2 may have several components to check in applying a
constraint to an object. Thus a constraint such as, access roads lead to terminal buildings,
requires several roads be checked against the terminal building. A task at Level 1 would
perform one of these constraint components.

Within a level, each task involves the firing of from 3 to 100 productions. As mentioned in Section
4.2, an implicit approach to extracting parallelism would make it difficult to obtain parallelism at a
higher level of decomposition than individual production firings. Therefore, for this application, an
explicit approach to parallelism is more appropriate.

With an explicit approach to parallelism, the choice of the right level of decomposition, or the right
granularity, for parallelization must be made. This choice is determined by several factors:

1. Task granularity: As the average time per task gets smaller, task management overheads

3Since the analysis is performed using the original, expensive Lisp-based SPAM system, we have extracted a representative
subset of the three airport datasets to drive the analysis.
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will have a greater impact and communication overheads and system resource contention
will become more of a bottleneck.

2. Ratio of tasks to processors: The achievable parallelism is bounded by the number of
available processors. At lower task to processor ratios, a large variance in task processing
time will have a negative impact on processor utilization and the speed-ups obtained from
parallelism. With higher ratios, the impact is less pronounced.

3. Coefficient of variance: Defined as a/i, this provides a means of normalizing, for different
levels of decomposition, the effect of variance in task granularity on processor utilization.
A high coefficient of variance will reduce processor utilization, resulting in lower speed-
ups. This effect is more severe in synchronous systems.

4. Decomposition effort: This is a somewhat subjective measure. Proceeding down the
hierarchy of levels, each task at the current level must be decomposed into several tasks at
the next level of granularity. Usually, more work is required to specify the decomposition
and design an implementation at the lower levels. The benefits of the additional
parallelism that can be achieved at a lower level relative to the effort required must be
assessed.

In order to choose the right level of decomposition at which to parallelize the SPAM LCC phase, we
instrumented the SPAM system to obtain measurements at each level for the number of tasks and their
run-time average, standard deviation, and coefficient of variance. The results of these measurements for
each of the three airport datasets is presented in Tables 5, 6, and 7.

Using information from Tables 5, 6, and 7, the appropriate level of granularity can now be chosen.
For Level 4, the task to processor ratio is smaller than one, so we immediately rejected pursuing
parallelism at this level. Levels 3 and 2 are very similar to each other in that they have enough tasks,
their variances are not large, and the task granularities are much larger than the expected task
management and communication overheads. Both levels, therefore, seemed to us to be worthwhile
candidates. Level 3 seemed somewhat more desirable as less effort appeared to be required of us to
achieve amounts of parallelism similar to that available in Level 2.

Level 1 was rejected for several reasons. First and most importantly, the additional effort involved in
decomposing the system at the granularity of Level 1 would not allow us to achieve any more
parallelism than at Level 2 or 3 because of the limitation on the number of processors. Second, the task
granularity is much smaller and thus closer to the overheads for task management and communication
than any of the other levels. Finally, the task to processor ratio is on the order of 1000. This can have a
detrimental affect due to the initialization overhead. Our conclusion, then, was to exploit parallelism at
the granularity of Levels 2 or 3.

The decomposition methodology can be summarized as follows:
* Analyze the baseline system and determine where the time is going.
" Determine if the explicit dimension of TLP (Section 4.2) is appropriate.
* Characterize the computation in terms of independent task decompositions at different

granularities.
" Obtain measurements of the system characteristics for each level of decomposition.
" Analyze the measurements to select a level of decomposition for parallelization.

The second dimension of task-level parallelism addresses the issue of synchronous versus
asynchronous execution. With an explicit decomposition at Level 3, there is no synchronization
requirement. Furthermore, asynchronous models help in reducing the impact of variance. We therefore
decided to decompose the system so as to allow the asynchronous rule-firings.

The final dimension of task-level parallelism addresses the issue of production versus working-
memory partitioning. We decided to use working-memory partitioning, as this facilitates the explicit
decomposition at the higher granularity.
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Level Average Standard Coefficient Number
Stime per task deviation of variance of tasks

(sec) (sec)

Level 4 875.27 525.92 0.601 9

Level 3 65.65 29.51 0.449 120

Level 2 20.90 848 0.406 377

Level 1 0.489 0.0782 0.159 16104

Table 5: Average, standard deviation and coefficient of variance for SF.

Level Average Standard Coefficient Number
time per task deviation of variance of tasks

(sec) (sec)

Level 4 1308.66 641.72 0.490 9

Level 3 78.51 30.48 0.388 150

Level 2 24.04 9.51 0.396 490

Level 1 0.430 0.0677 0.157 27399

Table 6: Average, standard deviation and coefficient of variance for DC.

Level Average Standard Coefficient Number
time per task deviation of variance of tasks

(sec) (sec)

Level 4 165.60 121.20 0.732 9

Level 3 20.07 8.02 0.399 74

Level 2 5.57 2.43 0.436 268

Level 1 0.349 0.0455 0.130 4274

Table 7: Average, standard deviation and coefficient of variance for MOFF.

6. SPAM/PSM Implementation
This section describes the SPAM/PSM system that implements the LCC phase of SPAM described in

Sections 3.2 and 5. The system is built on top of the ParaOPS5 system described in Section 4.1. The
SPAM/PSM system is implemented on an 16-processor Encore Multimax, a shared-memory
multiprocessor based on the National Semiconductor NS32332 processor, rated at approximately 1.5
MIPS.

6.1. SPAM/PSM Architecture
Figure 5 gives a process hierarchy view of the SPAM/PSM system for the LCC phase. Viewed from the

top level, the execution model consists of a control process, a set of task processes, and a queue of tasks
to be executed. The size and number of tasks in the queue reflects the level of decomposition chosen for
the LCC phase. The decomposition of LCC was described in Section 5.

The control process takes the output from the phase preceding SPAM's LCC phase and builds the queue
of tasks. It then forks the task processes and, once they have completed all the tasks, collects from them
the results that will be passed on to the next SPAM processing phase.

Each of the task processes is a complete and independent ParaOPS5 system. Thug, -ach task process
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Figure 5: Organization of the SPAM/PSM system.

has its own working memory, conflict set, Rete node memories, etc. Each task process has a production
memory, whch represents all the productions in the system, and effectively has a copy of the initial
working memory supplied by the control process. At system initialization time, each task process can
also fork a set of match processes (see Figure 5) which will perform the match in parallel.

The work performed by the SPAM/PSM system to carry out the LCC phase involves a task process
removing a task from the queue and executing its ParaOPS5 system on that task. The task itself is just a
WME which, when added to the process' Rete network, initializes the production system. Thus, each
task can be characterized as the execution of an independent OPS5 program.

In the absence of the match processes, a task process performs the usual ParaOPS5 role of match,
conflict resolution, and production firing, to carry out the OPS5 recognize-act cycle. If dedicated match
processes are present, they perform the match instead, providing a second and independent axis of
parallelism in the SAMIPSM system. When there are no productions left to fire, the task is complete,
and the task process goes to the queue for another task.

Thus, the SPAM/PSM system realizes our specifications:
1. Explicit parallelism: The decomposition of the LCC phase is explicitly specified. The task

queue is initialized with independent tasks, depending on the level of decomposition, in
the beginning of the run.

2. Asynchronous production firing: All the task processes are independent ParaOPS5
systems. Therefore, these processes can fire productions without synchronizing with each
other.

3. Working-memory element distribution: Each task process has a copy of the entire set of
productions. The working memory is distributed among the various task processes.

6.2. Measurement Techniques
The SPAM/PSM system is instrumented to measure the time spent in executing the tasks from two of

the LCC phase decompositions, Level 2 and Level 3, identified in Section 5. The control process
previously described is used to monitor and time this processing. Measurement begins at the point after
which the control process has built the task queue and forked the task processes, and all the task
processes have performed their initializations. Speed-ups are computed by comparing the measured
execution time against the execution time of the BASELINE version, which consists of the control
process, one task process, and no dedicated match processes.
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Because of the 16 processor limit, we measure the effects of task-level parallelism and match
parallelism in isolation. We allocate one processor for the control process, which is used only to time
and not to perform tasks, and we al!ow one processor to the operating system. This permits us to vary
the number of task processes from 1 to 14 in the isolated measurement of task-level parallelism. Next
we measure the effect of match parallelism in isolation by using a single task process and varying the
number of dedicated match processes from 0 to 13.

We are then able to use these two separate measures of task-level parallelism and match parallelism to
predict the combined effect of the two. However, with 14 available processors, we are able to test only
a subset of the possible combinations. For example, 4 task processes, each having 2 dedicated match
processes, uses 12 processors (4 + (4 * 2)). Thus, dedicating 3 match processes requires 16 processors
(4 + (4 * 3)) and, therefore, cannot be accommodated.

7. Results and Analysis
In this section we present the results of our parallel implementation, SPAM/PSM, of the SPAM LCC

phase run on tlese three different airport datasets: SF, DC, and MOFF. As described above, the speed-
ups are obtained for applying task-level parallelism and match parallelism in isolation and then for a
combination of the two. We obtained results for two of the parallel decompositions, Level 3 and Level
2, identified in Section 5.

It is important to note that all the speed-ups are computed against a baseline system which represents
an optimized uniprocessor implementation of the SPAM LCC phase. The original SPAM system is
implemented in Lisp, using an unoptimized Lisp-based OPS5. It forks independent processes to
perform geometric computations in the RHS. We ported the LCC phase of the system to C and
ParaOPS5 and replaced the forked compuLational processes with C function calls. This baseline system
itself provides approximately a 10-20 fold speed-up over the original Lisp-based implementation for the
L.CC phase on the three datasets used here.

7.1. The Baseline System
The baseline version of the system uses a single task process to execute all the tasks in the system.

The results from this version are given in Table 8 and provide a picture of the magnitude of the LCC
phase. The column marked DATASET gives the name of the airport and the decomposition level used.
The column marked TOTAL TIME shows the total time to execute all the tasks from the queue for the
given number of tasks executed. The average time per task is then shown in the iiext column. Finally,
we further characterize the LCC phase with the total number of productions fired (PRODS FIRED), RHS
actions performed (RHS ACTIONS), and changes to working memory (CHANGES TO WM).

Dataset Total Number Average Prods RHS Changes
time of tasks time per fired actions to WM
(se ) task

(sec)

SF Level 3 1433 283 5.07 33475 42383 39116

SF Level 2 1423 941 1.51 32251 41159 38550

DC Lev~d 3 088 151 6.55 20059 31205 26714

DC Level 2 956 490 1.95 19418 30564 26412

MOFF Level 3 991 209 4.74 22203 23637 23368

MOFF Level ? 973 700 1.39 21294 22728 22950

Fable 8: Measurements for baseline system on the datasets4.
(Represents the optimized, ParaOPS5-based, uniprocessor version.)

4"Thcsc datacts are larger than dios shown in 1 ahles 5, 6, andl .
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The execution times in Table 8 provide the basis for computing all of the speed-ups. For a given
airport dataset, there is a small difference in the total execution time between the two levels of
decomposition. These differences arise due to the differences in the initial set of productions fired for
generating the tasks for the two levels.

7.2. Speed-ups due to Task-Level Parallelism
The results of applying task-level parallelism are shown in Figure 6. The speed-up curves show near

linear speed-ups for both levels of decomposition. The speed-ups within a level are almost the same
among the three airport datasets. The maximum speed-up achieved using 14 processors is 11.90 fold in
Level 3 and is 12.58 fold in Level 2.
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Figure 6: Speed-ups varying the number of task-level processes.

Across the two levels, we see that the curves are consistently better in Level 2, although by only a
small factor (les,, than 10%). While the difference is small, Level 3, with its higher granularity, was
expected to have the edge in speed-up, since its task management overheads would be lower. However,
the task management overheads in both levels are very low: less than .25 seconds, or less than .1% of
the processing time for all the tasks. Moreover, the coefficient of variance for tasks at both levels was
seen to be the same in Section 5.

Further investigation of the individual processing times of the tasks in the queue showed that there are
a few tasks in each level that have execution times that are an order of magnitude larger than the average
task in that level. Some of these tasks occur at the end of the task queue and create a tail-end effect in
which processor utilization is low at the end of the phase. The relative disparity of these large tasks is
greater within Level 3 and thus accr unts for the slightly better speed-ups in Level 2.

One way to both negate this disparity and reduce the tail-end effect would be to use a separate task
queue for the larger tasks and process them at the beginning of the phase. This would result in betterprocessor utilization and thus better speed-up curves in both levels. SPAM can provide the necessary

information to indentify the sizes of the tasks. This and other related issues of scheduling tasks are
subjects for future work.

7.3. Speed-ups Due to Match Parallelism
Figure 7 shows the results for applying match parallelism to each of the tasks in a parallel

decomposition for Levels 2 and 3. ',.,atch parallelism is obtained by dedicating processes to perform the
match within the OPS5 recognize-act cycle. Since the baseline version of the system has only a task
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Figure 7: Speed-ups varying the number of match processes.

process and no dedicated match processes, it is represented in both graphs at position 0 on the horizontal
axis. From the graphs, we see that applying match parallelism to the LCC phase yields very different
speed-up results from those achieved using task-level parallelism. As stated in Section 4, the theoretical
maximum Ipeed-up that can be obtained is iimited according to the percentage of total execution time
spent in match.

The dotted lines on the graphs show the theoretical speed-up limits. For Level 3, these limits are 1.95,
1.36, and 1.54 for SF, DC, and MOFF respectively. We were able to obtain respective speed-ups of
1.71, 1.28, and 1.45 which represent 88%, 94%, and 94% of the corresponding asymptotic limits. In all
three cases. the speed-ups peaked using 6 or less match processes. Similar results are shown for Level
2.

7.4. Multiplicative Speed-ups
To valida.e the multiplicative effect of the two independent axes of parallelism [18], the system was

run using task-level and match parallelism in consort. While the scope of the experiments was limited by
the small number of processors, the speed-ups obtained in these combined runs were consistent with the
speed-ups predicted by the multiplication of speed-ups from the two separate sources. Table 9 shows
the results of some of these combined runs on SF for Level 2. The top row of the table varies the
number of dedicated match processes from 0 to 5. The left column of the table varies the number of task
processes from l to 7. The first row of numbers in the table gives the speed-ups from match parallelism
in isolation. The first column of numbers in the table gives the speed-ups from task-level parallelism in
isolatioi,

The table entry at (Task1 , Match0 ) represents the baseline version of the system. Each of the other
table entries shows the achieved multiplicative speed-up from the combined sources with the predicted
speed-up in parentheses directly below. For example, the entry (Task4, Match 2) represents the use of 4
task processes with each having 2 dedicated match processes. The achieved speed-up for this
configuration is 5.82 fold and the predicted speed-up is 5.96 (3.98*1.50). Table entries marked with an
asterisk could not be measured due to a lack of processors on the machine (see Section 6.2). For
example, (Task4, Match 3) requires 17 processors: I control process, 4 task-level processes, and 12 (=
4*3) dedicated match processes. The table shows the achieved sp-ed-ups to be very close to the
predicted speed-ups. Similar results were obtained for DC and MOFF.

The speed-up curves for task-level and match-level parallelism graphically indicate that the benefits
from task-level parallelism are much more significant than from match parallelism. Thus, in a setting
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Match0  Match1  Match 2  Match 3  Match4  Match 5

Task1  1 1.21 1.50 1.60 1.68 1.70

Task2  2.01 2.42 2.97 3.16 3.30 3.36
(2.43) (3.01) (3.22) (3.37) (3.42)

Task 3  2.98 3.57 4.42 4.73 * *

(3.60) (4.46) (4.78) (5.01) (5.07)

Task4  3.98 4.73 5.82 * * *

(4.81) (5.96) (6.37) (6.69) (6.77)

Task 5  4.93 5.82 * * * *

(5.95) (7.39) (7.89) (8.28) (8.38)

Task6  5.89 6.98 * * * *

(7.12) (8.83) (9.42) (9.90) (10.01)

Task 7  6.70 8.04 * * * *

1 (8.09) (10.05) (10.72) (11.26) (11.39)

Table 9: Multiplicative speed-ups in SPAM/PSM for SF Level 2.
Parenthesized numbers are the predicted speedups.

where the number of available processors is limited, it is best to allocate them to task-level parallelism
rather that match parallelism. We believe that the potential for additional speed-ups in SPAM from task-
level parallelism is quite high; an expectation of 50 to 100 fold does not seem unreasonable, since:

1. The tasks within any of the LCC decompositions are independent of one another.

2. Several hundred tasks are available in Level 2.

3. The task queue management overheads measured for Level 2 and Level 3 are very low,
especially with respect to the task granularity, and thus are not a factor.

The current scheme of decomposition depends on a centralized task-queue for effective distribution of
tasks among processes. A centralized task queue may become a bottleneck for an increasing number of
processes; therefore, we need to investigate schemes for effective distribution of tasks among processes.

Though our scheme of parallelization has been presented in the context of non-match-intensive
system, the scheme is applicable to match-intensive systems as well. In match-intensive systems, match
parallelism will make a substantial contribution to the speed-ups.

8. Summary and Conclusions
In this paper we characterized task-level parallelism in production systems along three dimensions

and, from that, selected an explicit, data-driven, asynchronous approach for exploiting it "rme system we
presented, SPAM/PSM, is a real, computationally demanding, high-level vision s,' .,at relies on
knowledge-based reasoning. With the SPAM/PSM system, we showed that an exp,.... ,proach to task-
level parallelism can yield significant speed-ups.

The explicit approach relies on knowledge that the system designer has available about the nature of
the problem. The designer uses this knowledge directly to arrive at a problem decomposition in which
parallelism can be exploited. The decomposition is made based on the data upon which the system must
operate and several levels of decomposition are possible. We saw that the choice of the correct level at
which to exploit parallelism is based upon a number of factors; among these are the task granularity,
task management and communication overheads, the variance in task processing times, and the ratio of
total tasks to processors.

For the SPAM/PSM system we presented a methodolog) for obtaining a parallel task decomposition and
arrived at three levels of decomposition. We implemented two of those levels and obtained near linear
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speed-ups with a maximum of over 12 fold using 14 processors. The results obtained indicate that
speed-ups on the order of 50 to 100 fold from task level parallelism might be realized on a machine with
a comparably large number of processors. We believe that the success achieved with the SPAM/PSM
system gives hope to designers of other rule-based systems to realize systems with much lower
execution times by applying task-level parallelism. Also the potential for very large speed-ups indicated
here should serve as encouragement to the designers of large-scale multiprocessor systems.

We also obtained results for applying match parallelism to each of the tasks in a parallel
decomposition. We saw that this speed-up represented an independent axis of parallelism and thus could
be multiplied with the speed-up obtained from task-level parallelism. In the airport data sets tested, this
axis provided a factor of 1.5 to 2 fold parallelism.

We believe that the explicit, data-driven approach taken here holds better potential for realizing task-
level parallelism than implicit approaches that attempt to extract parallel rule-firings using a task-
independent, bottom-up analysis. With these latter kinds of approaches to task-level parellelism, there is
not enough information available at compile-time to make these decisions and the complexity and
overhead required at run-time to perform the analysis is prohibitive and does not seem likely to yield
much speed-up from parallelism. Such parallel rule-firing schemes are still constrained by the overall
synchronous nature of the OPS5 recognize-act cycle. In addition, the run-time analysis for parallel rule-
firings places another synchronous constraint upon the system which presents a further bottleneck to
parallelism. The top-down, explicit approach presented here achieves parallel rule-firings without this
synchronous constraint and the overhead of the run-time analysis. Furthermore, the analysis required to
arrive at a suitable parallel decomposition is straightforward and can be arrived at fairly quickly.

Finally, the framework for exploiting task-level parallelism presented in this paper seems most
suitable for parallelizing knowledge-intensive systems that exhibit weak interaction between the
individual subtasks of the task. This framework is especially useful for systems with a large
computational demand separate from the demand imposed by match.

9. Future Work
In the near future we plan to make our SPAM/PSM implementation a useful tool for SPAM researchers.

This means partitioning and parallelization of the other phases of SPAM besides the local consistency
check phase. Moreover, currently, the initialization subphase within the local-consistency phase
consumes a large amount of processing time. We need to optimize and/or parallelize the initialization
subphase.

Results from Section 7 show that large amounts of parallelism can be exploited in SPAM, and thus,
significantly larger number of processors could be employed in exploiting the parallelism. Shared-bus
multi-processors like the Encore Multimax cannot support such a large number of processors. We need
to evaluate other scalable parallel architectures for exploiting match and task-level parallelism in
production systems. Toward this end, we are currently investigating implementations on message-
passing computers; simulation results for production systems on message-passing computers [I] have
shown positive results.

Our long term plan is the investigation of task-level parallelism in systems besides SPAM. We hope
such investigations will help us refine the general methodology for exploiting task-level parallelism in
production systems.
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MULTI-SCALE CONTOUR MATCHING IN A MOTION SEQUENCE

Salit Levy Gazit and G6rard Medioni
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ABSTRACT

This paper presents a method to establish correspondences between elements of two images in a motion sequence,
even when this motion induces large displacements in the image.

The matching proceeds by trying to find the most similar shape corresponding to each contour (local process), and
by trying to find similar displacements for adjacent contours (global process).

The primitives we use are connected edgels obtained from a process called Adaptive Smoothing, in which an image
is repeatedly convolved with a small averaging mask whose coefficients dre updated at each iteration to reflect the
amount of discontinuity in the local window. This process depends on a single scale parameter, analogous to the
space constant of a Gaussian filter. The main advantage of this adaptive process is that the resulting edges have a
position independent of the scale, making the tracking of edges across scales a trivial problem. This property allows
us to perform the matching of motion images hierarchically in a coarse to fine manner.

We applied the method to several sequences, processing each with parameter values of 16, 8 and 4. The images
match well even when the displacements are quite large.

1 INTRODUCTION

Several approaches have been tried for computational analysis of motion from image sequences, and many of them
need a set of matching points or matching features for the motion analysis. Therefore matching features between
consecutive frames is an important step in motion analysis.

The choice of the appropriate features is crucial. Low level features, such as edgels, are easy to detect, but convey
very little context information and therefore are difficult to match correctly. Very high level features, such as surface
patches or objects, are easy to match but very difficult to detect. Researchres in the field have used simple features
such as edgels [15, 12]; intermediate level features such as line segments [16, 3], vertices [1, 2], local statistics [13,
21], extrema of local grey level curvatures [7], corners [6], regions [17] and high curvature points in zero crossings
contours [20]; or complex features such as structured forms [14] or even the images of recognized objects. Coarse-to-
fine resolution matching [10, 11] can be used to reduce the complexity of the matching.

Ullman [22] conjectures that in humans correspondence is based neither on luminance alone nor relating complex
form, but is rather an intermediate level process based on relatively simple properties of the image.

Line segments embody continuity information, yet are local enough, so the chance that a line segment belongs to two
different objects is very small. However, curvature and corner information, very important for matching, are lost.
Corners suffer from the opposite problem - they contain curvature information but no continuity information. Also
detecting corners is difficult and error prone.

We prefer to use edgel contours of varying lengths as our basic feature. They are easy to detect and provide
a meaningful representation for the image. However, matching them presents some problems. It is possible for
contours to merge or split, due to occlusion, noise, errors of the linker, etc. Thus, two contours may only partially
match, and there is no simple way to detect, in advance, where along the contours this partial match occurs. We
try to solve this problem by dividing each contour into a few sections and matching each of them separately. Each
of these matches is then increased by adding adjacent points until the similarity starts to decrease, then use a global
preference criteria based on the common motion of matching sections as well as shape similarity. Our method relies
heavily on length and invariance of shape of the contour sections. Straight or short contours are not matched as well
by the algorithm.
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To obtain the features, we first smooth the images with adaptive filters [18] at different scales and then apply Canny's
edge detector to the smoothed images. The result is a hierarchical set of edgels (but not a hierarchical set of contours,
because linking may be performed differently around junctions). Adaptive smoothing does not shift the edgels by
more than a pixel between scales and the edgels are accurately positioned. Using a hierarchical set of features solves
the problems associated to having to match closely spaced and short contours, which are bound to arise when we
use finer scales.

We first review the fundamental properties of Adaptive smoothing filters, then describe our matching algorithm in
detail, provide some illustrative examples on real images and describe possible extensions and future research.

2 ADAPTIVE SMOOTHING

The extraction of features such as intensity discontinuities from an image is an essential task in early vision. Those
discontinuities usually correspond to the physical boundaries of the objects present in the scene but because of the
complexity of the physical world and of the imaging apparatus, and of multiple sources of noise, the image to be
processed is complex, and the detection of such discontinuities is non trivial. Furthermore, a crucial idea based on
physiological observations is that an image can be interpreted at a few different scales depending on how much details
are taken into account. Hence, many researchers in the vision community recently focused on multiple scale features
extraction.

Out of the major approaches proposed in the litterature to tackle this challenging problem, Witkin [23] introduced
the concept of scale-space: the idea is to embed the original image in a family of derived images I(z, y, o) obtained b
convolving the original image with a Gaussian kernel using different values of a. Larger values of a, the scale-space
parameter, correspond to images viewed at coarser resolutions. The major drawback of Gaussian smoothing is that
features extracted at larger values of a are usually not localized correctly since edges start interacting. It is then
necessary to track coarser features across the different scales downwards to the finest scale in order to find their
correct location, which poses a difficult correspondence problem in 2-D.

The purpose of Adaptive Smoothing recently introduced by Saint-Marc and Medioni [18] is to smooth an intensity
image (for instance) while preserving intensity discontinuities. This is achieved by repeatedly convolving the image
with a very small averaging filter modulated by a measure of intensity discontinuity at each point. A relatively small
number of iterations is needed to obtain a smooth image and a parameter k equivalent to a in Gaussian smoothing
fixes the amplitude of the discontinuities to be preserved. Since the latter are preserved, they are directly localized,
hence no tracking is needed as opposed to Gaussian smoothing. The adaptive smoothing of an image I(x, y, n) is
performed as follows:

I(z, y, n + 1) = 1 E+_I, E+1 _ I(z + i, y + j, n)c(z + i, y + j, n) with R + ic(z+i, y + j, n)

where c(x, y) = f(d(z, y)) = e- 2 with d(z, y) = /G. + GY

d(z, y) represents the magnitude of the gradient (LI, T = (Gm, G,)T, computed in a 3 x 3 window.

Figure 1 shows the results of edge detection after adaptive smoothing with 3 different values of the parameter k, 16,
8 and 4, for two images of a sequence. In all cases, the number of iterations n was fixed to 10. The results show that
the features detected at different scales are very well localized and do not move.

3 THE MATCHING ALGORITHM

The matching method is similar to our previously reported work [9], but we now use multiple scales and better
primitives.

3.1 PRIMITIVES

We believe that using sections of edgel contours of varying lengths alleviate many problems arising with previously
used features. Complex features, such as surfaces or objects are easy to match, but extracting them correctly is a
difficult error-prone task. Lower level features are easier to detect but difficult to match. We believe that intermediate
level features are the answer and have previously discussed the merits and problems of two of these, namely line
segments and corners. Our primitives are edge contours that combine many merits of both line segments and corners.
In our previous work [9] we used contours of zero crossings of (latge) Laplacian of Gaussian masks [5]. We got very
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good matches using these features, but the results were hard to use because Gaussian smoothing tends to shift the
edgels from their correct positions and may create spurious edgels. To overcome these difficulties, we now use adaptive
filters [18] at different scales to smooth the images. We then detect edgels in the smoothed images using Canny's
edge detector [4], link them, using an extension of our zero crossings linking algorithm [8] and extract segments and
super-segments at each scale.

The advantage of this approach is that smoothing with adaptive filters preserves the causal properties of Gaussian
filters without shifting the edgels or creating spurious ones.

We define a super-segment as an object that describes an edgel contour. It consists of the directed list of edgels
representing the contour, as well as the line-segments approximating it. Each line-segment "knows" the location in
the edge list of its beginning and end points. Often we use the term super-segment to refer to its edgel contour.

A section of a super-segment is a portion of its edgel list of any size.

3.2 HIERARCHICAL MATCHING

The basic matching algorithm is an extension of the algorithm described in [9]. The hierarchical matching algorithm
is very simple:

Assume that the images are imnage1 and image2, the coarser scale is h and the finer one is 1.

Then we have 4 sets of super-segments: S1,h, S2,h, Stj and S2,1, where Si,, is the set of super-segments detected in
imagei after smoothing it at scale rn.

Note that the edgels of Si,h are actually a subset of the edgels of Si,,, but the super-segments themselves may not
have this property, since edgels may be linked differently for different scales (at junctions, for example).

The hierarchical matching algorithm is as follows:

1. Match S1,h and S2,h to obtain a match M(1, 2, h) : S,h => S 2,h for the higher scale.

2. Match S1,h and S1 ,1 to obtain a match M(1, h,l) : S1 ,1 = Si,h between the two scales for the first image.

3. Match S2 ,h and S2,1 to obtain a match M(2, h, 1) = S2,h = S2,1 between the two scales for the second image.

4. Combine the results to obtain predicted matches for the images smoothed by 1, by applying the multiple-matches
algorithm. Result: a match S1 ,1 = Sl,h :> S2,h : S 2,1 . Remove the two middle matches to get the predicted
matches: P(1, 2, 1) : S1,1 ::> S 2,1 .

5. Use P(1,2, 1) to match S1, and S2,1 to obtain M(1,2, 1) : S1,1 => S2,1 for the lower scale.

Of course, steps 2 to 5 can be repeated for smaller scales.

In the first step we match a relatively sparse edgel map, since the image was smoothed with a very coarse scale filter.
We therefore do not expect many competing matches, and the matching is relatively easy. The second and third
steps are almost trivial, since the edgels shift by at most a pixel. WA~e use oor matching algorithm with a disparity
of 2. The fourth step is a mere application of oui multiple matches algorithm, described in [9] and also later in
subsection 3.4. Althorgh this method was originally designed for a motion sequence, it is easily applicable here. In
the fifth step we use the predicted matches as guide for the matching algorithm in several steps. We describe this
algorithm ii. the nex t. ubsection.

Example

Figures 1 and 2 show an example for the application of the hierar-tic- match. Subfigures 1(a) and (b) contain the
two consecutive frames from a sequence of moving toy jeep and train. subfigures 1(c) and (d) ccntain the contours
detected after smoothing with a mask of 16, subfigures 1(e) and (f) contain the contours detected after smoothing
with a mask of 8 and subfigures 1(g) and (h) contain the contours detected after smoothing with a mask of 4.

Sdbfigure 2(a) contains the matches computed for a scale parameter of 16, subfigure 2(b) contains the predicted
matches computed from mask 16 for a scale parameter of mask 8, subfigure 2(c) contains the matches computed
for mask 8 using the predicted matches of previous step, subfigure 2(d) contains the predicted matches computed
from a scale parameter of 8 to a scale parameter of 4 and subfigure 2(e) contains the matches computed for a scale
parameter of 4 using the predicted matches of the previous step. These are the final matches for this pair of images.
Finally subfigure 2(f) contains the multiple matches.
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3.3 DESCRIPTION OF THE MATCHING ALGORITHM

In this section we describe our matching algorithm. Given two sets of super-segments detected in the two matched
images, both smoothed with the same scale parameter, a set P of predicted matches computed by steps 1 to 4 of the
hierarchical matching algorithm (see subsection 3.2) and the maximal disparity d, our intent is to find for each edgel
contour section in one image, the matching section in the other image. Our matching criteria is similarity between
the contour sections, which we define as the minimum area between them (after translating one of the sections to
the beginning of the other) divided by the combined length (in edgels) of the two sections squared. We choose this
similarity measure, since our goal is to both minimize the area between the two matching sections and yet give
preferances to matching longer sections over short ones (that may have smaller area in between them). The longer
the matching sections are, the better chance there is for the match to be correct.

In doing so, the following problems need to be addressed:

1. Initial contour match:

Approximate each contour by a list of line segments and match them according to their position, orientation
and strength. Two contours can match only if they have some segments mrtching. Further, the segment
matches help localizing the contour matches later on.

For each segment in the first image, search for possible matching segments in the second image around its
location upto distance d. However, if a predicted match (from higher level) exists for this segment, use the
prediction instead by searching only in a small (we used 5 pixels instead of d) window around the location of
the predicted mttch, thus reducing search time as well as the chance for incorrect matches.

2. Partial contour match:

Edgels may disappear or appear due to either physical causes such as occlusion or errors in the processing steps
(edge detection, thresholding, linking). As a result, contours that actually belong to different objects may
merge, or an object contour may break into several smaller disconnected contours or even partly disappear.

Our solution is to divide the contours arbitrarily into small enough sections that will most probably not be
larger than the true matching sections, yet long enough to convey meaningful information. Each such section
is then compared to a possible matching contour and is slid along it for the best match. Results of the segment
matching step are used to restrict the size of the matching contour section: if a section P1 ofa super-segement
s, in image, is compared to a super-segment s2, the matching section P2 has to have the segments overlapping
it match the segments overlapping pl.

Results of the segment matching can be used to determine maximal matching sections (by simply combining
adjacent segment matches together). These maximal sections are then divided into smaller se-tions, each of
which is then independently matched.

Choosing the "right" size for these smaller sections is an issue here - too short a section will not yield a unique
match. ''oo long a section may include more than one objcc! ' instant section size will tend to penalize
short matches and a constant number of sections per contour wilh tend to penalize long ones. Our solution is
as follows: For every maximal section, any predicted match overlapping it is a section. The remainder of the
maximal section (that may be quite fragmented after cutting out the predictions) is partitioned into sectitans
of length approximating F, where 1 is the length of the shorter of the two maximal sections mafched

For each section p1 in s, find the section of 82 within which P, may match (use matches of P, segments to
determine the range). Then slide P, along this section and look for the most similar match.

If p, is section taken from a predicted match, this search is much simpler. Only matches that represent similar
2D translation to the predicted match can be selected.

Once a possible match is detected, "extend" it by adding adjacent edgels as long as the .:imilarity (previously
defined) decreases. To reduce time complexity, this step can be done in a binary search type operation.

Note that this step can create many competing matches: if a super-segment was divided into several sections,
each of which matching correctly and then extended, we may get several nearly identical (and overlapping)
matches.

3. Dealing with spurious matches

So far we have described how to create matching contour sections. We define spurious matches as matches that
are either incorrect or overlap other correct matches (and should therefore be eliminated).

Incorrect matches very often correspond to random motion, and thus can be distinguished from correct matches.
To detect such matches, we have designed a simple relaxation procedure. Every match is identified hy the 2-
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D translation it represents and its length. One match can support some other match if they have similar
translation (that is, their translation differs by no more than some constant threshold). Very short matches
are assumed arbitrary and cannot therefore be used to support other matches. A match is considered spurious
(and therefore discarded) if the total length of matches supporting it is below some given constant threshold
and none of these matches is long.

Overlapping marche5 are possibly correct matches that share sections or points. Either the sections from the
first image ovcriap or from the other image or both. The sections may partially or completely overlap each
other. In both cases we choose the better match (the more similar one) and the remainder of the other match.
This step usually implies a significant drop in the amount of information we need to handle, since adjacent
sections matched correctly and extended tend to create overlapping matches.

3.4 Combining pairwise matches

Matching only two images is not very useful for motion detection and estimation. Our method for combining
pairwise section matches into multiple section matches is fairly simple.

If section P (in frame 1) matches section P2 (in frame 2) and section Q2 (in frame 2) matches section Q3 (in
frame 3),then P2 and Q2 either have no points in common, one of them is a sub-section of the other or they
r,-Artly overlap. Combining these matches is, of course, possible only in the last two cases. This problem is
very similar to the overlapping of matches discussed previously. Our scution is to compute the overlapping
sub-section of P2 and Q2, say R 2 and then find R 1 , the sub-section of P1 (in frame 1) that best matches R 2 .
R3 is computed in a similar way. The result is a match (R 1 , R 2 , R 3). This process can be iteratively applied
to obtain multiple matches (M i M 2 ,..., Mk) for k frames. To eliminate bad multiple matches (if a pair of
matches was erronous, the whole multiple match is incorrect), the variance in the 2-D translations between
successive frames is thresholded.

We applied this simple algorithm to the sequences in the results section and it performed well.

Problems with this method are mainly that it can only handle sections that match throughout the sequence.
Disappearance of points (due to occlusion or disappearance of objects from the images) cannot be handled by
this simple algorithm. In addition. this method vill discard a long multiple match if one of the matching pairs
is wrong (and so the variance bet#, een watches is large). It would be better to detect this error instead. We
are working now on extending the method to handle these problems.

4 RESULTS

We have a.olied our algoritt,- to a number of real image:., indoor as well as outdoor scenes. As long as the
shapes of objects in tFe scene ias projected in the image) does not change significantly, the results are very
good. We show them by disinaying only those points for which a match was found, and drawing an arrow to
the closest p,,int in the other section (aft.er translating to start at same location). The arrow is drawn for every
fifth point in a matching section (for each matching section), for clarity.

W- give three examples, the mi.tching for each was done using scale parameters of 16, 8 and 4. We show only
the multiple matches for the smallest scale.

(a) Figures 3(a),(b) and (c) show two 240 x 240 pixels images taken from a sequence of a road scene. Both
the observer and the other car are moving. We have selected every 12th frame for the matching. The
disparity is about 30 pixels.

(b) Figures 3(d),(e) and (f) show two 256 x 256 images of a corridor. The camera faces the direction ot motion,
so we expect objects to expand. The matched images are spaced 10 frames apart. The disparity is about
20 pixel.

(c) Figures l(a) and (b) contain two 250 x 512 images of a toy jeep and train. The camera is stationary, but
both the jeep and the train are moving. This is a difficult scene as the motion is both very large (disparity
of at least 70) and is a general 3D motion. These figures were described in detail in subsection 3.2.

'[he images in Figure 3 were obtained from SRI International, courtesy of Dr. Bolles.

The prograii to implement our algorithm was written in Common LISP on a Symbolics Lisp Machine.

5 CRITICAL EVALUATION

We have shown an algorithm to compute correspondences between 2 frames with very few constraints. We
suggested the use of edgel contours and sections of contours. Correspondence was based on shape similarity
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(a) Matches at scale paramn 16 (b) Predictions for scale param 8
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(e) Matches at scale param. 4 (final) (f) Multiple matches for scale pararn 4

Figure 2: Jeep and train sequence - execution of the algorithm
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(a) Advancing car -first (b) Advancing car last (c) Multiple matches
frame frame

__k

(d) Hallway -first frame (e) Hallway -last frame (f) Multiple matches

Figure 3: Multiple matches for the advancing car and Hallway sequences

941



between matching sections and on translation similarity between matches, and demonstrated some results on
a number of real images. Using a multi-scale approach enables us to use better primitives.

The advantages of the matching method were discussed in the previous sections: the use of continuity and
sections of arbitrary shape and size in matching, the use of length of a match, evaluation of matches based
both on shape and on common translation. The advantages of adaptive filters are in their better localization
of edgels, edgels that represent real events, and their hierarchical nature. The advantages of using multi-scale
hierarchical matches are: reduced complexity and the ability to match well even with smaller masks.

Applying this method to real images produces very good results. We have been able to match less closely
located frames yet obtain better results than with previous approaches.

Some comments are in order:

* The algorithm has a very heuristic flavor.

" Our multiple matches algorithm 3.4 only keeps those matches that extend throughout the sequence, and
thus cannot handle appearance and disappearance of points.

" The computation is made in 2-D only, but we can find the actually corresponding points using areas of
high curvature or even the simple method we used for displaying the results (a left point matches the
closest point in the translated matching right section). These point-to-point matches can be used for
motion estimation in 3-D. We are currently working on using the Motion. Estimation algorithm developed
in [19]. This algorithm uses matching points in three or more frames to estimate 3-D motion and location
of points in frames as well as give some error measure to the match. Since using a Motion Estimation
algorithm requires matches in multiple frames, an algorithm to combine the results of matching pairs of

images will be useful.
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Representations in High-Level Vision: Reassessing the Inverse Optics Paradigm

Shimon Edelman and Tomaso Poggio

Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139

1 Inverse optics

What performance is it reasonable to require from an artificial vision system before it can be properly
regarded as seeing? Paraphrasing Marr, one would expect such a system to know what is there by looking
([20], p.3). This appears to imply that (1) the system must have a way to represent what is there in some
fashion and (2) this representation must be effectively computable (in fact, it should better be efficiently
computable, given the system's resources).

Marr stressed that the choice of representation is important because it can greatly influence the complexity
of any subsequent processing of the information that is being represented. Thus, if intensity edges are used
by some processing stage in the system, they should be made explicit in the representation computed by an
earlier stage. In higher-level visual tasks such as scene understanding the choice of an output representation
becomes less obvious if not. downright arbitrary. For example, it appears to depend on the end to which
the scene representation is the means: an "analog", map-like representation of a room would be useful for
navigation but superfluous for merely finding out whether a specified object is present in the room (cf. [35]).

In object recognition (if it is not part of a navigation strategy), the computed representation must serve
two related purposes. The first is identification: the representation must contain enough information to
allow the system to choose from a set of known objects one that is most similar to the attended object, or to
declare with a certain degree of confidence that the latter has not been previously encountered. The second
purpose is that of association: the representation must allow access to additional information associated
with the recognized object. This could be visual (e.g. what does the opposite side of the object look like),
or general (e.g. its weight).

The idea of association is to rely on past experience to gain access to more information than is actually
present in the visual input. Realizing that efficient association is, after all, the main objective of vision helps
to define the requirements of an intelligent system from iti vision module. The main conclusion we draw
from this realization is that detailed geometrical repi -. .itJion of objects and scenes may not be necessary
for recognition.

We illustrate this point by the simplified example in i .;ure 1. An object fragment such as the one that
appears there may remind our system of a cat. In fact, if it does not remind it of much more than that,
then it probably is a usable representation of a cat. Several such representations, each useful under different
circumstances, may be kept by the system.

In real-world scenes, as opposed to Figure 1, abundant visual information is available. Most of this
information is irrelevant for creating a "first-order" interpretation of the scene. Even if the system can
select for further processing only those parts of the image that seem a priori most important, too much

Figure 1: Two pointed things, one beside the other, on top of something rounded... Could be a cat's ears?
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information may be still there that is both difficult to extract and unnecessary for recognition. For example,
the knowledge (supplied by the stereo module) which of the two A-like features detected in the image is
farther from the cameras does not seem to increase or diminish the probability that the two As are in fact a
cat's ears. Qualitative information, such as an assertion that the two As are several centimeters rather than
several meters apart in depth, could be easier to compute and no less useful for recognition.

Difficulties with computing exact representations, and arguments similar to the one outlined above, have
led in the past, on one hand, to feature-based approaches to recognition in which objects were represented by
lists of values of several (often, many) perceptual variables [7], and, on the other hand, to top-down strategies
that invoked general knowledge about the scene to assist object recognition [21]. However, Rosenfeld [281
pointed out that a sophisticated visual system should be able to recall by itself from memory the frame
within which an image is to be interpreted (or to ccnstruct such a frame if a novel coincidence of an object
persistently appearing in a certain context is noticed). Furthermore, recognition based on the invariant
feature approach appeared to be infeasible, even when top-down constraints were invoked. Partly because of
that, the paradigm of computer vision that emerged during the last decade calls for achieving representations
through inverse optics. Its central tenet is that objects are best recognized only after their visible surfaces
have been described geometrically, e.g. as sets of points in some (preferably, object-centered) coordinate
system [20'. The inverse optics paradigm - as put forward by [?] - claims that physical properties of the
surfaces must be computed from the images, but not necessarily everywhere or very precisely. In the sequel,
we argue in fact that vision does not necessarily require exact representations. Accordingly, we see the goal
of inverse optics in the derivation of the physical properties of 3D surfaces at a qualitative, not very precise
level, as suggested by human vision.

A recent review of object recognition methodologies by Ullman [37] distinguishes three main classes of
theories: (1) invariant properties methods, (2) parts decomposition methods, and (3) alignment methods.

Theories in the first class assume that that certain simple properties remain invariant un-
der the transformations that an object is allowed to make [such as the transformation arising

from viewing a 3D object from different points in space]. This approach leads to the notion
of invariances, feature spaces, clustering, and separation techniques. The second class relies on
the decomposition of objects into parts. This leads into the notions of symbolic structural de-
scriptions, feature hierarchies and syntactic pattern recognition. By and large, the first of these
general approaches was the dominant one in the earlier days of pattern recognition and the second
approach has become more popular in recent years.

Ullman argued that both these approaches are insufficient for the general problem of shape-based visual
recognition. Instead, he proposed a method, called alignment, that involves more or less exact pictorial
representations of object models. In Ullman's approach, a small number of corresponding key features in
the image and in a model are used to compute the transformation that would bring the two into alignment.
After normalization by alignment, the two shapes are compared to decide whether the image is actually an
instance of the model.

2 A possible alternative

The main shortcoming of the invariant features and the structural decomposition approaches appears to
be brittleness. It is difficult to find a set of features each of which is both simple enough to be computed
reliably by a low-level process and sufficiently invariant over all possible views of an object. Thus, pure
feature-based methods tend to fail when presented with scenes in which many similar objects may appear
in widely varying poses. On the other hand, structural decomposition has difficulties with achieving stable
descriptions of many real-world objects (such as a shoe or a rabbit, cf. [37]). In addition, this approach
by definition must recover the three-dimensional structure of the image, to compare it with structurally
specified object models, that is, it involves inverse optics.

Alignment of pictorial descriptions and similar schemes ([19], [141, [34] [17]) use 3D or 21D models but
do not require inverse optics. Instead, alignment calls for computing the (2D) appearance of each model
from the viewpoint constrained by key feature location in the image and for comparing that with the image.
These methods appear to work under a variety of conditions. However, when applied to articulated or
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flexible objects, alignment had to be combined with some kind of structural decomposition. For example, it

has been proposed to compute separate aligning transformations for different regions of articulated objects

[37], and an alignment-based system for handwriting recognition had to decompose letters into smaller parts

(strokes) to compensate for the variability of letter structure [91.
We interpret these compromises as arguments in favor of an approach to the representation problem that

is more qualitative in that it is restricted neither to vectors of feature values, nor to syntactic constructs

in a formal language, nor to pictorial descriptions. This approach combines elements of the three methods

distinguished by Ullman and may be termed linguistic because it employs what looks like natural language

descriptions of objects. It may also be called open-ended, because it does not prescribe a standard formula
for representing different things, but rather leaves that to be determined by the interaction of the system
with its environment.

2-1 Open-ended representations

Is there a good way to describe an object (say, a cat) to a person who never saw one, but who puo c es much

the same vocabulary as you do? There might be, if it is possible to summarize the differences between a ca,
and other, familiar, objects (say, dogs) that are similar to it in a few words. An example could be, "a cat

looks like a dachshund, except that it has sort of pointed ears, its legs are straighter and longer," etc. This
approach p:esupposes prior knowledge of somewhat complicated concepts such as an ear or a leg, but does

not normally require exact decomposition of the object into parts corresponding to these concepts (there is
no need to define the precise boundary between the head and the ear to see that (i) there is something like
an ear on top of the head and (ii) it is pointed). It uses feature values (pointed ears) to distinguish between

similar objects, but defines the features locally (pointed ears) rather than attempting to find out the range

of the ratio of area to perimeter that is characteristic of an image of a cat. In some cases, this approach must

resort to pictorial descriptions ("pointed like this: A" - see Ullman [37], p.18, for a discussion of the need
of detailed shape description in recognition). These descriptions, however, would also be local and might

often be aimed at capturing ill-localized properties that are difficult to describe verbally, such as texture.

2.2 Synthesis

We propose to integrate the three approaches to representation (feature spaces, and structural and pictorial
descriptions) by adopting the following as a basic set of requirements from a representation scheme:

" Grounding in robust low-level representations. The representation of objects and scenes should
be based on maps of visual space that integrate different cues such as intensity, texture, stereo, and
motion ([25], cf. the notion of base representations [36]).

" Sparseness. Objects should characterized by a small number of tags or features that come from a
very large repertoire. A convenient analogy is description by short sentences in a natural language (cf.
[27]).

" Similar treatment objects and of static and dynamic scenes. By further analogy, situations
may be described using the same simple language. Dynamic situations (happenings and actions) may
be distinguished by tags that have verb-like connotations.

" Localized features. The features should be two-dimensional (that is, detectable in 2D views, without
depth recovery) and spatially localized (cf. [41). The localization could be coarse and may employ

relations computed by universal visual routines [36].

" Shallow hierarchy. Although nontrivial objects, themselves composed of several features, could in
turn serve as features in a more complicated representation, the hierarchy should be shallow, e.g. cat
to ears to low-level place tokens marking intensity edges, texture etc.

" Heterogeneity and flexibility. The scheme should not prescribe the precise format of or the amount

of information present in the representations of various objects. Rather, it should be demand-driven

and augment existing representations when the need arises for finer distinctions among some of the
objects.
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" Robustness through representing similarity. A system confronted with a novel object should
come up with a plausible first guess (the "nearest neighbor" of the unknown object). This could be
facilitated by maintaining an explicit representation of similarity relations among the feature sets that
define objects.

* Incremental learnability. The scheme should allow the system to bootstrap itself by learning
representations for novel objects, given only low-level routines (the apparatus for computing the base

representations) and real-world input. Furthermore, learning should not require ar oracle capable of
specifying the desired representation for a given input. Self-organizing representations satisfying this
constraint have been demonstrated for some low-level visual features ([181, [29]).

3 Discussion

The trend of reassessing LihE commitment to inverse optics can be discerned in the proceedings of a recent
conference on computer vision. S-me examples of this are mentioned below.

" The stress on obtaining qualitative rather than quantitative solutions to problems in vision (qualitative
depth from stereo [391, qualitative description of motion for obstacle avoidance [22!, see also [38]);

" Development of object representations that are 2D (or 2 D) and viewer-centered, rather than 3D and
object-centered (aspect graphs [12], [15], .33], [321; a novel curvature-based representation [2]);

* Increasing interest in active vision (using egomotion information [13], attentive gaze control [6]);

" Efforts to integrate multiple sensors/cues (a general strategy for integration [15], integration of focus,
vergence and stereo [I]).

In the domain of visual motion study, Thompson and Kearney [35] have argued recently in favor of "inexact"

or qualitative vision. Their definition of a qualitative representation is as follows:

If an attribute can take only a small number of values we say that a representatioP is qual-
itative. Qualitative representations define a set of equivalence classes on the quantitative scale.

We will assume qualitative values correspond to disjoint, continuous intervals on the quantitative
scale.

In other words, qualitative vision is equated with low-resolution vision, leaving the problem of (approximate)
inverse optics in its place. Starting from an observation made by Thompson and Kearney, namely, that a
representation should contain only as much information as is necessary for subsequent processing, we have
attempted to revise the strict (and mistaken) form of the inverse optics paradigm. However, rather than

abolishing the notion of inverse optics (along with the notion of representing the visual world in the usual
sense; see [5]), we propose to confine it to the low-level processing responsible for the formation of integrated
base representations.

3.1 Research directions

Exploration of the approach to visual knowledge representation that we have sketched above could proceed in

four main directions. Development of robust algorithms for low-level vision, whose purpose is to compute the
base representation, or the collection of feature maps, is perhaps the most important open problem. Some

recent advances in this direction include the work on perceptual grouping ([19], [16] bottom-up detection of
salient structures [30], integration of diverse visual cues, and detection and labeling of discontinuities in the

resulting map ([24], [251, [11]).
The second class of problems, which may be described as middle vision, is centered around further

investigation of visual routines [36] that could be used to link low-level features. In particular, a suitable
control structure has to be developed to guide the application of the routines in accordance with the host

system's goals and subject to environmental pressure and constraints. This issue is related to that of activc
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vision '22: strategy employed by a system engaged in active exploration of its environment is likely to differ
from that of a passive observer.

The third domain of exploration, traditionally referred to as high-level vision, includes improving recently
developed recognition methods (119', [14', 34]) and testing their limitations. In particular, approaches based

on exact geometrical representation (such as the various alignment methods) may be subsumed by a general,

qualitative scheme, which views recognition as a three-stage process t8[. In the first stage of this process, the
system selects from its input a region of interest that would be subjected to further processing. Such a region

may be defined by motion boundaries, structural saliency [30] and other information directly computable
from the base representation. Next, an indexing stage could be introduced into the recognition process
to narrow down the set of object models that would participate in a subsequent matching, or verification
by alignment. Finally. instead of being precisely aligned with the image, an object model could be roughly

rotated so that the image and the model are seen from the same general aspect. This coarse alignment would
be followed by a qualitative comparison of the visible features of the kind discussed above. Alternatively,

new verification methods could be devised that rely on processes other than the transformation of object

models. All of the above suggestions amount to a reassessment of the issue of object representation, without
which. we believe, little progress is to be expected in extending state of the art recognition techniques to

real-world images.
Finally, work on knowledge acquisition and representation must be brought to bear on the issue of visual

representation. if the latter is myto be considered in the context of general intelligent behavior. With the
outline of section 2.2 in view, some topics that appear particularly relevant are semantic nets [10]. similarity-

based reasoning 1311, efficient associative memory (123], 3 l) and decision trees [26].

3.2 Summary

We have outlined an approach to the representation of objects and situations for visual recognition that
combines detailed, integrated feature maps computed in a bottom-up fashion by low-level processes with

qualitative, heterogeneous, open-ended high-level representations. Whether this approach will be more
successful than the current paradigm that considers vision by and large as inverse optics is an empirical issue

that remains to be settled.
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VISUAL RE-ACQUISITION OF GEOGRAPHIC LOCATIONS

Tod S. Levitt Daryl T. Lawton

Ad vance(] Decision Systems Ad vanced Decision Systems
1500 Nlymouth Street 1500 Plymiouth Street

Mountain View, CA 94043 Mountain View, CA 94043

1. INTRODUCTION

Potential task., for rl,-bts nav igating in unknown or partially known environinents ido t'xplttrato (d'

hiostile environititt such as Anutarctica, the sea floor, other planets and/or asteroids: providingasitn'
in nat ural disasters sutch as floods, tornadloes or earthqunakes; imilitary stirveillancfe. -nl trnlt-h tiie

intliistrial accidents such as, untie cave-ins or unlclear inetlt-downs. All of these, tasks have in comnmin thiat th,-
environment can change fromt what was previously known, but are likelyv to retain tiimnY landscape fett urts.

The basic scenario we consider for the robotic use of visual ineniory is that the robot hias sitored in ioric,

fromt a previous trip t hrouigh a geographic area, and is beginning another exploration of a diflb'r( lt getgrapliic
area that shares visib ility of land marks viewed (luring the first trip. As thle robot procceds on Ii is pit riNev
this relationship between currently perceived visual events antI memories allows tIte rolot tt hotilti tip at
V isuial iiiap1 of the clivi rol nit. We can think of exploration as a process, of track inig back and fo rth Ii tyr anl

a rea, onl each succesive pass ket ping visual contact with landmarks acquired onl tl it'lst pass . O f courst..
visual iielnorv can also fbc used t inavigatec back to a previouslyv visited loeat mu11

'[le t hcorv of quialitativye niavigation developed by Levitt andl Lawton Lvit t et al. x"a.b ,
t-xtt-lded antd qjuanitifiedl Kiiipers* [Kuipers 77. 78, 82][Kiuipers and Levitt - 881 origiiial definition of a visuially
tltfint-t. dlistinct phyvsical p~lace in the 31) geographic world. The nuotion of a place as a vit-frainec is a circiiar

pantrantaL Of VIStua l ikiitniarks stored inl visual miemtory. A rob~ot roanis about the world. oiildtlig ilt) its
is mli -t-, rx of seqiitccs of vit'wfraiues, i.e. viewpaths, mnaking range and angle tstimnates as it got's. 'I'lit'

theory al rca l dtevelopted gives answers for p~lanining and execution given reacquisition of sonice laitti niark..
Ho twever it dttes not e-xplai n how to recognize or match landmarks as they arc actii all described Iv t', vision
systerii. it-, at coarse It-vcls of te is-a hierarchy.

T[his paper addtresses the problemi of re-acquiring a viewfraic, given that the( robot Calk set stunit of the,

lantdimarks, that tite visual desc ri ptions are at coarse levels of the is-a hierarchy, andl( that the r,bttt is nlot
necessarily in t lit same location of the world as it was when it first acqui red t lit viewfraiuies.

2. VIEWFRAME CREATION

A vie wframci Is a data structuire' that enicodes a cirriduam list of robot -perei veti lantImarks. tHli aiigli
displac-nuit bet weten (circuilarly) adjacenit landmarks, and a closed( initterval of rang- t'stiuimtt's fotr ta-l
landmnark. As a reprtesent atioii of cognitive visual memory, the viewfranie is sensor (i.e. ego) ' ceiitered.
Hlowtever its list, fotr localization of the robot is performed by formuinig a tteal cttortiiiat- systtni basted oit Ilit'
landmiiarks,, rather than a sc-istor-centercd coordli nate systemn For dectails, see !Levitt t0 al . - 1 987ai
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ONTJECTS POSSESSING UNEAR1

flTIpARALLFi. BOUNOAR"E

OBJECTS VERTICAL

E TO GRAVITY

OBIJECT SIZE BETWEEN

1 ANJD IO 0METERS

Fi gutre 1: Land mark IS- A Hi jrarchyv

1.1 iz ati' 'le dliels on1 tin. -anlgv estimlates, to landmark-, which c-anl be, extremelyv poor. If('wver
iti 4s lift I loalization lics inI the orthogoralit ' of intervals of trianlgilations inidlcie by, larilditlark

pa~irs. b~Ig s ia~ r oun ded byv assuming that landmnarks of interest will have height bounide-d beteen
knit wn values,. Biack- Projection from the p~ixel hevight then vields a worst-case, range intcrval. haoaies

,ft his he1 iht avssin111pti in Ip d n (is o n Ithe c riteria t hat are used to ex tract land marks from i mageryv an( IhlowN%

aicuiratldv this criteria il~tIs reality.

N%*, ililiiec landmark.s accordling to, the partial is-a hierarchy of Figure 1. lInerring that anI object Is
tterretstrial requires locating thec ground plane local to ti, objeItct. Trhe robot, can carrv a gravity sensor, or
verticalit v niny be, Inferred fromn an olhserveil horizon lie. Verticality restricts the starch fir ant i-parallel1

Inis. as d es the reqiiirenient that the b iiiuidaries be adjacent to the ground planie. WithI the worst ease,

ranige hounds, site, is not a ;ignificant search restriction, hJowever Or Is a store-d attribute that canl serve
to, distiniigi'hl viwfranie lan~dmaIrks;. III addition to mneeting p~erceptual criteria defined lv the hierarchy.
lanmnarks ;ir, detscribed h~v a coaxrse- color attribute. Sve ILawton, Levitt. and Gcebatid - Mss, for ait cxamitpl(
of antinateil viewxfraliie e~t raction bse on tis perceptuial descriptionl.

Kyv assuitn rl rgarding ai ribit for ttiialitativt navigation are

I It la;., a widl' field ifvie-w. A comuplte panoramnic view%% w I)db optimial. Ihis could I- ;ililriximiatec
Ilv si viral caiuitra with iithreto iirctiiais of viw%%.

2. It has a(- to tn posit ion andl oritition (if lie intndiate ground plane. Thel( robot has ~iace55 to

lie boii l t's -ft o (r whee-ls to, '-stiniatet tht irietitation of the imumlediat' gritmild platte on1 which
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a it a ( ra tit4to i ( re-I kiettId t o iI cI ig I ts Ii;iIt( -i i I as Il ci r, )fi i it it4u from place to rilace. 'l'liis
aislliitiitili 1 t 144 '('( ISM, itl it dot'' sl~illhic> 1114 Inn? t 4,1 rocessIing I hat is required, e-specially
bor t It, ext ra'tl(il4n ofdslusit Lou udarit's. R~ealisticallY, the iliotioni Is required to be only roughly
trajislat i4Iial. Rloatioziai pairamieters or cituct, ()r cameora jitte'r could be detected by sensors (niotably

ibcr-optic riotatiolii sensors) and t heir efleCots eit her comp jensated for or the corresponidinig Imlages

r~tll4vcd4 tfroml fpr44e4'S11Ini.

Titi r44l44t ittitiallY extracts iterestinig 144rcwlpt il gr~iips fromitilie p~anotramlic images to 14)rin ait ijiji ni
vIcwlramie. !h'lst' groups ct4rrt'~pond( to, 2 1) pVithIrns which are recoigizedil i lnilagcs for stich thling., as

st raighit linus aligv~td withi gravito,. Irighitle 4414)ruc patcli4' which aire hlliL rent thli silrroilrilrng j t'i'
anti- parallel lie sets, nimI-iritlected cilrvos. l-j itri't loons. ;tiil points 441 high ciirvatiirc.

As thut( robot niloves. t lit' txt ractcdi grou ps are t ra4'k44 by etracting miasks arnilld each ext racted groiip
and1 crrelating them tinider the counst raiits p)Fovil 0 d I tV II IslltI44Ilia 11ow I llnus (I houg h theI snake niatc IuI Ig

tt-chilliqIt's could also, he emlployedl and simplified biy thet tratiltional motion constraint ). hesc coistitlite

landiiarks. Each landmtark has static iieasilres associated wit I it based upon thet( st rength of the( ext ractu d
group, it's (distinict Ivecncss w it Ii respect to silrroiilliig portions i4f the image, and height relative ct to Ihe

irizoti ]lie tleflnud liv thle ituttiediate groutid plant. There art, also, dvnattuc ;ttrlliitc which are, iihdatc4 as
IIorobo t tii4vs' for t he itutnh'er 4f framecs lin wich- t lit' laIttark staYs ii view%%. 51 rcngthI of fraim-to-franic

c44rrtelati4 it. and the( extenit 4f clitiiulative iniage tititi. A new vicwframie is extracted whenj o)il(- 4f tlitst

Lailmiarks disappears 44r a new (ie tppcae'rs 'r tht lie rlring 4-f extractt-d latndmarks chiange's.

3. REACQUISITION OF VIEWERAMES

'The roblot acqutirt's its curretit VieNfrarIije '11ll po'sits t hatt it hias sell soint14 subhset oftht' latilniarks pirc l,-iislY

ltitia1l\Y tis Catl iIt dlne by clcing thet roi)4,t: ais it p~roc'teds, theit st'qutcncing of lariiarks ii ll il ,ry limits

thi. search space'. as prusciit'tl il (t'it 'L l. - I !187al ( ivtti a inaximum set of N' possile lanidmiarks
lit' robot. has viewed previotislv. there are A'I possileo tiatchecs of tlhu current viewframe to tile, previouls.

Hhowevtr, 54tiit latndmiarks inl ti- current viewvfranIel IMav [iot, have been acifiircd prev-lisl. 71lthreflrt thlire

k3

poss5ible' matchues of subsets of thtree' or miore lanidmrarks ili th littrrr tit view.framt' to those p)reviously obscrvetI.

Wecanl mlodel eachi matchi as a Itv pot lit'sis tf cirrctt asso'iatitt of lanilIimarks. The sizte of th]is hty pot litsis

spac't is forbidding even lor six to tell laninarks, which is a typical numiber wt' mighit. use iti a vicwfraie.

Hltiwevt'r, t'vt'n %'.itll worst-'ast' rangt t'stliuatts. given a stnigl' anchorinig lanttdmark match, oly abtouit 25*(
4f the lanidtmarks lin tit'- original vut'wfrattit 1 Iaiwrama tail be mis-matchevd. Thbis assumecs a roughlY umlif(rmi

:0;t0' hd5t rilution 4f latidmtarks lin vit-wfratit' (which is, messarx' for robust loca;li7ti onl li\VVlV). Figu Ire
2 illuisi rat-'s til, sit nation Hetr,- tit(' so-ilar. brackets oil tilie radlial linies indicate ititerval lmunds, f range
t'st hatus to a lanidmiark.
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Figure 2: Overlap of PossibleMahe

W\ith this approximate limitation, the size of the liyjothesis space is

N 
2(

which for X is only 3328 hypotheses. Although the hypothesis spacc limiitationi does not scale uip, the

iumibers of landmiarks are typically low, and additional anchoring landmarks can further reduce the search

~p~ein practice.

H eacq i--: ~tijf begins with anl Initial mnatch of at least three previously viewedl landmarks. From these

we fornm a comimoni coordinate system between the viewframe in memory, VFI , and the currcntly perceived

viewfraiiie, V F2,a .xiflaine 'in [Levitt, et, al. - I 987al. In this landmnark-based coordinate system we call

forii regionrs Phb I and VF2, called localizatioiis. Thle vector bet ween centroids is the best estimate of

(irecti, n to yit, -' VF2 to VFI .

The b~asic idea ''love toward V Fl, observing the change iii angles between landmarks, and updating

range estiia s and ceptiual miatches. This p)rovides evidence that can be used to coiifiriii or deny thle

iii ii t iph' vie-wli Ie Inatchi ug hypotheses. More specifically, the applroach is to:

* ypothesize tilie robhot's location relative to the original view-franie byv match inig (su bsets) of visual

land mark dlescriptions

2. lprt'(ic t the l ocationi and( occluision behavior of land marks after (smnall) mnotions of the robot
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4. ISSUES

Tihe keN issuec is robuist ness of the change Ii angle esti mate s betwv.een pairs of landmarks based on motion
between vie-wfranies. The angle estimates depend onl the range estimates, which is the fundamental source
of error. ff one( of the vitwfraie matching hypotheses is true, then even with poor range estimates, that
hypothesis will converge wit h either the probabi listic or control theoretic approaches. However, we (10 not

vet unde~rstand the sensiti v tv of motion along V F to convergence behavior.

I eother Major issue is perceptual stability of landm riarks. Given typical landmnark s as we delinte them.
we expect ant i-parallelismi and relative (i.e. inter-landniark) size estimiates to be stable, if we observe the
landmiiar ks ii ider coidtions of so fici ent Cont rast. Color stability is, of Course, probleimatic. .Measuires of
anti- paral lelis iii are also, rmnge dependent. based onl the no iher of pixel,. onl observve booundaries, and so
cannot be depended on for great accuracy.
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VERIFICATION OF RECOGNITION AND ALIGNMENT
HYPOTHESES BY MEANS OF EDGE VERIFICATION

STATISTICS 1

A. J. Heller and J. R. Stenstrom

GE Corporate Research and Development Center
Schenectady, NY 12301

ABSTRACT

With complex scenes, most recognition systems produce alternate hypotheses regarding the location and
orientation of objects present. We consider the most direct technique, identifying visible edges for a match
hypothesis, and consider both the initial segmentation as well as underlying statistical support for the those
edges that ought to be visible in the image.

INTRODUCTION

As model matching algorithms are applied to larger and larger images the probability of false matches being
reported increases. In our work with the vertex-pair Hough-space-clustering-based matcher developed in our
lab [Thompson and Mundy, 1987], we have found that when looking for instances of small objects in very
large, highly cluttered images (greater than Ik x 1k pixels) that it is not uncommon to have the matcher
propose as many as 50 alignments. This is due to the fact that in large images there are simply more features
so that the probability of a the existence of a random grouping of features that aligns with the selected model
features becomes significant.

In addition, we are now employing an automatic model feature selection algorithm [Mundy, et al., 1988],
which typically chooses a larger number of features than a human operator would in order to guarantee
a well-characterized model. Naively, we might try to tighten the cluster tolerances and demand a larger
number of model-image correspondences to consider a given alignment correct.

There is considerable uncertainty about the extracted edges from the original image due to unpredictable and
non-uniform illumination, self and multiple occlusion, sensor noise, texture, and possible camouflage. Most
particularly, quantization limitations are problematic when considering smaller objects in larger images. Thus
edges cannot be reliably found in every instance with any edge detection approach and as the objects occur
across fewer pixels the edge localization and orientation becomes less exact. Moreover, without heuristics
on edge strength and length the number of segmentation features becomes intractable and the accidental
presence of false alignments becomes even more severe. Because of the limitations on the initial image
segmentation, only a fraction of the chosen model features can be expected to be found at a given instance of
the model in the image. Finally, since we are using a larger number of model features without being able to
expect a proportionately larger number of corresponding image features, a greater number of false matches
is expected.

These factors combine to make some form of hypothesis verification using other information available in the
image or segmentation desirable.

I Work at GE was supported in part by the DARPA Strategic Computing Vision Program in conjunction with the Army

Engineer Topographic Laboratories under Contract No. DACA76-86-C-0007 and the Air Force Office of Scientific Research
under Contract No. F49620-89-C-0033.
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Figure 1: An image of the tail section of a C130 aircraft with segmentation edges overlayed showing the
effects of camouflage.

Additionally, the "black magic" in the choice of cluster tolerance parameters is eliminated. The Hough-
space search can be conducted with fairly wide tolerance parameters knowing that the verification stage will
eliminate the ersatz alignments introduced by the more liberal parameter settings.

PRIOR WORK

Lowe's SCERPO Vision System [Lowe, 1985] has a verification module in which, among other things, po-
tential matches between projected model features and segmentation features are evaluated according to the
accuracy of agreement in position, length and orientation. Huttenlocher's ORA system [Huttenlocher, 19881
uses the fraction of the model contour which can be confirmed by edges in the segmentation as a criterion
to verify alignments.

OUR WORK

In this report, we examine two methods for hypothesis verification. Each is based on the assumption that
correct alignments should predict the location and orientation of features (notably edges) other than those
used for the initial matching stage. Correct predictions are taken to be positive evidence for a corrpct
alignment. The two methods differ in that the first, the simpler of the two, examines the segmentation for
this evidence and the second looks for statistical support for edge hypotheses in the original image data.

In contrast with other approaches, we do not consider segmentation or image features that appear to conflict
with the model feature being confirmed to be negative evidence for the correctness of a given hypothesis.
In our experience, these conflicting features are exactly what is produced by military camouflage. Figure 1
is a detail of an image showing the tail section of a C130 aircraft with the segmentation edges overlayed to
illustrate the conflicting edges introduced by camouflage.
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Figure 2: A model edge confirmed by segmentation edges.

SEGMENTATION-BASED VERIFICATION

INTRODUCTION

The automatic model feature selection algorithm provides us with a well-characterized model in the sense
that the model features chosen are visible and provide reliable and precise alignments over a wide range of
viewpoints. This does not imply, that other model features, while not being able to provide as precise infor-
mation about the initial alignment, do not provide useful evidence for the correctness of a given alignment.
It is therefore useful to reexamine the segmentation to see how many additional features predicted by the
model alignment are actually present.

DESCRIPTION OF ALGORITHM

This algorithm first eliminates edges from the model that are not visible in the proposed alignment using a
simple back-face cull. Then the remaining edges are projected into the segmentation plane and those shorter
that 10 pixels are discarded. Call this set E. For each edge e in E, we select the subset of edges in the
segmentation whose endpoints are within 10 pixels and whose orientations are within 0.1 radians of e. Call
this set S. These selected segmentation edges, the members of the set S, are then projected onto e, the model
edge under consideration. The lengths of these projections onto e are summed, taking care to account for
overlapping projections only once. This sum, the length of e accounted for by edges the edges in S, is divided
by the length of e to obtain the confidence figure for the edge e, P(e). In the current implementation, we
require PI(e) > to assert that the edge e has been confirmed by the segmentation.

An example of an edge confirmed is shown in Figure 2.

Finally, the ratio of the number of confirmed edges to the number of visible edges for a given model alignment.
is used as the confidence figure for that alignment:
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IMAGE-BASED ALIGNMENT VERIFICATION

INTRODUCTION

For a given image, there is no ideal segmentation into edges and vertices. All segmentation algorithms
incorporate compromises. For example, our matching system relies on having accurate angles between edges
in the segmentation, therefore long edges in the segmentation are desirable; but if one gets overly zealous
about demanding long edges, the direction of the edges can become unreliable because the edges no longer
follow the image contours accurately.

The requirement that a segmentation method be useful for a wide variety of images suggests that edges
may exist in a given image which are not found because of the necessarily general nature of the particular
approach. Let us, then, first consider the question of exactly what characterizes an edge in an intensity
image.

It is the essence of edge-based image understanding to define the locations of change from one image property
to another. Most often this reduces simply to defining an edge of occlusion of one surface by another. With
classic lighting and reflectance models this leads to looking for suitably high gradients of the intensity field
and attempting to optimize the position and direction of the edge.

This type of continuous analysis has two problems:

" The intensity function is expected to be discontinuous at points of interest, so smoothing and curve
fitting in the neighborhood becomes necessary to make a discrete physical phenomenon fit into a simple
continuous and differentiable model.

" The plan, while often quite successful, responds only to changes between the average intensities of
regions. Typically other changes in the statistical distribution of pixels around an edge are lost.

A STATISTICAL CLASSIFIER APPROACH TO EDGE VERIFICATION

Consider a relatively basic definition for an edge pixel and edge direction. An edge pixel whose direction is
d separates those pixels along direction d into two samples, one to the left and one to the right, where there
is statistical support that these two samples were not drawn from the same population.

If we consider the noise to be additive and distributed according to the Gaussian, then within regions of
constant illumination, reflectance, and apparent angle, the image intensity represents samples of a normal
random variable. The most common case is adjacent polygons of Lambertian reflectance. This suggests
using a parametric test which compares the overlap of the two distributions, such as Siudent's t-fest or the
Snedecor F-test on the possible equivalence of two populations giving rise to the samples at a candidate edge
pixel. At least one edge extractor uses such a statistical approach [Kundu and Mitra, 1987].

In our application, however, we are testing whether or not an edge is present in the image in a certain
region near the projected model edge. Consider the case where the candidate edge for confirmation is
slightly in error and therefore does not create a proper division of the samples at the location, but two
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distinct populations do exist in the neighborhood - there is an edge nearby but not at the location and
direction under consideration. Near a true edge, the assumption that samples are being drawn from two
distinct normal random variables, one fully on each side of the edge represented by the pixel and direction
is incorrect more often than not.

It is possible to to perform tests on the pixel divisions, insuring that they may be expected to have been
drawn from a normal random variable. Iowever, sample sizes will be tiny for this purpose and there will be
little chance to reject the hypothesis.

In practice, we cloose to work with a different test that does not have the same requirements on the
underlying sample distributions. The chi-square test is a simple test to determine the probability of chance
variation between expected and observed frequency distributions.

Where ei is the expected count in the ith category and oi is the observed count we have:

N )

2 : 
( ° i -

e l

i=0 ei

Letting the degrees of freedom, v = N- c- 1, where N is the total number of categories and c is the number
of constraints, the probability Px(X 2 , v) that any random set of data points with i degrees of freedom would
yield a chi-square as large or larger than X2 is:

p ) z(V_ 2 )2e_/ 2 d 2 /2 (v-2)/2 (X 2/2) e
PX(X, L) 12 /2 F(u/2) S= / )

This is a well-known statistic and the reader is referred to [Alexander, 1961], [Bevington, 1969], and
[Press, et al., 1986] for a full discussion of its derivation, application, and implementation. In cases where
parametric tests are applicable, more information is known and the chi-square test is a weaker test. If there is
the presumption of applicability, there will be cases where two normal random variables are different slightly
in mean or variance and the t-test or F-test will prove significant but a chi-square test will not. Nevertheless,
we will see that the chi-square test does quite well in the current context. Future work will consider the
utility of making this presumption and considering the consequent edges.

It should be noted too, that the choice of the chi-square test relaxes the requirement that the random
variables being sampled be normally distributed. This may be important when there is texture, the lighting
model is more complex, the noise in the image is not Gaussian, or there are more than two populations near
an edge pixel.

In practice, we work with square neighborhoods in the vicinity of candidate edge pixels, just as with a
typical edge detector. We simply apply statistical decision procedures to the discrete data present rather
than casting the data into continuous functions.

DESCRIPTION OF THE ALGORITHM

In this algorithm we go through the same first steps as in the segmentation-based verification to obtain the
set of edges we are attempting to confirm - a simple edge visibility check, projection of edges into the image
plane and elimination of short edges. For each of these remaining projected edges we consider the pixels in
the two regions on either side of the edge. (The pixels lying directly on the edge and those within one pixel
to either side are ignored to allow for small errors in the alignment of the edge.)

The two groups of pixels are examined with the chi-square test. We are testing the null-hypothesis that
there is rio edge in this neighborhood. If the edge passes through completely homogeneous area of the image,
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Figure 3: A small section of an image of a nearby Air National Guard Base.

we find that P. ;. 1, thus confirming the null hypothesis. If the edge falls along a very well-defined pixel
boundary in the image, then Px - 0. Intermediate values of Px indicate that we are uncertain about the
presence of the given edge, with smaller values corresponding to greater certainty about the edge's existence.
In this implementation, we require that PX < -L (i.e. we are 90 percent certain that the pixels from the two
sides of the edge are from different distributions) to assert the existence of the edge under test in the image.
As in the previous algorithm, the ratio of the number of confirmed edges to the number of edges visible at
that alignment is used as the confidence figure, Paign, for the proposed alignment. That is, if E is the set of
projected edges that are greater than 10 pixels long and whose corresponding model edges are visible, then

1{Ve : e E E A P×(e) < -L }I
PariZ n -

1EI

EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate these methods in a convenient manner we used the 200 x 150 pixel subsection shown in
Figure 3 of an image of an Air National Guard Base (The 109th Tactical Airlift Group, located near the
GE Research and Development Center in Schenectady, NY). A prominent feature of this subsection of the
image is a C130 transport aircraft. As one can see by examining the corresponding segmentation, shown in
Figure 4, the camouflage on the aircraft and the cracks in the concrete add a considerable amount of clutter
to this scene and corrupt many of the longer edges in the image.

Figure 5 shows the simple face-edge-vertex model of the C130 aircraft used in these expe-iments.

To simulate the situation in a very large image, where many possible alignments would be proposed by
the vertex-pair matcher, the cluster tolerance parameters for this match were set to values much larger
than would normally be indicated for an image of this size. Figure 6 shows the resultant model alignments
overlayed on the original image. We should emphasize that under normal circumstances when working with
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Figure 4: A segmentation of the image in the previous figure.

Figure 5: A simple face-edge-vertex model of a C130 aircraft.
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Figure 6: Some proposed model alignments.

images of this size, only the left and center alignments in the top row would be proposed by the matcher.
Each of those alignments were evaluated by both approaches outlined in this report and ranked by tbh
resultant confidence figures.

The alignment assigned the highest confidence figure (Paiin = 0.66) by the segmentation-based verifier is
shown in Figure 7. Figure 8 show the alignment assigned the highest confidence figure (Patign = 0.73) by the
image-based -, rifler. Each approach chose as the second ranked alignment the top-ranked one of the other
approach. The remaining alignments shown in Figure 6 were ranked considerably worse (Paig, < 0.40) by
both approaches. It has been our experience that confidence figures greater than (i.e. Palign > ) appear to

correspond to what we would consider "good" matches. Work is currently underway to derive this criterion
in a formal manner, by analyzing the distributions of the confidence figures.

We also observe that the top-ranking alignment determined by the statistical qualifier approach aligns with
the C130 image better than the one determined by the segmentation-based approach. This confirms our
experience that for verification purposes the chi-square test is quite robust, typically yielding negligible values
when there is no edge upon human inspection and large values when there is an edge apparent.

This result, along with a scheme to establish equivalence classes of alignments, would form the basis of
a system that could reliably distinguish multiple instances of the model in an image from multiple false
matches. This is a frequently encountered situation in our work with images.

Another area of investigation suggested by the success of the image-based statistical classifier approach is to
exploit face information contained in the model. Just as a valid projection of a model edge divides the pixels
to either side of it into statistically distinct populations, a valid projection of a model face sbould divide the
enclosed pixels into distinct populations. This face-information-based verification method would provide a
higher level of coherence to the image topology. If face-based verification could be demonstrated, it would
provide strong evidence for the validity of a given alignment.
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Abstract

Generalized cylinders have been the focus of considerable vision research. One class of generalized cylinders that has been
studied is that of straight homogeneous generalized cylinders, whose cross sections are scaled versions of a reference curve.
Much of the research into generalized cylinders first assumes that an object in the image is that of a generalized cylinder and
then analyzes image features of the object, such as contour, in order to recover properties of the underlying shape. In this pa-
per, we consider a membership test for straight homogeneous generalized cylinders to determine if the object in the image is
a member of the shape class. First, some reflectance constraints for the straight homogeneous generalized cylinders are
developed. Using these reflectance constraints, we derive a necessary condition to test images for membership in the straight
homogeneous generalized cylinder shape class. This test is restrictive in that it only applies to a straight homogeneous gen-
eralized cylinder in semi-canonical position. A more general membership test is derived for linear straight homogeneous gen-
eralized cylinders. Examples of the performance of these membership tests on simulated, noisy intensity images are provid-
ed.

I Introduction

A generalized cylinder is a solid defined by its axis, cross-section, and sweeping rule. The importance of generalized
cylinders (hereafter GC's) as a representation is that they are general enough to represent many real-world objects yet
sufficiently well-defined (at least for certain subclasses) that we can attempt to recover shape parameters from image data.
They have been the topic of considerable research in computer vision [Brok8l],[Mar77],[Pon88l,[Shaf851. Because GC's are
a very expressive representation, however, recovery of shape parameters from image data has proven to be difficult.

Marr proposed [Mar771 that shape, to a large degree, can be inferred from image contour. Shafer [Shaf85] creates a
GC taxonomy and studies several of these GC classes in detail; he proves several important theorems about GC's. In particu-
lar, Shafer considered a subclass of GC's known as straight homogeneous generalized cylinders (hereafter SHGC's). SHGC's
are defined as a proper subclass of GC's generated by scaling a reference cross-section curve along a straight axis. More
recently, Ponce [Pon88j,[PCM87] studied the projective properties of GC's, generalized some of the results found in Shafer,
and proved certain uniqueness and shape from contour results for SHGC's. Other recent work on contour analysis involves
finding certain symmetries in the image contour and using these cues to infer properties of the underlying 3D shape
[Nal87I1UN88],[RM881.

In this paper, we use both contour and intensity information to derive a membership test for SHGC's. The purpose of
the membership test is to determine if a part of the image can be the projection of an underlying SHGC solid. Such a test
would be particularly valuable in a polymorphic shape recovery system. A polymorphic shape recovery system, able to
recognize many different classes of shape, would benefit from the ability to determine whether an image section is part of an
SHGC before starting to actually fit an SHGC to the image data.

There is a subclass of SHGC's that, it turns out, are particularly amenable to a membership test. This class, linear
straight homogeneous generalized cylinders (hereafter LSHGC's), is a proper subclass of SHGC's where the sweeping func-
tion is restricted to be linear. Although SHGC's as a whole are considered in this paper, LSHGC's will be specifically exam-
ined. The membership tests that are derived in this paper are necessary, not sufficient, conditions for class membership.

2 Finding Reflectance Constraints Along Image Meridians

In the sequel, we assume that the SHGC surfaces have lambertian reflectance properties. Orthographic projection is
assumed throvghout the paper. We have adopted the parameterization for SHGC's from Ponce [PCM871, including a require-
ment that the cross-section function be star-shapevd.

* Support for this work was provided in part by the Advanced Research Projects Agency of the Department of De-
fcnse under contract #N00039-84-C-0165 and by the National Science Foundation.
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An SHGC, restricted to star-shaped cross-section, with axis aligned along V' can be written as

O-( z, 9 ) = f(z) ) (cos6+ sin0]') + SV

The function f(z) is the sweeping rule of the GC, which associates with each z value a scaling factor of the cross-section
curve. The function g(9) is the cross-section curve, which varies only in scale for different values of z.

The surface normal at a point Ol(z, 9) on the SHGC surface is given by the vector product of the partial derivatives of
O with respect to 0 and z. The partial derivatives of OP are given by

= f(z) (g' (9) cos() - g(0) sin(9))i+ f(.) (g" (0) sin(9) + g(0) cos(9))T
a0P

f' (z) g(9) cos(0)1'+ f' (z) g(0) sin(9) J+

The normal i is just the cross product of these partials derivatives and is given, by (for conciseness z and 9 are generally
omitted hereafter)

if= (g' f sin(0) + g f cos(0) )i + ( -g' f cos(0) + g f sin(9) )T+ g2 f r (2.1)

The cross-section curves at every point along the SHGC axis are the same, except for scaling, making them parallel
curves to one other [DoC76]. A meridian of the SHGC is a curve along the surface of the SHGC that intersects every paral-

lel curve (i.e., cross-section curve) at the same value of 0. In Figure 1 an SHGC is shown (in canonical position with respect
to the viewer) with some of its parallel curves and meridian lines displayed. We are interested in whether there is some
correlation of image brightness values among points lying on the same meridian of an SHGC surface. If such a correlation
exists, we then need to find a procedure (if one exists) to find image meridians, which are defined as lines in the image plane

(not necessarily straight) that are projections of meridians on the surface of the SHGC.

To determine the image brightness for points lying on the same image meridian, we need to assume some initial imag-

ing model. Let us assume that there is a single distant point light source in the -j direction. Let us further assume that the
viewing direction is aligned with the light source direction and is also in the -T direction.

To use the standard image brightness equations, we need the p and q values for each point O(z, 9) on the SHGC. We
want a brightness equation to map each set of (z, 0) values, corresponding to a point on the SHGC surface, into some value
equal to the perceived brightness of that point in the image plane. The reflectance function R (p, q) [BB82] maps (p, q) values

into image intensities, where p and q are the surface gradients. The reflectance function when viewer and light source posi-
tions are aligned is given by

r0
R (p, q)= +p+q

+ p 2

Since we are concerned with intensity correlation among points on an image meridian, we prefer a reflectance function that
maps (z, 0) values to image intensities. The surface gradients in our example, with -T the viewing direction and the imaging
plane parallel to the (iZ) plane, are obtained by dividing the I and r components of the surfdce normal given in Equation
(2.1) by the component. From Equation (2.1) we have

g'(0) f(z) sin(0) + g(0) f(z) cos(0) q()()2 f(z) f(z)
P Z ) g'(0) fRz) cos(O) - g(9) f(z) sin(O)',q(,0 g' (9) fRZ) Cos0) - g(o) fRz) sin(0)

The reflectance function R(z, 0) provides the image brightness of a point OPl (z, 9) on the SHGC surface, and is given by

R(z,0) = (2.2)

1 + p2 (Z,0) + q2 (z,)

where p(z,0) and q(z.0) are as defined above.

Consider two points P, = O (zl, 00 ) and P2 = O1'(z 2 ,0 0) that lie on the same meridian of an SHGC surface. Using Equa-

tion (2.2) we obtain

_______ I =(f,2(Z,)_-f'
2 (r-' (2.3)

R(z1, 90)2 R(z2, 90)2 ro 2 (g' cos (90 ) - g sin(9O))2

We want a constraint among image brightness values of points lying along an SHGC meridian that is independent of 0. To do

this, we take yet another point P3 = O (Z3, 00), lying along the same surface meridian as P, and P2. Using the three meridian
points P1, P2, and P3 and Equation (2.3), we derive the following constraint
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R,2 R 2 f.2 (Z,) - f12 (Z,)1 (2.4)
l _ 1 r

2
(zi) - r2 (z3)

R,
2  R3

2

where R, is defined as R (zi. 0).

Equation (2.4) provides a ratio among three meridian points P1. P2, and P3 that is independent of 8 and the cross-
section curve g (0). This ratio is strictly a function of z. If there were a procedure for finding image meridian points directly
from the image, then Equation (2.4) would provide a necessary condition for an SHGC image, namely, that corresponding
meridian points from three z values along the SHGC spine yield a constant ratio. A procedure for finding image meridians for
SHGC's in semi-canonical viewing position and for LSHGC's in arbitrary viewing position is given in section 4.

3 Relaxing the Light Source Condition

The analysis of the previous section and the corresponding constraint provided by Equation (2.4) are restricted by the

fact that the imaging model assumed that the light source and the viewer were both aligned in the same direction (-) with
respect to the SHGC. This assumption is, of course, very restrictive. We seek to relax these constraints one at a time while
still obtaining some reflectance constraints in the image that can be used to test for membership. In this section, we relax the
restriction on light source position.

For a more general light position, where the light source is in the (p,, -1, q6 ) direction, the radiance equation for a
point O (z, 9) is given by

r0 (p,'p + q,'q + 1)R (z,eO)= .Ip q 2 (p,+ 2 )(3.1I)
q4(1 + p2 + q ). (I + p.2 + q,2)

where p and q are as defined in section 2.

For the case of an LSHGC, the analysis is simple. Both p and q are functions of 0 alone (refer back to section 2),
since f(z) is constant and f(z) = 0. As a result, iso-intensity contours will lie along image meridians since the value of R(.)
in Equation (3.1) is also determined by 0 alone. So for the case of LSHGC's, there is an image-observable constraint, iso-
intensity contours along image meridians, that holds for arbitrary light source position.

For SHGC's, we examine the cases of p, * 0 and q, * 0 separately. In the case of p. * 0, the image brightness at a point
011 (z,) is given by

r0 (p.'p + 1)
R (z,) =

4(1 +p 2
+q 2

)(l + p. 2
)

where p and q are as defined in section 2. This equation can be manipulated exactly the same way as Equation (2.2), and

yields a constraining reflectance equation identical to Equation (2.4). When q, * 0 the reflectance equation is given by

R(ze) = ro (q.,q + 1)
4(l + p2 

+ q2) (I + q.
2
)

where p and q are again as defined in section 2. This equation contains f' terms both in the numerator and denominator.
Consequently, we cannot manipulate this reflectance equation as we did in the previous case. This equation does not seem to
lend itself to a simple constraining reflectance equation .'

With regard to relaxing the light source condition (that in section 2 required that p,=q,=O), we can sum up as follows:
the case of LSHGC's present no problem; in the general case of SHGC's, the reflectance constraints apply only when p, * 0,
but not when q, * 0.

4 Finding Image Meridians

In order to test an image to see if corresponding image meridian points for three values of z yield a constant ratio, as
was derived in Equation (2.4), we need to be able to find image meridians directly from the image of an SHGC. We assume
once again that the SHGC is aligned canonically with the viewer reference frame, i.e., the viewing direction is -. Contours
in the image are projections of two kinds of contour generators, limbs and edges. Limbs of the SHGC, which concern us
here, are contour generators where the surface turns away from the viewer. A limb point, then, has the property that
V - = 0, where - is the viewing direction. In our case, the viewing plane is parallel to the (,V) plane. Since V has only a

1. What is meant by a simple constraining reflectance equation is one that is independent of solving for the f (') and g () functions
of the underlying SHGC.
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single nonzero component of -1 in the direction of j, the limb efuiation for SHGC's in canonical position is exactly where it
has a j component of 0. so that the limb equation is given by

-g' cos(9) + g sin(@) = 0 (4.1)

But Equation (4.1) is strictly a function of 0. Therefore, if 90 satisfies Equation (4.1) and zi is a value of z lying within the
SHGC image, then OP(zi,0o) is a point on the surface of the SHGC that projects onto the 2D contour of the SHGC in the
viewer's image plane. Since the SHGC image axis in this canonical setting is in the Z direction, the occluding contour to the
right of the image axis results from a meridian on the SHGC surface with e = 00, while the occluding contour to the left of
the image axis results from a meridian of the SHGC surface with 9 = 91.

Using the limb equation for canonically positioned SHGC's given by Equation (4.1), we can align points on the image
of the SHGC that lie along an image meridian. To align meridian points, we first run one of the algorithms given in Ponce
[PCM87I in order to obtain the SHGC image axis. The recovered axis is used to place a 2D coordinate system on the imag-
ing plane. The recovered axis is the coordinate axis in the V direction. A coordinate axis in the direction is placed at some
height of the image plane orthogonal to the SHGC axis.

Consider a point P1 at location (x1i
, z1V) of the viewer's image plane (assuming the viewing direction is -J) that is is

the projection of a point (xit, Y J, z k) on the surface of the SHGC. For a given value of z, say z2 we want to find a
corresponding value of x = x2 such that P2 = (x2, z2) is the projection onto the image plane of a point (x2 l Y2i. z2 ) that lies on
the same surface meridian of the SHGC as (xt, yJ zV). To find x2 we first need to find the value of x, for z= z1, where
(x,,, z1) is a point on the SHGC image contour. Next, we find the corresponding point x,2 for z=zk. Since the SHGC is
aligned with the rk image plane, x,1 = f(z1).g(0 0).cos(0 0) and x,2 = f(z)-g (00)-cos(0 0), for some value 0 = 00. Since we know
the value of x1 and xc2, the ratio of

X.L f(z1 ")g( 00) cos(0 0) f(z)
x,2  f(z2) g(900) cos(9 0) f(z2)

can be computed. The desired value for X2 corresponding to x1 is simply 1 since

x _ f(zl) g(01) cos(01 )
X2 = 7-=-

1" r

5.1 Relaxing the Viewing Position Condition

We now want to generalize the results of the previous section. Section 4 assumed that the SHGC was in canonical
position vis a vis the viewer by assuming a viewing direction of -7. Aligning image meridian points made use of assumptions
only valid for an SHGC in canonical position. We would like to generalize this as much as possible. Can we determine
point, in the image that lie on the same image meridian when the SHGC is in an arbitrary viewing position?

Consider first a canonically positioned SHGC. What if the SHGC were rotated around the k axis (hereafter referred to
as a k-rotation) by o, as shown in Figure 2? Obviously, this rotated SHGC can be reparameterized as a canonical SHGC
except that g(8) is replaced by some new polar function h(O). Since this SHGC is still in canonical position under some
reparameterization of the underlying SHGC, image meridian points can still be determined from the image (as in the canoni-
cal case).

Now consider an SHGC initially in canonical position that is rotated by W around the j axis, as shown in Figure 3. For
this type of rotation, which we refer to as a j-rotation, the intensity image of the SHGC is merely rotated in the viewer image
plane, parallel to the (ik' plane), by w. To restore this image to the projection of a canonically aligned SHGC, the algorithms
given in Ponce [PCM871 for finding the 2D axis of an SHGC from its contour can be used. Once the image axis has been
found, the image of the SHGC can be rotated in the image plane until the SHGC axis is aligned with V. We now have a
restored canonical image of an SHGC for which the method given in section 4 for finding image meridians can now be
applied. An SHGC that was originally in canonical position and was then rotated about the j and k axes is said to be in
semi-canonical position. Thus, an SHGC in semi-canonical position has a contour generator lying on meridians of the surface
and its image meridians can be determined using the method described section 4.

We now consider rotating an SHGC from its canonical position around the i axis (towards or away from the viewer's
line of sight), see Figure 4. The question that needs to be answered is: does the occluding contour still lie on the meridian of
an SIIGC so that image meridian points can be detected in the image? The limb equation for an SHGC that was rotated
around the i axis is given by

cos(W) (g sin(9) - g' cos(0) ) = sin(G) f' g2  (5.1)

Equation (5.1) is not simply a function of 0. It has an V term, where V is a function of z. With the exception of LSHGC's,
where f' is constant, the contour generator of this rotated SHGC does not lie on the meridian of the underlying SHGC. Thus,
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the procedure given earlier in this paper for aligning meridian points in the image will fail.

For a general rotation of an SHGC in space, then, we have an alignment problem. Alignment of image meridian
points is difficult since the occluding contour cannot be used to align the points as it is not guaranteed to be the projection of
an SHGC meridian. This alignment problem is only true of SHGC's in general; for LSHGC's, the limb equation given in
Equation (5.1) lies along a surface meridian.

5.2 Linear Straight Homogeneous Generalized Cylinders

In section 3 we showed that the reflectance constraints of section 2 for image meridians apply to an LSHGC with the
light source in arbitrary position. It is also clear from section 5.1 that contour generators for LSHGC's in arbitrary viewing
condition lie along surface meridians. It is possible then, based on section 4, to find image meridians. A membership test
looks for points along the same image meridian to have the same intensity values. If the image appears to satisfy this con-
straint, it accepts it as a possible LSHGC image. It can then proceed to recover actual parameters of the underlying LSHGC.
If the image does not meet the criterion, i.e., iso-intensity image meridians, it can be removed from further consideration as a
possible LSHGC image since it failed a necessary test of class membership.

6 Experimental Results

In this section, we test how well the reflectance constraints of Equation (2.4) and Equation (3.1) perform when used as
a test of class membership for SHGC's in semi-canonical position and LSHGC's in arbitrary position respectively. The
images used were noisy simulated intensity images. Any intensity image generated from an underlying SHGC solid in semi-
canonical position or from an LSHGC in arbitrary position, under the set of assumptions mentioned in s-ctions 3, 5.1, and
5.2, should satisfy the appropriate reflectance constraint. Satisfying the appropriate reflectance constraint, "n either the SHGC
or LSHGC case, is a necessary but not sufficient condition that the underlying surface belongs to that class of GC's. We test
several positive cases to make sure the constraints are satisfied. In addition, a negative example is presented. Each image
tested contained only one object, situated against a black background (greylevel = 0).

The test for LSHGC images is whether image meridians are of approximately constant intensity since, based on Equa-
tion (3.1), the reflectance function R is strictly a function of e. The algorithm determines the intersection of the two sides of
the image of the object. We extend a line from this point of intersection down the image plane in a direction parallel to the z
axis. The horizontal lines are then aligned with each other, as described in section 4. Several image meridians are then tested
to see if they satisfy the reflectance constraint of Equation (3.1); for LSHGC's points along the image meridian should have
approximately the same intensity values. The points along each image meridian considered are grouped together and their
intensity values averaged. A variance is then computed for each image meridian. This is done for each image meridian
tested. Next, the variance and standard deviation of the entire image is computed. If the underlying surface for the image was
an LSHGC, then the computed standard deviation of the intensity differences along image meridians must correlate closely
with the standard deviation of the normally-distributed noise that was added to the image .2

Figure 5 is the image of an LSHGC with a slight rotation around the i axis (towards the viewer). The standard devia-
tion of the normally-distributed noise that was added to the image is 0.02. The computed standard deviation for the image
meridians is 0.025, so the image tests positive for an LSHGC.

Figure 6 is a negative example of an LSHGC; the sweep function of the object is definitely not linear. Running the
LSHGC test on this image, its computed standard deviation is 0.35, while the standard deviation of the normally-distributed
noise actually added to the image is only 0.05. Since the computed standard deviation is not closely correlated with the
known degree of noise added to the image, we reject the image as not having been the projection of an underlying LSHGC
surface.

The second test determines which images satisfy the reflectance constraint for SHGC's. For this test, the ratio between
three meridian points determined by Equation (2.4) should remain constant for all triples taken along an image meridian from
the same respective z values.

Consider again the image in Figure 6. This was a negative example of an LSHGC and was rejected by the LSHGC
test. We then tested it with SHGC membership test. The underlying Gaussian noise added to the image has known standard
deviation of 0.05. Running the SHGC test, we obtain a computed standard deviation of 0.07. So this image is not rejected by
the SHGC test. Figure 7 is an image of an SGC, not an SHGC, to which Gaussian noise was added with a standard devia-
tion of 0.05. When tested by the SHGC test, the computed standard deviation is 6.75. This image is rejected as not being an

SHGC (in semi-canonical position).

In Figure 8 a lamp is displayed whose 4 components are SHGC's in approximately canonical position. Gaussian noise

was added with standard deviation of 0.05. All components of the lamp successfully passed the SHGC membership test .3

2. The exact determination of whether an image belongs to the class should be made using an F-test. In the examples given above,
the ad hoc criterion used was if 6 > 2 (7 then reject.

3. The SFIGC components were segmented by hand and given to the SICYC membership algorithm separately.
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7 Conclusion and Future Work

In conclusion, the reflectance properties of SHGC's and LSHGC's have been studied for various rotational transforma-
tions and under various imaging assumptions. Under certain conditions, the intensity images produced by SHGC's and
LSHGC's will satisfy certain reflectance constraint equations. These constraints can then be used as a necessary test of
membership for a given shape class, like LSHGC's.

Future work involves extending the use of intensity information from SHGC membership tests to solving for actual
parameters of the underlying SHGC surface, such as cross-section and sweeping functions.
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SHAPE UNDERSTANDING FROM
LAMBERTIAN PHOTOMETRIC FLOW FIELDS

Lawrence B. Wolff'
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ABSTRACT
A new idea for the analysis of shape from reflectance maps is introduced in this paper. It is shown that local surface

orientation and curvature constraints can be obtained at points on a smooth surface by computing the instantaneous rate
of change of reflected scene radiance caused by angular variations in illumination geometry. The resulting instantaneous
changes in image irradiance values across an optic sensing array of pixels constitute what is termed a photometric flow
field. Unlike optic flow fields which are instantaneous changes in position across an optic array of pixels caused by relative
motion, there is no correspondence problem with respect to obtaining the instantaneous change in image irradiance values
between successive image frames. This is because the object and camera remain static relative to one another as the
illumination geometry changes.

There are a number of advantages to using photometric flow fields. One advantage is that local surface orientation
and curvature at a point on a smooth surface can be uniquely determined by only slightly varying the incident orien-
tation of an illuminator within a small local neighborhood about a specific incident orientation. Robot manipulators
and rotation/positioning jigs can be accurately varied within small ranges of motion. Conventional implementation of
photometric stereo requires the use of three vastly different incident orientations of an illuminator requiring either much
calibration and/or gross and inaccurate robot arm motions. Another advantage of using photometric flow fields is the
duality that exists between determining unknown local surface orientation from a known incident illuminator orientation
and determining an unknown incident illuminator orientation from a known local surface orientation. The equations for
photometric flow fields allow the quantitative determination of the incident orientation of an illuminator from an object
having a known calibrated surface orientation.

The main purpose of this paper is to present the new concept of photometric flow fields. Computer simulations will be
shown depicting photometric flow fields on a Lambertian sphere, utilizing a point light source. Simulations will be shown
depicting how photometric flow fields quantitatively determine local surface orientation from a known incident orientation
of an illuminator as well as determining incident illuminator orientation from a known local surface orientation. In
planned future experimentation, we intend to implement a more practical configuration using a rotating extended linear
light source and computing orientations from relative changes in reflected radiance rather than absolute changes.

1 INTRODUCTION
Vision techniques that rely upon feature information from discontinuities in an image (e.g. edges,corners and lines)

quickly breakdown in regions containing smooth surfaces where gray level intensities are generally smoothly varying. It is in
these regions of an image that modeling the reflectance properties of an object is most useful. The notion of the reflectance
map presented in [Horn 1977] is a convenient way of directly relating reflected scene radiance to the surface orientation
of a given object material. Such a relation, if physically accurate, can be very useful in obtaining shape information
about smooth objects in an image. Two techniques which have paved the way for many other techniques making use of
reflectance maps are the method of shape from shading presented in [Horn 1975] and the method of photometric stereo
presented in [Woodham 1978]. Both of these methods make the simplifying assumption that the reflectance maps for an
object material are Lambertian. A shape from shading method based on local analysis is presented in [Pentland 1984].
Implementation of photometric stereo assuming the presence of specular reflection has been reported in [Ikeuchi 1981]
and [Ikeuchi et al. 1986].

A major problem in obtaining local surface orientation at a point on a smooth surface from a single view is the
nonuniqueness of surface orientations consistent with the reflected radiance measured from the point. This is because
for a given illuminator orientation the reflectance map supplies a single equation constraint between reflected radiance
and local surface orientation. By varying the incident orientation of the illuminator, photometric stereo methods obtain
additional equation constraints. This is because the reflectance map is dependent on illuminator orientation. However, to
get additional equation constraints that are independent in the presence of noise, large variations in incident orientation
of the illuminator are required.

This paper introduces another approach to using reflectance maps to obtain relations between local surface orientation
and empirically measured photometric quantities. This new approach involves measuring how reflected radiance varies at
a point on a smooth surface by varying the angular orientation of the illuminator. By measuring how reflected radiance
varies as the illuminator moves in both linearly independent angular directions, two independent equations which constrain
local surface orientation are obtained. These newly obtained relations enable the unique determination of local surface
orientation from a single view, and angular displacement of a single illuminator within a small neighborhood about a
specific incident orientation.

Th- difference of the reflected radiance at a point on a smooth surface between two slightly displaced incident orien-
tations of an illuminator, divided by the angular displacement, is an approximation to the directional derivative of the
reflectance function in the direction of the displacement of the illuminator. This photometric quantity measured at all

1 This work was supported in part by ARPA grant #N00039-84-C-0165 and NSF grant IRI-88-00370. This work was supported in part

by an IBM Graduate Fellowship Award.
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Figure 1:

pixels in an image corresponding to illuminated object points constitutes a photometric flow field with respect to the
angular displacement of the illuminator in a given direction. The actual directional derivative of a reflectance function in
this direction is also a function of local surface orientation. In the case of a Lambertian reflectance function in gradient
space representation, the directional derivatives in both angular components of illuminator orientation have the same
functional form with respect to gradient space variables p and q representing local surface orientation. These directional
derivatives can take on both positive and negative values at points on a surface which are illuminated. Positive values
denote an increase in reflected radiance at a point as the light source moves in a given angular direction, and negative
values a corresponding decrease in reflected radiance. Except for the fact that the directional derivatives can take on
both negative and positive values, they are also functions which are continuously differentiable in variables representing
surface orientation and can serve as functions equivalent to reflectance functions with respect to any shape from shading
and photometric stereo algorithm. The advantage of evaluating two independent photometric flow fields at a point on
a smooth surface should be clear. Other than the surfare orientation constraint equation provided by the reflectance
function itself, two additional surface orientation constraints are provided from the photometric flow fields.

There is also a big additional advantage to using photometric flow fields which is not possible from conventional use
of photometric stereo. This is the duality that exists between the determination of local surface orientation using the
known incident orientation of a single illuminator, and the determination of the incident illuminator orientation from a
known local surface orientation. Since the evaluation of both independent photometric flow fields at a point on a surface
correspond to the same incident illuminator orientation, a known local orientation at that point can be used to determine
the incident orientation of the illuminator. This will be demonstrated below.

The reflectance map assumed in this paper is Lambertian. Not only is this reflectance map simple to work with, but ;
light of recent work which has been successful in isolating the diffuse component of reflection from a variety of material
surfaces, Lambertian reflectance is realistic. Reported in [Shafer 19851 and [Klinker et al. 19871 are techniques that
separate diffuse and specular components of reflection based upon color analysis. Reported in [Wolff 1989] is an approach
to separating diffuse and specular components of reflection using a polarizing filter which isolates polarization components.
Since the diffuse component of reflection is Lambertian in nature, even on rough surfaces, Lambertian photometric flow
fields can be analyzed on the diffuse component image.

2 LAMBERTIAN PHOTOMETRIC FLOW FIELDS
Using gradient space representation, the reflectance map for a Lambertian surface is given by the function

R(p, q) pcosrsina + qsinrsinor + cosa

Vp 2 + q
2 + 1

where (p,q) are the gradient space coordinates for the surface orientation, and o and r represent the slant and tilt angles
for the illuminator (see figure 2). For a given measured value of the reflected radiance, equation 1 becomes the equation
for a conic section curve in gradient space. This is referred to in photometric stereo techniques as an isoreflectance curve
because it gives all possible gradient space representations of surface orientation that are consistent with the measured
reflected radia ice value.

Suppose nov' that the incident orientation of the illuminator is shifted in the slant angle a by a small amount &Yr. The
instantaneous rate of change of the reflected radiance in the direction of Ao can be approximated by the quantity

pcosrsn(a+Av)+qsinrsirn(a+ &a)+cos(a+ A) _ cosrsinalainr sna+ cosa

A/p2+q2 +1 P
2

+q91 (2)

Similarly, the instantaneous rate of change of the reflected radiance in the tilt direction of Ar is approximated by the
quantity

pco.(r+.Ar)ssna+gssn(r+ Ar)sina+cose _poria9ir~ac~

Ap
2

+q
2

+i p
2

+q+ (3)
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Figure 2:

Consider the expression in equation 1 as a function of the variables a and r where p and q are fixed. That is, the
reflected radiance at a specific point on an object surface is being viewed as a function of the incident orientation of the
light source. Mathematically speaking the expressions in 2 and 3 represent an approximation to the directional derivatives
of the function in equation 1 in the unit vector directions 8, and a, respectively. The vectors 8, and 8, are unit vectors
which span the tangent space at a point on the two dimensional manifold of the coordinates (a, r). These directional
derivatives are computed as follows:

aR 8R(9R( , r) 8, =a r
and hence

OR(a, r) pcosrcoso- + qsinrcoso - sinor (4)

a, R(a, r) = -psinrsinr 4- qcosrsino, (5)
1p2 + q2 + 1

It is possible to take different linear combinations of directional derivatives as follows

aR aR
(aa. + bO,)R(,, r) = a- + b -

where a and b are any real values. This property of directional derivatives can be put to good use in experimental
implementation to reduce errors. Moving the illuminator in certain specified directions can create nearly perpendicular
intersections of curves in gradient space.

Note that the function in equations 4 and 5 has the same form as in equation 1. Any of these functions set equal to a
constant value measured from experiment would generate a conic section in gradient space.

The equations 4 and 5 define Lambertian photometric flow fields in positive a and r respectively. These can be measured
empirically from the expressions in 2 and 3 where the denominator should be the angular variation measured in radians.
In a sense Lambertian photometric flow fields are like different Lambertian reflectance functions except that equations 4
and 5 take on negative values as well as positive values.

Figure 2 shows the rendering of a Lambertian sphere using a point light source at incident orientation o=45 degrees
and r=45 degrees. Figures 3 show a computer simulation of photometric flow fields on the Lambertian sphere, in figure
2, from two independent angular variations of the light source. Figure 3a shows the instantaneous rate of change of image
irradiance as the light source orientation changes in positive a. Figure 3b shows the instantaneous rate of change of
image irradiance as the light source orientation changes in positive r. For figure 3a intensity values northeast of the dark
band represent positive reflected radiance changes, while intensity values southwest of the dark band represent negative
changes. For figure 3b the positive reflected radiance changes are northwest of the dark band, and negative reflected
radiance changes are to the southeast. Figures 4a and 4b show the corresponding relative percentage changes in the
reflected radiance produced by the changes represented in figures 3a and 3b respectively. It should be noted that the
image intensity values in figures 3 and 4 are relative values. The maximum change over all points on the sphere is set to
value 255 with all other values relative to this maximum intensity value. Clearly, maximum values for the photometric
flow fields occur at local surface orientations generally far away from the incident orientation of the point light source.

Of immediate notice are the dark bands that are present on the sphere in figures 3 and 4. The intensity values on
these bands are very close to zero, and are actually zero along the medial axis of the bands. The medial axes of the dark
bands in figures 3 and 4 are examples of isoflow curves on the surface of the sphere along which the photometric flow
fields are some constant value. In the next section it will be shown that isoflow curves 4etermine local surface orientation
constraints. A very simple orientation constraint is that generated by the zero valued isoflow curve which is the medial
axis of the dark band in figure 3a. For any points along this isoflow curve the tilt r of the local surface orientation is equal
to the tilt value of the incident orientation of the light source. Most orientation constraints are much more complicated
than this.
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In a practical experiment where photometric flow fields would be determined from empirical measurement of reflected
radiance from a CCD camera, there are two major sources of errors to consider. The first is the measured reflected
radiance itself. Enough angular variation in a and r needs to be made so that the change in reflected radiance should
significantly exceed the repeatability of the photoresponse of pixel sensors. This amount is dictated by the signal-to-noise
ratio of the camera being used. Also the output of light sources is not constant over time. The measurements of reflected
radiance should be made as quickly as possible between angular variations. The second major source of errors is in the
approximation of equations 4 and 5 respectively by expressions 2 and 3.

Again, this paper introduces the basic principles of photometric flow fields and is not complete with full experimental
analysis. We simulate below derivations of surface and illuminator orientations based on absolute reflected radiance values.
This utilizes the familiar approach of intersecting curves in gradient space. In experimentation it is far more convenient
to utilize relative reflected radiance values, and we intend in the future to present experimental results which will build
off the basic principles proposed here.

3 SURFACE ORIENTATION FROM PHOTOMETRIC FLOW FIELDS
This section will simulate by computer the quantitative derivation of local surface orientation, with the aid of constraints

provided from a pair of photometric flow fields. As was seen in the last section, constraints on local surface orientation can
be obtained from isoflow curves which are derived by setting equations 4 and 5 to constant values. Examples of isoflow
curves in gradient space are shown in figures 5a and 5b with respect to photometric flow fields derived from positive
variations in a and r respectively. The incident orientation of the light source used is the same as for the simulations in
figures 3 and 4 with a = r =45 degrees.

The isoflow curves in gradient space depicted in figures 5a and 5b are conic sections of varying eccentricity. The
only difference between these isoflow curves and a Lambertian reflectance map depicting isoreflectance curves is that the
constant value of photometric flow that an isoflow curve represents can be negative. At a point on a smooth object
surface, local surface orientation is constrained by empirically determined values of photometric flow in positive sigma
and positive tau which determine the intersection of two isoflow curves in gradient space. Sometimes this results in a
unique orientation point, but the rest of the time local surface orientation is only constrained to be at two distinct points.
It is not possible to breakup this two point ambiguity by using another photometric flow field obtained by moving the
light source in another direction. The reason is that for small angular motions of the light source this direction is simply
a linear combination of the motions in o, and in r. The isoflow line thus obtained would therefore pass through the same
two points constraining orientation.

A third constraint curve on local surface orientation in gradient space can be obtained from the isoreflectance curve
corresponding to the measured reflected radiance at the point in question. This is simulated in figure 6 for a point on a
smooth surface with local surface orientation (-1.0,0.5) in gradient space coordinates. The isoflow curves in figure 6 can
be identified by observing the curves in figures 5a and 5b in the same region of gradient space.

Figure 7 depicts the intersection of three isoreflectance curves making small angular variations in the illuminator of 5
degrees in a and r. This would be the result of using conventional photometric stereo with very small displacements in
the incident orientation of the light source. Under ideal circumstances free of measurement errors this would work fine.
Figures 8a and 8b show, in the presence of measurement errors, the comparison of measuring local surface orientation
using photometric flow fields with doing this measurement using conventional photometric stereo. These are simulations
of worst case errors in the presence of ±5% error in measured reflected radiance. The simulated empirical values for the
photometric flow fields are derived by taking the ratios in equations 1 and 2 for 5 degree variations in a and r respectively.
Even in the presence of approximation error the centroid of the three two-way intersection points in figure 8a produce a
measurement error of about 5 degrees, while the measurement error in figure 8b is well over 20 degrees.

The comparison of the figure pairs 6-8a and 7-8b is to illustrate how orientation errors increase vastly when the inter-
section of curves in gradient space vary from nearly perpendicular intersections to nearly parallel intersections. Because
locally determined isoreflectance curves intersect almost parallel, local photometric stereo techniques are extremely sen-
sitive to camera noise. On the other hand, the intersection of locally determined isoflow curves is not nearly as sensitive,
even with inherent approximation error of directional derivatives.
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4 ILLUMINATOR ORIENTATION FROM PHOTOMETRIC FLOW FIELDS
Because photometric flow fields are determined locally there exists a duality between the determination of local surface

orientation using the known incident orientation of a light source and the determination of the incident orientation of a
light source using the known local surface orientation at a point on a Lambertian surface. This is illustrated by observing
equations 4 and 5 and the roles that (p, q) and (a, r) play as variables and known constant values. In the last section,
local surface orientation was determined from isoflow curves assuming that (a, r) were known and constant and (p, q)
were variables to be solved. But another interpretation of equations 4 and 5 can be that (p, q) are known, meaning that
something like a Lambertian calibration block is used, and the illuminator orientation (a, r) are variables to be solved.
This is an advantage of using photometric fl. w fields over using conventional photometric stereo since the empirically
determined values for the photometric flow fields along with the reflected radiance value all correspond to exactly the
same incident orientation of the illuminator.

To demonstrate this duality, a simulation will be performed which reverses the knowns and unknowns of the simulation
performed in the last section. Starting with the known orientation value (p, q)=(-1.0,0.5), the simulation in this section will
use isoflow curves to determine the unknown incident orientation of the light source (which in actuality is (a, r)=(45,45)
). To generate curves in gradient space, the variables once again should be in terms of (p, q)..To do this the variables (p, q)
in equations 4 and 5 will be held fixed at known values (po, qo) and the angular representation (a, r) will be converted to
gradient space representation according to

Cosa1 = V / 2 +777 + q+ 1' /f+ q2

cosrP= _____ 
qNp+ 2VF +q 2

whereupon equations 4 and 5 are equivalently

i9,R(a, r) = Pop + qoq - (p2 + q2 ) (6)Vp 2. + q02 + I Vp + p - + I

a R(a, r) -poq + qop (7)Vp0 + q02 + i V+ + i
respectively.

Isoflow curves from variations in r are once again conic sections in gradient space as can be seei, by the form of
equation 7. However isoflow curves from variations in o, are more complicated. A graphical depiction of isoflow curves
produced from setting equation 6 to different constant values is given in figure 9. In figure 10 is the determination
of the incident orientation of the illuminator from two isoflow curves from variations in a and r respectively, and the
isoreflectance curve corresponding to the reflected radiance value at the point on the smooth surface.

5 CURVATURE FROM PHOTOMETRIC FLOW FIELDS
In [Woodham 19781 and [Woodham 1979) a method is presented which determines viewer-centered curvature constraints

from shading information. Starting with the image irradiance equation

I(z, y) = R(p, q)
an application of the chain rule for derivatives yields the matrix equation

(al/ax ( p/t9z 41/9y aR/p
9I/a9Y ) = aq/a aq/aly ) ( R/Oq ) (8)

The 2x2 matrix in equation 8 represents the Jacobian of the transformation from image coordinates to local surface
orientation normals for a given surface. These normals ar represented in gradient space coordinates. Hence when this
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matrix multiplies an infinitesimal vector change in image coordinates, the resulting vector represents the infinitesimal
vector change in the local surface normal of the surface at that point. That is,

(dp (ap/9x a9y~ dx"r
dq iaq9x aqlay J dy )

Hence this Jacobian transformation is termed the viewer-centered curvature matrix with respect to image coordinates. On
a smooth surface which is parameterized by height above the image plane as (z, y, f(x, y)), the viewer-centered curvature
matrix is equivalently the Hessian matrix

2j//OX2 a~f/o
2

( 2flaX 2 
a2f/a.y

2
)

This utilizes the standard definition of gradient space coordinates as

p = Of/axr q = a//a,.
To solve for the three components of the viewer-centered curvature matrix in equation 8 at a point on a smooth

surface, the local surface orientation is required to be known in order to compute the gradient of the reflectance map
R(p,q). Assuming this is known, equation 8 represents an underconstrained pair of linear equations in three unknowns. In
[Woodham 1978] and [Woodham 1979] it is proposed that the underconstrained nature of equation 8 can be ameliorated
by solving for certain classes of smooth surfaces. These include developable surfaces for which the determinant of the
viewer-centered curvature is always zero, and convex surfaces for which this determinant is greater than zero.

In [Wolff 1987] it is proposed that the viewer-centered curvature matrix can be solved for arbitrary smooth surfaces
by combining curvature from shading with photometric stereo. From two additional light source orientations, the two
additional matrix equations

09IaY - /9x OqlOy OR'/aq (9)

4l/,9y - Oq/otx aq/y 9R"/Oq (10)

solve for the exact same viewer-centered curvature matrix. This not only obviates the need for assumed auxiliary con-
straints on the viewer-centered curvature matrix, but in fact overconstrains the equations for better recovery in the
presence of measurement error.

The shading information provided by photometric flow fields can equivalently be used to determine the viewer-centered
curvature matrix for a smooth surface. That is the reflectance maps R'(p, q) and R"(p, q) in equations 9 and 10 can be
replaced by aR(p, q) and 8,R(p, q) in equations 4 and 5 respectively. Note however that the image intensity gradients
are now photometric flow field gradients in the image plane. In fact two matrix equations resulting from two photometric
flow fields obtained from linearly independent angular variations are enough to overconstrain the determination of the
three components for the viewer-centered curvature matrix. The solution can be further overconstrained by the us. of
the original reflectance map using the incident orientation of the light source.

6 CONCLUSION
It has been demonstrated that shape characteristics for smooth surfaces such as local surface orientation and curvature

can be derived by examining the instantaneous rate of change in the reflected radiance at points on a smooth surface
with respect to angular change in illumination geometry. This rate of change in reflected radiance is determined by the
directional derivative of the reflectance function in the angular direction in which the incident orientation of the light
source varies. Because the incident orientation of a light source has two angular degrees of freedom, two independent
directional derivatives exist giving rise to two independent equations at a point involving local surface orientation.
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The approximation to a directional derivative of the reflectance function, in a given direction, is derived at each pixel
from two slightly displaced incident orientations of the illuminating light source. This photometric approximation at each
pixel in an image corresponding to an illuminated object poiat constitutes what is termed a photometric flow field. At
each pixel, the measured value of a photometric flow field constrains local surface orientation at the corresponding object
point according to the locus of an isoflow curve in gradient space. This is in the same flavor as constraining local surface
orientation from photometric stereo using isoreflectance curves. It was shown that curvature at points on a smooth surface
-an he obtained from the gradients of photometric flow fields in the image plane.

Because isoflow curves constraining local surface orientation at an object point correspond to the same incident illu-
ininator orientation it was shown that there is a duality between using photometric flow fields to obtain local surface
orientation from known incident illuminator orientation and obtaining incident illuminator orientation from known local
surface orientation. This duality does not exist for photometric stereo.

The analysis of photometric flow fields was given using variations in angular incidence of a point light source. li
practice it is believed that it may be easier to implement photometric flow fields from variations in illumination geometry
using an extended source. Consider, for instance, rotating a linear light source (e.g., a fluorescent tube) about its center
in a given plane. A photometric flow field would result with respect to angular variation in the plane. Angular variation
within two different planes results in two independent photometric flow fields. We hope in the future to implement such
a scheme extending the basic results in this paper.
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Abstract

Visual motion is commonly extracted from an image sequence in the form of an image-flow field or an image-
displacement field. In the past research on measurement of motion fields, three basic approaches have been
suggested: matching based approach, gradient based approach and spatiotemporal energy based approach. It
has been observed that any single method, based on any one of these approaches works well in a restricted
environment. We suggest inform ation-fusion as an approach to develop a technique to measure image-flow that
could work robustly in a less restricted environment. In this approach, multiple sources give their opinion about
the measurement of image-flow along with confidence measures. These measurements are then fused on the basis
of confidence measures. We propose two levels of fusion. At the lower level, various sources of flow-measurement
based on a single approach (of the above three) are called upon to provide a constraint on the flow, along with
a confidence measure and the constraints are then combined according to their confidences. At the higher level,
measurements from different approaches are combined in order to overcome their individual shortcomings. In this
paper, we report our work on lower-level fusion within matching based methods and outline our plan for future
research of higher-level fusion of matching based methods and gradient based methods.

1 Introduction

Image motion is a major source of three dimensional information about a scene which is in motion relative to the
observer [17, 5]. Image motion is commonly represented by a dense image-flow-field (or an image-displacement-field)
that assigns a two-dimensional velocity (or displacement) vector to every point on the visual field'. Image flow has
been shown to contain information about the three dimensional structure and motion of the scene [12, 18]. However,
the image flow must be reliably extracted from the time varying imagery (typically a sequence of images taken in
quick succession) in order to be used for three dimensional scene interpretation.

The techniques to compute image-flow from a sequence of images follow one of the three basic approaches: (i)
matching based approach [3, 6, 13], (ii) gradient based approach [10, 11, 7] and (iii) spatiotemporal energy based
approach [1, 8]. A review and a comparative study of these can be found in [3, 14, 2]. All of these techniques are
computationally local in nature, i.e., they make use of intensity information in a small neighborhood of a point to
compute the image-velocity vector at that point. It is well known that local information is insufficient to compute
the complete image-velocity at a point. More specifically, if the local intensity function in the image has low
gradient in some direction, then the component of image-motion in this direction cannot be recovered from the local
measurements alone. This is referred to as the aperture problem [10, 9]. Typical solutions to the aperture problem
invoke either a smoothness constraint [10, 19, 9, 11, 3] or the analytical structure of image flow [18, 16]. Singh [15]
does a comparative study of various techniques.

It has been observed that any single technique, based on any one of the above three approaches tends to work
well only in a restricted environment. For example, matching based approaches give reliable estimates of image-
flow in those spatial regions in the image that are "well structured", i.e., that have rather distinct features such as
intensity-corners intensity edges with high curvature etc. On the other hand, gradient based approaches give reliable

In this paper, we will use the terms flow-field and displacement-field interchangeably.
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Figure 1: Two Levels of Information Fusion

estimates in those spatial regions that have sufficient intensity gradient but not an intensity discontinuity and where
the local image displacement is small compared to the local spatial structure. Spatiotemporal energy based methods
tend to work well in textured regions. Therefore, intuitively, one can say that a technique that intelligently combines
the measurements obtained by using more than one of the above approaches can give a reliable estimate over a broad
range of environments. What's required to develop such a technique is a framework that can formulate any approach
to give not only the flow measurement at each point in the image, but also a confidence measure on how reliable the
measurement is. The confidence measure can serve as a basis for intelligent fusion of the estimates obtained from
multiple approaches. We call this high-level fusion. Figure lb depicts the underlying concept of high-level fusion.

Furthermore, within any approach, there can be multiple sources of information about image-flow. For example,
in a technique based on gradient based approach, such as that of Horn and Schunck [10], two sources of information
are used: the spatial/temporal intensity gradients and the local variation of image velocities. Each of these sources
provides one constraint on the image-flow. The constraints are simultaneously solved for each point on the image
to give the flow estimates. We suggest that the multiple (two in the current example) sources within an approach
should be captured in such a formulation that gives not just a constraint, but a constraint and a confidence measure,
which could be intelligently combined in a manner described above. The recent algorithm suggested by Scott [13]
that uses a matching based approach does in fact work along these lines and has shown a definite promise.

We have come up with the following generalization for matching based and gradient based approaches2 . In each
of these approaches, two classes of constraints on image-flow can be derived along with their confidence measures: (i)
convection constraints and (ii) neighborhood constraints. These constraints can be fused on the basis of confidence
measures to give the flow estimates. We call this low-level fusion. Figure la depicts the underlying principle of
low-level fusion.

In section 2 of this paper we briefly review some of the representative formulations reported in the past research
to analyze their individual shortcomings. This review is intended to serve as a motivation for the concept of fusion,
rather than a criticism. In section 3, we illustrate the concept of low-level fusion by describing a framework that
uses a matching based approach and show results of implementation on real imagery. In section 4, we give a brief
outline for derivation of an identical framework for a gradient based approach. We also describe our plans for future
research on high-level fusion of these two approaches.

2 Some Representative Examples From Past Research

Horn and Schunck [10) used a gradient based formulation of the image flow problem. They used the assumption
that the intensity I of a point in a moving pattern remains constant over time to derive one constraint on the
image-motion. They used the assumption of smoothness of the flow-field to impose another constraint to solve the

2 Whether this generalization applies to spatioternporal energy based approach is currently under investigation.
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aperture problem. This formulation leads to the following difficulties. (i) it tends to blur the motion field at the
genuine motion boundaries, and (ii) no advantage is taken of the fact that there are points in the visual field, such as
corners, where the aperture problem does not exist and the true image-velocity is completely known. The formulation
used to derive the motion constraint is incapable of extracting all the information available at a corner. Nagel [11]
developed a technique that used second order variations of image-intensity to captuie the information available at
the points of high curvature such as corners etc. and used a smoothness constraint that is enforced strongly along
the direction of the underlying contour and weakly across the contour. This formulation does not require any a priori
knowledge about the location of the contours, but has practical limitations. It is based on the second order spatial
partial derivatives of the image intensity that are hard to estimate in real imagery.

Hildreth [9] used a smoothness criterion in which the velocity field is required to be smooth only along a contour
and not across it. This formulation suffers from the following drawbacks. (i) It gives the true image-flow only at
the points that lie along contours, and not everywhere on the visual field, (ii) this formulation, like that of Horn
and Schunck, does not take any direct advantage of the fact that points of strong curvature along a contour have
more information than just the normal flow, (iii) no consideration is given to the fact that contours can also be due
to albedo transitions and texture, where the flow information should be propagated across the contour to provide
an additional constraint on the velocities of intervening areas and (iv) in presence of multiple objects moving with
different velocities, the method provides no guarantees of not propagating velocities along two contours that intersect
but belong to two different objects.

Anandan used a hierarchical matching based approach [3]. In his approach, a search window around the original
location of a pixel (or feature) is searched for the "best match" that describes the new location of the pixel (or
feature), thus giving the image-displacement. The principle-curvatures of the matching-strength "surface" at the
location of best match are taken to be the confidence measures in two orthogonal directions. Anandan used a
modified version of Horn and Schunck's smoothness criterion. Recently, there has been significant effort in using
some assumptions about the local geometry of the surfaces whose motion causes the image-flow to measure image-flow
[12, 18, 16]. These techniques assume that the location of flow-discontinuities is known a priori. This assumption
requires that a reasonable high level image segmentation has been done (beyond a simple zero-crossing analysis).
This is an unrealistic assumption, particularly from a physiological viewpoint, given that visual motion measurement
is an early process. It has been suggested [18] that the model (that formulates the image-flow computation) itself
can be used to determine the boundaries of analyticity, but in presence of noise, such a scheme suffers from practical
limitations.

From the above review it can be summarized that the any individual method suffers from one or more of the
following three drawbacks: (i) it tends to blur the flow-field across motion boundaries, (ii) it requires the second
derivatives of the flow-field, which are hard to estimate from noisy image data, (iii) it assumes that image segmentation
has been done, thus requiring a lot of global information.

It appears from the above discussion that a good method to compute image-flow (i) must generate the flow
boundaries rather than require a-priori information about them and (ii) must make use of all the information that is
available, for example, at corners and such points of high second order variation and (iii) give a confidence measure
that reflects the reliability of flow-estimate at every point. In the following section, we propose a technique that applies
low-level fusion described earlier to successfully achieve these three objectives. This technique is a generalization of
the recently published 4-line algorithm of Scott [13].

3 Low Level Fusion in a Matching Based Approach

According to the generalization proposed at the end of section 1, there are two sources of information about image-
flow in a local neighborhood: (i) convection constraints and (ii) neighborhood constraints. Convection refer to the
information available from the fact that when a feature under motion is observed in images taken at different time
instants, some properties of the feature remain invariant. For example, in the approach proposed by Horn and
Schunck, this property is taken to be the intensity of the pixel (feature) in consideration. Neighborhood information
refers to the distribution of the local flow vectors in a region in the image. In this section, we describe a technique
to (i) derive the above two classes of constraints along with confidence measures using a matching based approach
and (ii) fusing the constraints to recover image flow. According to the definition given earlier, this is an instance of
low-level fusion.
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Figure 2: Matching Strength Surface for some Representative Examples

3.1 Deriving the Convection Constraints

We first deal with the issue of deriving convection constraints at a qualitative level. After having established the
underlying principles of our approach qualitatively, we will present the necessary mathematical framework to translate
our apnroach into an algorithm. A matching based approach such as [3] essentially involves an explicit search for
the best match for a given pixel of an image in the subsequent images of the sequence. Typically, such a search is
conducted by correlation-based techniques. Most of the techniques suggested in the prior research typically select
the pixel (in the second image) with the best matching strength as the match for the pixel (in the first image)
under consideration. It is obvious that such a selection is not always possible. For instance, in regions of uniform
intensity, the matching strength is likely to be quite uniform over the search window. Similarly, in the neighborhood
of an intensity edge, there will be several points of high matching strength, distributed along a curve. In general, the
distribution of the matching strength over the search window will depend on the distribution of the intensity variation
in the underlying image. Thus, the search area can be visualized as covered with a "matching strength surface".
The information contained in the matching strength surface can be characterized quantitatively by a principal axis
decomposition of the surface. The mnatching strength at a point serves as the "mass" at the point. Intuitively,
we can say that the principal axis decomposition characterizes the information that we discussed above in the first
motivating factor. This characterization was used in [13].

The normalized moment of inertia about each of the two principal axes is inversely related to the confidence in
assuming that the motion lies on that axis. This can be observed for some representative cases as shown in Figure 2.
In areas where the intensity distribution is uniform, (Figure 2a) the matching strength will be high everywhere in
the search window W,. This will result in a high normalized moment of inertia around both the principal axes, and
thus a low confidence in assuming that the motion lies along any one of the two axes. Similarly, in the vicinity of an
intensity edge, the pixels with a high matching strength will be oriented along a curve in the search window W, (see
Figure 2b). This will result in a high moment of inertia about the minor principal axis and a low moment of inertia
about the major principal axis. Consequently, there will be low confidence in the motion lying on the minor axis and
a high confidence in the motion lying on the major axis. This observation is consistent with the aperture problem.
Finally, the case of a "corner" in the intensity image is shown in Figure 2c. The strong matches are concentrated
around a single point in the search window W~, giving a low moment of inertia about both the principal axes. As a
result, there is a high confidence in the motion lying on both the principal axes, that is, on their intersection.

Thus, we have the barebones of a procedure to capture the convection information in form of two linear constraints
for each pixel, along with their associated confidence measures. We refer to these lines as the convection constraint
lines. As we have seen in the qualitative description above, the two essential steps in computing the convection
constraint lines (in case of a matching based approach) are: (i) computing the matching strength for each pixel, over
the search area that corresponds to that pixel and (ii) performing a principal axis decomposition of the matching
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strength surface to compute the two convection constraint lines and their confidences.

We will now present the quantitative framework that essentially performs the two steps mentioned above. We
work with 2 * T+ 1 images taken at time instants t - -T, t = -T+ 1 ...... through t = +T to estimate image flow
field that corresponds to the image taken at time t = 0. We refer to the image taken at time t by It For purpose
of simplicity we assume that T = 1 (i.e., the total number of images is three) and that the displacement of a pixel
over 2 * T + I time units is limited to N pixels in any direction. This restriction can easily be relaxed by using a
hierarchical approach [3]. Finally, we assume that the time elapsed between two successive images is unity. In this
case, the displacement-field coincides with the flow field. What we compute explicitly is the displacement field. For
this purpose, we will be using a x - by plane rather than the u - v plane to represent the motion constraint lines.
In this new scheme, bx and 6 y refer to the x and y components of the displacement vector for a pixel.

Computing the Matching Strength: Several match measures between two intensity patterns have been pro-
posed in the literature. The most commonly used ones are direct correlation, mean normalized correlation, variance
normalized correlation, sum of squared differences and sum of absolute differences, etc. Burt, Yen and Xu (61 and
Anandan (31 provide a comparative survey of the various measures. In accordance with the reasoning of [3] we choose
the sum of squared differences, SSD, as a measure of the match. The smaller the SSD, the better the match. Since we
need a matching strength that increases with the quality of match, we use the reciprocal of the SSD as the matching
strength.

For each pixel P(x, y) at the location (x, y) in the image I0 taken at time t = 0, a window Wp of size (2 * n +
1) x (2 * n + 1) is formed around the pixel. The search window W, of size (2 * N + 1) x (2 * N + 1) is established
around the pixel at location (x,y) in all other images. The N x N matrix depicting the matching strength surface
,M(6x, 6y, t) between Wp and a similar (2* n + 1) x (2 * n + 1) window around each pixel in W, in image It, displaced
from (x, y) by an amount (6x, 6y), is computed as:

M(6x, by t) 1-j~
=nEj=n(o(z+i,y+j) -It(x+bx+i,y+6y+j))

2

-N < 6x,6y < +N (1)

In this expression, "0(x,y) and "t(x,y) refer to the pixel intensities at the location (x, y) in the image I0 and It
respectively. The correct matching strength surface M(6x, by) for the pixel under consideration is found by "revers-
ing" (in both 5x and by directions), the matching strength surface .M(6x, 6y,-1) and adding it to M(bx,6y,+1) 3 .
This measure is different from that used by Scott [13] in that opinion of more than one pair of images is being sought.

Deriving the Convection Constraint Lines and Their Confidences: The two convection constraint lines
described above are to be derived for each pixel P(x, y) along with their confidence measures. These constraint lines
are the principal axes of the Matching Strength Surface M(bx, by) for the pixel under consideration, as derived above
in Equation 1 (with the matching strength at a point serving as the "mass"). The principal axes can be determined
as the eigen vectors of the scatter matrix that corresponds to the distribution of matching strength over the search
area and is characterized as:

( - 6. 6Y M(x, y)(6x - 6x )2  E6 E Y M(6x, y)(Ox - 6x)(by - byc) ) (2)
26a, E6, M(bx, by)(bx - bx,)(by - by,) 6. E6 M(SX, 6y)(by - 6ye) 2

In this definition, the summation is carried out over -N < 6x, 6y < +N. Also, (6bx, 6 y,) denotes the "center of
mass" of the cloud of matches. The eigen vectors of the scatter matrix give two convection constraint lines [4] of the
form:

1 alx + b1 y + cl = 0

£2 : a 26x + 6 26Y + c2 = 0 (3)

Their associated confidences C1 and C2 can easily be computed as the the reciprocal of the normalized moment of
inertia of the matching strength distribution about these two lines. The line LI, corresponding to the major principal

3
When using more than three images, the simple addition is replaced by a weighted-sum where the weight reflects the time separation

of It from I0.
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Figure 3: Neighborhood Flow Distribution for some Representative Examples

axis captures the same physical meaning as the motion constraint line of Horn and Schunck [10] but does it in a more
unrestricted way. For example, the restriction that the neighborhood should not span an intensity discontinuity,
which is very crucial for Horn and Schunck's approach, does not have to be met in the formulation given above.

3.1.1 Deriving the Neighborhood Constraints

As in the case of the derivation of convection constraints, we will deal with the neighborhood information on a
qualitative level first before we go into a quantitative description of the method. Let us assume for a moment that
the correct flow-field for an image sequence is available (from some magical technique). What can we say about
the distribution of flow variations in a neighborhood? We can map the flow vectors in a neighborhood to points
in the u - v plane. Some representative cases are shown in Figure 3. In a neighborhood where the flow-field is
uniform, all the flow-vectors, when mapped to the u - v plane, will be clustered around a single point as shown in
Figure 3a. Similarly, if a neighborhood spans a flow boundary (between two regions of more or less uniform flow
fields), the flow vectors, when mapped to the u-v plane will cluster around two distinct points, as shown in Figure 3b.
Finally, in the case of a gradual change of depth of a moving rigid object, where the flow-field gradually changes
from one uniform distribution to another, the flow vectors, when mapped to the u - v plane, could be oriented as
shown in Figure 3c. Although we have used the "correct" flow-field to gain some intuition about the distribution of
flow variations in a neighborhood, the conclusions will nevertheless be true during an iterative update process for
computing the flow-field, provided the iteration is approaching convergence.

Scott [13] reports that principal axis decomposition (of the flow-field in a neighborhood, mapped onto the u - v
plane) can serve as a good quantitative description of the distribution. In this case, a point in the u - v plane
(corresponding to the flow vector of a given pixel in the neighborhood) is assigned a "mass" that depends on the
distance of this pixel from the "center" of the neighborhood. We assign these masses according to a Gaussian mask.
The principal axis decomposition gives two motion constraint lines for each pixel, along with an associated confidence.
These two lines reflect the opinion of the neighborhood about the velocity of a pixel that lies in its center, as opposed
to the two motion constraint lines derived by matching that refer to a pixel's own opinion about its velocity. We
call these lines the neighborhood constraint lines.

The quantitative derivation of the neighborhood constraint lines is quite straightforward. Once again, we assume
that the time elapsed between two successive images is unity so that the u - v plane coincides with the 6z - by
plane. We assume that a neighborhood M around a pixel P(x, y) whose opinion is used in deriving the neighborhood
constraints is of size (2 * k + 1) x (2 * k + 1). The displacement vector at each of these pixels is mapped to a point
in the 6x - by plane and assigned a "mass" that depends on the distanc,' of the pixel from P(x, y) according to a
Gaussian mask (similar to the approach used by Horn and Schunck [10]). The principal axis decomposition can be
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done using a technique identical to that used for convection constraint lines. The Neighborhood Constraint Lines
thus obtained have a form:

£3 a36X + b36y + C3 = 0

£4: a 4 6X + b 4 6y + c4 = 0 (4)

Their associated confidences C3 and C4 can be computed as the the reciprocal of the moment of inertia of the "assigned
mass about these two imeb.

3.2 Fusing the Constraints

The fusion process would involve finding a velocity at each point that satisfies all the constraints available at that
point to a degree suggested by their confidence measures. A rigorous approach to achieve this is currently under
investigation. In this work, we select a point in the u - v plane that minimizes the sum of its squared distances
from each of the constraint lines, weighted by its confidence measure, and accounting for the relative faith in the
convection constraint lines versus the neighborhood constraint lines. Thus, the quantity to be minimized is given by:

F, = (1 - V
2

)((L 1 C1 )
2 

+ (£ 2 C2 )
2

) + Vb
2

((,C3C3)
2 

+ (£ 4 C4 )
2

) (5)

The role of V is similar to that of the smoothing factor a used by Horn and Schunck [10] or Anandan [3]. It reflects
our a priori relative confidence in the convection constraints and the neighborhood constraints. If / is chosen close
to zero, the resultant motion field will adhere closely to that suggested by the convection constraints. On the other
hand, if V) is chosen close to unity, the neighborhood opinion will strongly bias the motion field. Our choice of the
formulation of Equation 5 is motivated by that of Scott [13]. However, in our implementation, a small value of Vk
is chosen in the beginning, and as the iterations proceed, the value of V) is gradually increased as the faith in the
opinion of the neighborhood increases.

The problem of finding the minimum of the function " in Equation 5 is that of finding an unconstrained minimum
of a quadratic function of two variables 6z and by. It can be shown via critical point analysis that such a minimum,
if it exists is given by:

S= t r-q*s
p* q - r2

= sr -t*p (6)p*q-r 2

where:
(IV2(2 2 2) 2 22 2)

p (1 - ¢ 2)(2al + C2a2) + ¢ (C2a 3 + C4a,)
q (I _ lb2

)(C22 + r22 2 2 2 2+ C22)q=1 l)Cb +C2b2) + 0 (CPbs + 4 b4)

(1 _ V)2 )(C2alb, + C2a 2b2) + 0 2 (C2a3b3 + C2a 4 b4)
= -1 _ 02(C2 2a2b2

s = (1 - ¢ 2)(Claic, + C a2C2) + ¢'(C a3c3 + C a4 c4 )
t ( _V))(2 - 2 2 2

(I - b + Cb 2C2 ) + ¢(C'b3C3 + C~b4C4 ) (7)

In the algorithm that we propose, the convection constraint lines are computed only once at the onset and the
neighborhood constraint lines are computed once for each iteration. In a simple implementation, the algorithm was
applied to a sequence of three 64 x 64 images of a polyhedral block in motion, with the correlation window and the
search window of sizes 3 x 3 and 5 x 5 respectively. The middle frame of the sequence and the flow-field are shown
in figure 4. For sake of clarity, a zoomed version of a section of the flow-field is also shown. Over the three frames,
the block was rotated (in a plane on which it rested) clockwise about a point that was close to the lower left hand
corner of the image. The maximum linear displacement of a point on the block was limited to about three pixels in
the image. It is difficult to compare the results to the "real flow" hecause we do not know the real flow. We have
run the algorithm on about half a dozen image-sequences taken in the lab and outdoors, and the results appear quite
convincing visually. We have also applied the algorithm to synthetic imagery, where the "real flow" was known and
have recovered the image flow correct to within five percent everywhere.
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Abstract

We propose that constructing global spatial organizations from individual token trajectories is a powerful
technique for motion and structure interpretation. Recovering 3D motion from grouped trajectories has many
analogies with 3D structure-from-contours in static imagery, which have not been made explicit in the motion
vision literature. Our proposal is also similar to Stevens' [17 T idea of strongly suggested geometric groupings in
Glass patterns. Additionally, for our motion model, the grouped trajectories exploit the symmetry inherent in the
motion. We demonstrate our approach through the solution of scene motion and structure parameters for a set
of 3D points rotating rigidly around an arbitrary axis. Instead of using individual point correspondences directly,
we fit conic section curves to grouped sets of point correspondences and compute, in closed form, the 3D motion
and structure parameters using the quadratic form matrix representing each conic. We analyze ambiguities in
the solutions obtained from the image path of a single point and arrive at a unique solution using multiple point
traces.

1. Introduction

Most motion algorithms make few presuppositions about the environment, and rely on the relatively unstructured
computation of point displacements in 2 or 3 frames of image data. We propose here instead that coherent motion
percepts can be derived from global geometric structures in the image motion. Specifically, we consider the recovery of
motion and structure for a single, rigidly rotating object using image trajectories. We will demonstrate that individual
image point displacements provide only weak constraints on the corresponding 3D trajectories. We therefore argue
for the necessity of grouping individual image trajectories into global curves exploiting the s ,imetry of the motion.
From these curves the 3D motion and structure can be accurately represented and recovered.

First, a method for reconstructing in closed form the 3D trajectory of a point rotating rigidly around a fixed axis
given its image path is described. For this method to succeed, a reliable estimate of a substantial portion of the
full 360 degree image path is needed, since the accuracy of the trajectory fit degrades drastically for small segments.
The structure and motion of a rotating object can be completely recovered in this way, up to a single unavoidable
scale ambiguity, if many points on the object are tracked. Although we do not have a grouping algorithm, we show
that manual linking of individual tracked displacements yields estimates for the images trajectories of the required
accuracy. Our linking makes explicit the symmetry of the 3D motion and structure.

For small rotations, motion and structure recovery on the basis of short individual point tracks fails. We emphasize
that this failure is intrinsic, not an artifact of a particular fitting routine, and that it provides a compelling argument
for the necessity of grouping in motion interpretation. There is also an interesting analogy with the psychophysical
literature on deriving global percepts from geometrical organization. Our proposal is similar to Stevens' [17] idea
of strongly suggested geometric groupings in Glass patterns. In the psychophysical motion literature, our work is
related to Todd's [18] interesting study of perception of global regularities in rigid and non-rigid motion. Motion
interpretation from point displacements grouped into motion contours also has obvious analogies with 3D structure-
from-contours in static imagery-for instance computing the FOE is comparable to determining the vanishing point
in static images.

Although it is particularly easy to envisage the appropriate global organizations for simple motions like pure
translation and rotation, the power of the idea that coherent motion percepts arise from global structure seems
general and compelling.

2. Comparison To Related Work

The standard two frame approach to the computation of 3D motion and structure requires minimal assumptions,
but does not permit natural descriptions of motions. For instance, the motion of a purely rotating soccer ball will
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typically be described in terms of a rotation around an axis passing through the camera center rather than through
that of the ball. It can be argued that the second, natural description can be constructed from a series of two-frame
rotation and translation computations, but the robustness of this is questionable when each computed pair is itself
obtained through a non-linear constrained optimization. For a comprehensive survey of many of the two frame
approaches see Barron [4].

Another problem with two frame approaches is that structure computation is based only on one displacement
measurement for each feature, so that depth recovery may be erroneous even for correctly determined motion pa-
rampters. This prhlem ;- amelio-ated for known motion, or motion with a stereo camera arrangement, since then

the t;- frame depth computation can be incrementally refined [10].

One can also hope to overcome these problems by explicitly posing the 3D interpretation problem as a multi-
frame problem, but this typically requires constraints on the motion, for instance that motion parameters remain
constant over a period of time. Weng et al. [20], Chellapa et al. [23], Shariat [16] and Pavlin [13] use various forms of
motion constancy over time and solve for the underlying 3D motion and/or structure parameters using a variety of
non-linear parameter estimation techniques. Webb and Aggarwal (19] solve for the parameters of rotational motion
using ellipses, but they are limited to orthographic projection only. (See also the very recent paper by Jaenicke [8].)
Our approach is similar to those above but potentially applicable to less-constrained motions, since it makes use of
spatial information to supplement temporal correspondences, and thus requires fewer frames and a shorter period
of motion constancy. Moreover, this approach may be an important first step not only for 3D parameter estimation
but also for detecting occlusions/deocclusions and object segmentation. A related approach to detecting occlusions
is that of Baker et al. [3). For a survey of various multi-frame approaches see Aggarwal et al. [1].

At the outset, we caution that the cited works treat more general models of motion than the one considered here.
However, we hope to generalize it beyond the demonstration model studied in this paper. It has implications not
only for a novel approach to 3D motion and structure computation, but also for a unified view of 2D grouping and

3D interpretation.

An innovation of our approach is that we do not compute motion directly from individual feature correspondences,
but ri~her from extended image trajectories. Sethi et al. [15] also discuss image trajectories but do not use them to
find 3D parameters. In addition, we show how linking local image trajectories into global spatial organizations can
lead tc good qualitative and quantitative motion percepts. For instance, Fig. 1 depicts imaged points on two spheres
rotating around different axes. The point tracks immediately suggest geometric organizations (elliptic arcs) similar
'In Glass patterns (see tevens [17]). For rotations, each track of a point is a conic section curve. Our approach
envisages grouping individual point tracks on the basis of smoothly varying relations among the 2D parameters
describing these tracks, i.e. based purely on image plane characteristics. The result can be exploited to provide
powerful constraints on a globally coherent motion, as demonstrated in this work. We do not have an algorithm
yet for capturing these groupings but our demonstration makes a compelling case for further research which we are
carrying out. More complex motions and grouping relations are under study.

3. The Problem: A Rotating Rigid Body in Space

We consider the case of a sequence of images of a rotating rigid body in space or the camera rotating around an
arbitrary axis with respect to a fixed environment. Image point correspondences are assumed given over a period of
time, and the camera parameters are known. The problem to be solved is that of determining the orientation and
location of the rotation axis, and, for each point on the body corresponding to an identified image point sequcnce,
the location of its 3D trajectory. We assume perspective projection, and, for simplicity, a square image.

A set of parameters sufficient to define the problem geometry is depicted in Fig. 2

: Unit vector in the direction of the rotation axis.

c Location vector of the rotation axis, given by the point where the axis

intersects a plane normal to it that passes through the origin.

r" (x, y, z), Location vector of a 3D point on the body.

d Location of the center of the circular 3D trajectory of a body point, given by its signed

distance from the point r and measured positive in the positive z - direction.

k Radius of a circular 3D trajectory, k > 0.

f Focal length of the camera.

:i (X, Y, f). image vector in homogeneous pixel coordinates.
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This parameterization allows an easy separation of motion from structure parameters. We represent a vector as 1F,
a unit vector as and v as the corresponding column vector. Quantities enclosed in square brackets , e.g. [M],
represent matrices.

The rotation axis can be specified using a minimum of four parameters [14]. Two additional parameters specify
each circular trajectory of a body point relative to the rotation axis. These unknowns can be determined from the
images only up to an arbitrary scale factor, the knowledge of which fixes the values of all parameters. Thus, for
n 3D trajectories, there are 2n + 3 determinable unknowns. Each image point in each frame gives one constraint
equation assumig that the motion does correspond to the model under consideration, namely rigid rotational motion.
Therefore one 3D point imaged in five frames, two 3D points imaged in four frames, or more than two 3D points all
imaged in more than two frames, provide adequate information for a solution. In order to provide robustness in the
face of noise in image measurements and small model deviations, however, more information (i.e. more frames) is
necessary.

4. Formulation

An outline of our approach to the problem described above is as follows

" We write down an expression giving explicitly the perspective projection onto the image plane of a circular
trajectory in space. This projection is a general conic section, either a straight line segment, circle, ellipse,
parabola, or hyperbola.

" Conditions determining the type of the conic section of the projection are specified.

* Using a general conic fit algorithm, the sequence of image points identified with the motion of a single body
point is fit to a conic section. This requires at least five frames for each body point. The conic section is
represented as a quadratic form in the homogeneous image coordinates.

" The 3D trajectory of the point is then solved for in closed form in terms of the conic section fit to the image
data, up to an apparent eight-fold ambiguity.

" Six of the eight possible solutions can be rejected by invoking the scene-in-front-of-image criterion, or because
they duplicate physically the other solutions.

" The remaining two-fold ambiguity can be resolved by requiring that different 3D trajectories share the same
axis of rotation.

" Finally, we obtain a best-fit for the axis of rotation by combining information from all 3D points.

We first derive an expression for the image plane projection of a circular trajectory in space parameterized as depicted

in Fig. 2. It is evident that our parameterization obeys the following conditions

((i- - di ) . - - ad ,) =k?

b di (2)

b. = 0 .= 1 (3)

The index i specifies the particular 3D point on the rigid body; we will drop it in the following treatment where
there is no ambiguity in doing so.

The perspective equation in homogeneous coordinates is

-. r
f f. (4)
7'.Z

From Equation (2) , using similar triangles, one obtains :

R9b

994



(The degenerate case where d = R?.- = 0 causes no difficulty and is discussed later.) Substituting Equation (5)
into Equation (1) and rearranging terms, we get

--- f - R - 2 d-- + F- d- k=0 (6)
(R b)2  Rb

After multiplication through by (./ )2 , this can be rewritten in terms of a symmetric quadratic form matrix. In
boldface notation :

RT[ d2 [I] - d[ cbT + bcT ] + (cTc - d' - k 2 )[bbT] ]R = 0 (7)

This equatioc represents a general conic in X and Y, the image plane coordinates. The linear and constant terms
in the standard form of a conic [12] are included in this expression since f? is in homogeneous form and includes a
constant term. Thus, given a circle as the 3D trajectory of a point, the expected image projection is determined by
the matrix :

[Mp] [d 2 [] - d[cbT + beT ] + (CTc - d2 
- k2 )[bbT ] ] (8)

The image will be an ellipse if the whole of the circle incorporating the 3D trajectory lies on the positive z side of
the xy plane, i.e. if all points on this circle have positive z component. The image will be a hyperbolic arc when the
3D circle intersects the xy-plane in exactly two points. The four possible directions of approach to these intersections
determine the four asymptotes in the image plane. Finally, when the 3D circle is tangent to the xy-plane, the imaged
arc is a section of a parabola. Again, the two possible directions of approach towards the tangent point generate the
two paths which become unbounded in the image. In the latter two cases, the image trace-i.e the image projection
of a 3D trajectory-is not closed. In the first case of an ellipse, the image trace may be either a closed curve-a
complete ellipse-or an open partial ellipse.

Equation (7) specifies the imaged conic section corresponding to a 3D circle. Below, we show how starting from a
conic section in the image plane, one can recover the 3D circle of which it is the projection, up to a scale ambiguity.
Thus, given our model of rigid rotational motion, if it is possible to track a particular body point through sufficiently
many image frames to reliably fit its image trajectory to a conic section, its 3D circular trajectory can also be
determined. In a realistic scenario where only a small part of a single point's trajectory may be available, the conic
section fits tend to be locally accurate but globally erroneous. However, we will show that by doing spatio-temporal
groupings across multiple point traces, good globally correct image conics can be described and hence fairly correct
3D parameters extracted.

5. Solution

An arbitrary conic section in the image plane can be specified by a quadratic form as in Equation (7), with a
symmetric 3-by-3 matrix [M,]. The matrix [Mc,,,] is derived from the image data by a best fit. The corresponding

3D circle is determined by computing the values of the 3D parameters d, k, , b that yield a aatrix [M,,,] specifying
the same conic section as [Mr.,,m]. Note that any scalar multiple of the matrix [M.,p] specifies the same image curve,
so that the 3D parameters can only be recovered up to a multiplicative ambiguity. This is the scale ambiguity
mentioned earlier: only the ratios d,,, k,,, c,, and b are recoverable, where

d k c T
4, =- k == C ec Cn 1 (9)

(We are assuming here that the rotation axis does not pass through the origin, i.e. that 6*is not the zero vector. This
case is easily distinguished from the image data, and will be treated separately.)

Since the absolute magnitudes of the 3D parameters can not be determined, we rescale [M,,p) by the magnitude
squared of the location vector . The rescaled matrix can be written in terms of the recoverable ratios

[M,,] [ d 2[1] - d,,[cbT + bCT + (I - d 2 _ k2)[bb] 1 (10)

The ratios are computed from the image data by requiring that [l,, is equal to [M,.o,] up to a stale factor,
which can also be found. We use a two-stage conic fit algorithm to determine [M, Bookstein's [6] algorithm,
which uses an algebraic distance measure, is used first to get a closed form conic fit solution to the set of point
correspondences corresponding to a body point. This is inputted as an initial guess to an iterative quasi-Newton
algorithm, which uses an approximation to the first-order euclidean distance from the conic as an error measure. In
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case of noisy correspondences and small deviations from modeled motion, many more than five frames are necessary
to get a good conic fit. For each identified body point, the resulting best fit conic section to the path of its image
projections is specified and represented by a matrix [M,o,,t].

5.1 Axis Through Origin

We first consider the simpler case where the rotation axis passes through the origin. Then the expected conic
form matrix is :

[M,.,p] = [ d2[I] - (d 2 + k2 )[bbT] ] (11)

As above, we normalize this by d, assuming it is non-zero, and write the matrix in terms of the ratio k/d which
is recoverable. (The solution for the special case when d is zero follows trivially from the non-zero case.) The
normalized matrix is :

k2[b

[MI.] = a[ I] - (1 + -)[bb 1 (12)

We have included a scale factor a to represent explicitly the multiplicative ambiguity discussd above.

The eigenvalue-eigenvector pairs for this matrix are

A,=---c ( ) 2  , 2 = a A3 =c n,=b n,=n, n.=n. (13)

where n 2 and n3 are any two independent vectors in a plane normal to b. Note that two eigenvalues are identical
and the third one is of a different sign and magnitude. In the more general case where the rotation axis does not
intersect the origin this redundancy of the eigenvalues will not occur.

In order to recover the 3D parameters of the trajectory from the image data, we compute the eigenvalues of the
matrix [M,...... derived from the conic fit algorithm. If two of the eigenvalues are same and third one is different in
magnitude and of opposite sign, this implies that the sequence derives from a point rotating around an axis passing
through the origin. Let the eigenvalues of [M,,,,] be A1, and A2 = A3 . Since [M,....] = [M,,.P] (after adjustment
of the scale factor a), these eigenvalues can be identified with the eigenvalues of [M,.pv] calculated above. Then,

k A,)
=A 2 ( or A3 ) - - (14)

and b is the unit eigenvector for A,. Without loss of generality, b can be forced to !ie in the hemisphere of positive z
directions. Then a unique sign for k can be determined by invoking the fact that the imaE-!d 3D trajectory must lie

d
in front of the camera. For the more general case, the resolution of this type of sign ambiguity will be discussed at
length.

Hence, for this case there is a unique, closed-form solution for the circular trajectory in space given [Mr,,,,,, the
conic section fit to the image point sequence.

5.2 Generic Case: Rotation Axis Not Through Origin

As in the special case above, we determine the 3D trajectory of a body point by identifying the eigenvalues of
[M. p] computed in terms of the 3D parameters with those of the image-derived matrix [M, For convenience,
we rewrite [M,.p] with an explicit factor a as in the previous section and drop the subscript indicating ratios :

[M..,.] -ja[ d2 [I] - d[cbT + bcT] + (1 - d2 - k2 )[bbT ] ] (15)

We first derive the eigenvalues of this matrix. As b and c are orthogonal, a rotated coordinate system can be chosen
in which :

b [0011 c (010] (16)

It is a standard result of linear algebra that the eigenvalues of a matrix remain the same and can be computed in
an arbitrary rotated coordinate system. After substituting Equation (16) into Equation (15), [M,,)] has the simple
form in this rotated system

~ =ad2 d2 0~2
M1 = 99 0 d -d

0 -d 1 - k 2
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The three eigenvalues of this matrix are

A, d2  (17)
2 2 d V" I )-d

A2  ((d+ -k 2 )± k2(1+ 2  +4d2k2 ) (18)
2

A3  + d' -P ) - V/(I+ - +4d2k 2 )  (19)
2

For a positive, A, and A2 are positive and A3 is negative, except in the degenerate case when d = 0, corresponding
to an image trajectory that is a degenerate conic, i.e. a straight line segment. We always choose to have a positive,
and thus, for consistency, normalize the computed matrix [M.,,] similarly so that only one of its eigenvalues is
negative and two are positive. Hence the negative eigenvalue of [Mco,] can be uniquely identified with A3 . Also, the
larger of the two positive eigenvalues of [M,.,,,L] can be uniquely identified with A2 , which one can show is always
larger than A, except possibly in the degenerate case.

The three eigenvalues of [M,,.,,] can therefore be assigned unambiguously to A1 , A\2 and A3 , corresponding to
Equations (17), (18) and (19), respectively, and the 3D parameters d, k and a can be solved for in terms of these
eigenvalues. Let y - A2 /Ai and Y2 -A 3 /A1 . Then :

d2=1 A1d2 - I-V 712d 2  A,=- (20)
'Y1 + 72 - 71'Y2 - I d2

Thus d and k are specified up to a sign ambiguity in d. We discuss the sign ambiguities of our solution in the next
section.

b and c can also be obtained as follows. It is evident from Equation (15) that one of the eigenvectors of [M,±,]
is a vector ni, normal to the plane formed by b and c. Since n,, satisfies:

[Mexp]n = = a d2 n. = A1 n, (21)

it is associated with the eigenvector AI . The other two eigenvectors n, and n 3 with associated eigenvalues A2 and A3 ,
respectively, must span the plane formed by b and c, since all the eigenvectors are mutually orthogonal. Therefore :

= cos6 a 2 + sin6 fZ3 b=sin0 ii2 - cosa n3  (22)

Further,
thf.]C = [M,..p]c a d~c- a d b = A2 cos6 n, + A3 sinG n3  (23)

[Mcorn]b = [Me pjb =- a d c + a(1 - k 2) b = A2 sin 0 n, - A3 cos0 n 3  (24)

Substituting Equation (22) into (23) and (24), one obtains :

tan0- a d2 -A 2 _ a d a d A3 - Q(1-k 2 ) (25)
a d A3 -a d2  a(1 - k2) - A2  a d

Thus, tan 0 can be computed in closed form in terms of the image parameters up to the sign ambiguity in d. It
follows th..t b and c can also be obtained in closed form up to sign ambiguities, by solving for the eigenvectors n2
and n 3 of the image conic form matrix, which are identified unambiguously by their respective eigenvalues.

Hence, apart from the sign ambiguities, all the 3D parameters of the trajectory can be uniquely computed in
terms of the eigenvalues and eigenvectors of [Moral, the computed image conic form matrix.

6. Multiple Solutions

There are two solutions for d in Equation (20). For each of these, there are four solutions for b and c from the
four sets of signed values of n 2 and n3 in Equation (22). These eight solutions can be written as two sets of four,
each corresponding to the same k :

S, { {b 1,cl,d}, {-b 1 ,-c1,d}, b1,-c 1 ,-d 1}, {-b 1 ,c,-d 1 J} }
S2 { {b 2 ,c 2 ,di}, {-b 2 ,-C2, d1}, {b2 ,-c 2 ,-d 1}, {-b 2 ,C2,-d} }

The ambiguity withi, each set of four is evident, since the different signed values for the parameters all lead to the
same computed conic form matrix in Equation (15). To see the relation between the two sets of solutions S and S2 ,
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refer to Fig. 3. Reflecting each of {bi, ci} in Si across any one of the eigenvectors, r 2 or n 3 , leads to a corresponding
solution in the other set. Fig. 3 depicts one of these reflections across n 3 . The result of this reflection again yields a
conic form matrix with the same sets of eigenvalues and eigenvectors. Hence, given the measured image conic form
matrix, these eight indeed are solutions. Within the constraints of Equation (3), these are the only possible solutions
because they exhaust all options in the representation of the given conic form matrix in terms of its eigencomponents,
which in turn is a complete representation.

The apparent eight-fold ambiguity found above is not real. Since {b, c, dl and {-b, c, -d} represent the same
point along the rotation axis, four of the above solutions simply duplicate physically the other four. This ambiguity
can be eliminated by our convention that the vector b always lies in the positive z-component hemisphere. This
leaves two remaining solutions in each set. We next impose the constraint that a 3D point must lie in front of the
image plane in order to be imaged. [7]. From Equation 5, this implies that 'a = d must be positive. If the
parameter pair {b, d} satisfies this constraint, then the alternate set {-b, d} cannot. Thus, two more solutions are
eliminated, one from each set. The remaining two solutions, one from each set, cannot be disambiguated from the
image trace of one point alone. This is similar to the well known ambiguity of two-frame motion computation for a
planar set of points ( see [11).

However, multiple image trajectories of 3D points rotating rigidly around a common axis can be used to resolve
this ambiguity. The true solution for the axis will be appear as one of the possible solutions for all the points, while
the second, incorrect solutions will be unique for each 3D point. The true solution is therefore easily picked out.
The reason for the mismatch among the incorrect solutions is that, as illustrated in Fig. 4, the eigenvectors n2 and
n 3 of the matrix [M,,,,] are different for each 3D point excepting when the axis b passes through the origin, which
anyway can be handled differently as shown earlier. These vectors span the plane formed by the true b and c. Hence,
the b and c solutions common to all 3D points make different angles with their respective spanning eigenvectors.
As the second incorrect solutions are obtained by reflecting the true b and c across an eigenvector, clearly these
solutions will be different for each 3D point. This is shown for two points in Fig. 4. Hence, the correct solution can
be identified by combining information obtained from several image trajectories assuming they have already been
segmented as a single rigid motion. In the presence of noise, the algorithm's ability to discriminate the true solution
among the solutions for multiple trajectories will be limited by the similarity in their structure parameters.

7. Experiments: Grouping

We first describe our experiments with grouping. Fig. 5 and 6 show 256-by-256 image frames 1 and 10, respec-
tively, of a chequered box which was rotated around an arbitrarily chosen fixed body axis using a cartesian robot
arm. Rotation between each frame was approximately 4". The object was imaged using a 16mm. focal length lens
on a CCD camera at a distance of approximately 60cm. Points defined as intersections of a pair of lines were tracked
over the sequence using the robust line-tracking system of Williams and Hanson [21]. This system incorporates
the straight-line detection algorithm of Boldt and Weiss [5] and dense displacement fields computed between two
successive frames using an algorithm by Anandan [2]. Detected straight lines are projected into successive frames
using the displacement field, and a directed-acyclic-graph (DAG) of line correspondences over time is constructed.
Line intersections are then tracked through this DAG representation. Figs. 7 and 8 show the sampled displacement
field between frame 1 and 2 and a sample of tracked line segments, respectively.

In Fig. 9 are shown resulting sample sets of tracked points. Fig. 10 shows the result of describing a few individual
tracks through fitted conics. Although the tracks represent nearly 80 degrees (20 frames) of the 3D circular arc,
still the image conics fail to make explicit the common motion geometry across different point sets. However, the
next figure, Fig. 11 shows conics fitted to manually linked point sets chosen because they are expected to lie along
the same image trace. There is a dramatic improvement in the global percept of a common structure among these
traces. The near-collinearity of their centers is strongly suggestive of a coaxial motion. Moreover, the motion and
structure of these different points can now be quantitatively estimated with good accuracy. (The results are detailed
in the next section.) We are in the process of researching algorithms to automatically capture these global compelling
groupings for this as well as more general smooth motions.

We emphasize that the poor results obtained by fitting to individual tracks are not a failure of our fitting routine
but inherent in the problem. Fitting an ellipse to a partial, slightly noisy elliptic arc is extremely sensitive to the
noise. To human view, widely different ellipses are indistinguishably good fits along the arc itself. Moreover, the
difficulties of individual fitting worsen as the viewing time is reduced and the tracked arcs become smaller. On the
other hand, the grouping technique still leads to similar conic traces (Fig. 12), even if the time is reduced by half,
that is to ten image frames. In this case, the individual curve descriptions are absolutely wrong vis-a-vis the desired
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global description although the point tracks fit very well the fitted curves. In fact, the best fits for most points were
not even elliptic but hyperbolic.

An effective motion understanding system should successfully interpret even a rotation of only a few degrees of
arc. In the extreme case, as Todd [18] suggests, human vision systems may be capable of this interpretation, based
on the capture of compelling grouping relations, even from a two-frame span of data. Clearly, for such short viewing
spans, it is difficult to interpret the motion from individual point traces. Even for the simplest case of pure rotation
studied in this paper, it appears that spatial grouping is essential for the 3D interpretation of motion.

8. 3D Estimation Results
Results on both simulated and the box image data are reported here. In our simulation, we generated image point

data for four 3D points rotating rigidly around an axis with direction (b) [1, 1, 1] and location (c) [7, -10, 45. We
imaged the four points for 50 frames with a 4 degree rotation between successive frames. A focal length of 160 pixels
and image size of 256-by-256 were chosen for the camera model. We obtained four conic sections, one for each of the
points, by fitting conic arcs to their discrete correspondences. Each of these was represented as a 3-by-3 conic form
matrix M....... In one experiment, no noise was added to the image point coordinates while in the second, we added
(-1, 1) pixel uniform noise before fitting the conics. We report the true and computed 3D parameters in Table I for
both. In this table and the next, the true axis direction and location are given at the top. For each point, the two
computed solutions for the rotation axis are shown in the body of the table at left, with the correct one on top. The
correct solutions stand out as predicted since they are common to all points, in both the noisy and noise-free cases.
At right are shown the true and computed normalized structure parameters. All computed parameters agree well
with the actual ones.

For the box image, we show the results of estimating the axis location and orientation, and the structure parame-
ters for four points. We use ellipses generated as fits to the linked image trajectories of symmetrically located points
on the box as input to our solution method. The eight traces chosen are marked in Figs. 11 and 12. Table 2 shows
the results for these eight traces. The ground truth for this image was obtained using a pose estimation algorithm
developed by Kumar [9]. These estimated parameters are labelled as true in Table 2. Our results match well with
the estimated ground truth. Here again, the wrong solution for each point is evident except for points 1, 4, 5 and 7
which are co-planar. Hence, for these the second solution too is the same.

9. Conclusions

We have presented and demonstrated a method for recovering in closed form the 3D structure and motion of a
rigid body, based on fits to the image trajectories of selected body points assuming a particular model of motion,
namely pure rotational motion. The paths traced by the 3D point projections in the image are first fit to conic
sections, which are represented by quadratic form matrices. The eigenvaiues and eigenvectors of these matrices are
related to the parameters of the 3D trajectories, this relationship is inverted and the 3D trajectories solved for.
Hence we obtain a complete recovery of the body structure and motion up to a single scale ambiguity. We gave a
discussion and complete analysis of multiple solutions and their disambiguation, discussed the effects of noise, and
described the results of experiments with real and synthetic images.

We also argued for the importance of global spatial groupings of individual token displacements in motion inter-
pretation. For pure rotation, since full conic section curves are significantly underdetermined by any small sub-arcs,
we argued that organizing trajectories into global curves can give improved results over simply combining the very
uncertain motion interpretations based on short, individual point displacement trajectories. We also noted the re-
lationship of this idea to psychophysical results on global organization, and proposed grouping as a general and
powerful approach to motion interpretation.
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Fig. 1: Image point trajectories 0

of two spheres rotating
independently at
different depths. Fig. 2: Geometry of a point's rotation

3

n,2

2

Fig. 3: Two final solutions Fig. 4: Unique solution
for one point, from two points.

Table 1: Results for Four imaged 3D points rotating rigidly around an axis

Data Axis dir. Axis locn. True Computed
Type [I. ~ b , C. Structure jStructure
True 0.577 0.577 0.577 -0.603 0.176 10.778 d k d I

without noise In Imaged data

Pt 1 1 0.577 0.577 0.577 -0.603 -0.176 0.778 0.986 0.497 0.986 0.497
2 -0.535 -0.111 0.837 0.640 0.593 0.488

Pt 2 1 0.577 0.577 0.577 -0.603 -0.176 0.778 0.381 0.363 0.381 0.363
2 -0.835 -0.525 0.168 0.004 0.298 0.955

Pt 3 1 0.577 0.577 0.577 -0.603 -0.176 0.778 0.768 0.168 0.768 0.168
2 -0.724 -0.310 0.616 0.415 0.518 0.748

Pt 4 1 0.577 0.577 0.577 -0.603 -0.176 0.778 1.682 0.322 1.682 0.322
2 -0.235 0.135 0.962 0.801 0.588 0.113 1

with (-1,1) pixel uniform noise In Imaged data

Pt 1 1 0.570 0.577 0.585 -0.607 -0.183 0.773 0.986 0.497 1.003 0.502
2 -0.529 -0.108 0.842 0.643 0.595 0.481

Pt 2 1 0.579 0.579 0.573 -0.599 -0.174 0.781 0.381 0.363 0.378 0.363
2 -0.834 -0.526 0.166 0.003 0.297 0.955

Pt 3 1 0.5682 0.590 0.560 -0.591 -0.166 0.790 0.768 0.168 0.736 0.174
2 -0.730 -0.325 0.602 0.393 0.520 0.758

Pt 4 1 0.583 0.577 0.572 -0.600 -0.169 0.782 1.682 0.322 1.651 0.317
2 -0.243 0.132 0.961 0.800 0.587 0.121
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Fig. 5: Frame I of the box sequence Fig. 6. Framelfl of the box sequence
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Fig. 7: Sub-sampled displacement field between Fig. 8: Sample set of tracked lines

frames 1 and 2

+

Fig. 9: Sanmple set of tracked line intersections Fig. 10: Conic fits to individual 20-frame point
tracks
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Fig. 11: Conic fits to set 1 of linked 20-frame Fig. 12: Conic fits to set 2 of linked 20-frame
point tracks point tracks

Fig. 13: Conic fits to linked 10-frame point tracks

Table 2: Results for Eight sample points for the Box sequence

Data 1 Axis dir. f Axis locn. [ True Computed
Type b2  b.~ c. c, c. Structure Structure
True ]0.102 -0.845 [ 0.525 -0.051 J0.522 j0.851 [ d [ k_ d k

Pt 1 1 -0.108 -0.839 0.533 0.057 0.530 0.846 0.458 0.142 0.483 0.139
2 0.112 0.933 0.342 -0.050 -0.339 0.940

Pt 2 1 0.110 -0.816 0.567 -0.061 0.564 0.824 0.575 0.116 0.638 0.117
2 -0.101 0.851 0.515 0.075 -0.510 0.857 __ ___

Pt 3 1 -0.119 0.860 -0.497 0.054 -0.494 -0.868 0.681 0.113 0.634 0.109
2 0.099 -0.809 1-0.579 -0.086 0.573 -0.815 ___

Pt 4 1 0.110 -0.836 0.538 -0.055 0.535 0.843 0.459 0.094 0.475 0.093
2 -0.112 0.941 0.319 0.051 -0.315 0.948 ___

Pt 5 1 0.137 -0.846 0.514 -0.061 0.511 0.857 0.458 0.039 0.446 0.040
2 -0.137 0.946 0.295 0.061 -0.289 0.955 __ ___

Pt 6 1 0.083 -0.854 0.513 -0.036 10.512 0.858 10.628 0.128 0.608 0.128
2 -0.069 0.842 10.535 0.058 -0.532 0.845 1

Pt 7 1 0.103 -0.848 0.520 -0.052 0.517 0.854 0.458 0.083 0.449 0.081
2 -0.107 0.949 0.297 0.043 -0.295 0.955 ___

Pt 8 1 0.134 -0.843 0.522 .0.072 0.517 0.853 0.733 0.129 0.722 0.127
2 -0.109 0.749 0.654 0.105 -0.645 0.757 __ ___
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Abstract

Gradient-based approaches to the computation of optical flow often use a minimization technique incorporating a
smoothness constraint on the optical flow field. In this paper, we derive the most general form of such a smoothness
constraint which is quadratic in first derivatives of the flow field, and quadratic in first or second derivatives of the
grey-level image intensity function, based on three simple assumptions about the smoothness constraint: (1) that
it be expressed in a form which is independent of the choice of Cartesian coordinate systcm in the image; (2) that
it be positive definite; and (3) that it not couple different components of the optical flow. We show that there are
essentially only four such constraints- any smoothness constraint satisfying (1,2,3) must be a linear combination of
these four, possibly multiplied by certain quantities invariant under a change in the Cartesian coordinate system.
Beginning with the three assumptions mentioned above, we mathematically demonstrate that all the best-known
smoothness constraints appearing in the literature are special cases of this general form, and, in particular, that the
"weight matrix" introduced by Nagel is essentially (modulo invariant quantities) the only physically plausible such
constraint. We also show that the results of Brady and Horn on "rotationally symmetric" performance measures
for surface reconstruction are simple corollaries of our main results, and in fact that such performance measures are
invariant under the larger group of transformations consisting of rigid motions of the plane.

1 Introduction

The computation of optical flow from a pair of frames in a dynamic image sequence is an important problem in
computer vision. One of the major techniques that has been developed to address this problem is to minimize the
sum of two functionals, one based on the (local) intensity constancy constraint, and the other on a more global
feature of the optical flow field, usually called a smoothness constraint.

It is generally known that the local intensity constraint does not uniquely determine the optical flow vector U
at a point in the image. Along linear structures in the image only the component normal to the local edge direction
may be determined, and at points in homogeneous areas even that information may not be ava;lable [Anan87].

The simplest example of this gradient-based approach is the work of Horn and Schunck [Horn8l]. Here, the
temporal variation aI/at of the grey-level image intensity function I(x, y, t) at a fixed point in the image, and the
spatial variation VI of I at a fixed time are measured. These two quantities are related (under various assumptions-
see [Horn81,Schu84a, Schu84b,Horn87) to the optical flow U(x, y, t) via an image intensity constancy constraint:

vi 0,-at + 0I=, (1)

or in matrix notation,
It + UtVI = 0. (2)

*supported by DARPA/Army ETL under grant DACA76-85-C-O008, and by NSF under grant NSF/CER DCR8500332.

1004



Here we have defined the matrix UT (Ut, U ) (u, v), and VTI - (1, I,,); we denote the fact that some object is
a matrix by using the corresponding bold face symbol. We represent the derivative of I with respect to the quantity

by I( = 81/9l.

The single equation (2) is not, of course, sufficient to determine the quantity U, since U has two components.
Hence, it is clear that some additional constraint must be used to determine the optical flow field. Such a constraint
typically demands some sort of consistency between neighboring flow vectors, i.e., it involves derivatives of U. Such
constraints are usually called "smoothness constraints."

A significant problem for such an approach, however, is that there are situations, such as at motion boundaries,
where neighboring flow vectors need not be consistent in this sense. Smoothness constraints will therefore be expected
to encounter difficulties near such boundaries. Indeed, the physical motivation for the work of Nagel and Enkelmann
on "oriented smoothness constraints" [Nage86] was to try to supress such a constraint in the direction perpendicular
to such boundaries.

Because of the corrupting effects of noise, aliasing, and other artifacts of the measurement process (as well as
for the cases where the intensity-constancy constraint (2) is not valid even in the ideal case), it is not ordinarily
appropriate to express this smoothness constraint as an additional equation, since these corrupting influences will
customarily prevent (2) from being satisfied exactly anyway. This suggests an approach which looks for a flow U
which minimizes some combination of the degree to which U fails to satisfy the intensity constancy constraint (2),
and the variation of U from "smoothness." There is no physical reason why such a U should be the "correct" flow
which gave rise to the measured spatiotemporal image gradients, but we would expect that except in pathological
cases, U should approximate the "correct" U.

The approach that has usually been taken is to minimize, over the space of all possible optical flow fields U, a
functional fl[U] given by

fl[U] fEidx dy + fE.n, dx dy, (3)

where the integrals are over the image. Here

= (I, + UTVI), (4)

and E,,n is some quantity related to "smoothness." Since upon integration the quantity E,,,, yields a number related
to the deviation of the flow ficld from "smoothness," we will call it the smoothness density or, for simplicity, simply
the density. Brady and Horn [Brad83] discuss this approach in some detail, and cite psychophysical evidence that
something very like this is performed by some parts of the human visual system.

We note that the reason for choosing Eint as a quadratic functional (rather than, say, a quartic) is for mathe-
matical simplicity only-a quadratic functional is convex and hence unimodal. In other words, such functionals are
manifestly positive definite (for real functions), a desirable feature of any minimization approach.

The choice for Esm is less obvious, and has less physical justification, since "smooth" is a vague concept. But, as
we have stated, smoothness densities usually involve derivatives of U. The density should also be positive definite. 1

Clearly, it is simplest to choose Esm to involve only first derivatives of U (although other choices could be-and have
been-made). We will call such constraints first degree smoothness constraints.

We will confine ourselves to first degree constraints in this work, leaving the question of second or higher degree
constraints (such as the second degree constraint considered by Anandan and Weiss [Anan85]) to the sequel to this
work [Snyd89b]. Smoothness densities have usually been chosen on the basis of either simplicity, or of heuristic
arguments. In this paper, we proceed in the opposite way by defining the smoothness density mathematically, and
then deriving all possible such smoothness densities.

We therefore consider the most general form of such a quadratic first degree density:

E Zf'k '9Uk a iU1 (5)

where i, j, k, f = 1,2, with 8i a /axi, z = X, X2 y, U (U1 , U2 ) = (u, v) is the optical flow vector, and f,.I does

not depend on U or its derivatives.

'The requirement is actually that the quantity be bounded from below, so as to guarantee the existence of a minimum. But any such

quantity can be made into a positive definite function by adding an appropriate constant. Since the constant does not depend on U or
its derivatives, both quantities give the same Euler-Lagrange equations. Hence we may, without los - f generality, assume the functional
to be positive definite.
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In order to make life bearable, we also introduce the Einstein Summation Convention: if in any product an
index is repeated, it is to be understood that the index is to be summed over from 1 to 2. We therefore rewrite (5)
as

.... -- fik -9 OUk jU,. (6)

Since i, j, k, and f are repeated indices, it is understood that in (6) they are to be summed over. In the event that

repeated indices in a product are not to be summed over, we will denote that by the phrase "(no sum)" next to the
expression.

We will see in the next section that all of the smoothness densities so far proposed (see, e.g., [Horn8l,Nage86])
satisfy the following three conditions:

1. They are invariant under a change of the Cartesian coordinate system in the image plane.

2. They are positive definite

3. They do not mix different components of U, i.e., the components of U are decoupled in (6).

We discuss the significance of each of these conditions in turn:

1. The condition that the smoothness density be invariant under a change of the Cartesian coordinate system

of the image plane is equivalent to stating that the value obtained for the integral of , over the image
plane is independent of the coordinate system chosen for its evaluation. This seems eminently reasonable: the
image itself has no preferred Cartesian coordinate system, so why impose one on it? This is equivalent to the

condition that the Euler-Lagrange equations which follow from using this smoothness density are covariant
under a change in coordinate system (i.e., that they have the same form in all Cartesian coordinate systems).
We show in Appendix A that our condition is equivalent to the requirement that the density Es,,, transform as

a scalar under the action of the semi-direct product group ISO(2) of rigid transformations of the plane-the
Euclidean group of the plane (see App. A). The situation in this respect is like the requirement of Galilean
or Lorentz invariance in physics. Requiring that fundamental objects (like the Lagrangian) be invariant under
some group of transformations results in the covariance of the resultant equations of motion under that same

group uf Lransformaioas.

2. The requirement of positive definiteness for ,sm is necessary to guarantee that fI[U] has a minimum, as
discussed previously.

3. The requirement that the components of U be decoupled in E,,,, has no physical basis I am aware of. We

consider the effect of such a coupling in [Snyd89b]. This requirement is equivalent to demanding that E,,,[U]
E,,1 [u] + 1.,,,[v].

In the next section, we elevate the properties (1,2,3) to the status of requirements for any smoothness constraint,

and discuss the implications of this for the possible smoothness densities.

We believe that the demand of invariance under a change in the Cartesian coordinate system should be made
not only of quantities like the smoothness density, but for any functional. We state this here as the "Zeroth Law of
Computer Vision":

The 0t' Law of Computer Vision

Any functional having as domain functions defined over the image plane must be invariant under ISO(2)

2 The Definition of a Smoothness Density

2.1 General expression for the smoothness density

We will consider only smoothness densities of the form (6). We will require E,,,, to satisfy the following Requirements:

I. E,,,, is invariant under ISO(2).

II. E,,,, is positive definite.

III. The structure of E,,, is such that the different components (u, v) of the optical flow field U are decoupled in all

Cartesian coordinate systems. That is, E,,, can be written as the sum of two integrands, one which depends
only on u, and the other only on v.
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We have seen that requirement I is necessary in order that the integral have a unique value, independent of the
coordinate system, for a given optical flow and image intensity. Requirement II is necessary in order to ensure that
the smoothness integral have a minimum. Requirement III is not in any sense necessary, but it is characteristic of
all the smoothness densities so far proposed; it is equivalent to assuming that the two components of the optical flow
are "smoothed" independently.

Requirement I has as an immediate consequence that the integrand E,,,, =_ f must be an ISO(2) scalar, i.e.,
that f'(r') = f(r), where r' - Rr + t; here R = R(O) C- SO(2) is the 2 x 2 rotation matrix, and t is the translational
vector (see Appendix A of 'Snyd89a]).

We show in [Snyd89a' that Requirements I and III together imply that the smoothness density must be of the
form

f = tr (flTFn) , (7)

where F transforms like a (second-rank) tensor under ISO(2), i.e.,

F - V F' RFRT. (8)

Here, we have defined the tensor quan'tity Q = VUT. We will call the matrix F the interaction for the smoothness
density f.

In [Snyd89a, we prove (Corollaries C.2.1 and C.3.1 of Appendix C of [Snyd89a]) that there is only one indepen-
dent scalar-based interaction quadratic in I" derivatives of the image intensity I, and only two independent such
interactions quadratic in 2' ' derivatives of I, as was originally shown by Brady and Horn [Brad83]. (Note, however,
that they showed this only for the rotational subgroup SO(2) of ISO(2).)

3 The Determination of All Possible Smoothness Densities Quadratic
in First or Second Derivatives of I

Since we have assumed that all the dependence of E.. on derivatives of the flow field is contained in the matrix 0,
it follows that in the absence of any significant pre-processing such as grouping or model recognition, the interaction
F can only depend on the grey-level image intensity function I(x, y). If we are to limit ourselves to tensor-based
interactions, then we must construct out of I and its derivatives objects which transform like ISO(2) tensors. This

is done in the next two Sections for the case of I" and 2 1 derivatives of I. The reader should consult [Snyd89a for
all details of the derivations.

3.1 Interactions that are Quadratic in First Derivatives of I

Since I is a scalar, it follows that there are precisely two vectors which can be constructed from the (two) first

derivatives of I, namely, VI and its dual vector JVI = VI. It is shown in Theorem C.A of Appendix C in [Snyd89a]
that these are the only two independent vectors which can be so constructed. Now a second rank tensor must, in
particular, have two indices (the row and column of the matrix which represents it). This means that the minimal
tensor interaction must be quadratic in first derivatives of I. We know from Appendix A of [Snyd89a] that if A and

B are vectors, then the outer product ABT transforms as a tensor. Consequently, we can construct four tensors that
are quadratic in It derivatives of I:

VIVTI K K (12 1, ) (9)

VIV T I JK=(I, ,ly 1121)• - 1l2  Ir I )

-T / I I 2

VIV I = KjT (JK)T 2 (II)
--T( IV -IrI,4

i= -1iI TI (12)
WV! ~~K = JKjT ( r '7 )12

The tensor K = JKJT is called the dual of the tensor K. Since J = R(7r/2), we see that K is just the tensor K,
rotated by 90'. In [Snyd89a], we prove the following Theorem, and its Corollary:
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Theorem C.2 If H is a tensor quadratic in It order derivatives of I, then

H = aK + a 1JK + a 2 KJT + a 3 K,

where the tensors K.... are defined in (9)-(12), and where the ai are constants.

Corollary C.2.1 If H is an ISO(2) scalar which is quadratic in I" derivatives of the image i).tensity I, then
H is a multiple of IJ + I+ .

Therefore, the quantities (9)-(12) constitute a complete list of all the tensor-based interactions consistent with
Requirements I and III.

We now impose the ancillary requirement (discussed in Section 2) that the interaction F be symmetric. It can

be shown that only K and K lead to positive definite densities.

We summarize these results in the following theorem:

Theorem 1 If a smoothness density satisfies Requirements I, II, and III, and is quadratic in I" derivatives of
I, then the tensor-based interaction which gives rise to it must be of the form:

F = a1K + a 2K,

where a1 and a2 are constants.

3.2 Interactions Quadratic in Second Derivatives of I

In this section, we consider interactions which are quadratic in second derivatives of I, i.e., F is of the form

F = A( jkl)OIaIOk I, (13)

where A( ikf) are matrices (not matrix elements!).

We can construct such tensors by noting that the quantities

VVT - L ( ITT I. ' (14)

VTI 3 )L ,Y Iy, (

VjT T y-4,~. IY -Ty(16)

T 1. II ) (17)

VVI = LJT E: I 1  .

are all tensors which are linear in 2" derivatives of I. Hence, the 4 x 4 16 products of each of these tensors with
each other are a set of tensors which are quadratic in 2..1 order derivatives of I.

We havt tio a priori guarantee, however, that all second rank tensors quadratic in 2..1 order derivatives of I can
be obtained in this way. That is, the same question of completeness arises here as it did in the previous section. It
can be shown [Snyd89a] that this set of 16 tensors is a complete set.

Upon imposing the requirement that the corresponding density be positive definite (Requirement II), one can
show that only two of the sixteen interactions which are quadratic in 2 d derivatives of I lead to positive definite
densities (see [Snyd89a]), namely L 2 and L. This is summarized in the following theorem:

Theorem 2 If E = tr [rTF0], where F is quadratic in 2n d derivatives of I, is a tensor-based smoothness
density satisfying Requirements I, II, and III, then

F =aL 2 A- aL ,

where a,, and a, are constants.

4 Relation to the Work of Brady and Horn on Performance Measures
for Surface Reconstruction

Our claim that a smoothness density (or any other object, such as the "performance index" considered by Brady
and Horn [Brad83]) be ISO(2) invariant generalizes the requirement proposed by these authors that such objects be
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"rotationally symmetric." We note that the central mathematical results of Brady and Horn (Propositions 2 and 6 in
[Brad83], namely that I +I is the only independent "rotationally symmetric" scalar quadratic in I" derivatives of I,
and that (V2 1)2 (the "squared Lagrangian") and 2 (the "quadratic variation") are the only independent
"rotationally symmetric" quantities quadratic in 2 '1 derivatives of [ appear (with "rotationally symmetric" replaced
by the more general "ISO(2) scalar") as immediate corollaries (C.2.1 and C.3.1) of our main theorems. In addition,
the cumbersome "tensor product" notation used by them is seen to be unnecessary, and to have a more elegant
expression in terms of the tensors and scalars we have introduced here.

5 Relation to the Work of Nagel and Enkelmann

In searching for a smoothness constraint that would be more effective than the isotropic constraint of Horn and
Schunck at computing optical flow near motion and depth boundaries, Nagel [Nage83,Nage871, and Nagel and
Enkelmann [Nage86, noted that a suppression of the constraint along image gradients and along one of the two
principal directions of the image intensity surface, would accomplish that task to a certain degree. Such a smoothness
constraint is called by them an "oriented smoothness constraint." What we have called the "interaction" is called
by them a "weight matrix." The interaction introduced by them is essentially a linear combination of the tensor
interactions K and L' we introduced in Section 3. Indeed, the matrices F and C- given in [Nage86 are given in
our notation by

F = + bL2j2 (18)

c -  = F (19)
det F

They also considered other normalizations of the interaction F, such as dividing F by tr F. It is clear that since the
determinant and trace of a tensor are ISO(2) invariant, such normalizations are simply multiplication of a tensor-
based ISO(2) density by an ISO(2) scalar. Similar comments obtain for the later smoothness constrtdln discussed in
the recent paper by Nagel [Nage88]. We note also that the smoothness constraint used by Hildreth [Hild83] is shown
by Nagel [Nage87] to be a special case of the smoothness constraint (19).

We show in [Snyd89a that the matrices K (and K) can be viewed as projection operators that project any vector
onto its component parallel (and perpendicular) to the local image gradient. The resultant smoothness density will
then "smooth" only the components of the optical flow perpendicular (parallel) to the image iso-intensity contours.
Although there is no physical basis for demanding smoothness along one of these directions, there is at least some
justification for not demanding smoothness of the flow field components perpendicular to the image isointensity
contours. Since these contours often (but not necessarily) correspond to physically meaningful (motion, occlusion)
boundaries, it is often the case that the optical flow field varies strongly-perhaps even being discontinuous-at such
boundaries. Consequently, it would seem that the interaction K should most definitely not be used for a smoothness
interaction. (This argument is due to Nagel [Nage86].) This leaves only the quantity K as a possible smoothness
interaction quadratic in 1't derivatives of the image intensity.

The matrices L and L are not projection operators, but rather, can be written as the sum of two projection
operators. If we denote by P1 (P 2), the projection operator which projects any vector onto its component parallel
to the direction of maximum (minimum) principal curvature, respectively, then we show in [Snyd89a] that

L = AIP 1 + A2P 2

L A2 P1 + AlP 2 ,

which implies that

L' A~p, + A2 P2

L2  
- API + AP 2

Here A, (A2 ) is proportional to the maximum (minimum) principal curvature, respectively. As a consequence, a
smoothness interaction using L 2 will smooth the component of the optical flow along the direction of maximum
principal curvature more strongly than the component along the direction of minimum principal curvature. Using
V2 will do just the opposite. As for the previous case, the former seems to be the wrong thing to do, since the
direction along which the principal curvature is a maximum often corresponds to a direction in which smoothness of
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the optical flow should not be demanded. This leaves L2 as a physically possible smoothness interaction quadratic
in 2 nd derivatives of I.

We have therefore shown that the approach of Nagel and Enkelmann is the only physically reasonable approach
(modulo ISO(2) invariant quantities) that can be taken for "orientation dependent" smoothness interactions quadratic

in 1 t or 2 11 derivatives of I.

6 Conclusions

We have shown in this work that by using three simple and reasonable assumptions about the characteristics
of smoothness constraints, there are essentially only 4 independent smoothness constraints that are quadratic in

1 " derivatives of the optical flow field, and quadratic in either I t or 2 1 derivatives of the grey-level image intensity
function. Only two of these four are physically plausible, and they correspond to those chosen by Nagel and Enkel-
mann. All other such smoothness constraints can be obtained as linear combinations of these 4, perhaps multiplied
by ISO(2) scalar functions of the image intensity and its derivatives.

We also derived generalized versions of the results of Brady and Horn on the possible performance measures
that can be used for surface reconstruction, and found them to be simple corollaries of our main results for optical

flow.

In the continuation of this work [Snyd89b], we investigate the more complicated problem of classifying smooth-
ness densities quadratic in 2 "d derivatives of the optical flow field, and the implications of relaxing Requirement
III, that the optical flow components are decoupled. Perhaps a coupling of these components in the smoothness
constraint can lead to interesting smoothness constraints. For instance, the physically sensible smoothness constraint
should reflect a smoothness in the three-dimensional flow field. Upon central projection, this will become a smooth-
ness constraint on the two-dimensional optical flow. Because of the projection, such a two-dimensional smoothness
constraint should be of the coupled variety. Consequently, perhaps it is the coupled smoothness constraints which
are the most interesting [P. Anandan, personal communication]. We are presently investigating this idea.
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The derivation of 3-D surface shape from shadows.

MICHAEL HATZITHEODOROU

Department of Computer Science
Columbia University
New York, NY 10027

Abstract. We study theoretical and implementation issues that arise when solving the shape from shadows problem. In this
problem, the shadows created by a light falling on a surface are used to recover the surface itself. The problem is formulated
and solved in a HUbert space setting. We construct the spline algorithm that interpolates the data and show that it is the best
possible approximation to the original function. The optimal error algorithm is implemented and a series of tests is shown.
We additionally show that the problem can be decomposed into subproblems and each one can be solved independently from
the others. This decomposition is suited to parallel computation and can result in considerable reductions in the cost of the
solution.

1. Introduction.

Research in the various Shape from X areas has produced a series of methods that recover a surface from different
types of information available about it. The information that is most widely used in these Shape from X methods
includes depth values, shading, texture, etc.

We propose another approach for surface reconstruction. This is the Shape from Shadows problem. Assume that
we have a surface that is lighted by a light source. The light source will cast shadows on this surface (see fig. 1.)
Then the light will move to a new position where it will cast new shadows. We collect the different images of the
shadowed surfaces, at these various times. From those we obtain the location of the start and the end of the shadow,
plus some additional information about the surface function. Given any series of images containing shadows, we
want to construct an algorithm that produces an approximation to the surface with the smallest possible error.

0

Figure 1.

Very little work has been done on the use of shadows for the reconstruction of the surface shape. In this paper we
will extend the work presented in (5] where the solution to the 2-D version of the problem is obtained. In this 2-D
version surface slices, intersections of the surface with planes perpendicular to the x - y plane, were recovered. We
generalize here the approach taken in [51 and present a method that will approximate the entire surface function,
instead of a finite number of functions of one variable. The only other work we are aware of, is the one proposed in
[6] where the problem is solved using a relaxation method.

Shadows are a very strong piece of information. The process that uses shadows is not affected by texture or by
surface reflectance. Furthermore, our imaging system does not need a grey scale or color capabilities; it is sufficient
for it to be able to distinguish between black and white. Also, noise in the form of bright spots inside a dark area
and vice-versa can be filtered out easily. From the above, it is evident that shadows yield a powerful tool to be used
ir. the reconstruction process.
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We propose an algorithm that recovers the surface and minimizes the worst possible error within a factor of 2. The
algorithm that minimizes the error is the spline algorithm. 1 We choose to construct the spline algorithm in steps
using a process that converges to the optimal error algorithm. The justification behind this stepwise construction is
that, in general, the optimal error algorithm might need many iterations to construct, but in most practical cases
the initial version of tile algorithm, or the one resulting from a few iterations, already obtains the optimal error. We
therefore construct a process that has low cost, while achieving the smallest possible error.

We implement the optimal error algorithm and present a series of numerical runs so that we can see the performance
of the algorithm in practice. The resulting approximations were very close to the function from which we obtained
the data, and that can be immediately seen from the pairs of original and reconstructed surface that we provide. We
also propose a parallel implementation of the algorithm that will considerably improve the running time.

The organization of the rest of the paper will be the following : In section 2, we will formulate the problem; we
will define a function space in which our surface must belong. We will also define more precisely the information
that can be extracted from the shadows.

In section 3, we will define the optimal error algorithm. We show that this is the spline algorithm which always
exists and is unique. This will guarantee that the shape from shadows problem under this formulation is well-posed.
The definition of a well-posed problem can be found in [3, 11]. In contrast to many other shape from X algorithms, our
formulation does not require any regularization (see [9, 10) for a review of vision problems requiring regularization.)
Understandably, if we suspect that the data are noisy, we might want to use a smoothing algorithm. In this case,
the formulation that is produced by our approach is similar to the one that could be obtained from the application
of regularization theory.

Section 4 deals with the implementation of the optimal algorithm. Its performance is analyzed in terms of the
error it creates in recovering a surface. We will show sample runs that achieve a good approximation with a small
number of data.

In section 5 we discuss the cost of the proposed algorithm. We show how to take advantage of the structure of the
data and modify the algorithm, in order to obtain significant cost improvements. Furthermore, the algorithm can
now be implemented in parallel, resulting in an even further reduction in the running time.

2. Formulation of the problem.

In the introduction of the paper we said that our aim is to recover a surface. Formally, a surface can be seen
as a real function of two variables f : IR2 -- + IR belonging in the space of functions F0 . Our aim is to obtain an
approximation x E F to our function f E F0 using the data that we can derive from the shadows. We want the
approximation x to be as close to f as possible.

2.1 Function Space.

Let,
F0 = {f f : [0, 1]2 - IR, D'f absolutely cont., 1D 2 '2fijL, < 1}, (2-1)

be the space that contains the functions f that we want to approximate.' ' The norm 11 • IlL2 is defined as 11f!lL2 =
fo f If(X,y)12dxdy, and D'' -j 0'-

Also, define the bilinear form (.,.) to be such that,

(f, g) = D2 '2f(X, y) D2'2 g(x, y) dxdy, (2-2)

and the norm 1. to be such that,
11fl = (f,f)1/ 2 . (2-3)

Clearly (.,) defined above is a semi-inner product and 11 11 is a semi-norm. If we pose the additional requirements
f(0, y) = 0, f(x, 0) = 0 and D" 0-f(0, y) = 0, D°'"f(x, 0) = 0 on our function, then the bilinear form (.,-) is an inner
product and 1I. I1 a norm. Consequently, F0 equ'pped with (,.) is a semi-Hilbert space or a Hilbert space respectively.

2.2 Information.
In the next step we will extract from the image(s) the information, that is contained in the shadows, and which

will be denoted by N(f).4 Assume that the light falls on the surface along the x-axis. Clearly, from the position

1 We will define the worst case error, the spline algorithm, and all the other needed concepts later.
2 The lound of 1 in ID2 '2 f IIL2 is assumed without loss of generality. However, as we already mentioned, any fixed bound is equally good.
'The use of the interval [0, 1]2 is not restrictive either. Any interval [a, b] x [c, d] for some a, b, c, and d is equally good.
4 The concept of information is considerably different from the concept of data. The data vector is a vector of fixed values, while
information is an operator. We will use the term somewhat imprecisely. The user is referred to [12, 13, 14, 15] for a more detailed
discussion on the concept of information operators.
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of the light source, we can iiiiuedilately ob~tain the partial deriva~tive of the function f, with respect to x, at the
poit (X,, Y,), (Xi, Y.) being the beginining of the shadow (see fig. 2). We can also obtain the difference between
the two funiction values f (.r, Ili) - f (xi yi), at the beginning and at the end of the shadow respectively, given by

14r~i Yi) (Xi - -170.

For a light falling onl the surface along the y-axi8 we canl obtain similar information. In particular, for a given
shadowed area starting at (xi, y,), and ending at (xi, 93), we canl obtain the partial derivative of f with respect to y~
and the dliffren'ice f (x,, i) - f(xi, Ili) which is given by ;f(x,,Yi( - Y3).

Assinilig that lI(.r, y) is the straight line segment passing through the points (xi, y3), (xi, y.), anl additional piece1
of informnationi canl be obtained. It holds (see fig. 2) that,

f(z,y,) < li(z,yi), V [xi, z,]. (2-1)

If Ihe light falls in t he direction along the y-axis, then the obtained inequality is

f(r3 ,y) < 4i(.r,y), Vy E[yi,Ili. (2 5)

Figure 2.

So, formially, the information N(f) contains triplets of the formi,

( -(x, y), f (x, Il) - f (x, y,), f (, Y1 ) < tI(x, y')), Y i y (2-6)

or of the foriii,

(f-(X., yi), f (xi, YO) - f (xi, 90, fAx, y) < 11(xi, 0)), xi =i. (2-7)
fly

Note that the third it('ii in thle above triplets is a consistency condoitioni.

lIn eachI onie of thle iimages ini our samiple there are 0, I or []lore shadowed areas. From each one( of those shadowed
areas we cani obitai n a tr iplet, of I lie foriii (2-6) or (2-7). If we group~ all the dat~a resulting from thiis saum pl ing we
obtain tble v'ec tor,

N(f) [~f (X, Y1 of (X- kof (kIYl.. Iof (r O

P*r ~ - . !11, -(xl'±u P' Y) f(x').0

f .r YI) - ~t S) .. f (-2 , ) - f ( m 0 ... , f) ._ f

where m 1, m,, are Il~ he umuiber of point~s (1j, y) in every interval 1i a',] x y for which (2-1) holds, or pos (x',
in a x [!/,, %]~ for which (2-5) holds, and in I + -+ mn,, -~ in. C learly, wiie we know I hat there art i'x;%tt.lv 2nu 164',
(f iriformuat ioni in t ho' first pa~rt tof N(f), wi, cannot bound the cardiuialit~y of t lie last part becaiuse it c-an lbe I hie casr
t hat III
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3. Solution of the problem - The optimal algorithm.

We now proceed to the solution of the problem. We want, given information N(f), to obtain an algorithm that
will provide an approximation to our function f. An algorithm o is defined as any mapping from the space of all
permissible data vectors to the space F0 .

3.1 Algorithm error.
The error of an algorithm for any fixed function f is given by If - W(N(f))II. We would like to know what is

the largest possible error that can be made by the algorithm, i.e. we want the error of the algorithm for the worst
possible function f.

DEFINITION 3.1. The worst case error of an algorithm p is,

e(p, N(f)) = sup {111- o(N(f))II, N(f) = N(f)}. (3-1)
fR Fo

Intuitively, the error of an algorithm is obtained by an adversary type of argument where the adversary chooses
the function f so that the distance between f and V is maximized.

Clearly, when solving any problem we would like to have an algorithm that will minimize e(V, N(f)).

DEFINITION 3.2. An algorithm V* that has the property,

e(,p*, N(f)) = inf{e(p, N(f))}, Vf E Fo (3-2)

is called a strongly optimal error algorithm.

The quantity at the right side of (3-2), i.e. the infimum of the error of all algorithms solving the problem given
information N(f), is a property of the problem itself, and does not depend on the particular algorithm used at any
moment. This quantity, gives the inherent uncertainty of the problem for given information, and is called the radius
of information. Clearly, the error of the strongly optimal algorithm equals the radius of information.5

3.2 The spline algorithm.
We propose the spline algorithm p' for the solution of our problem. Splines have been known to give the optimal

solution to many interesting problems [1, 2, 7, 8, 12, 13].

DEFINITION 3.3. A spline o, is an element in the space of functions Fo such that,

(1) N(o-) = Y.
(2) I1 11 = minIEFO {Ilf , N(f) = gj.

The meaning of (1) is that the spline must interpolate the data, and (2) says that the spline is the function that
min;mizes 11 • 11. The spline algorithm is the process that constructs the spline.

i., d Hilbert space setting one can obtain a closed form for the spline algorithm. In our particular case, the spline
algorithm is given by,

2n m

W'(Xy) = Eaigi(x,y) + Z cjhj(z,y), (3-3)
i=1 j=1

where {gi}i=1 ,2n and {hj}j=.. ,.,m are such that,

D2,2 gi(X, y) = (xi - x)'.(yi - y)+ - (xi-1 - x)+(yi- - y)+ i k (3-4)
rxxi -XI x

when the light falls along the x-axis, and

D2 '2 gi(x,y) = (Yi-Y),(Xi- X)+-(Yi-,-Y)+(Xi- -X)+ i=k+ ,...,n (3-5)
NAY - Y-T

for light along the y-axis, where (a - b)° = 1 for a = b and 0 otherwise,

D 2,2 gn+i(X,): (£ - x)+(Pi - Y)+ - (xi - x)+(yi - y)+ - (Xi - x)+(-zi - xi)(Yi -y)+,

i =1. k (3-6)

'One point that must be mentioned here is that the radius of information describes, as we said before, the inherent uncertainty of the
problem and has a specific value, say R. However small or large R may be, there is no procedure that will guarantee error less than that.
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D '2g.+i(x, Y) = (Vi - Y)+(Fi - X)+ - (Yi - y)+(xi - X)+ - (Yi - y)O(.i - y,)(z, - -)+,
i=k+l,...,n (3-7)

where (a - b)+ = a - b for a > b and 0 otherwise, and

D 2',2h(x,y) = (tj - x)+(sj - y)+ - (xi - z)+(yi - y)+ - (x, - x)'(tj - zi)(yi - y)+,
somei, j=1,...,m, (3-8)

D2 '2 hj(x,y) = (sj - y)+(ti - x)+ - (yi - y)+ (xi - x)+ - (yi - y)'°(sj - yi)(x, - x)+,

somei, j=1,...,m. (3-9)

The functions {gi}i=x .... 2n and {hj}j .. m are the representers of the functionals that construct the information
N(f), properly modified to have a small area of support.

The coefficients ai and cj are chosen so that the definition of the spline is satisfied, that is, ?' interpolates the
data, and also minimizes the norm 11" .1. If the area of support of every gi is disjoint from the area of support of every
other and furthermore (gi, gj) = 6ij, the Kronecker delta, then the coefficients ai are given directly by the theory.
This is not the case in this setting where the coefficients ai are obtained by solving a system of linear equations and
the coefficients cj are obtained by directly minimizing 11 • 11. We will describe the implementation of the algorithm in
section 4. The derivation of the minimization problem is somewhat tedius and can be found in the appendix.

For the spline algorithm the following very strong theorem holds [8, 13].

THEOREM 3.1. Let Fo be a Hilbert space, f E Fo and information g = N(f). Then, the spline algorithm interpolating
the data Y exists, is unique, and achieves error at most twice the radius of information.

From Theorem 3.1 we can obtain two very important results. First, our problem under the proposed formulation
is well-posed. This property [3, 11] is always desirable when solving a problem. Computer vision problems tend to
be ill-posed and considerable effort has been spent by the vision community towards the correct formulation that
will yield well-posedness (See [4, 9, 10] for a survey.)

Second, the spline algorithm has a worst case error that is within a factor of 2 from the radius of information. The
algorithm that achieves that, is called almost strongly optimal [12]. If the problem is linear6 then the spline algorithm
p has a worst case error equal to the radius of information and is, therefore, the strongly optimal algorithm.

We can choose to ignore the existence of the inequalities (2-4) and (2-5) and not include them in the information
N(f). If we choose to do so, we essentially assume that m = 0 and the shape from shadows problem is a linear
problem. Then, the spline algorithm becomes

2n

v'(z, y) aigi(x, y). (3-10)
i=1I

As expected, the part E',= cjha(x,y) can now be omitted.
If on the other hand, m > 0 then, the problem is non-linear, and W' is an almost strongly optimal algorithm.7

We saw before that the construction of the algorithm has to be done in steps. First, we obtain the coefficients ai
and subsequently the coefficients cj. We also me,,tioned that the cardinality of the non-linear part of the information
m is not known a-priori. We would like to keep its value low to reduce the costs involved in solving the minimization
problem. To obtain this we propose to break down the implementation of the algorithm in additional steps.

4. Application of the algorithm - Numerical runs.

The spline algorithm of section 3 has been applied and its performance has been tested in practice.

4.1 Algorithm implementation.

From our early experience we have concluded that in many cases, the non-linear part of the information is not
needed.
Stage 1:

'For an exact definition of a linear problem see [8, 13, 14, 15].
7 Up to this moment there does not exist a general theory that will help construct strongly optimal algorithms for non-linear problems.
These algorithms are in general difficult to construct and are derived on a per problem basis.
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Therefore, we begin the implementation of the spline algorithm by assuming that m = 0. We first construct the

values of the coefficients aj. This is done by solving the system of equations,

G d = g, (4-1)

where G (9,9) l and {9i)i=1,...2, are given by (3-4), (3-5), (3-6) and (3-7). The system is solved by a
direct method without the need for pivoting since it is symmetric, positive definite and has a nice structure that
reduces the number of calculations.

As a next step, we use the computed values of the ai' s to construct the spline algorithm.
Third, we check to see whether the non-linear constraints are violated.
If the non-linear constraints (2-4) and (2-5) are not violated, which is usually the case, we do not need to do

anything else. We have already obtained the approximation V'(x, y) to the function f.
Since we have not used the non-linear part of the information, the problem is linear hence the spline algorithm

achieves the radius of information.

Stage 2:

If the constraints (2-4) or (2-5) are violated, then we do not have a sufficiently good approximation, which means
that we must obtain the coefficients cj of (3-3). To do so, we have to solve the minimization problem derived in
section 3.3.

We will consequently proceed as follows. We will take a few points (ti, si) in the shadowed intervals where the
constraints are violated. For these points we solve the minimization problem. Then we check again for violations
of the non-linear constraints. If there are violations we repeat Stage 2. We select a few more points from the new
interval(s) in which (2-4) or (2-5) are violated, and we add them to the sample. The minimization is repeated for
the new set of points and the new coefficients are derived. At the same time, the ai' s and the old cj' s are modified.

We perform the minimization for a few points at a time for various reasons.

(1) Theoretically, the cardinality of the non-linear information m can be arbitrarily large. In practice though,
we rarely need to use more that one or two points per shadowed area. Taking a few points at a time we can
minimize the cost of the algorithm.

(2) At each new iteration we do not need to undo our previous work, but we simply modify the existing coefficients
while deriving the new ones.

4.2 Test runs.

We have constructed a broad series of functions, and have run the algorithm using these as test surfaces.
From early test runs, we have observed that smooth functions can be approximated easily with almost non-

observable error, using a small number of sample points.
The functions that are the most difficult to approximate, are the ones that have as few derivatives as possible. In

the class F0 these functions are piecewise quadratic polynomials which are constructed as the product of quadratic
polynomials of one variable. We will show the performance of the algorithm p0' on these functions.

We start the series of test runs with a function consisting of 100 polynomial pieces. We use two different light
angles from each direction, two along the x-axis and two along the y-axis. The function and the reconstruction can
be seen in figure 3.

fAX, Y) V'(X, y)

Figure 3.
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f (X, y) (X, y)

Figure 4.

In figure 4 we show a function consisting of 200 polynomial pieces. We again draw the reconstruction together
with the function for comparison purposes. The information was obtained by using 4 different lighting angles in each
direction.

Finally, in figure 5 we show one of the most difficult functions that we have constructed. It consists of 400
polynomial pieces with large jumps in the second derivatives.8 The function has been approximated using a sample
created from lights falling from six different light angles in each direction. 9

fAX, ) O (X, Y)

Figure a.

5. Cost of the algorithm - Speed improvements.

5.1 Alkorithm cost.
Let us now discuss the speed performance of our algorithm. The spline algorithm, as defined in section 3, is linear

in terms of its input. Thus, if we knew the coefficients ai and cj then, cosgio') would be O(n).
In our case, the coefficients of the spline algorithm are not known, and must be constructed. To achieve this we

must solve a system of linear equations, and sometimes, a minimization problem. These costs dominate the cost of
the algorithm.

In particular the solution of the system (4-1) has a cost O(n 3 ). The cost of the non-linear minimization is
considerably higher in the general case. Due to the special structure of the problem, whose derivation we show in
the appendix, we can use a variation of the feasible directions approach. The proposed method has a cost of O(n).
We are in the process of investigating the properties of this method.

5.2 Speed improvements.
In section 5.1 we have discussed the cost of a very straightforward implementation of the spline algorithm described

in section 4.1. We now show that a slight improvement in the implementation of the algorithm can yield a significant
speedup. This speedup can be achieved only if the function we want to recover can be split in distinct sections that
we will from now on call valleys. A valley is defined by two local maxima of the function, but also depends on the
specific sampling. For example, the function of figure 4 has 2 valleys. In particular, we say that the function f,
under some fixed sampling, has k valleys if we can define k partitions l, 112, .... , Ilk of the functions {g}Ji=l,. ,2n,

'Which means that (ID2,2 f1l < 1 does not hold. Instead, I1D2,2fl I < C, for large C holds. The mathematical formulation does not
change, but the visual effect is noticeable.
9Theoretically, light falling from one direction only could be used, but in this case the problem is identical to the 2-P one [5].
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given by (3-4) and (3-5), such that the union of the areas of support of all the functions in each partition is disjoint
from the union of the areas of support of the functions in every other partition.

We can detect the existence of any number of valleys in time O(n) and subsequently, we can solve k problems of
sizes ni, n2 , ... n, k respectively, instead of solving one problem of size n, where n = n, + n2 + • .. + nk.

To connect the pieces resulting from each of the k problems we need constant time per problem, hence combining
can be done in time O(k).

Therefore, the total cost of this algorithm, which we will denote V!, will be O(kv), where v = max{ni,....nk}.

5.3 Parallel implementation.

Since splitting the problem into individual subproblems and combining the resulting surfaces is straightforward
and cheap to implement, one immediate extension to the above set-up of the problem is to assign one individual
subproblem to a different processor and solve the initial problem in a parallel or in a distributed environment.

Again, splitting into k subproblems requires time O(n) and combining the individual solutions into one requires
time of O(k). Then every processor will require time O(n?), i = 1, ... resulting in a total cost for the parallel
version Vp of our algorithm of 0(v0), where v = max{ni,.. ., nk)}.

6. Conclusion - Future work.

There are certain issues that we would like to investiga ie future. We would like to study optimal and
adaptive information. The study of optimal information wih .nine the light placement that will minimize the
error of the algorithm for a fixed number of samples. Having auaptive information will permit, given a number of
samples, to choose where to place a new light so as to reduce the error as much as possible.

Although the work presented in this paper is not directly related to signal processing, the construction of a complete
system will also have to address many issues that arise when the information is obtained from the shadows.

We solved the problem of recovering a surface from the shadows it casts on itself when lighted by a light source
positioned at various locations.

We proposed a formulation that results in a well-posed problem and we have consequently proceeded into solving
it. We proposed an optimal error algorithm which additionally achieves a low time cost, especially if a clever but
simple breakdown of the problem is used.

The work described in this paper, extends the results on the reconstruction of 2-D surface slices. This new approach
can be very desirable, especially if our purpose is to recover the entire shape of the surface.

The 2-D model can still be used if our aim is to recover the function value at just one point, in which case we only
have to use the slice passing through this point. Also, if we only have lights along one axis then, the 2- and 3-D
models become equivalent.
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I. Appendix - Tile minimization problem.

We want to minimize 11o112 where a is given by (3-3). We can write,

II0ll2 = (0,, r)

nn n k kc k

: + +  E +cje, 2 (hjhj2 )
i1=1 i2=1 i=1 j=l jl=l 2=l

dTG d-2 apT+ TH (-)

where G= {(i gj)i, 2nI P = {(hp,gi)}j., and H= {(hi, hj)i,j= .1 . m
............................2n

klso,

n k

(a,g.) = a (gi,g.) + E cj(hj,g,) = y.
i=l j=l

G 1+ P 9
d = G - 1 (g7- P C-, (1-2)
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and,

n k

(a, h,) = a (gi,h.) +Ecj(hj,h,) < A,
=1j=

pT ji+ H 5. <

(1-2) pTG l pTG-1p.+H A

==, (H - pT G-'P) e. < A-_ PTG-'-f (1-3)

Now, if we substitute (1-2) for 5 in (I-1) we obtain,

11,1 2 = eT H 6+ 2 (G- 1 (i- P ) T P F+ (G-'(9- P ) T G (G-' (- Pc-))

= .TH "- 5TpT G-lPF+ TT -,#

FT (H _ PTG-'P)F+ 17TG-i . (1-4)

Since 1TG- 1 # has a known fixed value for any given problem, it remains to minimize FT (H - pTG-'P) 6 given
the conditions in (1-3). This is a non-linear minimization problem. We can solve this problem using a feasible
directions method. The matrix Q = (H - pT G-1P) is positive definite, hence the problem is convex. Therefore, we
are guaranteed to find the global minimum. At the same time, it can be noticed, that the constraints that we have
are simple constant bounds on the variables which permits us to speed up the minimization method considerably.
We are currently working on an even faster method for the solution of this problem.
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Abstract

A stochastic approach to stereo matching is presented.1 A microcanonical version of simulated annealing is used to
approximate the ground states of a thermodynamic model system. The potential energy of the system combines two
measures of the quality of a dense, two-dimensional disparity map: (1) the photometric error between corresponding
points, and (2) the first-order variation (the "flatness") of the map. The method operates over a series of increasingly
finer spatial scales. The implementation of this method on the Connection Machinet'" is discussed.

Introduction

Compared to other modes of depth perception, stereo vision seems relatively straightforward. The images received
by two eyes are slightly different due to binocular parallax; that is, they exhibit a disparity that varies over the visual
field, and that is inversely related to the distance of imaged points from the observer. If we can determine this
disparity field we can measure depth and mimic human stereo vision. Few problems in computational vision have
been investigated more intensively.

We describe an approach to stereo in which the matching problem is posed as computational analogy to a
thermodynamic physical system. The state of tile system encodes a disparity map that specifies the correspondence
between the images. Each such state has an energy that provides a heuristic measure of the "quality" of the
correspondence. To solve the stereo matching problem, one looks for the ground state, that is, the state (or states)
of lowest energy. This paper is a condensation and revision of an earlier paper [1] and emphasizes some aspects of
the implementation on the Connection Machine.t"

Several features of the Connection Machine naturally fit computational vision problems of this type:

* The most important feature is its massive parallelism - up to 64K individual processors, each with 64K bits of
memory. Many vision tasks are most naturally expressed as optimization problems on two-dimensional lattices
of typically 256 x 256 = 64K pixels.

" The Connection Machine architecture is flexible. It does not restrict the user to a fixed lattice size, or even to
one- or two-dimensional lattices. In general, n-dimensional lattices are supported.

" Another attractive feature of the Connection Machine is its general method of interprocessor communication.
Two varieties of message-passing networks are provided: a boolean n-cube router for general communication
and a "NEWS" grid for communication between processors arranged in regular lattices.

* Finally, and not to be underestimated, is the excellent user interface of the Connection Machine, including
language processors that are straightforward extensions of standard languages2 and a graphic display system
that provides a high-speed 'window" into the system's memory.

1Support for this work pro jt'vided by the Defense Advanced Research Projets Agency umder contracts DCA7G-85-C-0004 and

MDA903-83- C-0084.
2We use *Lisp, which is an extension of Common Lisp, Parallel versions of Fortran and C are also available.
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The Stereo Matching Problem

Most approaches to stereo matching can be divided into three classes: correlation, feature-matching, and lattice
models. Correlation, Li its basic form, is the most obvious. Intensity patches in one image are matched to patches in
the ot her image with search, typically using a normalized cross-correlation as a measure of similarity or a normalized
iean-square-difference as a measure of dissimilarity. Many variations of this basic theme have been explored. The
feature-matching approach matches directly between discrete sets of points - typically, the output of an edge
detector, such as zero-crossing contours. Both stiffer from similar difficulties:

" The size of the correlation patch or the support of the feature operator affects the likelihood of false matches.
A correlation patch must be large enough to contain the information necessary to specify another patch un-
ambiguously or, failing this, some additional means of disambiguating false matches must be used. Similarly,
feature operators with small support Will detect many features.

" At the same time, the correlation patch or the feature-operator support must be small compared to the variation
in thc disparity map. If either is too large, the system will be insensitive to significant relief in the scene.

" In typical images much of the area consists of uniform or slowly varying intensity where neither correlation nor
feature matching will be effective.

Lattice models pose the stereo matching problem in terms of optimizing a measure that is u-ua]ly interpreted
as the encrgy of a lattice of interacting elements. To take one example, Julesz proposed a model consisting of two
lattices of spring-loaded magnetic dipoles, representing the two images of a random-dot stereogram [2]. The polarity
of the dipoles represents whether pixels iiv the left and right images are black or white. A state of global fusion is
achieved in the ground state, with the attraction or repulsion of the dipoles balanced by the forces of the springs.

A Scaled-Lattice Model

The Stereo Energy Equation

Consider the following equation:

//P
-=y)_( R.( , )- + , y))2 + A(V'P)2 }dxdy, (1)

where £ and T% are piecewise-continuous intensity functions of the left and right visual fields, ' = '(x,y) is a
cyclopean disparity map, and A is a constant. Each value of 'P specifies two corresponding points: (x - 'P/2, y) and
(x + P/2, y).

If we assume that £ and R. are conimensurate, the first term in the integrand represents the plotometric error
associated with '. The second term is the first-order variation of V, or a measure D's "flatness." By minimizing
CC with respect to D, therefore, we should find the simplest disparity map (in the sense of flattest) that adequately
explains tle image data.

Notice that disparity is a scalar field. Corresponding points may have different x coordinates, but they will
always have the sairie y coordinate. This is a common assumption and involves no loss of generality: if the relative

positions and orientations of the two cameras are known, as well as the internal camera parameters, cofrespondeinces
are restricted to a family of epipolar lines. If the epipolar lines are not horizontal the images C easily be mapped
into a normal stereo pair in which they are. We can write the 3D coordinates of the scene in the coordinate frame
of the left, camera as:

p~xy) (- - ,y f),
where B is the baseline separation and f is tie focal length.

Because we will ref'r to CT as the energy of our system, it is helpful to have a pict iire of why this interpret ation
makes sense. One can readily see I] that C' corresponds to the potential energy of a system of coupled springs
ilhistrated in on1 dimension in .
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£(X. Y) + S,

D(i.j)

vertical springs: spring constant ki, rest length S

horizontal springs: spring constant k2 . rest length S2 =

Figure 1: A spring model

The model consists of two surfaces, 1(x, y) below and C(x, y) + S1 above. Midway between these surfaces is a
lattice of pivot points, and at each such point is an elastic lever arm, with rest length S, and spring constant k1 .
The leve- arms are free to rotate in the (x, z) plane (i.e., in epipolar planes), while their endpoints are constrained
t,o lie on the two surfaces. The lever arms are connected to their neighbors by other springs with spring constant k2
that exert torques over moment arm A. The angles of the lever arms represent disparity on an Al2 cyclopean lattice.

It is easy to show that the energy of this system is proportional to C, with

Approaches to Minimizing E

Minimizing c directly is difficult because it is nonlinear. Witkin et al. described a method for optirnizing a
gcneralization of Eq. (1) that is essentially a sophisticated form of gradient descent that tracks the solution over
increasingly finer scales '3]. The hope is that S is convex at a coarse scale and that relatively coarse intermediate
solutions will place the system in the correct convex region at finer scales. They report that the method is prone to
error when it encounters bifurcations in its trajectory. As the scale becomes finer, the system must "choose" which
path to follow, and it cannot recover from a mistake because C ,nay never increase. The solution is therefore critically
dependent on initial conditions.

Another approach would be to simulate the dynamics of the spring model. A physical realization of the spring
model would be a dynamic system of oscillators that would follow a trajectory through a 2M 2 (limensiornal .phse
space. (Each lever arm has two degrees of freedom: 0 and 0.) We could flesh out this model by specifying the
imomonts of inertia and damping coefficient- of the lever arms. We could also add a periodic forcing function to
atdd emergy to the system, balancing the energy dissipated by damping. Having done this, we could could write
the differential equations of motion describing the nodel's deterministic dynamic behavior. In principle, we could
trace the trajectory of the system through its phase space, gradually reducing the amplitude of the forcing fu,"ction
while keeping tile system in dynamic equilibriumn. There is little point in simulating the dynamics in such detail,
however, because we know that, even low-dimensional forced oscillators have chaotic attractors [4]. The dytnamics
will he effectively stochastic.

The remainder of this paper describes alm alternative and much less expensive approach. Instead of ntodeling the
full dynamics of the system, it models only the thermodynamics. Kinetic energy is modeled as heat.
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A Disci-vto Mo(It1

At this point, we will iliscretize thle prohleiii by) definiing the lattices I), 1, and 1? onl P E, and 'P%. 1) now ba~s
integer values and is interpreted as-

L. L~~ Jcorrespionds to H,+

Eq I liecoiiies

__ + [- 192 + A[ALXD~j] 2 (2

A D j (EADk, )

A2 deinot es the fouir itearest neighbors of (i.j). Ini ternms of the spring model, the eiids of the lever arms ar-e now
constrained to lie on at finite number of positions onl the two surfaces.

S c~!lt i

Disparuy scales linearly' with the size of the image. Ti's suggests that a stereo matchinig systemn can begin its
search at at coarse scale, find anl approximate result, use this result to initialize its search at a finler scale, arid so onl.
Thids Ihas; two beniefits: it improves the efficiency of search by allowing the system to work initially lin smaller phase

spaces, and it. reduces the false target problem by using a range of spatial scales. Large features are first detected at,
coarse scales, and their locations iii finer scales are constrained.

Weca'n construct a sequence of 71 lattiefD)frk=0 n - 1, which represent disparitN mazps of increasingli
precisioni. defiined by ilie following rule:

D 'j= I k correspondls t~o R k j+2-k -I [ ,j (

Suppose tIlie iaxiimn range of (lisl~arity between at pair of images is [-2- + ,2'.TeD ta ace hs

tnia-es iiiist be binairy, and , should be relatively easy to find the best Do bec--e' , the phase space is relatively
smal. V*cantijn se fk a th iiitalconldition of at search for Dk - unitil finally D" will match the images

with Iiing'le-pixel prec isiom

Who", uising tis sea;dlmg imietliod it is necessary to filter L and R? to avoid aliasing. We use a difference-of-Gaumssians
k0 I D() approxiniat ion to thle Laplacian of a Gaussian. Tis transform can be comfpuitedl efficiently by recursively
a np)1ling a Sniall generatinig kernel [1 to create a low-pass, Gaussian sequence, an(l then (lifferencn sucsielw

paiss iniages to coiistruct the bandptss DOG sequnence. Low-pass tiltering alone is adequate to avoid aliasimg, hut,
lie haludpa:ss filterinug is uisefuil for eliinating loiw-fre-iuvncv error.

Stochastic Optimization

St;Aiud;1r (Canionical) Aniiiin

Siiiumht(d auiim.;diug1" is, a fairly nuew te chniue for solving coruuhiiuatorial optimiiztionu robiluis. Tlhe next section
rnresents a ,,.w vaity of sim~ilatedl :umuiuealimug (called inucrocauionical aninealing) that has several dvaiit ges for
cormuputer iiphcineitat ion. ill tis soct iou thei l 1,: principles oif thle standard foriii(of sinitlaited iiualiiig aire
(li'scribed to set a ctuitcxt fo)r t lic ut rolutiom of iiicrocamioiiical ;imiealing.

'Tlue uuuo.s fuiFauiit!rsult of ta;t ist lcul phN sirs is t he Bolt zimann (or ( ;ibhs) dist niliut 1"11

;liIi gIvs t 11f jr(,luiu 1If,I fi nI'hiig ;u sN'stu i-ni In staite- wit h oeirgy ' i ssimuilug th;it the ~t'w j., 111 'juiliiu
with ,,l 1t' i;it h"111i tt t, iwtrtur' ' ('li i0i,tut k' (Hlthzmuanii's co(iiitiit ) unmsiltiu1 ru i , int,
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Of iir, Ili tflie, lwiiic. dlsculs.ioiwll%\'\.I assumie t hat I' =k!.) 'Ilie, norimializig quantity iit flit, demionuaor

C;1f1'sl thle pirtition hiuctti. i. a stnt over all accessible states.

libvsists would like to htI, able to calc ulate macroscopic equ ilib riurni lproper!Wt ot f miodel systemns. lIn 1953
Nl ropol is (tal. [6] describedi a NI oute Carlo algorithbi that genmerat es a seonuence of states thIiat converges to the

Bliziirili dirt nibt icoli Ii ixb limit. '!'liis mnethod, whit.li simulates (t(i effect, of allowingo (t( eSy.steii to interact
with a ini cli lwal !''ba ith :;amlples 'whIat is Caca!d t!hc cancn ic al ensemble. Maicroscopic paramc 7._ ta. thrcii

cal cui t e( wit liont k nowbckge of the partition function by averaging over long sequences.

Tlie N letropolis algoritlin begins in alarbitrary state and lien successively gnrtscniae tt rniin
(,- a,') at raidoiii. :\transit ion is accep~ted withi thle following probability:

P(V- V, IV I) = 1 if AKE < 0()
Sexp(-AE/T) o1ther'wise

wlir K E,-.' Asynmptotic convergence of the Metropolis algoritlini to tflie, Boltzmianii distribuition is
,iia rza uttced if Hic process for generating candidate state transitions is ergodic.

K irkpaJIMrick et al. [7j andI (erny [81 independently recognized a connection between the Metropolis technique and
coiiuatorial optinmization problems. If the energy of a state is considered as an objective funct ion to be minimized,
tI i'niiini cati be approximated by generating sequences at decreasinig temperatutres, until finally a ground state,
or at' with enerry very close to a ground state, is reached at, T =0. This is aiialogous to thle physical process of

[heren are reuu ilts showing the existence of annealing schedules (i.e., the rate of (decrease of temperature) that
Aiiairatt, Cecouiverg'ence to groundl states in finite time [91, but these schedules are too slowv for practical use. Faster ad
hr( sclwltles have been usedI in many problems with good average-case performntce. NNhile these faster schedules
thy n (i,, ind alt optimal state, they cai converge to states that are ver close to opt iiial.

'Mic'ocanniiitiial Aitealing

('ruitz [101 has described an interesting alternative to the Mectropolis algorithm. Instead of Simullatinig the effect of
a lwhat bat Ii, thle Creutz algorithim simulates a thiermally isolated system lin which energy is coniserved. Samples
ar' dawti from the iiiicrocanonical ensemble. One can imiagine the dlifferenice between the Metropolis algorithm
id f tlie, ('retz algorthmn as follows. The Metropolis algorithm generates a "cloud" of states, each with, in general,

(11" oit iieorg irs. which fills a volume of phase space. As temperature decro ases this v'ohunie conitracts to olie or
Ilil r' ' euid states. The C'reutz algorithm, by contrast, generates states onl a constant-energy surface iii a somewhat

phiase, space. As energy decreases these surfaces shrink to the sanme set of ground states.

[im iuplest way' to accomplish this is to augment the system with one add~itioital degree of freedom, called a
d, i , whIiic h carries a variable amount of energy, ED . Tbhis demn holds th~e kinletic energy of the system and, III

efr - spa I, t- ilie heat bath. The total energy of the system is now

Etoiat = Epoieniiat + Ekiy, Uic

= E+ED

ii'- d',iiion iir h e ini kinetic, is conist rained to be noinegative. Thel( algonithIiin accelpts all tranisitions to lower
(,:-r~y aiding -A, the energy given uip) to ED . Transitionis to higher energy are accepted only when
AK < fit id flie, energy gluied. is taken away fronm E. Toa CurvIiiisco. n

Nhir'amii al iineaiig simply ropl-ces the Metropolis algorithmn with lie Creutz algorithlin. Intstead of explic-
it 1% is 'I ici tfiiipwratire. I Ii( microcanoiiical annealing algorithmn reduces e,.ie-rgv by gradually lowering the value of

If) St;i'ird:iriiui'itsranbe se tosho tht a eltulilriuiitK~a.ssuiiis at Boltzmiann (list ribtitioti over tinie

J'r(LJ K x e'xp( -K/'

iip frit i tli, r''tr, p' 'iirA1. ;L s a stat ist cal feat iir of thle svstein

T- ( ,, ) (5)

\hi'r~ii' iir~l ;iiialias several advait agevs over statidard aiialirig,:

0It d', tp~ r-irc the'- -valiviationif Ilti traiisceiide fliitiii Ofi(I c1'ourse, Ili praiti' tisl- fiiictioni
I Ill .1 t tal hilbt I w lik', 'ir algorithmiu t' he siitffd toilw Iii, rlitie 'vs''i with v'rv lititted
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Figure 2. T-= (ED)

hardwar esl iplemented with low-precision integer arithmetic - again, a significant advantage for simple

* In thle Metropolis algorithm a state transition is accepted or rejected by comparing exp(-AE/T) to a random
number drawn from a uniform distribution over [0, 1], and these numbers should be accurate to high pr..'cision.
The Creutz algorithm does not require high-quality random numbers.

Implementation Details

Tlic program is implemented in Release 5.0 *LISP and is fully compiled with the *LISP compiler. The Connection
Machrine at SRI is one-eighth of a full machine (81K vs. 641K processors). We have two Symbolics Lisp Machine front
en (Is.

The input to the program is two images, L and IR, and a number n that specifies how many levels of scalin~g
are used. The images are assumed to satisfy the horizontal-epipolar condition and to have dimensions of the form
( 2M, 2 :V), M!, N > 6. The Connection Machine is assume,! to be booted into the same configuration. 3

The program then DOG filters L and R to create thle sequences of bandpassed images {Lk}, {Rk} for k =0, n - 1.

Next, beginning with zero disparity at level 0, the program executes a series of n heating and cooling cycles, using
the result at level k - 1 to initialize Dk, generating a sequence of states:

........... .

A t rsesition between levels anounts to loubling the deisparity values and updating the rule for interareting ) (se

F0 . 3).
Ie value of 7poi (El) of each state of a typical run is plotted in Figure 2. Notice that this run has four levels
nf sealibg. We rawe tie ta uipera dri to T o300 by successively adding 10 units to each demon on each iteration.

T"he' system is allowd to dwell at 7 300 for awhile, and is then cooled by removing three uits from each demon
cmT each iteration. Ixcept for the last cyce, cooliSP below isout 7' =150 is wsted effort because tle nstructure
"afroi in teow tShis teiglerathlire will be (l e .roved i p the next W heating cycle.

ht i t be tl ratio of the ,bsorved average dema,, eanergy to the stan(lar(l deviation of ye same observe'd

lis, ribr ' ion:

'c J$ (6;)

Thliri mt will have a e Dol at , L lisR lt ut ion. hiic implies that r I . Figisre shows a p t of r, , fir

the re,, . at levelk Itoinitialize D' k,, gnatin a,, sequence , of , st1ates2

('0_026 n-1.. n
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the same run as in Figure 2. Note that the plot of ?-eq indicates that the system moves away from equilibrium during
the relatively fast heating cycles, but relaxes quickly back to equilibrium after cooling starts. The system appears to
drop awwy from equilibrium at low temperatures according to the 7-eq plot, but this effect is actually because there
are relatively few energy levels available to the demons near the ground state.

Choosing parameters of this procedure - heating and cooling rates, termination conditions, and so on - remains
an art, as in virtually all applications of simulated annealing. The results in Section were generated with a common
parameter set that was determined empirically from tests on a wide variety of images. A value of A = 64 works well
for typical images quantized into 8 bits.

As with the Metropolis algorithm, the Creutz algorithm converges to the Boltzmann distribution in the limit for
any ergodic process generating candidate state transitions. Of course, different state-transition schemes will affect
the rate of convergence. We have found the following simple method to be adequate:

.5 if Id- d'I = 1.
d--- 0 otherwise.

In other words, the disparities increase or decrease by one lattice position, or remain unchanged if the transition is
rejected, as the system follows a Brownian path on its phase-space surface of constant energy.

Boundary conditions can be troublesome. Nonzero disparities near the edge of the lattice can match image points
off the lattice. When this occurs we assign the photometric term in Eq. 2 a value equal to the current temperature,
effectively placing an energy barrier at the boundary.

Annealing in Parallel

The essential inner loop of the algorithm, called a "full-pass", tries exactly one random transition for each lattice
site. It is important to realize that we cannot update all sites in parallel. One full-pass should leave the total energy
E + ED unchanged, but this is not ensured if two neighbors are updated simultaneously. This pfesents no problem
for four-neighbor interactions: the lattice can be split into two "checkerboard" subsets that are updated sequentially.
More coiTiplex neighborhoods would require more subsets, reducing parallelism.

The basic version of inicrocanonical annealing, using only one denion, is not suited to a parallel implementation.
Each decision to accept or reject a state transition depends on the value of ED and, therefore, on the previous
decision. Instead, we use a lattice of den-ons. Teniperat.u re is still measured with Eq. 5, but, using the dist rib ut ion
of ED over space rather than time. Statistics can be sampled over both time and space, if desired.

There is a minor complication in using a lattice of demons. The single-demon algorithni visits sites at random
all the demon allows energy to be transferred throughon, t the lattice. Siniilarlv. in t le lat.licc-of-dt-nns :1orit hil

the demons must be inixed throughout the lattice. We us, a complete random periitatinul 1"the di, ts aftr every

lattice update. but mrore local nit hiods are also adequate.
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lattice computer VP ratio time factor-speedup

SLM na 194 sec na

2

128 4K 4 28 sec 69

8K 2 26 sec 74

SLM n a 76 7 sec na

256 4k 8 54 sec 142

4 36 sec 2138kI

Table 1: Symbolics 3600 vs. Connection Machine

Experimental Results

This section presents experimental results for two distinct cases: an aerial stereo pair (Figure 4) and a ground-level
scene with prominent occlusions (Figure 5).

The figures show the two original images (both are 128 x 128) and the disparity map at the end of each cooling
cycle. Each example required about 4 minutes of processing time.

Table 1 indicates how different Connection Machine configurations compare to a Symbolics 3600 Lisp Machine.
The timings are for one full-pass. Note that the efficiency of the Connection Machine depends strongly on the VP
ratio, which is the ratio of the number of virtual processors to physical processors. This is because the overhead of
the front end is too large to keep up with the Connection Machine at low VP ratios.

Conclusions

The method fits the Connection Machine architecture very well and was quite easy to implement. The processing
is still too slow for real-time applications, but is adequate for cartography. By using a new feature of the Connection
Machine software that allows the user to define virtual processor sets of different sizes, the implementation will be
able to process I" x lI images in a reasonable time.

The use of a scale hierarchy dramatically increases the efficiency of the method, especially for large problems
such as those illustrated in Figures 4 and 5. An additional benefit of using a scale hierarchy is that the solution is
less sensitive to small amounts of vertical disparity, which is eliminated at coarser scales. (Uncertainty in the camera
model will usually cause some vertical disparity in high-resolution images.) A Gaussian low-pass hierarchy works as
well as the Laplacian hierarchy if the images are recorded with equivalent sensors. The benefit of bandpass filtering is
to eliminate the low-frequency variation caused by uncalibrated photometry. Annealing provides a way to bridge the
gap between scales. The microcanonical annealing algorithm appears to be an iiproveiient over canonical annealing
for reasons discussed in the section on that algorithm.

Canonical annealing and "pure" single-demon microcanonical ar..caling are at opposite ends of a spectrum. In
canonical annealing the heat bath is much larger than the model system, and is not represented explicitly. In pure
microcanonical annealing the heat bath - that is, the single demon - is much smaller than the system, and it is
represented explicitly. The lattice-of-demons algorithm is midway betwoen theso extremes, with the heat bath and
the model system having comparable sizes. In a sense, this is a classical space/time tradeoff. By representing the
heat bath explicitly we can avoid the evaluation of complicated functions.
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(a) Left image. (b) Right image.

(c) k 0, T 150. (d) k 1, T 150

(e) k 2 7' 150. (f) k 3, 70.

F'igure 4: Aerial stereograni results
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(a) Left imiage. (b) Right iiage.

Figure 5: Ground-level stercograiri results
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Early Identification Of Occlusion In Stereo-Motion Image Sequences1

Poornima Balasubramanyam
Richard Weiss

Computer Vision Research Laboratory
Department Of Computer and Information Science

University Of Massachusetts
Amherst, Ma. 01003

Abstract

Detection and signalling of occlusion in motion and and stereo imagery has traditionally been based on ap-
proaches that involve the independent, full computation of flow and disparity in the respective image-pairs. These
approaches tend to present a circular argument to the problem since prior knowledge of occlusion boundaries is
essential for the prevention of smoothing across them in the computation of optic flow or disparity. In this paper,
we use the information in both the stereo and motion sequences at two time instances to propose an early indicator
of the presence of occlusion prior to the full computation of flow and disparity. Results are demonstrated on real
stereo-motion. imagery.

1.0 Introduction

1.1 Motivation

The research in the detection of occlusion boundaries corresponding to motion and depth discontinuities has
traditionally not been a low level approach. Instead, the approach has been to attempt to infer such occlusion using
the results of lower level processing such as optical flow computations or disparity computations.

One of the earliest approaches using flow information has been to determine the discontinuities in the magnitude
of the flow created by an observer moving in a static environment [3]. Zero-crossings in the Laplacian of the computed
optic flow field have also been used under the premise that sharp changes in the field signify discontinuities [10].
As with any approach that employs differentiation of the flow field, these approaches tend to be unstable under
noise. Flow computation algorithms [1,4,5] tend to employ a global smoothness assumption in order to restore
well-posedness to the problem of optic flow computation. Variations on this smoothness assumption range from
the direct use of this constraint [4] to the less simplistic versions that allow for smoothing along the contour while
inhibiting smoothing along the brightness gradient [5,7]. Confidence measures have also been devised to control the
flow computation process [1]. The assumption of global smoothness, however, tends to result in an optic flow field
that is erroneously smoothed across depth and motion discontinuities, and thereby confounding the later stages of
occlusion boundary detection.

Similarly, in the problem of surface reconstruction using sparse disparity estimates, such as in [8], the explicit
assumption hds always been that the required surface vary as continuously as possible; even as smoothly as possible.
This has the effect of erroneously smoothing over real world depth and orientation boundaries.

The problem, then, is one of a circular argument. The knowledge of the presence of discontinuities is - --y
important to the correct flow and disparity computations especially at points in the image corresponding to object
boundaries. On the other hand, how does one determine these discontinuities without flow (or disparity) already
computed?

The field has been addressing these issues in recent years. It is accepted now that what is required is a means of
computing both the flow (disparity) and the boundaries simultaneously. It is possible to use stochastic regularization
techniques and propose line processes, using MRF methods, [6], to predict discontinuities in surface reconstruction.
Similarly, Terzopolous [91, has addressed this issue by formulating multivariate non-quadratic stabilizers called con-
trolled continuity stabilizers. In dealing with this in general visual reconstruction techniques, Blake and Zisserman [21
propose weak continuity constraints, i.e., continuity constraints are allowed to be broken in places where there is
evidence of discontinuity. The big problem with all of these approaches is that the resulting variational functional
becomes non-convex and any solution technique designed for the solution of variational functionals formulated with
quadratic stabilizers, such as gradient descent, tends to get trapped in local minima. The graduated non-convexity
algorithm of Blake and Zisserman [2] addresses this issue.

In [l1l],the problem of early detection of motion boundaries is tackled by defining five parametric and non-
parametric statistical tests that can be conducted in a local neighborhood of the image point. The tests also

'This work hai been funded in part by DARPA under grants: DACA76-85-C-0008; F30602-87-C-0140; I)ACAT6-86-C-0015; and by
NSF/CER under grant DCR-85003332
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permit the simultaneous computation of flow along with the boundary computations and have been demonstrated
on simulated imagery.

1.2 Our Approach

We are specifically interested in a reconstruction paradigm which can be categorized as "generalized stereo".
The paradigm includes both conventional stereo approaches as well as the conventional motion approaches. Stereo
imagery is a popular source for inferring depth of the world, while tinie-varying imagery is used to compute the motion
of the environment relative to the camera system and indirectly compute depth. Extensive work has proceeded along
both directions each independent of the other, and only recently attention is being focussed on an integrated approach
to low level processing. Specifically with stereo and motion processing, the low level correspondence issues are very
similar and similar geometric formalisms apply to both. Hence it seems strange that work in each field has proceeded
without considering the possibility for integration of the two.

It should be possible to use the information in both the stereo and motion frames to simultaneously yield flow
and disparity values together with the labelling of motion and depth discontinuities. Toward this end, we propose a
method to determine the plausibility of locating a discontinuity at an image element from the stereo-motion frames.

In this paper we examine a proposed measure of confidence in the existence of a discontinuity at each image
point from the stereo-motion pairs of images using potential flow and disparity estimates derived from hierarchical
correlation procosses. The results of using this measure to detect potential regions of occlusion boundaries corre-
sponding to either motion occlusion or stereo occlusion are demonstrated. The results are shown for real imagery.
The availability of such knowledge prior to the full computation of flow and disparity will undoubtedly be useful in
guiding the smoothing processes in both flow and disparity computations as also surface reconstruction processes.

2.0 A Measure Of Occlusion In Stereo and Motion Imagery

In this section. a measure is defined to indicate the presence of occlusion in either stereo or motion imagery. A
hierarchical algorithm is employed to control this processing from the coarser to the finer levels of resolution. Using
the methodology in [1], this measure is applied hierarchically to the processing of flow and disparity fields.

2.1 The Flow-Disparity Estimate Error

Let us refer to the four stereo-motion intensity images as (LI, RI) and (L2, R2) for the left and right stereo
frames at the first and second time instances, respectively (see Figure 1). In processing stereo-motion frames of
intensity images, in the absence of occlusion boundaries, we can intuitively expect the following to hold true. In
order to find a best match in R2 for an image point in L1, there are two possible orders for the computation. (As we
are interested in detecting regions of occlusion, we do not consider the obvious direct matching between LI and R2).
First, the best match in L2 can be determined, followed by the best match in R2 for the match in L2. Second, the
best match in R I can be determined, followed by the best match in R2. In other words, there is an order dictated by
processing motion first and stereo next, or stereo first and motion next. In the absence of occlusion or disocclusion
for the point in all the four frames, the orders of the processing can be expected to be committative. That is, the
results from either order for determining a best match for a point in LI can be expected to coincide within reasonable
limits in R2. Figure 1 gives a visual representation of this.

To rewrite the above more precisely, we have the following: Consider a world point W = (X,Y,Z) that is
visible in all the four frames of stereo and motion. If the image point has coordinates wl = (xil, yml) in image frame
L 1, let us call the best (flow) match estimate of this point in the image frame L2 pair as w12 = (X12 , Y12), and the best
(disparity) match estimate of this point in image frame RI as w,I = (x,.m,y, I). Now consider the best (disparity)
match estimate for the point W12 in R2 and call it P. Similarly, consider the best (flow) match estimate for the point
w i in the image frame R2 and call it Q. Denote the displacement of wil due to motion between the left motion
frames as (A, A',). Denote the displacement 3! w, dae to motion between the right motion frames as (A,, A'/).
Denote the displacement of wml due to disparity between the first stereo frames as (61, 6,'). Denote the displacement
of w( 2 due to disparity between the second stereo frames as (62, b2).

Then, P and Q can be written in coordinate form as :

P ( i-- j 4 A'), (ym 4- +±2

Q (j ~' + A'.), (1/mm+ 61 + A

Now, there will be errors in determining the best matches in flw and disparity, i.e., errors in 6 and A values, and
P and Q will not exactly coincide even when occlusion or disocclnsion is not present, (e.g., at points belonging to
homogeneous regions). At textured and non-occluding points, where the local intensity surface is distinctive,
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the errors in the coincidences can be expected to (x_12, v-12) zP

exist but be reasonably small. Disinguishing er-
rors (i.e., non-coinciding point locations of P and
Q) due to occlusion from errors due to the usual
low-level variations becomes critical. Following
[11, the sum of squares difference (SSD) values L2r
between correlation windows around P and Q is
used to distinguish between the two cases. The ex-
ception to this occurs when a occlusion boundary w 1 wrl-
is flanked by very similar homogeneous occluding W

and occluded surfaces. Let us call the SSD value (X-l1, yll) LI RI
between P and Q for any point of interest wil in

Ll as the Flow Disparity Estimate Error (FDEE) Figure 1 : The Flow-Disparity Error Estimate
for that point.

2.2 The Hierarchical Correlation Algorithm

The FDEE computation uses the initial flow and disparity estimates computed from hierarchical SSD strategies.
F-br the purposes of this paper, a dense computation of the FDEE is performed at every resolution level in a
hierarchical representation of the intensity images, projecting the best match estimates at each level to the next
higher level. The FDEE computation is done as follows:

1. Determine the Laplacian-filtered intensity images of all four stereo-motion intensity frames.

2. At each level from the coarsest level to the finest level loop

a. For every image point in Ll, find its best SSD match estimate in L2 and RI.

b. For every image point in L2, find its best SSD match in R2.

c. For every image point in RI, find its best SSD match in R2.

d. Using steps a, b, and c determine for every point in L1, the FDEE value, using 5 X 5 gaussian
weighted windows around the corresponding P and Q image coordinates

e. Smooth the values of flow and disparity estimates from the above steps using the FDEE values as a
mask to prevent smoothing across regions where the FDEE is high and project these smoothed flow and
disparity estimates to the next higher level as initial estimates.

Notice that steps a, h, and c can be done in parallel. The FDEE computation is again a local paralle operation at
every image point. It should be again emphasized that with such a scheme, the initial flow and disparity estimates are
used at each level to compute the FDEE values for that level, and this is used as a mask in the smoothing formulation
adopted in [11 at that level. The details of the Laplacian filtering techniques, the SSD match determination, the
control strategy and the smoothing can all be seen in [1]. It is important to note that we use the FDEE as a mask
in the smoothing at each level only for the current purpose of demonstrating its behavior near occlusion boundaries.

3.0 Experimental Results

The results of the FDEE computation have been shown for two sets of real stereo-motion sequences. The real
greyscale stereo images are a data set from an indoor run with Moravec's "Neptune" vehicle at CMU 2. The original
(480 X 512) images were calibrated with an image warping algorithm developed by Moravec. The vehicle took 69
steps straight forward, each step being 3.866inches or 0.0981 meters. There are 70 stereo pairs including the pair
taken before the first step. The physical set-up of the cameras was as follows: Height: 37 1/2 inches = 0.952 meters
from floor; Left camera: 0.09 meters left of vehicle centerline; Right camera: 0.11 meters right of vehicle centerline;
Overall baseline: 0.2 meters; The nominal focal points were 27 inches forward of the vehicle origin.

The FDEE computation is demontrated for two sets of stereo-motion sequences. For our purposes, the 180 X
512 images were reduced to a resolution of 128 X 128. The stereo images from the first and second steps of the vehicle
form the data set for the first FDEE computation (see Figure 2). The coarsest resolution and finest resolution of
computation were chosen to be (16 X 16) and (128 X 128), respectively. The final results at resolution level 7 (128
X 128) of the FDEE computation is shown in Figure 3, as a negative representation, with the darkest. regions having
the highest FDEE values. These results are in registration with the pixels at Ll, as explained in Section 2.1.

In the imare sequences, parts of the bookshelf are being occluded by the drum in the left stereo sequence.
These regions correspond to high values of the FDEE. Notice that the region corresponding to the chalk marking
on the floor is not marked with a high FDEE value along most of the marking because of an absence of occlusion.

'The information on the vehicle run and the camera setup are courtesy of Larry Matthies at CMU
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On the other hand, the high FDEE values at the regions corresponding to the base and top of the robot vehicle
are due to considerable intensity changes between the two sequences in these regions. This implies that, along with
occlusions, large intensity changes such as ones that occur due to significantly expanding projections of surfaces
between motion frames (due to looming of the objects), will also be signalled with high FI)EE values. Similarly,
regions of specularities (such as on the surface of the drum) tend to change in intensity values between stereo pairs
as well as between motion pairs, and thus, they tend to get signalled as well. The occluding boundaries at the stand
at the base of the drum and also the left occluding boundary of the drum are not marked with high FDEE values.
This illustrates the case in which the occluding boundary is flanked by fairly homogeneous surfaces.

The stereo images from the 22nd and 23rd steps of the vehicle form the data set for the second FDEE com-
putation (see Figure 4). As before, the results of the final FDEE computation at resolution (128 X 128) are shown
in Figure 5 in negative format, and again, the results are in registration with the pixels at L. As in the previous
example the regions of occlusion and disocclusion are detected. Specularities are signalled as well as significantly
expanding projections of surfaces that change in intensity between frames due to motion (looming).

4.0 Conclusion

This paper proposes the use of the information present in the four intensity images of a stereo-motion sequence
to indicate the presence of occlusion in either of the stereo pairs or in either of the motion pairs or in both. It is clear
that such a computation as the Flow-Disparity Error Estimate is by no means rigorously sufficient, since, for one
thing, it is necessary to distinguish between boundaries due to the depth differences (and the resulting parallax) in
the neighborhood and boundaries due to flow discontinuities in the absence of distinct depth differences. The latter
case could occur when two objects are moving alongside one another with different motions. A factor we have not
taken into consideration at all in the analysis presented here is the role that confidence measures (front the flow and
disparity estimates [1]) could play in such computation. We are currently investigating the possibilities that arise
front the integrated analysis of the FDEE with such confidence measures.

Another promising line of analysis is in the use of such occlusion markers in the continuous formulation for the
computation of the flow and disparity values along with appropriate smoothing. Such a formulation can be used
for surface reconstruction as well. Thus, in the terminology of [2], we are investigating the behaviour of an energy
formulation in which a proposed discontinuity at a point is penalized, not by a constant penalty term, but by a term
dictated via the results of occlusion detection preprocessors such as the FDEE.

Yet another area that needs to be investigated is the integration of such computation with the results of more
sophisticated structures such as lines to distinguish between high FDEE values due to occlusions and those due to
specularities or lo-miing.

Acknowiedgements: Many thanks to Ed Risenan for helpful comments and to Robert Heller for invaluable
software support.
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A PARALLEL COLOR ALGORITHM FOR SEGMENTING IMAGES OF 3-D
SCENES

Glenn lealey
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Department of Computer Science
Stanford University, CA 94305

ABSTRACT

This paper presents a parallel color algorithm for image segmentation. From an input color image,
the algorithm labels each pixel in the image according to the corresponding material in the scene. This
segmentation is useful for many visual tasks including inspection and object recognition. The segmentation
algorithm is based on a detailed analysis of the physics underlying color image formation and may be applied
to images of a wide range of materials. Surface material texture is dealt with in a natural way. An initial edge
detection on the intensity image is used to guide the color segmentation process. The algorithm is inherently
parallel and can be effectively mapped onto high performance parallel hardware.

INTRODUCTION

This paper develops an algorithm to segment images when little information is available about the objects
or materials which might be present in the scene. In particular, I consider the problem of using a color image
to determine the number of different materials in a scene and to label each image pixel as corresponding to
one of these materials. Color information is essential to the segmentation algorithm because color allows the
computation of image statistics which are independent of geometrical variations in the scene [3]. Therefore
color, unlike image irradiance, can be used to group together regions of an image which correspond to the
same material in the scene viewed under different geometrical conditions.

Researchers have proposed many different color segmentation techniques. One frequently used approach
[11] is to use a clustering procedure (21 on the measured sensor values. Such a procedure attempts to find
clusters of pixel values in color space and then assigns each image pixel to one of the clusters. Clustering
techniques suffer from several disadvantages. In most real images, colur clusters will overlap making pixel
misclassification inevitable. Also, it is possible that surfaces of a single material in the scene which are
viewed under different geometrical conditions will give rise to two different clusters in color space causing
these surfaces to be assigned different labels.

Another approach to color segmentation is region splitting. Region splitting involves recursively breaking
the input image into smaller and smaller pieces until each piece is uniform in some property. Ohlander [6]
used histograms of feature values computed from a color image to guide region splitting. For each region this
algorithm computes nine histograms from the input R, G, B values. The best peak in one of the histograms
is used to threshold the region to separate out the pixels corresponding to the peak. Since histogram analysis
is a global process, this method tends to miss small image regions which will not produce strong peaks in
any histogram. Also, it seems unlikely that it is necessary to compute nine color features from the three
measurements to generate a good peak in one feature histogram.

Olbta (7] uses Ohlander's algorithm to empirically determine if a small number of color features might be
adequate for segmentation. Ohta determined from experiments on eight color images that an effective set
of color features is given by I, = (R + G + B)/3, 12 = R - B, and 13 = (2G - R - B)/2 where 11 is the
most effective for segmentation and 13 is the least effective. Though Ohta's analysis improves the Ohlander
algorithm, it seems doubtful that eight images will be rich enough to lead to the determination of color
features which are universally effective for segmentation. Another property of Ohta's color features is that
the most significant color feature 11 depends on the scene geometry. Applying Ohlander's algorithm with
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Ohta's color features will cause curved surfaces of a single material to be broken into separate regions as in,
for example, the segmentation of the color cylinder in [7].

.More recently, Klinker [5] has derived a color segmentation algorithm from a physical model for reflection.
Such an approach is more useful than previous techniques because it leads to algorithms which can account
for the processes in the scene which contribute to image formation. Furthermore, it is easier to characterize
what kinds of images an algorithm derived from physical models is likely to segment successfully. Klinker's
algorithm is based on the dichromatic reflection model [9]. The algorithm segments the image into connected
regions corresponding to objects of a single material. It is more sophisticated than previous segmentation
techniques in that. it is designed not to break the image because of highlights or because of intensity changes
due to geometrical variation in the scene. This algorithm does, however, have several important limitations.
Since the algorithm is derived from the dichromatic reflection model, it only applies to inliornogeneous
dielectric materials. The algorithm uses a cylindrical model for clusters in color space which is unable to
account for textural variations from material to material and for sensor noise properties which are not radially
symmetric in color space. The current form of the algorithm does not attempt to identify separated image
regions a.s instances of the same material in the scene.

THE SEGMENTATION PROBLEM

In [3] it is shown from general physical models that the reflectance of an opaque sample of material with
one relevant interface can be accurately approximated by a function of the form

{ Is(g)Cs(A) Metal
R(y, A) = Ms(g)Cs(A) + MB(g)CB(A) ID. ()

where g indicates dependence on the photometric angles and A indicates dependence on wavelength. The
subscript S denotes terms associated with surface (or interface) reflection and the subscript B indicates
terms associated with body reflection. I.D. indicates an inhomogeneous dielectric material. The second part
of (1) is equivalent to the dichromatic reflection model. I begin by assuming that the contribution of Afs(g)
to measured pixel values for I.D.'s is zero over most pixels in an image. This is a reasonable approximation
for dielectrics over most values of the photometric angles. The approximation fails however at highlights
and this failure will be dealt with later. Applying the approximation to (1) produces the result

R(g, A) = M(g)C(A) (2)
which applies to both metals and inhomogeneous dielectrics.

Consider using N sensors with spectral sensitivities given by fi(A)(0 < i < N - 1) to obtain an image of
a surface illuminated by a spectral power distribution L(A). At each point (x,y) in the image of the surface,
measured sensor values si will be given by

si(x,y) = f, fi(A)L(A) A(g)C(A)dA (3)

= M(g) f\ f,(A)L(A)C(A)dA (4)
Thus for a material with reflectance given by (2) illuminated by a spectral power distribution L(A), the
measured sensor values for that surface will lie on a line in sensor space which intersects the origin.

Several things might cause the sensor values measured for points on a surface to lie some distance from
the line given by (4). Sensor noise will cause some scatter of points about the line. Variations in material
composition from point to point on the surface will cause variations in the function C(A) which will also
scatter points about the line. Such variations in material composition constitute one component of visual
surface texture. The material discrimination problem is therefore equivalent to the problem of discriminating
corrupted lines in N-dimensional sensor space. For most scenes, sensor noise and surface texture will cause
lines in sensor space corresponding to different materials to overlap. Therefore it is important to characterize
these lines accurately.

I begin by considering a simplified version of the segmentation problem. Suppose that it is known that
there are M materials in the scene and certain sets of measured sensor vectors S = (si, .. , SN) are known
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to correspond to each material. We can model the distribution of pixels in sensor space for each material i
using the multivariate normal density pi(S) = N(pi, E,)

pi(S) = ( 2 r)Ni21EIll, 2/2 e ( (5)

where Si is the n-element mean vector for material class i and Ej is the n x n covariance matrix. Suppose we
wish to classify a new sensor vector v as belonging to one of the M material classes. To facilitate comparison
which is not influenced by the effects of geometry in the scene, each distribution pi(S) is normalized to a
multivariate normal distribution Pi(S) described by

S= (6)Vlill

(7)
us, 112

where jS1ill is the L 2 norm IISill /s + + s,
Applying a similar normalization to v gives

V-V (8)

The problem is to assign - to one of the M material classes described by N( i, XX). From decision theory
[2], the set of functions

g9(i) = logp(/ci) + log P(ci) (9)
serve as discriminant functions for classification where ci represents the ith material class. Thus, if we assign
F to the class ci for which gi(V) is the largest we will achieve minimum error rate classification. If all classes
are equally likely, then log P(ci) is independent of i and can be dropped from each discriminant function.
Substituting the multivariate normal density into (9) gives

gi~v - -I - pi) i-I(i _ - i) - 1 log j[ri1 (10)

The algorithm described in section 4 will use the discriminant functions of (10) during segmentation.

NORMALIZED COLOR

An important step described in section 2 is the computation of a normalized sensor vector

g = S =(1,,"',SN) (11)
VS +... + Sr

As suggested in section 2, the vector S is independent of geometry because if in (4) we let

K, = fI(A)L()C(A)da (12)

then

i(Xy) -" M(g)i Ki (13)
V/M(g) 2 (K +... + KN) f h + .. . + KN(

and gi(x, y) depends on the sensors, the illuminant, and the reflecting material, but not on scene geometry.
Typically normalized color space coordinates (also called chromaticity coordinates) are generated using

the L1 norm giving the normalized coordinates of a sensor measurement si as ,[11,[4]. It is easy

to show that as with the V normalized coordinates, these normalized coordinates are independent of scene
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geometry. One property of this L1 normalization is that for two distinct material lines in sensor space which
are separated by a fixed angle, the distance between the normalized coordinates corresponding to these lines
depends on the location of the lines in sensor space. hlence L' normalization has this anisotropic property
when used for material discrimination. The L 2 normalization is not anisotropic in this sense and is therefore
better suited for material discrimination.

It has been suggested on several occasions [2], [1], [8] that the normalized color of two points on a surface
of the same material will be the same even if one of the points is directly illuminated and the other point
is ;n a shadow. From (13), we see that this will not be true unless the light incident on the surface in
the shadow has the same spectral power distribution L(A) as the direct illumination. In general, then, the
normalized color corresponding to a point in a shadow will be different from the normalized color of a directly
illuminated point of the same material on the same surface.

Kender [4] points out that the normalized color transformation has a nonremovable singularity at the
zero signal point sj = S2 = ... = SN = 0 in sensor space and is highly unstable about this point. Also,
sensor signal-to-noise is usually low near the zero signal point. For these reasons, it is advisable to considr
measurements near the zero signal point too unreliable for a normalized color computation. This will prevent
the system from hallucinating near the zero signal point.

THE SEGMENTATION ALGORITHM

A segmentation algorithm has been implemented which determines the number ,f materials in a color
image and labels each pixel as an instance of one of the materials. Since, in general, a material discontinuity
in the scene will cause an image irradiance discontinuity, the first step of the algorithm is to perform an edge
detection on a single band image of the scene. This edge detection guides the color segmentation. Areas of
the image which do not contain edge pixels are assumed to correspond to a single material in the scene.

The algorithm proceeds by examining increasingly smaller regions of the image. When execution begins,
the entire image is placed on the region stack. An initially empty material list is maintained which, for each
material, contains the current best estimate of jIi and . -i based on the pixels which have been assigned to
material class i. When a region from the stack is processed, the region is first examined for edge pixels. If
the region contains edge pixels it is split into subregions and the subregions are placed on the region stack.
Currently, all regions are rectangular and, if necessary, are split into four rectangular subregions of equal
size.

If a region contains no edge pixels, the region is assumed to correspond to a single material in the scene.
For such a region R, a mean normalized color is computed. This normalized color vector vR is analogous
to the vector -V in section 2. The discriminant functions of (10) are computed for vR for each class in the
material list. If gi(vR) is sufficiently large for some i, then the pixels in R are labeled class i and the material
list statistics for class i are updated. If gi(VR) is not sufficiently large for any class i, then R corresponds to
a new material and a new material class based on R is added to the material list. When region size reaches
one pixel, the edge test is eliminated and edge pixels are merged into existing "';%t-ial classes. Processing
continues until the entire image is segmented. Certain precautions are taken du .,g ti;cr segmentation. Pixels
which fall near the zero signal point are labeled as being too dark to be classifie, .1y. When region size
becomes very small, regions are merged into existing material classes rather thai; , ossibly becoming new
classes.

The segmentation algorithm has several important properties. First, tle algorithm begins by attempting
to find large regions corresponding to a single material. If large regions are found, then highly representative
statistics can be computed for material classes. Also, the algorithm will execute quickly on images of simple
scenes. While the algorithm attempts to locate large regions, the dependence on edges ensures that good
localization of region boundaries will be achieved. The algorithm is parallel since the bulk of the computing
for each region can be done independently of any other part of the image.

EXPERIMENTAL RESULTS

The algorithm described in this paper has been successfully used to segment color images of several scenes
containing a wide variety of different materials. Due to space limitations, I am unable to include examples
of these results in the version of this paper in these Proceedings.
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ABSTRACT

Machine learning will play a critical role in future computer vision systems which must operate in dynamic ou:
door scenarios. In this paper, we present a system which applies a machine learning technique to the problem of image
segmentation. The learning technique, known as a genetic algorithm, allows the segmentation process to adapt to
changes in image characteristics caused by variable environmental conditions such as time of day, time of year, clouds,
rain, etc. The genetic algorithm efficiently searches the enormous hyperspace of segmentation parameter combinations
using a collection of search points known as a population. By combining high performance members of the current
population to produce better parameter combinations, the genetic algorithm is able to locate the parameter set which
maximizes the segmentation quality criteria. We present some initial results which demonstrate the ability to adapt the
segmentation parameters to variable lighting conditions (intensity and position of light sources).

1. INTRODUCTION
An innovative combination of techniques from two branches of science can often produce significant break-

throughs in the evolution of a technology. We have developed a system which applies a technique from the machine
learning field to the computer vision problem of image segmentation. Image segmentation is typically the first, and
most difficult, task of any automated image understanding process. All subsequent interpretation tasks, including
feature extraction, object detection, and object recognition, rely heavily on the quality of the segmentation process.
Despite the large number of segmentation techniques presently available,2 , , 14 no general methods have been found
which perform adequately across a diverse set of imagery. Only after numerous modifications to an algorithm's control
parameter set can any current method be used to process the wide diversity of images encountered in dynamic outdoor
applications such as the operation of an autonomous robotic land/air vehicle, automatic target recognizer, or a photoin-
terpretation task.

When presented with an image from one of these application domains, selecting the appropriate set of algorithm
parameters is the key to effectively segmenting the image. The image segmentation problem can be characterized by
several factors which make parameter selection process very difficult. First, most of the powerful segmentation tech-
niques available today contain numerous control parameters which must be adjusted to obtain peak performance. The
size of the parameter search space in these systems can be prohibitively large unless it is traversed in a highly efficient
manner. Second, the parameters within most segmentation algorithms typically interact in a non-linear fashion, which
makes it difficult or impossible to model their behavior in an algorithmic or rule-based fashion. Thus, the resulting
objective function which results from various parameter combinations cannot generally be modeled in a mathematical
way. Next, since variations between images cause changes in the segmentation results, the objective function varies
from image to image. The search technique used to optimize the objective function must be able to adapt to these
variations between images. Finally, the definition of the objective function itself can be subject to debate because there
are no single, universally accepted measures of segmentation performance available with which to uniquely define the
quality of the segmented image.

Hence, we need to apply a technique which can efficiently search the complex space of plausible parameter set-
tings and locate the values which yield optimal results, without having to rely on knowledge of the particular applica-
tion domain or detailed knowledge pertinent to the selected segmentation algorithm. Genetic algorithms, which are
designed to efficiently locate the approximate global maxima in a search space, show great promise in solving this
parameter selection problem.

The next section of this paper discusses the selection of the genetic algorithm as the appropriate search technique
for this problem domain. Section 3 presents a brief overview of the details of the genetic process, including previous
applications in computer vision research. Following this review, Section 4 describes the adaptive image segmentation
process that we have developed. We explain the choice of a particular segmentation algorithm as well as the manner
in which segmentation quality is measured. Section 5 provides some initial experimental results using the adaptive seg-
mentation system. Finally, Section 6 discusses the conclusions of this work and describes future research plans.

1043



2. SELECTION OF AN OPTIMIZATION TECHNIQUE
We previously highlighted sonic of the characteristics of the segmcntation problem such as the size of the pararn-

etcr search space, the complexity of the objective function, and variations in the objective function caused by changes
in the imiagery as well as the accepted definition of the function itself. Figure 1 provides a generalized representation
of an objective function that is typical for the image segmentation process. The figure depicts a simplified application
in which only two segmentation parameters are being varied, as indicated by the x and y axes. The z axis indicates the
corresponding segmentation quality obtained for any pair of algorithm parameters. Because the algorithm parameters
interact in complex ways, the objective function is multimodal and presents problems for many commonly used optimi-
/ation techniques. Further, since the surface is derived from an analysis of real world imagery, it may be discontinu-
ous. may contain significant amounts of noise, and can not be described in closed form.

The conclusion which can be drawn from Figure 1 is that we must identify a highly effective search strategy
ihch can withstand the breadth of performance requirements necessary for the image segmentation task. We have

rcviev~ed many of the techniques commonly used for function optimization to determine their usefulness for this partic-
uiar uk. l addition, we have alk o investigated other knowledge-based techniques which attempt to modify segmenta-
tion parameters using production rule systems. The drawbacks to each of these methodologies are as follows:

Exhaustive Techniques (Random walk, depth first, breadth first, enumerative) - Able to locate global
maximum but computationally prohibitive because of the size of the search space.

" Calculus-Based Techniques (Gradient methods, solving vstems of equations) - No closed form
mathematical representation of the objective function is available. Discontinuities and other complexi-
ties present in the objective function.

* Partial Knowledge Techniques fllill climbing, beam scar, ',. best fir. t, branch and bound, dynamic pro-
g,ramming, A.) - Hill climbing is plagued by the foothill, plateau, and ridge problems. Beam, best first,
and A' searches have no available measure of goal distance. Branch and bound requires too many
search points while dynamic programming suffers from the curse of dimensionality.

* Knowledge-Based Techniques (Production rule systems, leuristic methods) - These systems have a lim-
ited domain of rule applicability, tend to be brittle, and are usually difficult to formulate. Further, the
visual knowledge required by these systems may not be representable in knowledge-based formats.

%

Figure 1: Representtion of the objective function which must be optimized in the adaptive image
segmentation problem.
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Genetic algorithms are able to overcome many of the problems mentioned in the above optimization techniques.
lihe search from a population of individuals (search points), which make them ideal candidates for parallel architec-

ture implementation, and are far more efficient than exhaustive techniques. Since they use simple recombinations of
existing high quality individuals and a method of measuring current performance, they do not require complex surface
descriptions, domain specific knowledge, or measures of goal distance. Moreover, due to the generality of the genetic
process, they are independent of the segmentation technique used, requiring only a measure of performance for any
given parameter combination. Genetic algorithms are also related to simulated annealing 3 where, although random
processes aro lso applied, the search method should not be considered directionless. In the image processing domain,
Genmn and Geman have used simulated annealing to perform image restoration and Sontag and Sussmann24 have per-
forined image restoration and segmentation. Simulated annealing and other hybrid techniques t have the potential for
]mpro cd performance over the earlier optimization techniques. However, in this paper, we will describe our experi-
nleIts using genetic algorithms alone.

3. OVERVIEW OF GENETIC ALGORITHMS
Genetic ,lgorithms were pioneered at the University of Michigan by John Holland. 4, 15 The term genetic algo-

rJzi: i derived from the fact that its operations are loosely based on the mechanics of genetic adaptation in biological
s\,tems. Genetic algorithms can be briefly characterized by three main concepts: a Darwinian notion of fitness or
tr..'ne'h which determines an individuals likelihood of affecting future generations through reproduction; a reproduction

operation Ahich produces new individuals by combining selected members of the existing population; and genetic
Ovrators which create new offspring based on the structure of their parents.

A genetic algorithm maintains a constant-sized population of candidate solutions, known as individuals. The ini-
t1 ,eCdCI population can be chosen randomly or on the basis of heuristics, if available for a given application. At each
iteraizion, knowkn as a generation, each individual is evaluated and recombined with others on the basis of its overall
IuaLit3 or fitness. The expected number of times an individual is selected for recombination is proportional to its
fitness relative to the rest of the population. Intuitively, the high strength individuals can be viewed as providers of
building blocks" from which new, higher strength offspring can be constructed.

The inherent power of a genetic algorithm lies in its ability to exploit, in a highly efficient manner, information
about a large number of individuals. By allocating more reproductive occurrences to above average individuals, the
overall net affect is an upward shift in the population's average fitness. Since the overall average moves upward over
time, the genetic algorithm is a "global force" which shifts attention to productive regions (groups of highly fit indivi-
duals) in the search space. However, since the population is distributed throughout the search space, genetic search
effectively minimizes the problem of converging to local maxima.

New individuals are created using two main genetic recombination operators known as crossover and mutation.
Crossover operates by selecting a random location in the genetic string of the parents (crossover point) and concatenat-
ing the initial segment of one parent with the final segment of the second parent to create a new child. A second child
is simultaneously generated using the remaining segments of the two parents. Mutation provides for occasional distur-
bances in the crossover operation by inverting one or more genetic elements during reproduction. This operation
insures diversity in the genetic strings over long periods of time and prevents stagnation in the convergence of the
optimization technique. The individuals in the population are typically represented using a binary notation to promote
eflicicncy and application independence in the genetic operations. Holland 15 provides evidence that a binary coding of
the genetic information may be the optimal representation. Other characteristics of the genetic operators remain imple-
mentation dependent, such as whether both of the new structures obtained from crossover are retained, whether the
parents themselves survive, and which other structures are replaced if the population size is to remain constant. In
addition, issues such as the size of the population, crossover rate, mutation rate, generation gap, and selection strategy
have been shown to affect the efficiency with which a genetic algorithm operates.

Since they rely on the accumulation of evidence rather than on domain dependent knowledge, genetic algorithms
are ideal for optimization in applications where domain theories or other applicable knowledge is difficult or impossible
to formulate. However, there are certain drawbacks to genetic algorithms which make them inappropriate for certain
applications. For example, genetic system usually require the evaluation of a large number of candidate solutions. In
application domains where the evaluation process is expensive, the computational effort to perform numerous evalua-
tions may be prohibitive. However, research by Fitzpatrick and Grefenstette 5 has shown that a simple statistical
approximation to a complex evaluation process can allow genetic systems to effectively adapt in these situations and
converge to global maxima.

To date, genetic algorithms hive been applied to a wide diversity of problems. They have been used in combina-
torial optimization, t ,22 VLSI layout,7 gas pipeline operations,t1 ,12 and machine learning.. 6 23 With regards to com-
puter vision applications, Fitzpatrick et. a16 have used genetic algorithms in solving the vision problem of image regis-
tration. In this work, the genetic system was used to select a set of transformation parameters which correctly align a
pair of images. Genetic algorithms have also been used in computer vision for generating image domain feature detec-
tors by Gillies.10
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4. ADAPTIVE IMAGE SEGMENTATION
Genetic algorithms can be used in three different fashions to facilitate an adaptive behavior within a computer

systemn. The simplest approach is to allow the genetic system to modify the set of control parameters which affect the
tutput of an existing computer program. By monitoring the quality of the resulting program output, the genetic system

can dynamically change the parameters to achieve the best performance. A second approach allows the genetic com-
ponent to modify the complex data structures within an algorithm or production rule system. By modifying the control
mechanism or agenaa in an algorithm or the organization of data frames in a rule-based system, the genetic algorithm
can tring about changes in the system's behavior. Finally, the most complex implementation allows the genetic system
to actually make changes in the executable code of a program. In most ci"s, this adaptation involves changing the
condition/action statements of a rule in a production system. Since almost every segmentation algorithm contains
parameters which are used to control the segmentation results, we have adopted the first strategy listed above.

Adaptive image segmentation requires this ability to modify control parameters in order to respond to changes
\hich occur in the image as a result of varying environmental conditions. The block diagram of our approach to adlap-
tivc image segmentation is shown in Figure 2. After acquiring an input image, the system analyzes the image charac-
[eristics and passes this information, in conjunction with the observed external variables, to the genetic learning com-
ponent. Using this data, the genetic system selects an appropriate parameter combination, which is passed to the image
segmentation process. After the image has been segmented, the results are evaluated and an appropriate reward is gen-
crated and passed back to the genetic algorithm. This process continues until a segmentation result of acceptable qual-
ity is produced using a set of control parameters. The details of each component in this procedure will be described in
the following subsections.

4.1 IMAGE CHARACTERISTICS

The input image must be analyzed so that a set of features can be extracted to aid in the parameter selection pro-
cess by the genetic component. A set of characteristics of the image is obtained by computing specific properties of
the digital image itself as well as by observing the environmental conditions in which the image was acquired. Each
t% pe of information encapsulates knowledge that can be used to determine an appropriate starting point for the parame-
ter adaptation process.

Image analysis produces a set of image statistics which measure various properties of the digital image. There
are a large number of plausible image statistics which can be used, including:

First Order Properties: Measure the shape of the first-order image histogram. Information includes
mean, variance, skewness, kurtosis, energy, and entropy.

Second Order Properties: Measure the histogram features based on joint probability distributions
between pairs of pixels. Information includes autocorrelation, covariance, inertia, cooccurrence matrices,
and other derived properties.

Input .J Iage Isagetis Genetic
inu mg ttsis Learning Image

Image] Analysis SytmCoto Segmentation

External Variables v ,Parameters

(Time o f day, time oi year, rain,
snow, haze, cloud cover, etc) "Reward"

Ground Truth Segmented, . Image

Image Image ,
Evaluation

Figure 2: Block diagram of the adaptive image segmentation process.
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Histogram Peak/Valley Properties: Measure the values of the peaks and valleys in the image histo-
gram. Information includes maximum peak height divided by minimum valley height, total number of
histogram peaks, maximum peak location, minimum valley location, distance between maximum peak
and minimum valley, and maxim'im peak-to-valley ratio.

For the purposes of our initial research, we have ignored the second order histogram properties since they are expensive
to compute. Further, they may not be necessary if the selected first order properties and the peak/valley properties are
sufficiently able to represent the internal image characteristics.

External variables can also be used to characterize an input image. These factors specify the conditions in which
the image was acquired. They include information such as the time of day, time of year, cloud cover, temperature,
humidity, and other environmental factors such as the presence of rain, snow, haze, fog, etc. These conditions all
affect the quality of the image, which in turn necessitates changes in control parameters, and thus they provide useful
information in representing the overall characteristics of the input image.

4.2 GENETIC LEARNING SYSTEM

Once the image statistics and external variables have been obtained, the genetic learning component uses this
information to select an initial set of segmentation algorithm parameters. A simple classifier system is used to
represent the image characteristics and the associated segmentation parameters. Figure 3 shows a simplified example of
a classifier used by the genetic learning component. The classifier stores the current fitness of the parameter settings,
the image statistics and external variables of the image, and the segmentation parameter set which is being adapted by
the genetic algorithm. The image statistics and external variables form the condition portion of the classifier, C1
through Cj+,, while the segmentation parameters indicate the actions, A, through AN, of the classifier. Note that only
the fitness value and the action portion of the classifier are subject to genetic adaptation; the conditions remain static
for the life of the classifier.

The classifier used in our initial experiments is somewhat more complex than the one pictured in Figure 3 since
we are using color imagery. We compute the first order histogram statistics and the histogram peak/valley properties
for each of the red, green, and blue components of the color image. All of this information is then stored in the
classifier. The external image variables, however, retain the same representation as shown in Figure 3.

Using the image characteristics for a new image, the genetic learning system compares this information with the
current population of classifiers. The algorithm computes a ranked list of individuals which have characteristics similar
to the current image. Using the highest ranked individual first, the genetic algorithm sends the parameter set from the
selected individual to the segmentation component. After the image has been segmerted, the results are reviewed by
the evaluation system. If the segmentation quality is above a predefined threshold of acceptance, the process terminates
and a new classifier is created using the characteristic values obtained from the new image, :he parameter values which
led to the acceptable results, and the fitness value that was achieved. The new classifier is added to the current popula-
tion, replacing the individual which currently has the weakest fitness value.

Population

EEE''mJ' Fitness Image Statistics External Variables Segmentation Parameters

I I I I I I I I '" .075 134 2007 . 1

1 1T"ITIT'WT W CI C 2  C I  C1+1 CI+2 C 1+1 A I  A 2  A 3  AN

Figure 3: Representation of a classifier used by the genetic learning system.
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Alternatively, if after testing some preset number of the ranked classifiers, the system has not achieved acceptable
segmentation quality, the genetic learning process is invoked on the set of tested classifiers. A ncv, seed population of
classiliers is temporarily created using the characteristics from the current image in each of the condition fields and the
parameters seLs from each of the tested classifiers in the action field. The genetic process is then applied to the seed
population until acceptable performance levels are achieved or a maximum number of segmentations have been per-
formed. At this point, some portion from the set of new classifiers is allowed to replace the weakest elements in the
initial population. We only allow a fraction of the new classifiers back into the original Ixpulation to avoid skewing
the populatioii towards the characteristics of the most recently processed image. Once the least lit members of the
population have been replaced, the system is ready to process a new image.

4.3 SEGMENTATION ALGORITHJM

Since we will be working with color imagery in our experiments, we have selected the PHOENIX segmentation
a, ,orithm developed by Shafer and Kanade at Carnegie-Mellon University.18. 2t This system employs a region splitting
t cchniiquetI which uses information from the histograms of the red, green, and blue image components simultaneously.
Basically, the algorithm recursively splits regions in the image into smaller subregions on the basis of a peak/valley
analysis of the various color histograms. Fifteen different paraumeters 1 8 are used to control the thresholds and termina-
tion ionditions used within the algorithm. Of these fifteen values, we have selected the two of the most critical param-
eters w hich affect the overall results of the segmentation process, aunxmin and hsnooth. Maxmin specifies the lowest
acceptable peak-to-valley-height ratio used when deciding whether or not to split a large region into two or more
smaller parts. Hsmooth controls the width of the window used to smooth the histogram of each image region during
segmentation. Smoothing helps to remove small histogram peaks corresponding to noise in the image. Future experi-
mcnt.s nia increase the number of selected parameters used for adaptation in order to investigate more difficult seg-
mentation tasks.

From an analysis of the PHOENIX algorithm, we find that incorrect values in the two main parameters lead to
results in which, at one extreme, the target in not extracted from the background, to the other extreme in which the tar-
oet is broken up into many small regions that are of little use to higher level processes. By measuring segmentation
performance using appropriate quality criteria, th genetic process attempts to identify a parameter set that yields
resuls between tLese two extremes. The segmentation quality criteria are described in the next section.

4.4 SEGMENTATION EVALUATION

After the image segmentation process has been completed by the PHOENIX algorithm, we must measure the
overall quality of the segmented image. There are a large number of segmentation quality measures that have been
suggested, 2 although none have achieved widespread acceptance as a universal measure of segmentation quality. In
order to overcome the drawbacks of using only a single quality measure, we have incorporated an evaluation technique
which uses the weighted sum of the five different quality measures as the overall fitness for a particular parameter set.
The reward that is generated from this approach is a scalar measurement of the parameter set's utility. However, a
more complex vector evaluation which provides multidimensional feedback on segmentation quality can be used. 20 In
our initial experiments, we use only a scalar measure of quality for simplicity.

The measures of segmentation quality that we have selected for this work include (weighting shown in
parentheses):

(1) Edge-Border Coincidence (.20): Measures the overlap of the region borders in the image acquired fior
the segmentation algorithm relative to the borders found using an edge operator. In our application, we
used the Sobel operator to compute the necessary edge information.

(2) Boundary Discrepancy (.40): Measures the total number of overlapping boundary pixels in the ground
truth image and the segmented image, minus the total number of non-overlapping pixels in these two
images.

(3) Pixel Misclassificaiion (.i5): Measures the number of target pixels misclassified as background pixels
and the number of background pixels misclassified as target pixels.

(4) Target Contrast (.15): Measures the contrast between the target and the background in the segmented
image, relative to the target contrast in the ground truth image.

(5) T rget Overlap (10): Measures the area of intersection between the target region in the ground truth
image and the segmented image, divided by the union of the target regions.

The last four quality measures require the availability of ground truth information which represents the ideal seg-
nientation of the image. For these experiments, the ground truth information is acquired by interactively running the
PHOENIX algorithm on the image to obtain the best overall results. The weighted sum of the five quality measures is
computed once each of the individual measures is known. The fitness of the parameter set is represented by this
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weighted sum value. In actual applications, the segmentation quality would be provided by a higher level process that
was performing region labeling or object recognition and would be able to relate the quality of the segmentation with
the region labeling results.

5. INITIAL EXPERIMENTS
The experiments we have performed to date use simplified scenes in which the position and intensity of the light-

ing have been changed. The variations in each scene are meant to approximate lighting conditions in outdoor imagery,
where the angle of the sun varies over time and the intensity changes due to environmental conditions. We have
selected three images in order to evaluate the parameter optimization capabilities of the genetic algorithm in the image
segmentation domain. The images, shown in Figure 4, are color images (red, green, and blue components) which are
128 by 128 pixels in size. In these initial images, only the lighting intensity has been modified between scenes. The
position of the lighting and the camera remain fixed. The car shown at the bottom of images is considered the object
of interest for these experiments. The ground truth data for these images was obtained by interactively running the
PHOENIX algorithm on Frame I (highest contrast image). The ground truth image is shown in Figure 5.

The first issue of concern for the experiments was the selection of the appropriate control parameters for the
genetic algorithm itself, e.g. the population size, crossover rate, mutation rate, and maximum number of allowable

Frame I Frame 2 Frame 3
Figure 4: Imagery used to evaluate the adaptive image segmentation process. In each image, the
lighting intensity has been changed to simulate varying environmental conditions.

Figure 5: Ground truth data used for evaluating the images shown in Figure 4.
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generations (or maximum number of segmentation cycles) of the genetic process. To properly select these values, and
turther, to validate the performance of genetic process for our image segmentation problem, we exhaustively defined
the objective function for the first image (Frame 1). The two segmentation parameters that were selected for adaptation
inaimnin and hsmooth) were constrained to a useful range of values and then allowed to take on 32 distinct values

within those ranges. Maxmin values, which affect the segmentation quality in a non-linear fashion, were sampled
exponentially over a range of values from 100 to 1100. Values near 100 were spaced closer together than values at the
upper end of the range. Hsmooth values were sampled linearly, using odd numbers between 1 and 63, inclusive. This
allocation provided a search space of 1024 different parameter combinations. For each parameter set, Frame 1 (Figure
4) was segmented and the results were evaluated using the quality measures described in section 4.4. The individual
surfaces, along with the combined segmentation quality measure, are shown in Figure 6. Notice that the individual sur-
faces as well as the combined surface are very complex and can not be effectively optimized using traditional optimiza-
tion techniques.

Once the surface was exhaustively defined, we were able to apply the genetic algorithm to this search space and
elticiently test various combinations of genetic parameters without incurring the cost of image segmentation at every
step. Additionally, since we know the maximum value of the surface, we can determine when the adaptive system has
created individuals within a given threshold of the maximum. This information provides us with the stopping criterion
for the first image. After 30 trial runs using various combinations of genetic parameters, we found that a population
size of 10, a crossover rate of 0.8, and a mutation rqut. of 0.01 produced the fastest convergence rate. This set of
genetic parameters allowed the adaptive system, which started from a random selection of individuals, to locate a
pxaraneter set that was within 1% of the global maximum value in only three generations (26 total segmentations). Fig-
ure 7 a) illustrates the ten randomly generated parameter locations (blackened squares) for Frame 1 at the beginning of
the genetic process. Figure 7(b) displays the ten final population locations at the end of the third generation. Note that
in Fihurcs 7 a) and 7(b), some population members are not visible due to the viewing angle of the surface. In order to
iudgc the progress of the segmentation quality at each generation, Figure 8 shows the segmentation results for the best
maxiunun fitness) parameter set at the end of each generation. The sequence show the increase in segmentation accu-

rae, a.s compared to the ground truth image in Figure 5, at the end of each generation. By the end of the third genera-
nion. the maximum fitness is high enough to halt any further segmentation. The ten members of the population at the
end of the third generation are stored for later use in processing images with similar characteristics.

The knowledge acquired in processing Frame I was used during the processing of the Frame 2 and Frame 3
shown in Figure 4. Using the same population size, crossover rate, and mutation rate, the images were processed.
Iloever. in these two images, the objective function was not exhaustively computed so each individual in the popula-
tion of each generation resulted in a segmentation cycle followed by a subsequent performance evaluation step.
Further, since the maximum value of the objective function was not known, the stopping criteria was selected by stop-
ping after a given number of generations, as determined from evaluating the convergence rate of Frame 1. Because of
variations in the shape and maximum value of the objective function, which are caused by the minor differences in all
three images in Figure 4, the number of generations before stopping was increased from three to five for Frames 2 and
3 to insure that the final results would be of high quality. Figures 9 and 10 display the best segmentation results
obtained at the end of each generation for Frames 2 and 3, respectively.

In order to summarize the performance of the genetic algorithm on the objective functions for the three images,
Figure II charts the maximum and average segmentation performance through 12 complete generations. The adaptive
process was allowed to run 100 segmentation iterations to analyze the convergence rate in each of the three images.
As the maximum performance chart (Figure 11(a)) shows, the genetic optimization technique achieved maximum
results within 5 generations in all cases. In addition, the average performance chart (Figure 11(b)) indicates an upward
trend in the performance level of the population members.

6. CONCLUSIONS
We have shown the ability of -enetic alrorithms to provide high quality segmentation results in a minimal

number of segmentation cycles. Thc ,ledge gained during the processing of an image can be stored for later use in
a large population of classifiets w 9., ,ri suggest high quality classifiers for images with similar characteristics, thus
avoiding the use of random parair.. . ,ting during the initial genetic processing. In some cases, the parameter set-
tings suggested by the initial classi.icis oay produce acceptable segmentation results after only one segmentation cycle.

TI - next series of experiments c 'y planned will utilize the final populations created from each of the three
images as a lrger population fi -n whi(' the genetic learning system can select. As each image is sequentially pro-
cessed, the new classifiers which z-c created will replace the weakest members of the current population and the diver-
sity of the classifiers will begin to increase In this manner, the system will be able to learn from experience and apply
this knowledge in succeeding image processing stages.

In addition to implementing the complete genetic learning system just described, we will investigate the adapta-
tion of additional parameter values and measure the improvement in segmentation performance by doing so. There
may exist a maximum number of useful parameters, beyond which the cost of adaptation exceeds the overall
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(b)
Figure 7: Search points used during genetic adaptation on Frame 1, indicated as darkened squares on
the objective function. (a) Randomly selected starting point locations. (b) Locations of population
members at the end of the third generation, which show an increase in overall population fitness.

Generation 1 Generation 2 Generation 3

Figure 8: Best segmentation results of Frame I at the end of each generation.
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Generation 1 Generation 2 Generation 3

Generation 4 Generation 5

Figure 9: Best segmentation results of Frame 2 (Figure 4) at the end of each generation.

Generation I Generation 2 Generation 3

Generation 4 Generation 5

Figure 10: Best segmentation results of Frame 3 (Figure 4) at the end of each generation.
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Figure 11: Performance summary for the three images. (a) Maximum segmentation performance at
the end of each generation. (b) Average segmentation performance at the end of each generation.

improvement in segmentation quality. Further research is necessary to evaluate this hypothesis. We also plan to test
the adaptive segmentation process on outdoor imagery, in which realistic lighting and other environmental changes can
be observed. Using this imagery, we will evaluate the improvement in performance (effectiveness and efficiency) of
our adaptive system versus one with no adaptive capabilities.

Several important findings are worth mentioning at this point. First, one crucial advantage is that the genetic
algorithm can be easily applied to any segmentation technique which can be controlled through parameter changes. In
addition, we can choose to adapt the entire parameter set or just a few of the critical parameters, depending on the final
quality of the results that are desired. Second, it is useful to note that the adaptive segmentation system is only as
robust as the segmentation technique which is employed. It cannot cause an algorithm to modify the manner in which
it performs the segmentation task. It can only optimize the manner in which the algorithm converges to its best solu-
tion for a particular image. However, it may be possible to keep multiple segmentation algorithms available and let the
genetic process itself dynamically select the appropriate algorithm based on image characteristics. Another important
point is that, although we have only used color images in these experiments, the technique itself is applicable to any
type of imagery whose characteristics can properly be represented. This set includes FLIR, LADAR, MMW, and gray
scale imagery. Finally, the genetic process described in this paper may soon be able to benefit from advances in paral-
lel computing and VLSI technology, which are now beginning to produce chips that can perform the image segmenta-
tion process in real time.17
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Abstract

\Ve present a hierarchical optimization approach to the image partitioning problem: that of finding a complete
and stable description of an image, in terms of a specified descriptive language, that is simplest in the sense of
shortest description length. The first stage in the hierarchy uses a low-order polynomial description of the intensity
variation within each region and a chain-code-like description of the region boundaries. By using a regular-grid
finite-element representation for the image, the optimization technique, called a continuation method, reduces to a
simple, local, parallel, and iterative algorithm that is ideally suited to the Connection MachineTM. Also presented
are some prPliminary results of the second stage, in which the boundaries of the regions are described in terms of
straight-line segments. In this case, a parallel implementation of a dynamic-programming algorithm is used to find
the simplest description.

Introduction

Vision can be thought of as an inference process-one in which a description of the outside world is inferred
from images of the world, prior information about the world, and prior information about the image sensor. The
particular kind of inference process used in this paper might be called "inference to the simplest explanation" or,
more formally, "minimal-length encoding" [1,8,11,21,23,25,28,291. The basic idea is that prior information about the
world and the sensor is incorporated in the language used to describe the world and sensor, and the inference process
is to find the simplest (i.e., shortest) description in that language that exactly reproduces the given images.

The basic motivation behind this inference process is the following hypothesis. If one can find a language that
provides an efficient description of a large number of observations (images), then the simplest descriptions in that
language tell us something about the causes of the observations.

For example, consider a sequence of images of a static scene. Certainly, a complete three-dimensional description
of the shape and color of objects and light sources, plus a description of the camera parameters would be extremely
efficient because, having once described the scene (however complex that may be), each image can be reproduced
by simply specifying the camera parameters and invoking a rendering algorithm. Moreover, one can argue that, for
sufficiently complex scenes and for a sufficiently large number of distinct images, no other language could ever be
as efficient without also decomposing the description into three-dimensional objects and a camera. Thus, in this
example at least, simplicity of description leads us to the correct decomposition of the causes of the images.

When viewed from this perspective, the solution to the computer vision problem has two parts. First is the design
of an efficient language for describing images based on our understanding of the causal processes that combine to
form images. Second is the design of computationally effective procedures for finding the simplest descriptions in this
language. However, because of the enormous search spaces, these two aspects cannot be so neatly separated-the
language must undoubtedly be designed in such a way as to facilitate the search for simple descriptions.

One way of combining these two aspects is to design a hierarchical descriptive language such that incrementally
more efficient descriptions can be obtained at each level via an incremental decomposition of the image into ever
smaller groups of causal processes. At the first level (the image), all of the causal processes are grouped into a single
description-an array of intensities.

'The work reported here was partially supported by the Defense Advanced Research Projects Agency under contract MDA903-86-C-
0084.
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I prolsI lthat at t IIe second level, t Ile image be decoIIIposed into two groups of causal processes: the projection of
all idealized world onto an idealize() iiage plane, and the deviations from this projection due to small-scale texturing
of ,,bjects, sensor noise, and the point-spread function of the iniage sensor. The complete language for describing
this (lecotlposition, and the coniplete algorithii for finding the simplest description in this language, are described
ii amother paper by this author [15]. The algorithm is a significant improvement over that first presented in [16].
In ihis paper, we present the language and a Connection MachineTAI (CM) implementation of the algorithm for the
spt-cial case ini which the image is decomposed into the sum of an underlying piecewise-constant image and white
noise with known variance. This underlying image is described by regions of constant intensity, and the boundaries
of the regions are described by a chain-code boundary. e

Ilaving thus removed the stochastic deviations at the second level, it should be possible to decompose the de-
script ion of the uiderlying image into two or more groups of causal processes at the third level. A first step in
this direction is presented here by finding the simplest description of the chain-coded region boundaries in terms of
straight lines using a parallel dynamic programming algorithm implemented on the CM. The parallelism reduces the

2(112) dvnamic programming algorithm to an 0(n) algorithm, where n is the number of elements in the chain-code.

Continuing in this manner, one should eventually decompose the description of the image into its individual
causal processes and their interrelationships. low such a hierarchy might differ from more traditional computer
vision ones, such as Barrow and Tenenbaum's "Intrinsic Images" [2], Marr's "21 -D Sketch" [19], or those emerging

2
from neurophvsiology and psychophysics [7,13], remains to be seen.

In the next section, we present the mathematics and implementation of the special case of a piecewise-constant
underlying image. In short, the problem of finding the shortest description is posed as a global optimization problem,
wherein the objective function is directly related to the description length. Because of the nonlinearities induced
bv the discontinuous nature of the underlying image, the objective function is highly nonconvex, so that standard
optimization techniques cannot find the global minimum. Instead, a technique called a continuation method is used.
This technique uses a regular-grid, finite-element representation for the underlying image. With this representation,
the continuation method reduces to a simple, local, parallel, and iterative algorithm that is ideally suited to such
massively parallel architectures as the CM. Results and timings of the implementation are presented.

Following this, we present the details of the language and algorithm for describing the chain-coded region bound-
aries in terms of straight lines using a parallel dynamic programming algorithm implemented on the CM. Results
and timings of the implementation are presented.

Image Segmentation

For this paper, we shall only consider in detail the special case in which a real image is the sum of an underlying
piecewise-constant image and white noise with known variance. The more general case of an underlying piecewise-
smooth image and white noise with unknown variance is treated elsewhere [15]. See also the work of Pednault [23]
for a dynamic-programming solution to finding the simplest description for one-dimensional signals.

We denote the real n x m image by the vector z indexed by i E I = 1,..., nm. The underlying image u(x, y) is
represented by a regular grid of square I x 1 elements, with each element centered at the coordinate (xi, yi) of the
ith pixel in the real image. The I x 1 square centered at (xi, yi) is the spatial domain Xi of the i1h element, and the
value of the element is ui. Thus,

U(, y) = i V (x, y) C X, i EI,

and the underlying image is completely represented by the vector ii {ui, i E I}.

Similarly, we represent the noise by the vector r. Thus, the statement that the real image is the sum of the
underlying image and the noise can be written as

z = u + r. (1)

A consequence of this choice of representations is that discontinuities in the underlying image can occur only along
the vertical and horizontal boundaries between the grid elements. One advantage of this is that the underlying image
is uniquely specified when there is no noise (namely, u = z). lowever, a more sophisticated representation in which
elements have variable shape is also possible. This is an excellent avenue for future research.

Using the above definitions, the problem of finding the simplest description is therefore

(u),r*) = min IE.(ii)l + 1,C,(r)l,
(ii,r): z=i1+r

2
Although only this special case is presented here, the complete algorithm has been implemented on the CM.
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where C,, and Cr denote tihe lang-uas used to describe u and r. From Eq. 1, the equivalent problem is

-" mi, C,(-)j + ICr(zi - 1)1.

There are two steps involved in solving ( his problem. First, we must define the languages £ and £. Second, we
must specify a computationally feazsible procedure for finding u* and for determining the stability of the solution.

Defining Descriptive Languages

The first task, then, is to define a language for describing the underlying piecewise-constant image u. By definition,
u is composed of regions of constant intensity. Thus, for each region, we need specify only the shape and position of
the region boundaries and the constant intensity within the region. The region boundaries are described by a chain
code of unit-length line segments located between adjacent elements; each line segment corresponds to the boundary
between adjacent square grid elements. The number of bits required to describe each region is thus proportional
to the number of elements in the chain plus a constant to specify the constant intensity and the first element of
the chain. The total number of bits required to specify the underlying image is thus proportional to the number of
regions plus the total length of the region boundaries.

Because region boundaries occur only when spatially adjacent elements of u are different, their total length can
be determined locally by counting all adjacent elements (uti,uj) that have a nonzero difference and dividing by 2
(because region boundaries will be counted twice this way). Thus, the total length of the region boundaries is

iEl jEN,

where

Ni = the set of neighbors of the ih element

6(X) = the Kronecker delta { ' If herwis

When the regions are relatively large, a good approximation to the number of bits required to describe u is thus

I£' ( Z (1- 6(ui-uj)), (2)
iET jEN

where b is the sum of (1) the number of bits required to encode each element in the chain code and (2) the number of
bits required to encode the constant intensity and starting element, divided by the average region-boundary length.

As for describing the noise, the fewest bits required to describe data generated by a stochastic process is the
negative base-two logarithm of the probability of observing that data [25]. Because we assume the noise to be
uncorrelated,

1,4(r)l - log2 P(r) -log 2 1 P(ri)
iEI

- -log 2 P(ri).
iEl

Furthermore, we assume the noise to be quantized white noise, where the elements are drawn from a normal distri-
bution and then quantized to the nearest q, the precision of the pixels in the real image. Thus,

1 r,]q 1 exp 2 d\

q exp I-r- whenq < o, (3)
-2-r 2  20 ,2

and
- og2 P(r) ;nm c + a () 2 (4)

iE5
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Thus, for it and r satisfying Eq. 1, an approximation to the total number of bits required to describe it and r is

L. (U)I + I L,(r)I nin c + L(u),

where

iEl iEl jEN,

Dropping the additive constant, the minimization problem can thus be written as

u* = min L(u).

Defining a Comiputationally Feasible Procedure

The simplest, direct way of finding the global minimum of L(R) is to search through all possible sets of regions,
calculating the cost for each set, and choosing the set with the smallest cost. Unfortunately, the number of possible
sets of regions grows exponentially with the number of elements of u, rendering such a search completely infeasible.
Even dynamic programming-like algorithms require at least the evaluation of the cost for every possible simple region,
which is an exponential in nm when n and in are greater than 1, again rendering such a search computationally
infeasible.

Furthermore, because of the Kronecker delta term, L(u) has many local minima. Thus, standard descent-based
optimization techniques are useless. Also, the simulated-annealing style of algorithms exemplified in Geman and
Geman [10] are inappropriate, because the time complexity is much too high for this type of function [4]. Intuitively,
the reason that stochastic gradient-descent algorithms are inappropriate for this particular objective function is that
the function has extremely narrow (in fact, infinitesimally narrow) valleys, so that even stochastic sampling of the
surface provides no guidance for the search.

Instead, I have devised an algorithm that yields something very close or equal to the optimal solution for a large
class of inputs. It belongs to a class of optimization techniques generally called continuation methods [9,321. This
algorithm is similar in spirit to the algorithm described in Blake and Zisserman [5] as the "graduated nonconvexity,"
or GNC algorithm.

As used here, a continuation method embeds the objective function in a family of functions L(u, s) for which there
is a single local minimum at some large s, and for which the number and position of the local minima converge to
those of L(u) as s approaches zero. The steps of the continuation method are straightforward. First, find the unique
local minimum uO of L(u,s °) for some sufficiently large s'. Then, track the local minimum in u as a decreasing
function of s, as follows. For s +l = s t , let u' + ' be the result of taking a single step of a descent algorithm, as applied
to the objective function L(u, st+l) started at u = ut . When the descent algorithm converges, let s' + ' = rst for
some 0 < r < 1, and repeat until s' is sufficiently small. For an ideal embedding, there will be no bifurcations along
this path, and the value of u t for a sufficiently large t (and hence a sufficiently small s') will be close or equal to the
global minimum of L(u).

The specific embedding used here replaces b(ui - uj) with an exponential,

6ui- uj) ,ej (u, s) =- exp (ig ')

so that

L(us)=a) 2 0 -ei2i (u,s)). (6)

iEI iEI jEN,

This is an appropriate embedding because

lim ej (u, s) = 6(ui - uj)
3-0

so that
lim L(u,s) = L(u),
3-.0

and, hence, the local minima of L(u, s) approach the local minima of L(u). Furthermore, there exists a unique local
minimum of L(u,s) for sufficiently large s, namely u = z. This is so because (1) L(u,s) > 0 Vii, (2) iu = z is
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lie uiqu po et t for whiiclh ihe first, slininiat iou of' Eq. G Is jdciit ik-illy zen,, and (3:) the( Seconid siiiiinatioi vaiiiliss
or itrl-itr rnlv large, s when it is bounided. Tuis, for , apiproak-liii Iinity, it = z1 itlie, uiqui~ie poinit, for which

0,(i.)U the iiiiqilte local land global)itihmn

lilt lilt ivelv, tilt exponenltial terni introduces b~road valleys, whien s is, kilge. andl 'oniverges to tile narrow valleys
Ill the 11i1ii1 ;Is S goe's tO zero. '[hits. tile Cont inuat ion ilt 110(1 creates ;a kiind of "scale space" representation of
Ii objt cikv fiiit ion L,(I) (inl analgv" to Wil kini's sc;Ide-sp;oce represili.f-111 iott of aI signal [31]) and tracks a local

maiiifromi thet coarsest scale (where there is only one, local mniumii) to th lin est, scale (where there are miany).
It lion 11h iany iterative descent algorithim can he used for te( cont innuat ion mnethIodl (see, for example, the wide

varietyx descrt bed Ii Lunberger's excel lent, hook (18~]), thet following a Igo!-I tli has proven to be quitte efficient for the
hjt filittion examiied here,. Sonie experimtentationi withI a conijigat e-gradient, algorithm has, so far, reduced

i t iin kiler of it erat I ois, by oilIv a factor of two. hu Lt each ste p of t Ii( alg,,or it Ibi is ahbot twice as long as t l ie simpler
oneW below.

By delittit iou. local mninimia of L(i, s) occur when

OL(ii, s) _ 2a (Ii-:)+-21,bj 0 7
o - Crt~z) C, 'jj 11u)(?1, -i,)-0

cN,

will.1 canl ho writ ten Ili vector notation as:

VL(ii, s) 1) + A(ii. s)ii =0,()

2ca 2b
ai (it, s) - -n-(1,,i

jEN,

2b-2f
aij (11, S) -(1)2

bi - 2azi c~us

A\t each step of thie iterative descent algorithm, we lintearize the above set of equations by setting sH' 2 rst and~
fixiig, At =_ A(Wi, s'+' ). B~ecause A' is diagonally dominant, a Gatiss-Seidel iteratre cati be used to provide a step In
lie, di rect ion of t lie solution:

U+iJ - +t_ bi + EU *It* -JN( ?i a(s1t+i )2

where
t j C t (I i t

lThis is carried out on the CM by assigning each element to a virtual processor Ii a two-(dimensional VP set, atid
iteratitng Ii parallel. The interaction strengths c ar'eoptda ahieainvateNWS network.

Theaboe i reeatd u t u+l -ujisficetymall (less than 0.l1si+ia) for all i; only one or twvo itrtos
are typically required to achieve this accuracy. Once convergence has been achieved, s is decreased (s'+i = rst ,
0) < r < I), and everything repeated until s'a t is sufficiently close t~o zero.

When the interaction strength falls below Ile (i.e., when ju'- u51 < s'±i0 7), wve say that a [tentative] discontinuity
betwxeen adjacent elements has been found at time t. The discontinuity is called tentative because it is possible (though
relatively rare) for the interaction strength to oscillate a few times before converging t~o a stable value. The word
"tentative" will be dropped unless ambiguity would result. The first, value of s'+' for which this occurs is called the
.stability, s,,j, of the discontinuity.

The reason for calling sij a stability measure, as discussed in detail in anoth. paper [15), is that sij is approx-
iiately equal to the ratio of the local contrast to (7. T[hits, when the contrast is sufficiently large relative to a, the
boundary is typically unaffected by smnall changes to the input, image, whereas when the ratio is low, boundaries
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can shift unpredictably or disappear altogether. Thus, to obtain a stable description, it is necessary to stop the
procedure at a reasonably large value of s"+  (typically 1/4 or so). A different strategy might be to stop at a much
smaller value, but then use the stability measure in the subsequent stages.

Results

Because of time and graphics software constraints, the figures in this paper were all produced using a Symbolics
3640 Lisp-Machine. Similar, but not identical, results were obtained using the CM. The primary reason for the
difference is that the Lisp-Machine implementation does not update every element at each Gauss-Seidel iteration.
To save time, only those elements that (lifter significantly from the previous iteration are updated (except, of course,
all elements are updated at the iteration when st is decreased). This results in a significant increase in speed on a
sequential machine, but also produces a slight degradation in performance. This was not fully appreciated before
the CM implementation.

For a 128 x 128 input image, with a VP-ratio of 2 and without floating-point hardware, the CM takes about
0.7 second per iteration for the piecewise-constant case, which is about 100 times faster than the Lisp-Machine
implementation (when all elements are updated at each iteration). For the piecewise-first-order case, the time
increases to about 3.8 seconds per iteration. In general, the time is approximately k2 /2 times the time required for
the piecewise-constant case, where k is the number of coefficients in the highest-order polynomial (three for first-order
polynomials, six for second order, and so on).

The results presented here were obtained by using the most general form of the encoding-length function, in which
the underlying image is piecewise polynomial, the variance of the noise is unknown and piecewise constant, and the
sensor model includes a point-spread function. A key point about these examples is that they were all obtained by
using precisdy the same paraincters, with the following exceptions. First, a Gaussian point-spread function with
a = I was used for all of the real images, but no point-spread function was used for any of the synthetic images (taking
advantage of our a priori knowledge about how these synthetic images were created). Second, for demonstrative
purposes only and as noted for each example, several values of Pmro,, the order of the underlying image, were used.
The conclusion that emerges from these and many other examples not presented here is that a piecewise-second-order
underlying image is appropriate for a large class of real images.

The first example illustrates the power of global optimization compared with purely local, noniterative, operations.
Figure la is the 20 x 20 input image, which is the sum of a piecewise-first-order image and zero-mean white noise
with unit variance. The outer region of the underlying image has intensity 0.0, the center ramp has a slope of 1.0,
and the contrast at either end of the ramp with the outer region is 4.0. Of course, the contrast of the center of the
ramp with the background is 0.

Figures lb and Ic illustrate the result of the procedure for Pmar: = 1 and 2, respectively, stopping at s' = 1/4.
First, note that the entire ramp is separated from the background, even in the center where the local signal-to-noise
ratio is 0 (the thinner line separating the ramp from the background near the center indicates that the discontinuity
is only of order 1, that is, a discontinuity in the first derivative of the underlying image). This is in contradistinction
to the output of the Canny edge detector [6]. For a small spatial scale (Figure 1d), the Canny operator leaves a gap
(not to mention the introduction of spurious discontinuities due to the assumption that edges are locally piecewise-
constant), whereas a larger spatial scale (Figure le) simply makes the artifacts worse. (The operator was unable to
find the correct outline for any parameter settings.) Second, note that the elements of the ramp have been determined
to be order I (as indicated by the number immediately above each element, no number means that the elenient is
order 0), whereas the elements of the outer region have been determined to be order 0. Thus, the procedure has not
only located the discontinuities correctly, but has also determined the correct order for each region.

Figure 2 illustrates an application of the procedure to an aerial image of a house, with P,a = 1, stopping at
s' = 1/4. Figures 2b and 2c show the resulting underlying image and discontinuities. Figure 2d is an image of the
stability measure for these discontinuities, with the darkest lines indicating the most stable discontinuities. Two
interesting points emerge from this example. First, the four bushes in the upper-left corner are almost completely
delineated, even though the contrast along that part of their boundaries is virtually nil. This is an example of the

zero contrast" situation similar to the previous synthetic ramp image. Second, the majority of discontinuities that
form closed regions have high stability measures. This is a fairly strong indication that the piecewise-first-order (or
higher-order) model is appropriate for this image. To verify this conclusion, observe that the discontinuities obtained
using P,,a, = 2 (Figure 3) are virtually identical, the only exceptions being the few very-low-stability discontinuities.

Figure 4 illustrates an application of the same model with p,,,, = 1 (using precisely the same parameters) to the
image of a face. In this example, about half the discontinuities have a fairly low stability measure. This indicates
that the language is probably not appropriate for this image. This is especially evident in the cheek and chin areas
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where a higher-order niodl is clearly more appropriate. Even so, the discontinuities with high stability measures
appear to be good candj(hites for region boundaries. Figure 5 shows the results for p, 2, in which the artifacts
due to using too low an order are entirely absent.

Boundary Segmentation

Having decomposed the original image into an underlying piecewise-smooth image and noise, the hierarchical
encoding scheme proposed in the introduction demands that we describe the underlying image in increasingly simpler
fashions, eventually leading to descriptions in terms of the three-dimensional structure of the scene. (Note that, if
we've done the docoin(,sition correctlv, the noise cannot be described in any simpler fashion than with the optimal
language described above.) The first steps in this direction might be to describe the region boundaries more compactly
in terms of straight llines and smooth curves, and to group together non-adjacent regions that can more simply be
described jointly than ildependently.

Some of the reasons that grouping non-adjacent regions can lead to simpler descriptions are (1) the intensities
within the regions are more compactly encoded using a single polynomial than several in(lependeit ones, (2) the
positions of the regions are related (e.g., many small regions might form a smooth curve or a flow field [33]), (3) parts
of tie region boundarit. are related (e.g., the parts might form a straight line or smooth curve, or they might
be parallel), and so on. 'Ihe information required to perform the first two types of grouping are already explicit
in the description of the underlying image. The third type of grouping, however, requires a more sophisticated
representatioi of the rgion boundaries than the simple chain-code used above. This is an additional motivation for
describing the region ,'ilmdaries in terins of straight lines and smooth curves.

As a first. stel,, lhen. we describe loundaries in terms of straight lines (see the paper by Smith and Wolf [27] for
a .imilar application of ii niiniial-length encoding). li analogous fashion to the image segmnentation presented above,
each segmient of Il,' bomi ,arv is (lescri bed in terms of a straight line and the deviations from the line. Given that
the straight lines form a continuous contour, each segment can be described with two parameters (dxj, dyi) being the
(xi,yi) coordinates of thi,. end of tlie I" line relative to (xi-l,y - ). According to Rissanen [25], each parameter can
be encoded using i 1 + 1 bits, where n is dxj or dyl, and

log I = log92 1I + log9 log9 In +... for all positive terms

is the number of bits r,' pired to encode a positive integer n.
As a first approximation to the cost of encoding the deviations, we encode the boundary points (xi, yi) as if their

perpendicular dist ances from the line, ri, were white noise. Thus, the cost of encoding the deviations ri to within
precision q is:

og - log2,r + logua - logq +21 (2-) (

(see tile derivation of EIq. ,4). The parameters of tile line that minimize this cost function can be determined using a
standard least-squares algorithm.

[le variance parMlctitr o-1 for the Pt h line segment is either an a priori estimale of the variance, or can be
coitiuted indepetidently for each line as

which is the value that itiinii--s the encoding length in Eq. 10 above. It tle latter case, the variance parameter
(7 must also be encoded for each segment. Rissanen [25] suggests that for an optimal precision, the number of bits
required to encode a parameter such as this is approximately log92 n plus a constant, where n is the length of the
segment.

Ideally, we would like to find the simplest description of all of the boundaries, itcluding appropriate decisions
about the branch points that occur when two or more boundaries meet at a single point. For this paper, however,
we encode the boundaries of each closed region independently. This is (lone via a (lynatiiic-f)rogramming algorithm
where the cost of optimally encoding boundaiV points 0 to i is defined recursively as

Coi = minCoj-1 + C2'i.
j<i
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II,. ( is tilb' ost of encoding Points j to i Nvlv I a sinlgle lilie s>'iiiiit (lusiiig tlie cost estimates defined above).
I~ hniiitilatioii, of course, as.sumes that eachl se"Iliielit 15 cuwdef iiidepeldeiitly, even thonigh we would like the

~1ilj~i0 ofoi iesget ocicd i i i ii- u fb et 'itliiiore, boundaries formng closed
.iir%,s tist he arb-itrarily cut to forml at linlear seqIieiice of poinits. perhaips forcing a sub-optimal segmnmtatimon. This
,ilj ,iiiialit% can l, mnitigatedl somlewhat by repeat iiig tie set of poinits se veral timies, and using the segi ientat1011
1I r b1w st of points near the mliddle.

)l%*th Ii i golini, into all of the details, the ba;sic Idea of' lte parallel ('%I imphitiemitation of this algorithm is to
1-1,211 a;I P,,Cssor to each boutndlarv point, such tHiat proc ssor i h as poi lit (-, , Ili) lin its mnemory. SuIch qluantities as

k =

iiiin d tI , as-squares, algorithm, are, comipuitedl for aill i list,,,, t lie SCAN!! operator (this only takes 0(logp))
liii-. x iwre 1, Is tili, niumber of processors). For a given %-,lilt(e of i (st art igl with Ii = 0 until i - 2 - 1), tile cost CiJ

i C iii el for t;icli processor for which j < i. TO coiiipuLO tthis Cost, such qiian1t itiles as

k=j

!1i r,111Id. 1 his ca n be comuput ed in processor j aIs tIile difIferenuce of' two previously comptuted sumns storeu in
alj:

hl !his % a i lt, 1,-st-sqluares parameters and it( onsil elicoding cost can be computed iu coitstanit time for
I it Pi OtoC has heeim coiifputed i it each Irocessor, thle SAN!operator canl again he used to fintd
a 11li1ii11i or thlt sumn C(' -J + i which istheii stored ii proce sor i(along with the processor timnber that

d ti lie nmiinumi stun). The total tiite requiired to findl the iiiimttiial-etcoling is thus 0(n).
I lit, ii oxi algorit hut canl i fact be applied to all of tili- boundaries in parallel by placing the boundary poirtts

fr tie ir-t ryioui thli first n, processors, then tilie points for thle next region in the next n, processors, andl s0 ol.

li s;:(in a unique region number Ii each processor (such that all ft(i processors for region 0 have 0 stored in tlteir
iiiry tc.), all of the SCAN'! operationis above canl be applied to eacht boundary independently and in p~arallel

isiiii1 th so-called sogniented-scan feature of the CM\. 'Thus, the total time required to find tlte minimial-encoding"Z
[,r aill of tlie boundaries is simply proportional to thle number of points Ii thle longest boundary.

1lie, rosult of this dyrtainic-programming algorithmn applied to tile boundaries of Figure 6a is shown in Figure 61b.
Ie (w'M took approximately 34 seconds to find these boundaries. (Thlese were tlte boundaries of the closed regionis

I' iiuofd b tile CM Implementation of the imiage segmentation algorithmn, as applied to a larger wvindow of the imiage
fioiii which Fiure 2 was derived, and for a relatively large valtie of s'.) Note thtat, even though tlte boundary of
aWrl closd region %%was encoded independently, the parts of the boundaries shared by two regions are almost always

.iiro,e, i ii the sane fashion. This indicates that tlte encoding is fairly stable.

TIo illustrate iii more dletail, Figure 6c shows the original boundary for one of tlte larger regions (corresponding to
flie hoioe ii lie- I tiage). Figure 6d shows the straight-linet seginemits overlaid onl the boundaries. The dots represent
tie first aiid last hoiintdary points enicoded by each line segment.. Fi~gure Ge shows the straight-line segments and
,lots witlifoit tile houindaries.

Summary

Mhl work has been done recently oit t he problem of reconstructinig piecewise-smooth surfaces in one or more
djitiemisioiis, giveni corrupted saniples of the surface [3,5,12,14,17,20.22,26,24,30]. There are several especially difficult
aispects to thet problemii. The first is to determine automatically thme ap~propriate degree of smoothness of the surface
ais a functcion of fte. given data. The second is to detecrrittie automatically both the position and order of thle
discont iunities. Tlhe t hird is to ascertain wheni siich a (lescrilpt ion is app~ropriate for the data. We have resolved these
litliruht is by (1) posing thle problem as an optirniZatriori problem in wvhich the objective function is based oit thme
iniformnation-theoretic notion of minimum-knmgtm descriptions, andl (2) defining an algorithm that balances simplicity
of desription igainst stabilitry of description by first finding tHie miost stable aspects of the description.
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W\e I;\ i'ilI p\\'i liii ;Ipiiici to ti' Ilia~ -loirt itiotitig prob~lem: conistrict a comipl~t~i andj stable.
i-.cri1 4t ;11 i 1. , Il hi (HISc 0 11 ois l d l~iitvi lanIagoi~ thait is siiiili't litiil( wn Sse of' bI'itg shortest We hiave

prcseir crIIri];I, qI II chiIhIto lI st 1I qriiial uItI II IIt I oIis of coiilp e wtes, St aItilIit V, ;Iittl 5I I I II c Ity, anid we have v'Ii I)bo( IiM
this', riteria wittliii lilt tlh,rv of' iiiiiiiiiiiiiii-let di(escriptlolls.

Vor tIII, specitic piii~p i toi rolemi, we described it-al Images as thle corrupt ion of ideal (piecewise-
polyniiiiial iiiiapgs lhiblrrii ig atid Owl additioti of'spatially varyn white noise. )le defined a. lain for decscribitig
both till Ii nia'c.. ;mi tilie corri pt ions. aind~ presented ant algorithin for finding the simplest description of an image,

il tertis of tisl- J igig.lr a givenl iii(aSt of stabtllitv. Thiis algoritilin is a significant imnprovemnt over that
proseilelIi [It'd. Tlw stblt tnisiire has proved erticial because wve are interested in dlescriptionis t hat are not
On ly as slil le als po si I . blit that are, aliso as itivariant as possib~le to thle severe applroxiiait ionisembllodiled in anly

lowlv Islriplt i~iitig. Thle algoriti no nyd teries the positioti ofdiscotitfuitites int t~he ideal image,
Illt also d~cin Ie it Il thle ordler of tile dIiscontinuiity aind the order of the polynonmial within the regions; all of
this Is In" wit houit til lened to adjust ;Ii. parameters. Furthermore, the algorithmn is local, p~arallel, and~ iterative.

nwakin g it ideally sitted to i iassively parallel conmputter arcitect,,res such as the CMI.

Wc have ;lso' presnt ed prelilin iary results onl the secondl stage of a proposedi hierarchical scheme for describingl
i ~' Ini Illis secon d st age, t lie region b~oundIaries found by thie first stage are descri bed] int ternis of straight-

[line, segentlls: tlie niii~a-rg idescription of thel boundaries was found uisitng a parallel dynin~iic(-prograiiniig
:il-ort lit11.

A ppiicat ois. of' t his fo)riiiiini to real Inmages indicate that, even though the descriptive laniguage we have defined
is ext roil,'iv situiplc (wvithI no iiiodeis of thlree-dimensional shape, lighting, or texture, for example), the simplest an([
Iiost staliii, dscript ion inl tisl. la 1pina1ge yields excellent imiage partitions.
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(b)

(c)

(d) e

Figure I An illustration of the pow~er of global optimization. (a) The inpuit synthetic imiage. (b) The result of the

procedure for p,,, 1. (c) The result of the procedure for p,, 2. (d) The output of the Canny operator, mask

size=4. (e) The output of the Canny operator, m-ask size=8.
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i' I

(b) (c) (d)

Figure 2: An application of the procedure to an aerial image of a house, with Pnax - 1. (a) The input image. (b) The
resulting underlying image. (c) The underlying image with overlaid discontinuities. (d) The stability measure of the
discontinuities; the darkest discontinuities are the most stable.

A

(a) (b) (c)

Figure 3: Same as the prior figure, but with p,,x = 2. (a) The resulting underlying image. (b) The underlying
image with overlaid discontinuities. (c) The stability measure of the discontinuities.
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(b)()(d

Figure 4: An application of the procedure to the image of a face, with Pmna: 1. (a) The input image. (b) The
resulting underlying image. (c) The underlying image with overlaid discontinuities. (d) The stability measure of the
discontinuities.

Figure 5: Same as the prior figure, but with p,,a,,, 2. (a) The resulting underlying image and discontinuities.
(b) The underlying image with overlaid discontinuities. (c) The stability measure of the discontinuities.
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a I I I l I

(a) (b)

(c) (d) (e)

Figure 6: Result of the minimal-encoding of region boundaries in terms of straight lines using dynamic programming.
(a) The initial boundaries. (b) The straight-line segmentation. (c) The boundary of the house only. (d) The
straight-line segmentation of the house superimposed on the boundary. The dots represent the first and last points
encoded by each line segment. (e) The straight-line segmentation of the house only.
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Edge Based Transform Refinement'

D.W. Thompson

GE Corporate Research and Development Center
Schenectady, NY 12301

ABSTRACT

The problem of model-based feature matching is complicated by the need for robustness in the face of
segmentation error and the need for a form of hypothesis verification. A fast solution to the problem
of determining the transformation of a set of perturbed edge segments is presented as a partial solition
to both these problems. This solution is also seen as an approach to the object tracking problem when
transformations between successive images are relatively small.

INTRODUCTION
It is often the case that in order to increase the robustness of a model-based matching system one is forced

to allow considerable flexibility in match parameters. This allows for considerable image variation with a
reasonable chance of successfully locating the objects of interest. However, one also incurs the penalty of
reducing the specificity of the match. This loss of specificity is manifested in a reduced numerical precision of
the match and by an increase in the number of false positive results. The rejection of false positive matches
and acceptance of correct matches is hypothesis verification. Hypothesis verification may use the same or
different data modalities than the original hypothesis generation algorithm (eg. edges rather than vertices).

Our need for a match refinement procedure is motivated by the characteristics of our vertex-pair matching
system [Thompson and Mundy]. First, due to the nature of the vertex-pair feature, we are often not able to
involve some areas of the model in the matching procedure. In order to behave well, the vertex-pair must
be defined on a pair of intersecting edges which are long enough to be readily detected in a wide range
of poses. It is not unusual that strong, "interesting" edges exist alone. Second, the vertex-pair matcher
derives its robustness from the fact that transform votes are coarsely defined. This allows vertex-pairs to
exhibit "matching" transforms despite a certain amount of anomalous image/segmentation behavior, but it
also means that the resulting transform values may be imprecise. Third, in the area of object tracking, we
need a simple approach to viewpoint-constrained matching. A refined vertex-pair approach has been tried
and found to exhibit reasonable matching behavior but to run relatively slowly [Thompson and Mundy 88].
We therefore need an approach to allow coarse matching to occur (to increase the probability of a successful
match and to speed the matching procedure) but which may refine the quality and precision of matches in
a precise numerical framework.

PRIOR WORK

The primary work on transform determination from 3d to 2d line correspondences was done by Lowe
[Lowe]. His system used Newton-Raphson convergence over a set of equations produced by measuring the
distance between lines in the scene and projected model lines (the lines produced by back projecting the
transformed model onto the image plane). Each line correspondence produced two equations, so the system
was able to solve for the transform with as few as three lines.

A significant amount of work has been done on solving the general structure-from-motion problem using
line correspondences. This is not the problem being addressed here, as we are using a 3d model and
attempting to determine motion, but the approach to the solution via 2d geometrical constraints on 3d
transform parameters is similar. Liu and Huang [Liu and Huang] present a linear algorithm for general

'Work at GE was supported in part by the DARPA Strategic Computing Vision Program in conjunction with the Army
Engineer Topographic Laboratories under Contract No. DACA76-86-C-0007 and the AirForce Office of Scientific Research
under contract No. F49620-89-C-0033.
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Scene Edge

Model Edge

Figure 1: Edge Similarity Measures

motion computation on a series of three synthetic images. Their algorithm dealt with matches between sets
of 2d lines in the successive images. They relied on solving for the individual components of three transform
matrices, for a total of 27 unknowns, requiring at least 13 line correspondences over three images. Faugeras
et al [Faugeras et al] used extended Kalman filtering on a linearized form of edge descriptions to generate a
3d description from a series of images. They require 6 edge correspondences over three images to determine
position and orientation.

OUR APPROACH
The approach here is to use the approximate transform derived from an arbitrary matching system

(usually the vertex-pair matcher) to predict feature (edge) locations. We then assign scene edges to model
edges and compute a differential transform. The new transform is used to predict new edge correspondences,
and the process iterates until the system converges.

PREDICTING EDGE CORRESPONDENCES

We must parameterize model and scene edges in such a way that we may match model edges to scene
edges which may be broken or over/under extended, yet which have approximately the right orientation
and position normal to the model edge projection. The orientation component, O, is simply the angular
difference between the edges. The position component, D, is more complicated since scene edges may be
fragmented by occlusion or segmentation error. Since the model edge projects perfectly, the location of its
midpoint is reliable. Therefore, we can use the component of the distance between the scene line (which is
the geometric line along the scene edge) and the midpoint of the projected model edge which is normal to
the projected model edge. The parameters D and 0 are shown in Figure 1. To determine candidate line
correspondences, the model is projected onto the scene and each model edge is paired with every scene edge
which falls within permissible ranges of D and 0. The viewpoint may be compared with model face normals
to eliminate lines in the model which are not visible and should not be matched.

DETERMINING A DIFFERENTIAL TRANSFORM

In order to determine a differential transform, we consider the set of edge correspondences, as derived in the
last section, to define a linear system of equations. We assume affine projection as an adequate approximation
of true perspective viewing [Thompson and Mundy]. Since the transformation equations are not linear, we
need to linearize the rotation equations of line correspondences.

Detu-rmining Rotation

If we consider R to be the complete rotation matrix and let Rb be the initial rotation estimate and Rt be
the differential rotation matrix, we can write R = Rb • Rt. If we only allow small rotations, Rt becomes a
linear transform in , , , rotation about the x, y and z axes respectively. Specifically,

cos(cos ¢ cos(sinVbsinO - sin(cosO cos(sinVbcos0 +sin sin0
R= sin(cosO sin(sinVksin0+cos(cos0 sin(sinVbcos¢k-cos(sin0

- sin sin 0 cos V cos 0 cos V,
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Figure 2: Determining Scale and Translation.

Using the standard small angle substitution for sin and cos (cos c= 1, sin a = for a 0),

1 004-C V +
Rt = ¢ QJ€+1 V (1)

We may further simplify Rt by noting that for small rotations, the product of two angles is very small ( 0).
Therefore let

Rt = C 1 -€ (2)

Let Ns be the normal vector to the 2d scene edge and M be the original model edge direction vector. When
perfectly rotated, M should be orthogonal to Ns. Thus we can apply a dot product constraint,

Ns.R.M = 0 (3)

Ns.Rt.Rb.M = 0 (4)

Ns.Rt.Nb = 0 (5)

substituting Nb for the approximately rotated 3d edge (Rb. M) in eq. 4.

Rt Nb -- (Nbi - (Nb 2 + ONb3 , (Nbl + Nb 2 - ONb 3, -VkNbl + bNb 2 + Nb 3) (6)

Substituting eq. 6 into eq. 5 (recall Ns is 2 dimensional)

NsNb + Ns 2Nb 2 - ONs 2Nb 3 + ONsNb3 + ((Ns 2Nb1 - Ns, Nb 2 ) = 0 (7)

or,
NsiNbi + Ns 2 Nb 2 = ONs 2 Nb3 - ONs1iNb3 - ((Ns 2 Nbl - NsNb2 ) (8)

Each line correspondence provides a single equation. The system solves for the three rotation parameters,
€5, 0, (, by a system of linear equations. We therefore need a minimum of three line correspondences. If
more than three line correspondences exist (which is likely) a least squares approximation is used.

Determining Translation and Scale

The next step is to compute translation and an affine scale measure. Given a unit normal vector, Nm, to
the projected model line, we may write

Nm. T = Nm • (Pp - SPin) (9)
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where T is the translation vector, S is the scale factor, Pm is the rotated origin point of the model edge and
Pp is the origin point of the scene edge. That is, the component of the translation vector which is normal
to the projected model edge is equal to the vector difference between any point on the scene line and any
point on the projected model line, which, ideally, are now parallel. Then,

Nm . SPm + Nm. T = Nm . Pp (10)

and we can solve for S and T. Figure 2 shows the geometry involved. Again, each line correspondence
provides one equation and we therefore need three non-parallel lines to minimally determine the three
underlying parameters of T and S.

ITERATION CONSIDERATIONS

The computation of a new transform estimate involves computing a transform consistent with the current
set of line correspondences. The system finds a consistent transform by iteratively computing a differential
transform, from the least mean squares systems described above, and adding it to the current transform.
At each iteration, outlying line correspondences are removed. When no outliers remain and the transform
parameters are stable, a consistent transform is said to have been reached. Then, the new consistent
transform is applied to the model, the model is back-projected, a new set of line correspondences is computed,
and the process repeats. The system finishes when the set of line correspondences and the resulting transform
remain the same or when it passes a limit on the maximum number of iterations.

RESULTS
The accompanying figures demonstrate the use of the iterative edge matcher for transform refinement

and model tracking. Figure 3 shows a wire frame model from a single viewpoint. Figure 4 is an image of
the modeled object on a turntable. The vertex-pair matcher was used to generate an initial match, which
is shown in fig. 5. Note that the match is correct in certain areas, where the model was parameterized
with vertex-pairs, but erroneous in other areas. Figure 6 shows the match after it has been updated by the
edge matcher. No face visibility (hidden line removal) criteria were used for this example. Figure 7 shows a
second image of the block, rotated 10 degrees on the turntable. Figure 8 shows the match to that image by
the iterative edge matcher using the match from fig. 6 as a starting point.

Images A and B are 320 x 240 pixels. Their segmentations each consist of approximately 85 edges.
Convergence to the values shown in figs. 6 and 8 given the initial estimates each occurred in under 5 seconds
on a Symbolics 3600.

Convergence of the matcher is dependent on the available image data, but has been demonstrated with
up to 250 error in the initial match. Currently, the system is judged to have converged when it settles on a
fixed set of line correspondences and computes nearly the same differential transform for them twice in a row.
These are usually adequate criteria but instances of oscillation have occurred. Divergence from a reasonable
initial estimate has also occurred, usually in cases where a large number of small edges are present in the
segmentation or where the viewpoint is such that only limited or coplanar areas of the object are visible.
Convergence on a false match has not been observed with reasonable matching parameters.

CONCLUSION

A simple method for determining model transforms from edge correspondences has been presented. The
system is relatively robust in the face of segmentation error and occlusion, and is reasonably fast. This
algorithm offers solutions to the problems of transform refinement, hypothesis verification and tracking.
Most of our experimentation has been oriented towards simple transform refinement. Hypothesis verification
is a larger topic for which this paper only offers a small tool. Work remains to be done on the subject of
what constitutes a valid hypothesis. Tracking seems to be a reasonable application for the system discussed
here, but a good deal of work remains to be done in generating models of object motion. Ongoing work on
the system is intended to account for perspective distortion.
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Fig. 3 Wire Frame Model Fig. 4 Image A

Fig. 5 Initial Match Fig. 6 Updated Match

Fig. 7 Image B Fig. 8 Edge Match to Image B
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Abstract

Regular repetitive textures are common in real-world scenes, occurring in both natural and man-made environments.
Their analysis is important for image segmentation and for shape recovery from surface texture. There are two

fundamental problems in analyzing regular repetitive texture. Firstly, the frequency interpretation of any regular
texture is ambiguous since there are many alternative interpretations that correspond to the same texture. Secondly,
the very definition of regular repetition is circular since the texture element and the repetitive frequency are defined
in terms of each other. In this paper, we address these two problems and present an answer to each. To address the
ambiguity of frequency interpretation we turn to the lattice theory and choose successive minima as the most
fundamental frequency vectors of the texture. To deal with the circular definition of regular repetition, we compare
the structural relationships to prominent features in the texture. These theoretical concepts are incorporated into a
working system, capable of analyzing and segmenting regular repetitive textures in real-world images. In contrast
with previous work, our technique involves entirely local analysis and is thereby robust to texture distortion.

1 Introduction

Regular repetitive textures are common in real-world scenes. They occur both as a result of natural processes (e.g.
the repetitive texture of reptile skin) and the efforts of man (e.g. man's making of a city scene). Understanding these
textures is important not only as a basis for image segmentation but also because regular repetitive textures can
provide valuable information for estimating surface orientation.

A fundamental problem in analyzing regular textures, however, is that the definition of regular repetitive texture is

circular. The frequency of the texture is defined as the spatial displacement between elements of the texture, but the
element of the texture is defined as that portion of the image that is regularly repeated. This circular dependency is
usually handled by obtaining information about the repetitive frequency without considering the nature of the texture
element or vice versa. In both approaches, a global analysis of the texture is performed, restricting the applicability
of the algorithms to undistorted samples of a single repetitive texture.

In contrast to these approaches, our work employs a purely local analysis to identify the repetitive structure of the
most prominent (dominant) features in regular repetitive textures in real-world images. In this way, we identify the
regular repetitive relationships between texture elements without identifying the texture elements themselves.

A second problem in analyzing regular repetitive textures is that: even when we know the locations of texture
elements, there are many alternative pairs of frequency vectors that equally describe the pattern of the texture

'Current address: Computing Discipline, Macquarie University, NSW 2109, Australia
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elements. This problem has been handled in the past by choosing either the shortest frequency vectors [8,14,15] or
those vectors which provide the simplest grammatical structure for the texture region [10]. The former approach has
the heuristic advantage that the frequency vectors are independent of the shape of the texture region. In this paper,
we develop additional reasons for preferring the shortest frequency vectors (which we call the fundamental
frequency vectors based on results from lattice theory. These results provide additional properties of the fundamental
frequency vectors that are useful for extracting the frequency of real-world textures.

We have applied the concepts developed in this paper to a system that analyzes regular repetitive textures in
real-world images. This system identifies the fundamental frequency relationships between the most prominent
features in the texture elements of regular repetitive textures present in the im ?es. The output of the system is a
planar graph describing in detail the grid structure of the texture.

2 Existing Frequency-Based Approaches

Many of the existing approaches for analysis of regular repetitive textures are based on first determining the
frequency of the repetition. For this purpose, Matsuyama et al. [9] employ the Fourier power spectrum. They locate
peaks in the power spectrum as evidence of the dominant frequency of the texture. Other researchers [2,3,17]
observe that the co-occurrence matrix for displacement 8 should be highly diagonal if 8 is a frequency of a regular
repetitive texture. In related work, Davis et al. [4] suggest computing co-occurrence relationships between image
features instead of between raw pixel intensities. Nevatia et al. [11] extract repetitive frequency by computing
co-occurrences of edge features.

The frequency-based approaches all rely upon a global analysis of the image. They have been successfully
employed for extracting repetitive frequency from small samples of a single repetitive texture. If these approaches
were to be applied to real-world scenes, however, two problems would have to dealt with. Firstly, real-world scenes
often contain regular repetitive textures in which the frequency varies throughout the texture. Secondly, real-world
scenes usually contain regions of non-regular texture and often have more than one regular texture in them.

Both of these problems imply that an analysis needs to consider small samples of the image (of the order of a few

texture elements) at a time. Because the size of the texture elements is a function of the frequency of the repetition,
the appropriate image sample size varies as a function of the hypothesized repetitive frequency. It therefore becomes
necessary to process a large number of samples of different sizes instead of simply applying a global analysis to a

single image. It is not surprising then that these techniques have yet to be applied to real-world images.

3 Existing Element-Based Approaches

Regular repetitive texture can also be analyzed by first locating the texture elements and then determining the
frequency relationships between them. This approach is employed by Tomita et al. 114] who extract the texture
elements by a simple region analysis. The elements are then grouped on the basis of their shape and orientation
parameters. The displacements between the texture elements of a single group are then entered into a two-
dimensional histogram. Peaks in the histogram are identified as frequency vectors of the texture. Further work in the
same vein is in [8,101.

These element-based approaches have been applied with considerable success to small samples of a single regular
repetitive texture. Because the texture elements are grouped, regions of different regular textures can be segmented

1077



from each other provided that their texture elements are sufficiently different. This capability is very useful when
dealing with real-world images where it is common to encounter more than one regular repetitive texture in the same
image.

The element-based approaches do have one major weakness: the repetitive frequency is determined by a global
analysis of the texture. Such a global analysis will fail if the frequency varies within the texture. Frequency
variations commonly occur in textures in real-world images as a result of perspective imaging, and existing
techniques are unable to analyze such images.

4 The Dominant Feature Assumption

Rather than working with the raw image intensities on the one hand or texture elements on the other, we work with
features of the image in some arbitrary feature space. We consider the image to consist of a set of these features,
appropriately located. (Conceptually, we convert the image into its feature-space representation). We define a
texture element T as a set of features (F1 , F2 .... F,,} each of which has a location x(Fi) relative to the origin of 7. We
assume that a feature does not span two or more texture elements, but allow a texture element to span any number of
features.

We now define a function P, called the prominence function, where P(Fi) is a scalar value. The function P is
continuous, in that similar features have similar values of P. A convenient form for P is a function that measures
information content of the feature. It is highly unlikely that any two features in T will have the same prominence
value P. In fact, for a randomly generated T, all values of P will be distinct with probability 1. It follows that we can
identify any particular feature by its prominence value P. In particular, we can uniquely identify one of the features
of", say Fp, as the most prominent feature in T. Consider the following:

V/i P(Fp) >_ P(F i)

We call F, the dominanifeature of the texture element T. Notice that if P is an information measure, then Fp is that

feature in T which contains the most information. For this reason, the feature with the largest value of P is selected
as the dominant feature.

Consider now a regular repetitive texture consisting of texture elements TI, T2 '...7m that are identical copies of 7. If
we analyze this texture and extract the features F1 , F, 2 ,...,Fnm, we will find that there is a group of features Fp,,
Fp2 ,...,Fpm that are all equally prominent and are more prominent than any other features in the texture. The
dominant feature assumption states that such a set of dominant features always exists.

Dominant Feature Assumption: Every regular repetitive pattern exhibits some feature that occurs once in
each texture element and is more prominent than any other feature occurring in the sam.- texture element.

Under the dominant feature assumption, it is possible to determine the structure of regular repetitive textures from
the feature-space representation of the texture. Since there is one dominant feature for each texcl, the structure of the
dominant features captures the structure of the texels, as illustrated in figure 1.

5 Fundamental Frequency Vectors

The fundamental frequency vectors are defined as the shortest pair of frequency vectors in the texture. They have a
number of useful properties that can be derived from lattice theory. In this theory, we assume that we are dealing

1078



with an undistorted regular repetitive texture. Undistorted regular repetitive textures are closely related to lattices.
We define an undistorted regular repetition as follows.

* Definition 1: A regular repetition R is a set of points {x0+iu+jv: i, j integers) in the plane where xo is an
arbitrary point and u and v are linearly independent vectors. R is the translate of a lattice. The vectors u and
v are a basis for R.

We define the fundamental frequency vectors u' and v' of a regular repetition R as the shortest and second-shortest
linearly independent frequency vectors of R.

* Definition 2: More formally, let V= (xl-x 2 :X1, X2 E R; x1 x 2 1 be the set of all possible frequency vectors
of R. Define the first fundamental frequency vector u' to be any one of the shortest vectors (measured with
Euclidean length) in V. Let U = (iu'; i integer). Define the second fundamental frequency vector v' to be
any one of the shortest vectors in V-U. The vectors u' and V are known as successive minima in lattice
theory; they are the fundamental frequency vectors of R.

This definition of the fundamental frequency vectors has some ambiguity in the choice of u' and v'. This ambiguity
has three possible sources. Firstly, there is the ambiguity between u' and -u' and between v' and -v'. Secondly, if
1u'l=1v'l, ambiguity can occur in the labeling of the fundamental frequency vectors. However, both cases are not
serious problems and will not concern us further.

The third form of ambiguity occurs when there are two linearly independent candidates for v'. In this case there is
more than one set of equally valid fundamental frequency vectors that provide different interpretations of the same
regular repetitive pattern. Textures which have this third form of ambiguity are referred to as ambiguous regular
repetitive textures. The texture in figure 2 is ambiguous -- the fundamental frequency vectors are not uniquely
defined and the texture can be equally interpreted as skewed to the right or skewed to the left. This form of
ambiguity is an important property of the texture itself.

Working from this mathematical basis, we can prove the following useful properties of the fundamental frequency
vectors [6,7,5].

1. The fundamental frequency vectors u' and v' form a basis for R; i.e. the set {xo+ku'+Iv: k, I integers) is
identical to R.

2. There does not exist for R a pair of basis vectors a and b for which Ia1l<v'l and Ibl<lv'l; i.e. there is no basis
for R consisting of vectors shorter than the longer fundamental frequency vector.

3. There does not exist a pair of basis vectors a and b for R for which lal+lbl<lu'l+lv'l; i.e. u' and V describe
the minimum-perimeter structural unit parallelogram of R.

4. The fundamental frequency vectors u' and v' are the most perpendicular basis for R; i.e. lu'-v'i / lu'l1v'l is
minimal among all bases of R.

5. lu'xv'l<lu'l 2 with equality holding exactly when R is ambiguous.

6. The fundamental frequency vectors u' and V are separated by an angle of between 60 and 120 degrees (or
between -60 and -120 degrees).

The first of the above properties is simply assurance of the validity of the fundamental frequency vectors as a
description of the texture frequency. The remaining properties serve firstly to emphasize the unique qualities of the
fundamental frequency vectors --they are uniquely short and perpendicular among all possible frequency
descriptions of the texture. These properties are also useful as a basis for identifying fundamental frequency vectors
from amongst the many candidate frequency vectors in a texture.

In addition to the above properties of the fundamental frequency vectors, the fundamental frequency vectors are
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related to the Relative Neighbourhood Graph (RNG) of the texture elements. The RNG [16] is a bidirectional graph
on a set of poitLs P = [PIP 2 .... Pn in the plane. The RNG connects two points pi and pi if and only if there exists
no other element P&E P such that IPk-Pil<lp j -Pil and IPk-Pjl<1 Pj-Pil. The RNG has been proposed as a model of
human perceptual grouping of dot patterns [121. We have shown in [51 that the RNG of an undistorted regular
repetitive texture captures exactly the fundamental frequency relationships between the texture elements. More
specifically, if W is the set of all possible fundamental frequency vectors of R (including all forms of 9mbiguity)
then the RNG of R is exactly that graph that connects each point xie R to all points in the corresponding set
{Xi+w:WE I)).

6 Analyzing Real-World Textures

In analyzing real-world textures, our aim is to discover the fundamental frequency vectors between the dominant
features of the texture elements. The application of the theoretical concepts of dominant features and fundamental
frequency vectors is not direct, however, because of the variations that can occur in real-world textures. Firstly, the
texture elements of real-world textures often vary from each other, giving rise to variations in the prominence of the
dominant features. Secondly, real-world regular repetitive textures are often distorted as a result of effects such as
surface curvature and perspective imaging, causing the results obtained from lattice theory to be violated.

In order to deal with the variations in real-world regular textures, we use the relative dominance of the features
rather than searching for absolutely dominant features. Rather than computing the Relative Neighbourhood Graph,
we develop a structural description in which various properties of the fundamental frequency vectors are combined
to produce a graph with weighted edges. Successive refinement steps lead to a robust algorithm that can reliably
extract the fundamental frequency description.

The system that we have implemented uses an algorithm consisting of four major phases. The first phase is feature
detection. It extracts blob-like features from the input image and associates a prominence value and image location
with each feature. The second phase establishes basic structural relationships between the features, based on the
dominant feature assumption and properties of the fundamental frequency vectors. The structural relationships are
represented as weighted links between the features. The links and their associated weights are passed to the third
phase which constructs locally regular repetitive structures and attaches evaluations to each of them. Multiple
candidate repetitive structures are evaluated for each image feature. The final phase decides up on a locally
consistent repetitive structure interpretation based upon the competing repetitive structures. A relaxation algorithm
is used to obtain consistency by constraint propagation.

Throughout the processing steps of this system, multiple competing hypotheses are maintained and passed to
subsequent levels of processing. This allows decision-making to be delayed until more information can be
incorporated. Back-tracking is made unnecessary at the expense of maintaining all the likely alternative hypotheses.
In practice, we found it necessary to maintain at most 50 alternatives at each stage.

7 Smooth Thresholding

Throughout the algorithms described below, we express evaluations on the range 0.0 to 1.0. These evaluations have
a similar role to fuzzy reasoning or probability values. Normal decision-making often takes the form of thresholding
applied to a measured value. Instead of directly thresholding the data, we employ "smooth thresholding" functions
that convert measured values into evaluations on the range 0.0 to 1.0. The smooth thresholding functions T and TL
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are based on the tanh function. In the following equations, 't is the nominal threshold value such that T(r,'t, a) is 0.5,
and a is the spread such that T('T+a,'r,) is 0.75. T is a particular parameterization of the Sigmoid distribution; TL
is a logarithmic version which is more appropriate for evaluating ratios.

TXE; =I X-11

x1,o) = ;TOh 5-5 +2 o/0.55

"1'(x, t, a) = TQog x, 0, logo)

8 Feature Extraction

The first step in our algorithm is to extract features from the image. Conceptually, the processing can be based on
any features that have point locations in the image (e.g. corners, but not edges) and an associated prominence value.
In the experiments described in this paper, the feature detector was based on one proposed by Ahuja and Haken [I]
which employs Laplacian of Gaussian filtering to identify blob features. The detector measures both the diameter
and intensity contrast of the blob features. The prominence of a blob is defined, for our purposes, as its area
multiplied by the magnitude of its intensity contrast.

It is important that all the potentially important features are initially extracted. The feature extraction phase
produces a large number of features including many that may not be relevant to the final analysis. These features
generally have low prominence values and they are effectively disregarded during the later stages of the analysis.
The results of feature extraction on figure 5 are shown in figure 6.

9 Basic Structural Relationships

The second phase in our algorithm links together pairs of features that are candidates for being the dominant features
in neighboring texture elements (i.e. elements that are related to each other by fundamental frequency vectors). The
input data for this phase is the features extracted in the first phase together with their prominence values. The output
consists of weighted directional links between each feature and selected neighboring features.

This stage of the processing is based on the dominant feature assumption combined with the property of the
fundamental frequency vectors that they are equivalent to the relative neighborhood graph. The theory is employed
in two principles that are evaluated for each link under consideration.

1. Preiudice principle: Features prefer to be linked to other features which are equally or more prominent than
themselves.

The reasoning behind the prejudice principle is two-fold. First, if the feature under consideration is the dominant
feature of a texture element, then it is only interested in being linked to the dominant features of other texture
elements. Those ,ominant features should be equally or more prominent than the feature under consideration. On
the other hand, it the feature being considered is not a dominant feature, then it will find in its neighborhood more
prominent features. By linking to those more prominent features, information will be available to later determine
that it is not a dominant feature. It is not possible at this stage in the processing to determine whether the feature

under consideration is or is not a dominant feature of a regular texture.

The logarithmic smooth threshold function is incorporated into the following equation SR which evaluates the
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directional link between Fi and Fj. The evaluation is suppressive, in that large values of SR weaken the link. The
constants 8 and 1.5 are the values used in our experiments.

SR(FiF) = TL(-in(P(Fj) 8, 1.5)
TLmjf(P(Fi),P(Fj))'

2. Interference Principle: The link between two featuizs is only strong if there is no other equally or more prominent
feature within the dominated region of the two features.

The interference principle captures concepts derived from both the dominant feature assumption and the relationship
between the fundamental frequency vectors and the RNG. Recall that the RNG links together pairs of points where
there is no other point point closer to both points under consideration. This is equivalent to linking pairs of points
when there is no other point within the "lune" of the two points under consideration (the "lune" is the intersection of
two circles as shown by the dotted line in figure 3).

In adapting the RNG result to real-world image data, we must allow for slight discrepancies in the positions of the
dominant features, particularly as a result of distortion of the texture. The "lune" is much too sensitive to small
variations in the positions of the features and the "true" fundamental frequency vectors would often be disallowed,
so we use a region that lies within the "lune". We call this region the dominated region of the two featu'es. As with
the application of the prejudice principle we do not simply make a binary decision about whether a particular feature
lies inside or outside the dominated region of other features. Rather, the interference of a feature increases from 0
towards 0.5 as the feature approaches the center of the dominated region. Figure 3 shows some contours of the
dominated region function.

In our algorithm, we are interested in linking not points, but dominant features. Clearly, it is acceptable for less
prominent (and therefore, not dominant) features to occur between the two features under consideration, but any
equally prominent or more prominent features would indicate that the pair of features are not neighboring dominant
features. The dominated region suppression term (which is larger if the dominated region contains highly prominent
features that "interfere" with the link) is given by the following equations.

S1(Fi, FJ)= I- [ 1- SL(Fi, Fj, Fk) Sp(Fi, FJ., Fk) ]

where

Sp(F, F, F) =TL( P(Fk) 0515
TL(min(P(Fi), P(Fj))' 0.5, 1.5)

SL(Fi l _ = II , 1.25,1.25)
SFi, F( _ /2)2 (x+1/2)2

D(Fi, k) D(jFk)x-- - 2)- (_)2)/2
D(F.,F§) D(F, F.)

, 2= ((Fi' Fk))2 _ (X 1)2
D(F.,Fj

In these equations, D(Fi, Fj) represents the Euclidean distance between the features Fi and Fj.

The link evaluation EL is obtained multiplicatively from the suppression terms as follows.
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EL(F. Fj) = (I1 -S(Q)(I1 - SAF , F -))

10 Local Repetitive Structures

The output of the second phase of the algorithm is weighted links between features. The link weights reflect the
constraints that the linked feature be highly prominent and that there be no more prominent features in the
dominated region of the link. These constraints are not sufficient to ensure that the links are fundamental frequency
vectors of regular repetitive textures. Indeed, links will be generated even in random patterns of features. It is the
task of this third phase of processing to identify local repetitive structures consisting of a number of links that are
indicative of a small piece of regular repetitive texture.

Three local repetitive structures are considered. Within the interior of a texture region, cross (+)-shaped structures of
five texture elements can be expected to be found. Along the boundaries, T-shaped structures of four texture
elements will occur and at corners, L-shaped structures of three texture elements. These three structures are
illustrated in figure 4. The links from phase two are combined into local groupings of +, T and L-shaped
arrangements. Each grouping is then evaluated to determine whether it is a candidate for a piece of regular repetitive
texture.

In evaluating local repetitive structures, we consider the requirement that the fundamental frequency vectors are to
be approximately perpendicular to each other. Certainly, they are to lie within angle of 60 to 120 degrees, or -60 to
-120 degrees of each other. The perpendicularity of two vectors u and v is evaluated by applying a smooth threshold
to the squared cosine of the angle between the vectors. In T-shaped and +-shaped structures, 2 and 4 squared cosines
are computed respectively and averaged. The average squared cosine S is converted to an evaluation of
perpendicularity Q that is multiplied together with other terms to give the overall evaluation.

Q = 1 - TL(S, 0.5,2.25)

In +-shaped and T-shaped repetitive structures, we evaluate the deviation of the structure from perfect regularity.
We consider the subsets of three features contained in the structures that should be colinear and equally spaced if the
structure is, in fact, regular repetition. There are two such subsets in +-shaped structures and one subset in the
T-shaped structures. The deviation from regularity of such a subset is a two-dimensional vector x. that is the
discrepancy between the average location of the two outside features and the location of the central feature. This
discrepancy is interpreted under a pseudo variance-covariance matrix derived from the vectors of the repetitive
structure. This yields a modified Mahanalobis distance E2 which is smooth-thresholded to yield the deviation
evaluation D as follows.

D = TL(- 1 4, 1.5)

We also consider the evaluations of the individual links contributing to the repetitive structure. For T-shaped and
L-shaped structures, bias terms of 0.5 and 0.25 respectively are multiplicatively introduced to compensate for the
lower number of contributing links and the reduction of other constraints such as deviation from perfect repetition.
The final evaluation of a hypothesized repetitive stricture is the product of the perpendicularity term Q, the
deviation term(s) D, the bias term and the individual link evaluations.
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1 I Relaxation

After phase three of the algorithm, we have computed many competing regular repetitive structure hypotheses for
each feature in the image. If a particular feature is a dominant feature of a regular repetitive texture, we expect that
neighboring dominant features will also exist and that these neighboring features will have compatible hypotheses
about the local repetitive structure. This constraint that neighboring interpretations should be consistent is
implemented in a relaxation algorithm that determines at most one repetitive structure for each texture element. In
the e vent that a feature is not participating in a regular repetitive structure, there is a lack of support from
neighboring features and the relaxation algorithm determines that no repetitive structure is present.

Phase four commences by discarding any local repetitive structures that have evaluations less than 0.5 for +-shaped
structures, 0.25 for T-shaped and 0.125 for L-shaped. (The different threshold levels are required by the bias values
introduced in phase three). After the weak hypotheses have been removed, relaxation is applied to strengthen the

hypotheses that receive support from their neighboring features. The relaxation algorithm we employ is as follows.

For each feature Fi , each of the associated hypothesized repetitions Ri is examined in turn. Each hypothesis
specifies two, three or four neighboring features Fik. Let R*ij. denote the highest valued hypothesis at feature Fijk -

The relaxation strengthens Rii if it is compatible with R*ijk. Let V(Ri) denote the current evaluation of R j, V'(R )
denote the new evaluation and M(RiJ, R* jk) be the compatibility evaluation for R and R*ik.-

v(R ij) = B (V(R ij), M(R i , R * ik)), -T,, V(R*,ik))

e , [,9( 1 - e2) + me 2]

B(e1,m,TB,e) e[.(1 - e2) + me2 ] + I T(1 - e

This update rule is applied to each of the neighboring features Fijk in turn. The value of rB was 0.5 in our
experiments. The compatibility of a pair of hypotheses is evaluated by matching their constituent frequency vectors
in a manner similar Lo the deviation evaluation in phase three above.

12 Results

The system described in this paper has been applied to 40 images from a variety of real-world sources. Typical
results are presented in figures 7 through 9. The repetitive grid structure extracted is graphically displayed overlaid
upon the original image. These results clearly indicate the major result of this paper: that real-world regular
repetitive textures can be analyzed by local analysis algorithms based on the dominant feature assumption and the
properties of fundamental frequency vectors. Figure 7 illustrates the successful processing of a texture that is
severely perspectively distorted. Our system is able to identify this texture as regular repetition because the
perspective distortion does not destroy the local repetitive nature of the texture. Figure 7 also illustrates an effect of
extreme texture distortion. In the lower half of the figure, the algorithm has chosen two alternative, somewhat
counter-intuitive interpretations of the fundamental texture frequency. These arise because the distortion of the
texture is so severe that in these portions of the image, the texture has passed the point of ambiguity and the
fundamental frequency vectors have, in fact, changed.

Our system performs region segmentation on regular repetitive textures purely as a side-effect of the detailed
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analysis. The results are surprisingly good, as can be seen in both figures 7 and 9. In addition, the structural
description produced by our system is very detailed. It may therefore be useful as a basis for a detailed shape-from-
texture analysis. For example, the one-eyed stereo approach of [131 may be directly applicable to the structural
grids extracted by our system.

13 Conclusion

We have made an assumption, called the dominant feature assumption, that the texels of a regular repetitive texture
each contain a single feature that is more prominent than any other feature in the texture. We have also defined the
fundamental frequency vectors of a regular repetitive texture as the shortest pair of frequency vectors in the texture.
By identifying the dominant features and extracting their fundamental frequency structure, we have successfully
extracted the structure of regular repetitive textures in real-world images. The system used for this analysis performs
entirely local computations, enabling it to interpret severely distorted regular repetitive texture. In addition,
segmentation of regular textures is achieved as a side-effect of their analysis.
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(a) Cross relationship (b) T-shaped relationship (c) L-shaped relationship

Figure 4: Types of repetitive relationships
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Figure 5. Image of a skyscraper. Figure 6: Features extractedfrom figures5.
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Figure 7 Caption: Extracted repetitive structure offigure 5.

Figure 8: Arrangement of multiple textiles and Figure 9. Extracted repetitve structure offigure 8.
non-textiles.
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AN APPLICATION OF DYNAMICAL SYSTEMS THEORY
TO SHAPE FROM SHADING

Bror V. H. Saxberg
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NE43-792
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ABSTRACT

The goal of the research reported here is to gain a better theoretical understanding of what lies behind the
visual system's ability to generate robust surface interpretations from single grey scale images. We have examined
the image irradiance equation using notation and concepts from modern differential geometry and global analysis.
The method of characteristic strips used by Horn (Horn, 1975) defines a dynamical system on a four dimensional
space. Using modern methods for analyzing the behavior of dynamical systems, new uniqueness results and a new
shape from shading algorithm emerge based on the image dynamical system. Solution surfaces for the shape from
shading problem are invariant manifolds of the flow generated by the image dynamical system. The stable and
unstable manifolds associated with certain critical points in the image play an important role in determining solution
surfaces. A theorem about unstable manifolds (the Lambda Lemma) indicates a class of computational methods for
finding stable and unstable manifolds around these critical points. We have implemented several such methods, and
find them to be robust in the presence of image noise and mistakes in assumptions about the light source.

1 INTRODUCTION

One of the major challenges for appreciating how vision contributes to our knowledge of the world is to under-
stand how it copes witb the wide variety of lighting conditions, surfaces, and surface markings to provide accurate
representations of the surfaces around us. Although there are a variety of sources of information available to the hu-
man visual system including stereo, color, motion, and shading, we get very clear impressions of the three-dimensional
character of a scene from a single grey-level still picture, even of scenes or objects that are not recognized as previously
having been viewed. This suggests that there is sufficient information in monocular grey-level images without motion
for the visual system to arrive at a three-dimensional interpretation that is very convincing. The visual system is
not always correct or even unambiguous in its interpretations: a picture can be interpreted "correctly" both as a flat
surface with shading variations or as a clear window onto a scene.

It is not known how accurately the visual system estimates shape considered as the exact location in space of
each point on a surface or as the exact orientation of the surface at each point. It is difficult to create psychophysical
experiments to test this because it is difficult to quantitatively probe a subject's internal information about surface
shape. There have been a few experiments along these lines recently (Mingolla and Todd, 1986, BUlthoff and Mallot,
1987) which suggest that our impressions of surface orientation are far more qualitative than we might like to believe.
Nonetheless, we have examined how much detailed information about shape is theoretically contained in an image
of a surface; answers to questions like these at least provide upper bounds on what the visual system can do in the
absence of other information or assumptions.

2 BACKGROUND

Without any assumptions about lighting conditions or surface properties, there is no hope for recovering any
information about surfaces in space: one can take a nearly arbitrary smooth surface and paint it to give the same
image as another smooth surface without paint. The human visual system is apparently capable of using more than
one set of assumptions: consider again the dichotomy between a picture as shaded surface and as window onto a
scene. At the same time, it is difficult for us to entertain a continuum of possible interpretations: without extra cues,
it is hard for us to convincingly interpret a flat picture of a scene as a different, curved, carefully painted surface.
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lBerthold Horn's early work on the shape from shading problem (Horn, 1975) examined it as a problem of physics,
looking at the process of image formation and how light is reflected from objects and concentrated to form images. lie
defined a summary function, the reflectance function, that contained all the relevant local information about lighting
conlitions and surface reflecting properties under the assumption that reflecting properties of a surface patch were
dependent solely on the orientation of the surface, and were constant with rotations of the surface around its normal.
With additional assumptions of no cast shadows and no mutual illuminations, the brightness of a point in an image
depends on the location of the point in space, the orientation of the surface in space at that point, and the reflectance
function for the lighting conditions and surface material.

Assuming a known reflectance function, Horn was able to characterize the shape from shading problem as a
tonliinear first order partial differential equation, the image irradiance equation:

E(x,y) = R(p,q),

using the standard (p. q) gradient space coordinate system to define orientations, and assuming orthographic projec-
tion down the Z axis onto the (x. y) plane for image formation (Horn, 1975). For simplicity we assume the reflectance
function acts on orientations but is independent of space coordinates; for example, a scene lit by a point source from
;I considerable distance.

Classically, such an equation is solved by the method of characteristics, and Horn used this technique to develop
a method for solving for the surface given some initial curve lying on the surface with known surface normals.
Essentially. the problem becomes a Cauchy problem; the solution proceeds along curves called characteristic strips
beginning at the known curve of data. The equations that define the characteristic strips are

i = Rp

y = Rq (1)
,E

q = Ev.

[There is also an equation pRp + qRq; since i is a function solely of p and q, we can solve first for p, q, x, and
y and then use these solutions to find z(t). This allows us to consider an ordinary differential equation in just four
dimensions, x. y. p, and q.] Time is a pz rameter along the characteristic strip (x(t), y(t), p(t), q(t)).

Horn recognized the importance of critical points in the image, places where image intensity as a function of
image coordinates has a critical point. An isolated critical point (pc, q,) in the reflectance function R (i.e. a surface
orientation at which R. = Rq = 0) in general produces an image critical point. Given a known reflectance function,
a critical point (xcy,) in the image with the same brightness E(x,,y,) = R(p,,q,) as at the reflectance function
critical point (pa, q,) could be assumed to have the same surface orientation as the reflectance function critical point.

Unfortunately, as Horn noted, the characteristic trajectories cannot be used to draw out the surface from the
combined critical point (x_.,t,p,,q,): E. = Ey = Rp = Rq = 0 by assumption, and so the characteristic strip
'emanating" from the critical point is the degenerate constant strip (x(t), y(t), p(t), q(t)) = (x,, y, p, q,). To try to

get around this difficulty. Horn constructed a spherical cap consistent with the critical point orientation and used a
small closed contour on this cap as his initial condition curve.

Direct integration of the characteristic equations to find the characteristic strips suffers from noise sensitivity in
practical implementations. As the solution proceeds along constructed curves from the initial condition curve, these
curves can deviate as a result of quantization error and other noise influences. Horn and Brooks (Horn and Brooks,
1986) review and compare a number of related methods by different researchers for making the solution of the shape
from shading problem a global one. allowing data from the full image to contribute to finding stable, relatively robust
solution surfaces. They provide a recipe for generating shape from shading methods. These are relaxation methods
based on minimizing a certain measure, typically the integral over the image region of some combination of the error
in the image irradiance equation and a penalty term for departure from smoothness.

Various such smoothness, integrability, or regularization terms have been tried by various researchers. Horn and
Brooks indicate that enforcing the correct integrability constraint, Py - q, = 0 in gradient space coordinates, does
not immediately yield a convergent relaxation scheme. However, as Frankot and Chellappa (Frankot and Chellappa,
1987) point out, using a different penalty term instead may yield a non-integrable set of surface normals. In other
words. fhe resulting set of normals may be a smoothly chosen set of unit vectors, but may not be surface normals
for any possible two-dimensional surface.

Pentland takes a different approach (Pentland, 1982, 1984) from Horn. Rather than assuming full knowledge
of the reflectance function. which is not available for human vision, he makes slightly less restrictive assumptions
about the reflectance function (e.g. it is Lambertian, but with unspecified direction), and makes more assumptions
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about the surface structure. Pentland shows that if one assumes that the surface at a point is spherical, i.e. can be
fitted by a spherical patch then Lambertian reflectance gives a unique solution for the surface at that point. As one
might expect and as Pentland points out, not all local image intensity patterns can be accounted for by a spherical
patch. Pentland also recognizes that some spherical patch solutions for certain kinds of image data are less likely to
be reasonable than others.

One problem with this approach is that it is an extremely local analysis. In general, the only non-planar
surfaces composed completely of equal curvature points are pieces of spheres. Although one may be able to generate
a spherical solution patch locally consistent with the image for many points in an image, it is not clear that the
surface normals of these patches will be able to form a smooth surface. Nor is it clear that such a surface would
have much to do with the original surface imaged. To compensate for the lack of generality of this surface structure
assumption, Pentland is led to statistical methods to estimate surface orientation based on correlations in natural
images: heuristic estimators for surface orientation are proposed.

Frankot and Chellappa (Frankot and Chellappa, 1987) suggest a way of taking a set of non-integrable surface
normals and producing an integrable set by projecting the surface normals onto the nearest set of integrable normals,
where nearest is defined by a global integral distance measure defined in the gradient space coordinate system (and
dependent on that coordinate system). Together with a method derived from (Horn and Brooks, 1986), they construct
a more quickly convergent algorithm guaranteed to form an integral set of normal vectors, and suggest their method
could be applied to Pentland's normals to generate an integrable surface.

Koenderink and van Doorn (Koenderink and van Doorn, 1980) have looked at the field of isophotes, or constant
brightness contours, of an image and discussed some of their geometric features. They note that the Weingarten
map. which maps the surface in space to the Gaussian sphere of unit surface normals, maps constant brightness
contours on the surface to level sets of the reflectance function on the Gaussian sphere. In order to make sense of the
infinity of possible arrangements of constant brightness contours potentially created by a given reflectance function,
they restrict themselves to Weingarten maps that are "stable," or generic, meaning their fundamental geometry is
not changed by small perturbations. This still leaves the wide class of Weingarten maps that are mostly one to one,
with one-dimensional curves of points that are fold singularities of the Weingarten map, and isolated points that
are cusps of the Weingarten map. They classify various regions of such a surface using parabolic lines (folds in the
Weingarten map), and discuss different causes for critical points in the image: specularities, certain points on the
parabolic lines, and critical points of the reflectance function itself. These latter critical points are the important
critical points in both Horn's and our analysis of shape from shading.

Several difficulties and issues are common to the motivation and execution of shape from shading methods.
Enforcement of integrability is one issue common to different shape from shading methods. Most of the methods
struggle to ensure that the surface normals produced are from a true two-dimensional surface, recognizing that not
all collections of surface normals can be considered as coming from a surface. Frankot and Chellappa (Frankot
and Chellappa, 1987) make the most explicit separation between the two groups of surface normal dist-ibutions,
those that are integrable and those that are not, projecting one group onto the other. In other methods, some
"integrability constraint" is frequently added in as a "regularization" term that is supposed to roughly deal with
getting a smooth surface as a solution. Unfortunately, solutions derived without strictly enforcing integrability may
still not be integrable.

The question of uniqueness of solution for the different methods has also proved difficult. One would like some
knowledge about how many interpretations of an image are possible given the information in the scene Bruss
(Bruss. 1980) found a uniqueness result for Horn's method in the case of a reflectance function of a particular form:
essentially those with level surfaces that are concentric ellipses in the gradient space coordinate system. Many
reflectance functions do not have this form, however. Deift and Sylvester (Deift and Sylvester, 1981) investigated in
some detail uniqueness results for the degenerate case of an image of a Lambertian hemisphere lit from the viewing
direction. They found different classes of non-spherical, even non-symmetrical, local solutions which are C2 alnost
everywhere. If the solution surface is required to be C2 everywhere, the expected spherical solutions are unique.
They used methods of functional analysis, working in a polar coordinate system to analyze this specific case, and did
not address questions about stability of the unusual solutions. Brooks (Brooks, 1982) discusses the general problem
of ambiguity of solutions surfaces in images, and shows families of solutions for certain degenerate cases, e.g. a
plane and hemisphere lit from the viewing direction. He also briefly examines the relationship between uniqueness
of solution and the kind of image patch in the case of a hemisphere: certain patches of the image provide much more
constraint than others. General results on uniqueness and properties of solutions are lacking from the literatui.

TFhe stability of scene interpretation to variations in assumptions has not been fully explored. Ikeuchi and
Horn (ikeuchi and lorn, 1981) did a number of experimcntal tests of the performance of their shape from shading
algorithm under violations of the assumed conditions, but, this 6eems rare in the published literature.
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3 DYNAMICAL SYSTEMS THEORY APPROACH

Following Horn, we assume a known reflectance function, R(p,q), independent of location in space; we also
assume a smooth image. We assume orthographic projection (x, y, z) (x,y) of space onto the (x, y) image plane.

A system of ordinary differential equations such as

i= RI

= Rq (1)
p=E
q = E .

defines a dynamical system (Abraham, Marsden, and Ratiu, 1983). A dynamical system can be though of as a vector
field, the choice of a velocity vector at each point of a space ((x,y,p,q) space here). A particle traveling through
space with velocity equal to the vector field at each point of its travel is said to be moving along the flow of the
dynamical system, or along a trajectory of the dynamical system. The characteristic strips are the (characteristic)
trajectories of the image dynamical sytem defined by equations (1).1

A smooth solution surface for the shape from shading problem is a two dimensional surface in IR3 that could
have generated the image. As noted by Horn, such a surface must be made up of characteristic strips. This
means that if a point (x0, Yo, zo) on the surface has surface orientation (Pc, q0), then the entire characteristic strip
(x(t), y(t), z(t), p(t), q(t)) through (zo, yo, zo, po, qo) lies on the surface, i.e. (x(t), y(t), z(t)) is a curve on the surface,
and (p(t), q(t)) gives the orientation of the solution surface at each point on the curve. Not all choices of (xo, yo, p0, qo)
can be consistent with the image: we must have

H(xo, yo, po, qo) - E(xo, yo) - R(po, qo) = 0

to begin with; the characteristic strip is then guaranteed to keep

H(xr(t), y(t), p(t), q(t)) = 0.

As suggested by the above reasoning, instead of thinking of the solution surface as a two-dimensional surface
sitting in IR 3 , we can drop the depth coordinate (essentially depth is a symmetry in our problem: neither the image
nor the reflectance function depend on it) and consider the solution surface to be a two-dimensional surface in the
four dimensional space defined by the coordinates (x, y, p, q). 2 The two-dimensional solution surface is now made up
of one-dimensional trajectories (x(t), y(t), p(t), q(t)) of the image dynamical system.

In the theory of dynamical systems, a surface that is entirely made up of trajectories is called an invariant
surface: if a point on an invariant surface is allowed to flow along the trajectory defined by the dynamicse system,
the point stays on the surface. All possible smooth solution surfaces for the image irradiance equation are invariant
surfaces for the image dynamical system. The reverse turns out to be not quite true: not all invariant surfaces of the
image dynamical system correspond to physical solution surfaces of the image irradiance equation. We might have an
invariant surface on which H(x, y, p, q) : 0, or the invariant surface might not project into JR 3 as a two-dimensional
physical surface. Nevertheless, the problem of finding solution surfaces to the image irradiance equation is closely
connected to the problem of finding two-dimensional invariant manifolds of the image dynamical system.

1 The image dynamical system can be shown to exist independent of a particular coordinate system choice using differential

forms and the Frobenius theorem (Saxberg 1989); this can be useful if one wishes to examine the dynamical system with
an unusual coordinate system, e.g. examining the shape from shading problem along the bounding contour (where the
image projection just grazes the surface) using a coordinate system that follows the bounding contour and gives the shape a
particularly simple form (Saxberg, 1989).

2 Technically we can only do this globally if we work in a coordinate independent fashion (Saxberg, 1989); practically, with

the (x, y, p, q) coordinate system we are only excluding portions of solution surfaces that are on the bounding contour.
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Figure 1. Two-dimensional dynamical system with saddle critical point.

3.1 THEORETICAL RESULTS

In the theory of dynamical systems, the study of critical points has been found to be very useful in characterizing
the behavior of a dynamical system. A critical point Pc in a dynamical system P = f(p) is a point where the associated
velocity vector is the zero vector, f(p,) = 0. In the case of the image dynamical system defined by equations (1),
this occurs when

RP = Rq = E, = Ey = 0,

i.e. at critical points in the image due to critical points in the reflectance function. Near a critical point of a
dynamical system P = f(p), one can gain insight into the behavior of the system by studying the linearization

= Ap = [(9fi/xj]p of the system around the critical point; the matrix A is essentially the Jacobian of the vector
field f at the critical point. The eigenvectors and eigenvalues of A give qualitative information about the behavior
of the non-linear dynamical system near the critical point (Abraham, Marsden, and Ratiu, 1983).

In the case where none of the eigenvalues have real part equal to zero, the critical point is called hyperbolic.
In this case, the trajectories around the critical point in the linearized system are homeomorphic to the trajectories
in the non-linear system (the Grobman-Hartman Theorem, (Palis and de Melo, 1982)): the linear and nonlinear
systems look alike (aside from some bending) in some neighborhood of the critical point. Existence and uniqueness
of invariant manifolds for the linearized system imply the existence and uniqueness of invariant manifolds of the
non-linear system near the critical point.

Hyperbolic critical points are generic; i.e., unless there are special symmetries operating, the "usual" type of
critical point is a hyperbolic one, and slight perturbations of a dynamical system with a hyperbolic critical point
have a similar hyperbolic critical point near the original one. It can be shown (Saxberg, 1989) that critical points
of an image due to an isolated generic maximum (or minimum) of a reflectance function give rise almost always to
hyperbolic critical points of the image dynamical system for a generic surface. We call these hyperbolic critical points
of the image dynamical system very good critical points. Non-hyperbolic critical points may occur if the critical point
happens to fall on a point of zero Gaussian curvature, e.g., a parabolic line.

Very good critical points turn out to have four real eigenvalues, ±A1, ±A 2 (Saxberg, 1989). A two-dimensional
analogue is shown in Figure 1: here, there are two eigenvalues, one positive and one negative. Because there are
both positive and negative eigenvalues, the dynamical system has a complicated saddle-type set of trajectories near
it. The eigenvectors are parallel to the bold diagonal trajectories at the origin. Note that these trajectories are the
only ones that actually approach the critical point; the other trajectories only get within a finite distance from the
critical point before moving away again. These two diagonal curves are the only one-dimensional invariant manifolds
containing the critical point.

In the shape from shading case, we are interested in two-dimensional invariant manifolds containing the critical
point. Within the set of such manifolds we will find all smooth solution surfaces for the shape from shading problem
that are consistent with the critical point. Because we have both positive and negative eigenvalues at a very
good critical point, most of the one-dimensional trajectories making up invariant manifolds in the four dimensional
(x, y, p, q) space will not actually approach the critical point; thus, there will not be many invariant manifolds which
contain the critical point.
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We can use, the linearization of the image dynamical system to tell us how many there are likely to be, since
invariant manifolds for the linearized system correspond to invariant manifolds of the non-linear system on a neigh-
borhood of the critical point. Pairs of eigenvectors span two-dimensional invariant subspaces for the linearized
svstei., and iII fact these subspaces are tangent to the non-linear invariant manifolds at the critical point. III the
L"eneric case, there will be four distinct eigenvectors; of the six possible pairs of eigenvectors, two can be shown to
Ie non-physical (Saxberg, 1989), leaving four potential candidates for solution surfaces.

Two of thes, are the stable and unstable manifold for the critical point. 'Fie stable subspace is spanned by all
eg.nw.ectors with negative eigenvalues; the unstable subspace is spanned by all eigenvectors with positive eigenvalues.
Il',, stable and unstable manifolds contain all those trajectores that head towards the critical point with increasing
tte. and all those trajectories that head towards the critical point with decreasing time (head "away" from the
critical point with increasing time) respectively. A major theorem of dynamical systems theory, the Stable Manifold
"Hlheor',in (Abraham and Marsden, 1985), says that such manifolds exist, are smooth (for a smooth dynamical system),
:1a1d art' unique for any critical point (not just hyperbolic critical points). It turns out (Saxberg, 1989) that at a very
,go,),l critical point due to a maximum in the reflectance function, the unstable manifold corresponds to a concave
s,,hltion surface, while the stable manifold corresponds to a convex solution surface. The image dynamical system
r,.-tricted to these invariant manifolds looks like a sink or source.

''liere may be two other potential solution surfaces. These are determined by the invariant subspaces of the
linearizd svstein spanned by one eigenvector with positive eigenvalue and one eigenvector with negative eigenvalue.

l's' COrr'spond to saddle-shaped surfaces in space. The image dynamical system restricted to these invariant
ni mifolds looks like a saddle system (as in Figure 1). This also means only two trajectories on the invariant surface
ac'tually approach the critical point; only these two trajectories in general are forced to have fI(x,yp,q) = 0: the
other trajectories making up the invariant surface may have other values for 11. Thus, these saddle invariant surfaces
m nay not always represent correct solutions to the shape from shading problem, which must have II = 0 over the
cut ire surface. However, if a very good critical point in fact occurs at a saddle-shaped part of a physical surface, t lie
invariant manifold associated with it is of this type.

II summary. in some neighborhood of a generic critical point of an image of a generic (unpainted) surface due
to a known local (generic) maximum of the reflectance function, there are at least two and at most four possible
,snooth solution surfaces for the image irradiance equation: one convex, one concave, and possibly two that are
saddle-sliaped. Cases where this result may not hold are unstable, in that arbitrary small perturbations of the
surface, or the reflectance function, brings one back to a situation where the result holds. Such cases include zero
(;au.s.ian curvature of the surface at the critical point, or unusual flatness of the reflectance function (i.e. zero second
derivatives in some direction at the critical point), or rotational symmetry of the image and the reflectance function
around the projection direction. In this latter case, the stable and unstable manifolds are still unique, but there
are an infinite number of saddle invariatit manifolds related by rotation; thus, there are unique convex and concave
solutions, but potentially an infinite family of saddle solutions.

3.1.1 The Fundamental Instability of a True Image Irradiance Equation

A true solution surface for an entire image should consist of a single two-dimensional invariant manifold which is
the tunstale manifold for some critical points, the stable manifold for others, and perhaps a saddle invariant manifold
for lhe rest. It turns out that this is very unusual behavior for a dynamical system. Generically, two two-dimensional
iinvariant mamiifolls for different critical points will only intersect (if they intersect) along a one-dimensional curve
(:\brahain aid Marsdn'u, 1985).

We can gain some insight into the situation by looking again at two dimensions. In Figure 2 we show a piece
of a two-dimensional dynamical system with two critical points, each of which has both a stable and an unstable
manifold. In Figure 2a and 2c, these manifolds do not intersect; the unstable manifold for one critical point, is just
another trajectory for the other critical point. The case where they intersect is shown in Figure 2h. If Figure 2b is
pertuirbed generically, it will fall apart to be either like Figure 2a or 2c.

The image dynamical system due to a real surface is therefore a very delicate thing seen from a generic per-
spective. 'l'his has two consequences, one bad, one potentially good. The bad news is that as we numerically try
to find, say, the unstable manifold of a critical point (by directly drawing out trajectories or by the methods in the
liixt section), errors will occur as if we had randomly perturbed the dynamical system. It is very unlikely that the
perturbed unstable manifold will merge with the perturbed invariant manifold coming from another critical point
arid create a single, smooth, two-dimensional surface. The good news is that that this may provide a way to tell
a bad reflectance function choice from a good one: if the invariant manifolds do not "nearly" match up, we must
be on the wrong track. Either the reflectance function is bad, or there is no surface corresponding to the image.
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a. b. c.

Figure 2. Two critical points of a two dimensional dynamical system: a. Non-intersecting stable and unstable manifolds. b.
Intersecting stable and unstable manifolds. c. Non-intersecting stable and unstable manifolds.

PO s

S
4

Figure 3. Initial manifold is So . po is at the intersection of S o with the stable manifold. The S' are the deformations of S o

by the flow of the dynamical system.

Catastrophe theory results suggest that if the true reflectance function comes from a parameterized set of reflectance
functions, it may be possible to adjust the parameters to find the correct invariant manifold solution and the correct
reflectance function. If so, this adjustment process may work (i.e. may be stable) even under perturbations of the
image and reflectance function.

3.2 ALGORITHMIC RESULTS

As a result of the theoretical results of the last section, we are quite interested in methods for finding the stable
and unstable manifolds of an image dynamical system near a critical point, as these will give the unique convex
and concave solution surfaces consistent with the image and known reflectance function. Another theorem from
dynamical systems, the Lambda Lemma (Palis and de Melo, 1982), suggests a class of methods to do this.

We start with an inital two-dimensional manifold, S ° , which intersects the stable manifold at an angle (trans-
versely) (Figure 3); because the stable manifold and the initial manifold are both two-dimensional, in the four-
dimensional space they will have a point p0 as transversal intersection. If we allow the initial manifold to be
deformed by the image dynamical flow (letting each point on S o be transported by the trajectory through it over
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time), then the point p0 will flow towards the critical point. The Lambda Lemma says that the rest of the surface
will be deformed in the limit to approach the unstable manifold, and the approach will be C 1 , i.e., the tangents to
the deforming surface will also approach the tangents of the unstable manifold. As p0 approaches the critical point,
the surface gets stretched out greatly from po, and points on the surface near pa are driven towards the unstable
manifold.

This suggests finding methods to take an initial two-dimensional surface in (x, y, p, q) space and deform it over
time using the image dynamical flow defined by equations (1). The deformed surface should converge to the unstable
manifold. If we wint to find the stable manifold, we can simply reverse time.

One way to do this involves fixing a grid of points on the (x, y) plane, and examining what happens to a two-
dimensional surface defined as (x, y, p(x, y), q(x, y)) when it is deformed by the image dynamical flow. It turns out
(Saxberg, 1989) that we can examine analytically what happens to p(x, y) and q(, y) directly: for some small 6t, we
get

P,,(X, y) ; p(X, y) + 61 .vp (3)

q,e(x, y) . q(x, y) + 61 . Vq,

where

Vp = E, - p Rp - pyRq (4)

vq = Ey - qxRp - qyRq.

In other words, flowing for a short period bt is approximately the same as changing the height functions p(x, y) and
q(x, y) by 6 . ,p and 6 •vq respectively.

3.2.1 Experiments

We have implemented this as a discrete iterative method on a Connection Machine. The Connection Machine
is a highly parallel computer consisting of thousands of simple processors and a very fast disk drive system which
can emulate a grid of processors. We used a 16k CM-1, which has 4k of memory for each of 16k processors. The
kind of algorithms we have found are well suited to this kind of architecture with a SIMD language called *LISP as
interface, since each processor can he assigned to a pixel of the image and operates in a neighborhood of that pixel
in parallel with all the other processors.

We configured the processors as a 128 x 128 grid. For the fixed grid algorithm, each processor can be thought
of as stuck to an unmoving (x,y) coordinate grid (the integer coordinates) parallel to the image plane. At each
processor we can store values as if in an intelligent array: we keep values for the image gradients E, and EY as well
as current estimates of the deformed surface heights p and q for each (x, y). We use an initial flat surface given by
p(x,y) = q(x,y) = 0.

We need to compute the "surface vector field" components vp and v. at each iteration:

)P:= E- - pxRp - pyRq
Vq = Ey - qxRp - qyRq,

where pz, pY, qx, and qy are derivatives of the current p and q iterates.
For both image intensities and p and q values, we use a simple first order method to compute the derivatives on

the interior of the 128x 128 square of processors at integer (x, y) coordinates: for example, if f is the function for which
we want a partial derivative, we take f1 (x, y) (1/2)(f(x + 1, y) - f(x - 1, y)). At the four boundaries of the square
grid, we cannot use this; we use the unbalanced estimates given by subtracting nearest neighbors where we have to.
For example, at the left edge we take f,(Oy) - f(1,y) - f(0,y); at the top we take fy(x,O) - f(x, 1) - f(x,0); at
the corners of the grid, both f, and fy are approximated this way. We use this to estimate p,, PY, qx, qy, E1, and
Ey.

For the reflectance derivatives, we use an analytic model to give us exact values for the derivatives. In our case,
we assume a Lambertian reflectance function,

R(pq) = pc i + q1 -13
Vp2 + q2 + -+ I+
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1i
Figure 4. Constant brightness contours for sphere. Each stripe is 15 grey levels wide.

where (11, 12, 13) gives the orientation of the light source and a is an albedo factor; for our purposes, we take a = 1.0.
From this, we have

R,(pq) = e 11q
2 + 11 - (q1 2 - 13)P

/t q+ 2 + (p2 + q2 + 1)3/2

Rq(pq) = a 
12P2 + 12 - (Pi1 - 13)q

/17,)2 +1 ( 2 + q 2 + 1)3/2

and we compute Rp and R. at each processor using the current values of p and q.
To approximately deform the surface to match the dynamical system flow, we update the p and q values at each

processor to Pnew and qnew as follows:

Pnew = p + hvP
qnew = q + hvq,

where h acts like an integration step size if we consider the procedure as a parallel integration of a vector field. In
the simple examples with which we have worked, we have left h constant over all processors.

If we run just this algorithm we find that it does not converge. We have found it necessary to do a small amount
of smoothing of the values of p and q to avoid "checkerboard" instabilities: small amounts of noise can explode into
large alternating sections of values if the p's and q's are not smoothed between iterations. This was also found by
Ikeuchi and Horn (Ikeuchi and Horn, 1981), and we find good results by performing the simple averaging operation

f.~(X7 y) -- (f (x + 1, y) + f(x - 1, y) + f(x, y+ 1) + f(x, y- 1))/4

twice in succession on the p and q arrays.
This internal smoothing operation, although numerically useful, does slightly distort the final solution away from

the true invariant manifold, Using an image of a sphere with radius 100 and light source located in the direction
(0,.5, -1), with one internal smoothing operation, the errors in the converged p and q are less than 5% almost
everywhere, and less than 2% in the image interior. Even with two internal smoothing operations, the errors are less
than 5% through almost all the image-where true p and q values are very near 0, of course, the relative errors are
higher, and right at the borders of the image the relative errors are also higher (but never more than about 15%).
We use the double smoothing because of the noise immunity it seems to give.

In Figure 4, we show the constant brightness contours for the noise-free 128 x 128 simulated image of a sphere
with radius 100, Lambertian reflectance function, and light source located at (0, .5, -1). In Figure 5 we show images
from the approximate solutions as the iterations proceed (step size h = 1.0): after varying numbers of iterations,
we use the current p and q values and the reflectance function to generate an image. As one can see, the images
generated by the p and q estimates do show convergence to the original image through almost all of the interior
of the image as expected. We have also generated images representing the errors in the p and q values: we take
255 * 10 * IP - Ptruel arid 255 * 10 * Iq - qtruel and treat these as grey levels for an error image. A region that is just
barely completely white (a grey level just reaching 255) would represent errors of .10 in p or q, corresponding to an
error of about 60 in the surface normal at Ptrue = 0 qtrue = 0, and less as p and q increase.

If we add noise to the original image, we can degrade the performance of the algorithm. With the reflectance
function we are using, the maximum brightness of the image is 1.0. If we add uncorrelated uniformly distributed
noise to the image with maximum value .02 (meaning the noise is uniformly distributed between ±.02), we usually
still get convergence; if we add noise with maximum value .12, we do not get convergence to a possible solution.
Figure 6 shows a noisy image (via constant brightness contours) with .02 noise maximum; Figure 7a shows the image
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a. b. c.

d. e. f.

Figure 5. Iterates for fixed grid shape from shading algorithm: a. 100 iterations. b. 200 iterations. c. 400 iterations; d. 800
iterations. e. 800 iteration p error image (255 • 10 * P - Ptruel). f. 800 iteration q error image (255 • 10 * Iq - qtruel).

Figure 6. Noisy sphere image: Noise maximum is ±.02.

formed from the p and q arrays after 800 iterations with .02 noise, and Figure 7b and c show the p and q error
images. Figure 7d shows a failed effort with noise maximum .12.

To help deal with increasing noise we can decrease the step size h and smooth the image. If we set the step size
to h = .25, and smooth the image with one averaging operation, the algorithm converges almost always (sometimes
slowly) with maximum noise values of .12; without the averaging operation, it converges only about half the time (i.e.,
if we run the algorithm on ten noisy examples, only five converge). With four averaging operations, the algorithm
converges almost always for noise as high as .25, although quite slowly: in Figure 9 we show the contours of the image
being converged to after 2400 iterations. In Figure 8 we show the original image data after adding ±.25 uniformly
distributed noise and after pre-filtering; we show the image in two ways: in Figure 8a, the constant brightness
intervals are the same as before, and in Figure 8b, the intervals are three times as large. The constant brightness
image on the left looks very chaotic because the noise is large compared to the constant brightness intervals even
after pre-filtering. To the eye, the original image itself looks fuzzy, but is clearly interpretable as a smoothly curving
object.

Note that in general the algorithm does not converge to p and q values that exactly duplicate the smoothed
noisy image, e.g. some complicated faceted figure whose noise-free image would be the smoothed noisy image we are
working with. Instead, due to the internal smoothing operations done on the p and q arrays within the algorithm,
the algorithm appears to converge to a surface that is smoother than the image data.

With as much noise as in Figure 8, the converged p and q arrays do show considerable differences from the
original noise-free p and q values used to generate the images. For example, although the image in Figure 9a appears
to be an adequate match for the original image, the p's and q's that generate that image vary randomly from the
original image by a fair bit, as seen in the image of p and q errors in Figure 9b and c. Indeed, one would be rightly
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a. b. c.

Figure 10. Integrability pictures for iterations of the noise-free image of a sphere. a. 200 iterations. b. 400 iterations. c.
SO0 iterations.

a. b. c. d.

Figure 11. Integrability measures in the case of noise: noise maximum .02, h= 1.0, 4 smoothings of the image. a. 800
iterations. b. IM image after 800 iterations. c. 1600 iterations. d. IM image after 1600 iterations.

depth values from the more or less noisy p and q values. Note that the amount of noise in the p and q values is
directly related to the amount of noise in the image.

In fact, one of the interesting aspects of this algorithm is the relative independence from an explicit integrability
constraint to find a solution surface. If we actually converge to the theoretical unstable manifold of a smooth image
dynamical system, that unstable manifold is an integrable collection of normal vectors because it is made up of
characteristic trajectories. When we add noise to the image and include numerical effects, we are effectively adding
noise to the dynamical system, and the unstable manifold of the new dynamical system is no longer exactly integrable
(e.g. Figure 9); however, if the noise is small, the normals will be very nearly integrable (Figure 7).

An integrability measure can be used to monitor the progress of the algorithm. In order for the collection of
normal vectors to be normal vectors for a real surface in space, we must have py - q.; we can use 1py - q-l as a
measure of the integrability of the iterated surface and therefore as a measure of how close we might be to the correct
unstable manifold of the image dynamical system.

Figure 10 gives a pictoral representation of this integrability measure (IM) in the noise-free case (Figure 5). The
brightness values run from 0 to 255; these images are images of 106 [py - qx[ with truncation at values greater than
255, so that the white area area represents IM values of larger than 2.5 x 10-. The nearly black region (represented
here as having very few white dots) have py - q., values a small fraction (< 1%) of most of the py values in the
region. As iterations proceed, the regions of good integrability increase, although the edges of the image, where the
converged constant brightness contours do not match the original (compare Figures 4 and 5), remain with relatively
high IM values.

Adding noise to the image clearly degrades the integrability measure of the iterated solutions. In Figure 11
we show some examples of integrability measure pictures under noisy conditions: we look at the IM pictures for
a particular image with .02 maximum uniformly distributed noise added, with step size of h = 1.0 and four pre-
filterings of the image: as the iterations proceed, the results become more and more integrable. This is consistent
with the theoretical view that we are approaching the unstable manifold of the image dynamical system which should
be perfectly integrable; in fact, however, progress is essentially halted after 1600 iterations: numerically, almost no
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a. b.

Figure 12. Incorrect reflectance function: images of p and q arrays with assumed reflectance function. Noise-free, 800
iterations, h = 1.0, correct 11 = 0.0. a. 1i = .10. b. 11 = .5.

a. b.

Figure 13. Incorrect reflectance function: images of p and q arrays with correct reflectance function. Noise-free, 800 iterations,
h = 1.0, correct 11 = 0.0. a. ll = .10. b. 11 = .5.

a. b.

Figure 14. Incorrect reflectance function: Integrability measure pictures. Noise-free, 800 iterations, h = 1.0, correct li = 0.0.
a. I1 = .10. b. II = .5.

more changes in the solutions or in the IM image occur. Figure 9d shows the integrability picture for noise nuaximum
of .25; clearly, more noise leads to worse integrability.

We can also examine the sensitivity of the algorithm to changes in the reflectance function. In Figures 12 to
14, we explore what happens if we make errors in the direction of the light source assu'--d to have generated the
image. We assume different values for 11, where (11, 12,13) = (0, .5, -1) is the original ligt,. source direction. As the
error gets worse, the convergence of the algorithm after 800 iterations is not as complete; this can also be seen in the
integrability pictures in Figure 14. Nonetheless, the arrays of p and q reached do generate images that correspond to
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Figure 15. 2-d dynamical system restricted to the invariant manifold: in general, most points will be in the stable or unstable
manifold of either a source or sink critical point.

the original over large areas with the assumed reflectance function (Figure 12); however, the surfaces themselves are
increasingly different from the correct surface, as can be seen from the images generated by the converged surface
and the correct reflectance function (Figure 13).

3.2.2 Conclusions on Algorithms

The fixed grid method appears to generate good solutions even in the presence of noise and seems to degrade
gracefully if assumptions about the light source direction are incorrect. This is consistent with the theoretical
underpinnings of the method: noise in the image or a poor choice of reflectance function represent perturbations of
the original image dynamical system. Since the usual very good critical point we deal with is hyperbolic and therefore
generic, perturbing the dynamical system a small amount moves the critical point a small amount and changes the
invariant manifolds a small amount: the unstable manifold of the critical point is a stable feature (in this sense) of
the dynamical system.

This particular implementation shares difficulties with the simple Euler method of integrating a vector field,
which sequentially adds a scalar multiple of the vector field to a point on the developing trajectory to generate the
next point. For example, if the step size here is too big, the method may bounce around and not converge at all.
Smaller step sizes avoid this problem, but too small a step makes for slow progress; some kind of adaptive step size
setting would be useful. Note that because of the smoothing of the p and q arrays as part of each iteration step,
taking an exceptionally small step size effectively allows more smoothing and less deforming along the dynamical
flow. There may be other methods that are analogs to the Runge-Kutta methods that make efficient use of several
evaluations of the vector field to improve the estimate of the next point on the trajectory.

A feature that may be exploited is the fact that we are really interested in the characteristic paths, not the
trajectories. This suggests we could use a different (positive) h(x, y) to multiply the vector components vp and vq
for each point (x, y); this would change how the initial surface is deformed, but would not change the surface that is
converged to in the limit. The limit is determined by the characteristic paths and the directions they are traversed,
not by how fast the paths are traversed through time; changing the magnitudes of vp and vq by a (positive) scalar
at each point of the image should not change the theoretical limiting behavior, and may be useful in dealing with
difficult regions.

Other implementations of the Lambda Lemma idea have been tried. One can place the grid of processors on the
initial surface rather than on the image plane. In this case, the processors follow trajectories of the image dynamical
system, and some mechanism is used to fill in the gaps as the processors draw away from each other-filling in the
gaps seems to be the hard part. Another method allows each processor to control a volume of "air space" (all p
and q values above a small square of (x, y) values) as an "air traffic controller": each processor controls a point on a
trajectory while that point is in its airspace. New points are generated to fill holes in the deforming surface.

If an image critical point is on the stable manifold, we can reverse time and use the same techniques. If an
image critical point is a saddle critical point (for example, at a maximum of the reflectance function and with saddle
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surface structure at that point), then the invariant manifold is neither a stable or unstable manifold for the dynamical
system, and the methods described here fail. On the other hand, this saddle invariant manifold has to come from
somewhere. A true solution surface will have a two-dimensional restricted image dynamical system defined on its
interior. This system will have critical points, and will (probably) be a generic two-dimensional system: this means
that almost all the points on the surface will either be in the stable or unstable manifold of a source or sink of
the two-dimensional system (Figure 15). Almost all the points near the saddle critical point in theory should be
reachable by finding the stable and unstable manifolds of other critical points.

Lambda Lemma methods will only work on some (possibly quite extended) neighborhood of a single critical
point. If two critical points are contained in a neighborhood on which these algorithms are applied and the true
solution surface is the stable manifold for one of the critical points and the unstable manifold for the other, it is
not clear what solution (if any) will be converged to. Lambda Lemma algorithms will seek simultaneously to find
tile unstable manifold for both critical points; unless this happens to be a possible solution surface, the method will
probably not converge.

The development of a system to actually solve shape from shading problems using these methods would be
interesting. First, some reliable method of finding the stable and unstable manifolds of critical points drawn out
as far as possible would be needed, perhaps including adaptive determination of the convergence region. Second,
some comparison procedure to decide whether two such manifolds are the same or different would be needed: as
discussed above, because of computational errors, exact matching cannot be expected even if the reflectance function
is chosen exactly right. One way to accomplish the matching could be to tesselate the image into regions centered
over what one hopes are very good critical points; for a typical smooth gently curved surface, there should be few
such points (although in theory there could be many). At each critical point, the stable and unstable manifold
could be computed; if a region contains bounding contour elements, this may be used to discard certain solutions
if the invariant manifold does not come "close enough" to the bounding contour within a feasible distance from
the observer. Choices from the remaining sets of invariant manifolds would have to be stitched together along tile
boundaries of regions: choices that were not "close enough" to each other would be discarded. There is one additional
complexity: certain regions will not be either the stable or unstable manifold because the critical point is actually a
saddle point on the surface; the surface solution here will have to be drawn out by extending other consistent stable
or unstable manifolds to include this region. Some measure of goodness of fit of the solution would be needed based
on how difficult it is to stitch the solution surfaces together.

4 CONCLUSIONS

Treating the shape from shading problem as an image dynamical system leads to new ideas for robust shape
from shading algorithms. These algorithms are very parallel in character, and converge to integrable solution surfaces
near the critical points without an external integrability condition.

Our results suggest integrability of a solution surface containing a critical point comes from the fact that it is
an invariant smooth manifold containing the critical point. The algorithms based on the image dynamical system
attempt to find these invariant manifolds directly. Integrability of the corresponding surface normals comes for free
in the noise-free case, and can be used to monitor the progress of the algorithm in locating a reasonable solution when
the image is noisy. The algorithm appears to be robust with respect to image noise and poor reflectance function
choice.

Our theoretical results indicate that generically there will be at most four and at least two solution surfaces
through a patch of an image containing a very good critical point due to a known reflectance function and a generic
surface. These solutions correspond to the different invariant manifolds of the critical point seen as a critical point
of the image dynamical system: the stable and unstable manifolds on which the image dynamical systen has source
and sink behavior, and potentially two other invariant manifolds on which the image dynamical syztem has saddle
behavior. The critical points in the image for which this result holds are those due to local rellectance function
maxima (the usual case) or minima.

An important question remaining is where the assumed reflectance function comes from. Several constraints
on the reflectance function are available from the image dynamical system. There arc the constraints on reflectance
function critical points from the image brightness at good critical points. Brightness-G along the bounding contour
(where the projection direction just grazes the surface) also provide information about the reflectance function
because the surface orientations can be immediately determined from the image. (Image brightnesses near the
bounding contour alone probably do not determine surface shape beyond the surface orientations along the bounding
contour (Saxberg, 1989).) Also, as discussed earlier, in order for the image dynamical system to have a single solution
surface, some subset of the invariant manifolds (including stable and unstable manifolds of convex and (oncave critical
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points) must merge rather than intersect iii a one-dimensional curve. This is unstable behavior for generic dynamical
systems, and so may provide a constraint on the choice of reflectance functions: although numerical errors will
prevent exact matching of the invariant manifolds even with exact knowledge of the reflectance function, a wrong
choice is likely to prevent the invariant manifolds from being even close together.

The modern methods of differential geometry provide a set of tools for reasoning about geometry and shape
without always being tied to coordinate system expressions. They allow one to look at all the information available
from the image and reflectance function in the image irradiance problem and see how properties of the dynamical
system influence choices of possible solution surfaces; they can provide constraints on reflectance function choices
as well. The theoretical view of the image irradiance problem as a dynamical system also suggests computational
approaches to finding solution surfaces that are theoretically tractable.

There is an entire litorature on dynamical systems developed over the last twenty years to study features of
complicated dynamical systenms. The mathematical tools were developed to help analyze geometric visualizations of
coMplicated physical problens. It is perhaps time to use these tools to study the principles behind vision itself.
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FINDING HIERARCHICAL CLUSTERS BY ENTROPY MINIMIZATION'

Richard S. Wallace and Takeo Kanade
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Abstract

This paper reports a new hierarchical clustering algorithm called Numerical Iterative Hierarchical Clustering
(NIIIC). The algorithm uses a tree transformation operation called a grab to iteratively rearrange the nodes of a
hierarchical cluster tree in order to reduce the value of an objective function defined over the tree. In particular
this research investigates the application of the Gaussian entropy function to measure the quality of the cluster
tree. The input to NIIC is an arbitrary cluster tree such as a k-d tree. NIIC repeatedly searches for grabs to
transform each subtree into a lower entropy state. When NIHC can find no more energy-reducing grabs we claim
that the resulting tree is partially optimal in a strong sense that does not generally hold for cluster trees produced
by other algorithms such as agglomeration. We report experiments designed to quantitatively compare NIJIC using
Gaussian entropy with other hierarchical clustering algorithms. We also sketch a proof that to cluster n points an
iteration of NIIIC takes at most 0(n 3) steps for an unbalanced tree and at most 0(n2 ) steps for a balanced tree.
Unlike the agglomerative algorithm, NIJIC does not store an 0(n2 ) cluster distance matrix. NIHC consumes only
0(n) storage for the tree itself.

1. Introduction

Automatic clustering of real-valued vectors is critical to the solution of many computer vision problems including
three-dimensional object localization by Hough transform [23] [32) [35], color image segmentation [19] [25) [29],
"data fusion" of different sensor modalities [20][8], estimation of surface and texture [33], and perceptual grouping.
Despite its wide applicability, some researchers consider cluster analysis to be an archaic research area. There are
several reasons to think so. A few algorithms developed over 26 years ago prove effective in many simple situations.
These algorithms, notably ISODATA, k-means, single linkage and complete linkage hierarchical clustering and
Ward's method, work well when the problem size is small, when the clusters formed in the data are compact
and well-separated, and when there is relatively little noise. The details of these algorithms have been studied
extensively and their algorithmic complexity and optimality properties are well-known [7][9][15][17][181 [34][411.
These algorithms have also been subject to Monte Carlo experiments and a lot of "field testing" on real data. But
practical experience applying these algorithms to vision problems has underscored their limitations. Our motivation
to research cluster analysis was born out of the need to develop efficient, robust clustering procedures for the
large-scale problems in computer vision.

We are investigating algorithms for hierarchical cluster analysis using the heuristic principle of entropy mini-
mization. The application of entropy minimization to cluster analysis is not new. In a 1966 paper Williams and
Lambert [42] defined an information gain measure for clustering objects with binary attributes. They cite the
proceedings of a 1960 conference where a mention of entropy in clustering appeared even earlier. Wallace (not the
author) and Boulton developed information measures for both level [38] and hierarchical [31 clustering. Jambu and
Lebeaux [17] defined an entropy measure for clusters of objects with discrete-valued attributes. Elsewhere [39] we
show that the entropy function /I defined in section (2) below is almost equivalent to Jardine and Sibson's radius
of information measure for normal populations[18][311. Recently, Lee [22] used an entropy measure to cluster
triphone models used in speech understanding. Cheeseman et al. [4] extended Wallace and Boulton's minimum
descriptior length formulation to solve the finite mixture problem for an unknown number of classes. Entropy
minimization techniques in pattern recognition generally are widespread, considering "the methods widely used

'This research was supported in part by DARPA, monitored by the Air Force Avionics Lab under contract F33615-87-C-1499. Richard S.
Wallace was supported in par by a Ilughes Aircraft Company Doctoral Fellowship. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the funding agencies.
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under [different] names, such as Karhunen-Loeve expansion, diagonalization of the covariance matrix, principal
axis method, SELFIC and factor analysis differ only in the emphasis placed on particular aspects of the same
mathematical tool and are based on the same theoretical structure. The heuristic principle of entropy minimization
led to this mathematical tool" (page 199 of [411, italics added. See also [51).

This paper reports experiments with and analysis of a new hierarchical clustering algorithm capable of reaching
lower local entropy minima than the standard agglomerative algorithm. This algorithm, called NIIIC (Numerical
Iterative Hierarchical Clustering), iteratively transforms a binary cluster tree to minimize an entropy measure.

This paper is organized in three main sections following the introduction. Section (2) formally specifies the
domain of NIIIC as well as the tree data structure it manipulates. Section (2) also defines the Gaussian entropy
function and states some assumptions underlying the choice of Gaussian entropy for measuring the quality of hierar-
chical clusters of real-valued data. Section (3) describes the NII1C algorithm and its elementary transformation step,
the grab operation, then describes the algorithm's worst-case complexity. Section (4) presents some experimental
results with NIIIC, comparing it with 7 other hierarchical clustering procedures on a standard data set and in Monte
Carlo experiments.

2. Cluster trees and entropy minimization

The leaf node of a hierarchical cluster tree (or clustree) represents a singleton set containing one of the input points.
In our case a data point x = (xo . ... lX_)T C Rd. The cluster trees described here are binary (specifically, B-trecs).

In what follows let u be a node internal to a cluster tree. Let I = u -left and r = u -right be the left and right
child nodes of t respectively. The set of points in the population represented by u is

S(u) = S(l) U S(r) and S(I) n S(r) = 0. (1)

For the size n(u) = IS(u)l we have
n(u) = n(l) + n(r). (2)

The general form for an energy function e(u) on a clustree u is

e(u) = 1 0 if u =NIL (3)
e f(u) + e(l) + e(r) otherwise

where f(u) depends only on the set S(u). In many cases f(u) = d(l, r) where d(x, y) is a distance function between
the nodes x and y. A hierarchical clustering procedure amounts to a search through the space of trees for one that
minimizes the objective function e(u).

A binary cluster tree having n leaf nodes has n - I internal nodes and therefore consumes O(n) storage, provided
the size of each node in memory is constant.

If we let
p n(l) (4)

n(l) + n(r)

then the mean vector of the set S(u) is

m(u) = p m(l) + (I -p) m(r) (5)

and its covariance matrix is

C(u) = p C(t) + (I -p) C(r) + p(l -p) (m(I) - m(r))(m(a) - m(r))T  (6)

So the size and first and second moments about the mean for the set S(u) repi "nted by a node u in the cluster
tree may be derived recursively from the size and first and second moment's of u -)ildren

1106



In general all the moments of S(u) may be derived recursively in the tree.

This research is specifically concerned with an energy function H defined as

{ g ift =NIL

log IC(t) + H(I) + H(r) otherwise,

where is the matrix determinant 1. The term H is called Gaussian entropy because it is related to the relative
entropy of a Gaussian [37] in the information-theoretic sense. That is, if f(x) is a multivariate Gaussian pdf with
covariance C, then the relative entropy

- fwf(x) log f(x)dx = logIC+I log27r+ . (8)

Shannon [30] solved the variational problem which shows that the expression on the right in equation (8)
maximizes - fp(x) logp(x)dx for all continuous p having mean m and covariance C 2. Each node u in a clustree
represents a set S(u) which is a random sample from an unknown pdf g(u, x). Finding the g(u, x) is an ill-posed
problem, but Shannon's result leads to a minimax principle: if we assume that g(u, x) is continuous and that the
sample mean m(u) and covariance C(u) are sufficient statistics for g's actual mean and covariance, then the quantity
in equation (8) with C = C(u) is an upper bound on the entropy of the true g(u, x). Under the interpretation of
entropy as a measure of "uncertainty", minimizing H(t) amounts to minimizing the maximum uncertainty concerning
the distributions g(u, x). Note that while in principle knowing higher-order moments than m and C enables us to
find a smaller upper bound on the entropy of g(u, x), no bound derived from higher moments will be larger than
the quantity in equation (8).

The representation of clusters by moments in the clustree data structure means that the clustering program solves
line- and plane-fitting problems as a by-product of clustering. The mean value m(u) of a cluster S(u) is a point
on the line (or plane) best fit to the cluster data S(u) the minimum squared-error sense. The eigenvector of C(u)
with largest eigenvalue is its gradient. Also the eigenvalues of C(u) measure the spherical asymmetry of the cluster
S(u).

3. The NIHC algorithm

The name "Numerical Iterative Hierarchical Clustering" derives from the historical development of clustering
algorithms. NIiC is a hierarchical clustering algorithm. Like other hierarchical algorithms, NIHC computes a
cluster tree whose leaf nodes represent the input data points and whose internal nodes represent nested sets of those
points. Unlike other hierarchical clustering algorithms, NIHC is neither divisive (top-down) nor agglomerative
(bottom-up). Instead, it begins with an arbitrary binary cluster tree such as a k-d tree [2] and iteratively transforms
it into a partially optimal cluster tree. Thus NIl/C is iterative in a way that is analogous to partitioning methods
like k-means [281, i.e. the result of each iteration is a clustering that is quantitatively improved over the previous
iteration. Finally, we say that NIHC is numerical because of the type of data it clusters. NItlC clusters vectors
in Rd, where d is the number of dimensions. Future research may uncover ways to write iterative hierarchical
clustering algorithms for other types of data, such as ordinal and categorical data, but NIHC is defined only for
real-valued daia.

1One small problem arises with this definition. Unless a point set S(u) has at least d+ I points and is nondegenerate, its covariance matrix
will be singular and log IC(u)l won't exist. The solution is to treat leaf nodes not as points but as clusters with small variance. Specifically,
a leaf node u representing a point x has m(u) = x and C(u) set to some nonsingular value. This solution actually benefits us in another way,
because it allows explicit representation of uncertainty in the data. For example, if the point x represented by u is measured from a sensor with
known error C(x) then we set Q(u) = C(x).

2A more general result is that each member of the class of continuous maximum entropy pdfs has the exponential form and 1hat this class
is equivalent to the class of continuous pdfs admitting sufficient statistics (see [1611511361)
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3.1. The grab operation

The elementary transformation step in NIHC is a grab. Appel [1] defined a grab on a binary tree as follows. The
operation grab(c, w) transforms a binary tree so that its nodes c and w become siblings. Let u be the first common
airiestor of c and w. If c = u or w = u the grab is undefined. Otherwise, the grab makes c and w siblings by creating
a new parent node q1 with c and w as its children. qt takes the place of c in the original tree. Let q be the original
parent of w and s be the original sibling of w. The grab makes s an only child. So s is "promoted" by deleting
q and replacing it with s. The notation q and qi is intended to demonstrate that the grab operation conserves the
number of nodes in the tree. Figure (3.1) illustrates the grab operation.

C
S W C W

before after

Figure 3.1. The grab operation

The effect of a grab in a clustree is to rearrange the nested subsets of points represented by nodes of the tree.

Let u be the first common ancestor of c and w. The operation grab(c, w) rearranges sets as follows. If x is any

node along the path from w's original grandparent r to u and x represents S(x) before the grab, then x represents
S(x) - S(w) after the grab. Similarly, if y is a node along the path from c's parent p to u and y represents S(y) before
the grab, then after the grab y represents S(y) U S(w). Figure (3.1). highlights the nodes representing different sets
after a grab.

When the set represented by a node changes, so does the node's energy. But the grab only affects the nodes
along paths back to the common ancestor. The energy of all other nodes in the tree remains unchanged. This
observation, called the grab property, is key to writing NIHC. Because of the grab property NIHC can relatively
efficiently calculate the effect of a particular grab(c, w), by calculating the energy change just along the path to the
first common ancestor of c and w. NIHC works by calculating the net energy change of many grabs and choosing
the best among them.

3.2. Definition and complexity of NIHC

Every subtree of a minimum energy clustree is a minimum energy clustree. That this fact holds is demonstrated
by considering a counterexample. Suppose a minimum energy clustree t has a subtree s that is not minimum. We
can replace s in t by a new tree u such that S(s) = S(u) but e(u) < e(s), i.e. s and u represent the same set of

points but u has lower energy. But then I's energy is reduced, contradicting the assumption that t was minimum.
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0 cluster (t)
I clustree *t
2 begin
3 clustree *c, *w
4 if t # NIL and t-left $ NIL then
5 begin
6 cluster (t-left)
7 cluster (t-+right)

8 find a pair of nodes (c, w) such that
9 grab (c, w) reduces the energy of t
10 more than any other grab

11 if c A NIL and w A NIL then
12 grab (c, w)
13 end
14 end

Figure 3.2. Simplified version of cluster

This observation leads to a natural algorithm to search for a minimum energy clustree: one that tries to reduce the
energy of each subtree. Numerical iterative hierarchical clustering (NIHC) works just that way, by searching each
subtree for grabs that reduce its energy.

The input to NI!!C is an arbitrary clustree t, such as a k-d tree or a clustree constructed by another hierarchical
clustering algorithm. NIHC calls the procedure cluster iteratively on t. During each iteration, cluster looks for
grabs to reduce the energy of t. NIHC calls cluster either (a) for a user-specified number of iterations or (b) until
no more grabs can be found that reduce the energy of t. Under option (b), convergence (termination) is guaranteed
because cluster either finds grabs that reduce t's energy or not. If it does not, no more iterations are possible. If
cluster does find energy-reducing grabs, then the grabs reduce the energy of t. Since all the possible clustrees over
the input data are ordered with respect to clustree energy, each iteration reduces the size of the set of trees in which
t could be a member. Therefore, NIHC eventually terminates.

Figure (3.2) is a pseudocode description of the procedure cluster. By spelling out the details of cluster (and its
subprocedures) we can analyze its worst-case complexity. But by examining figure (3.2) we can easily sketch the
complexity argument. The procedure cluster visits every non-terminal subtree of the clustree t, looking for grabs that
reduce the energy of the subtree. That cluster visits each subtree once is evident from its simple postorder recursive
structure. The code hidden by the italic phrase "'find a pair of nodes (c, w)..." basically works by comparing every
node in one child tree of t with every node in the other. Thus, the cost accrued by cluster at each subtree s is
O(n(s) 2), where n(s) is the size of the point set represented by s. The sum of the cost of cluster over all subtrecs
in t is largest when the tree t is a list (i.e. one child of each internal node is a leaf node), and in that case the sum
is 0(n(t)3 ). The sum is smallest when t is perfectly balanced (i.e. n(l) = n(r) for each pair of siblings (1, r)), and
that sum is O(n(t)2).

For comparison, the standard agglomerative algorithm (see [71 page 230) takes O(n 3) steps for an n point
clustering problem, but the time may be reduced to 0(n 2) or even to O(n log n) [17] for certain objective functions
such as single-linkage. Typically the agglomerative procedure requires 0(n2) storage for the cluster distance matrix
but NIIIC requires only O(n) memory for the tree itself.
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Also, NIIC outputs a tree satisfying a partial optimality condition not necessarily satisfied by the output of
agglomeration. Given any pair of clustrees t and u, if S(t) = S(u) then t may be constructed from u by some
sequence of grab operations. So a tree t is optimal with respect to an objective function e(t) provided there is no
sequence of grabs that can reduce e(t). We say t is partially optimal wrt e(t) provided that no single grab can reduce
e(t). Generally the output of an agglomerative procedure is not partially optimal in this sense, but the output of
NI/IC always is.

4. Clustering experiments

It is difficult to evaluate clustering procedures objectively. If the goal of clustering is to find "natural clusters" then
some subjectivity is required to determine whether one clustering is better than another. This fact has not stopped
researchers from creating a variety of experiments to evaluate different clustering procedures, however [10119].
The point of this section is to compare the results obtained with the algorithm NiIC using the entropy criterion
with those obtained from "classical" hierarchical algorithms. The evaluation is based on clustering standard data
(R. A. Fisher's iris data) and by repeating some previously published Monte Carlo experiments (the Kuiper-Fisher
experiments) and a variation on the old experiments.

One type of "experiment" that app( irs throughout the clustering literature [27] [141 [24] [26] 140] [121 is a
demonstration of the proposed clustering procedure applied to simple two-dimensional perceptual grouping prob-
lems, such as those illustrated in figure (4). These examples convey a qualitative sense of how well NIlIC performs
on "hard" clustering problems 3. NIHIC computed a clustree for each of the point patterns in the left columns
and selected a subset of the clusters represented by the internal nodes. The selection is based on exploring the
tree depth-first, taking the first cluster along each path from the root that has (a) small description length h (or
equivalently small volume), and (b) a sufficiently large number of points n. Figure (4) displays the selected clusters
in the right columns as plots of the 3 standard deviation elliptical contour of a Gaussian function having the same
mean and covariance as the points in the cluster. The reported times are wall-clock times for a C implementation
of NltIC on an unloaded Sun 4 computer.

In the experiments that follow we compare eight hierarchical clustering methods:

0. agglomeration with entropy
1. nearest neighbor (single linkage)
2. furthest neighbor (complete linkage)

3. median linkage
4. group average (average linkage)
5. centroid
6. Ward's sum of squares
7. NIHC with entropy

For a description of methods I through 6 see for example ([7] page 230ff). Each of the algorithms 0 through
6 is agglomerative and differs from the others only in the tree objective function. Algorithm 0 is the standard
agglomerative algorithm using the Gaussian entropy function as a cluster distance function d(l, r) = log IC(t)l where
I is a hypothetical parent node of I any r satisfying equations (2), (5) and (6).

3
We collected 40 2-d point patterns qualitatively based on perceptual grouping problems published in the cluster analysis literature, 10 of

which appear in figure (4). A copy of this data may be obtained by sending electronic mail to rsw@i us3.. - eu. edu
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4.1. The iris data

The data measured from the iris flower by E. Anderson and originally analyzed by R. A. Fisher in 1936 is well
known to the pattern recognition and machine learning community [11][6][13][7][4]. The iris data consists of 3
classes of 50 4-d points each. Each class is derived from measurements of sepal and petal width and length from
different types of iris flower: setosa, versicolor and virgnica. The setosa class is linearly separable from the other
two. The virginica and versicolor classes are not linearly separable.

Owing to the small number of points, the input to NIHC is constructed by algorithm 0, agglomeration with
entropy. In the case of NIHC the leaf cluster variance was set to a, = oyy = exp(1/2) and o-r = 0. We selected
three clusters from each clustree by splitting the root node into its two child clusters and then splitting the larger
child into two more.

The following table shows the percentage of the () point pairs that each procedure placed in the same cluster
when the points came from the same class, or placed in different clusters when the points came from different
classes. This measure, called "pair classification percentage" (PC%), is borrowed from the clustering experiments
of Kuiper and Fisher [21].

method
0 1 11 2 1 3 1 4 1 5 1 6 1 7

PC% 93.5 ]77.8 86.9 86.9 87.5 185.8 87.5 195.0

The PC% for the iris data is highest for NIHC minimizing entropy. In fact NIHC achieved 100% correct
classification for the setosa class.

4.2. The Kuiper-Fisher experiments

Kuiper and Fisher compared the six hierarchical procedures 1 through 6 in a set of Monte Carlo experiments[21].
We duplicated their experiments, verified their results, and compared algorithms 0 and 7. Their original two cluster
experiment was to cluster points from two unit-covariance bivariate Gaussian distributions with means (0, 0) and
(a, 0). They randomly selected points from the distributions and ran agglomerative clustering on the point sets.
Using the clusters corresponding to the left and right children of the root node of the clustree, they calculated the
percentage of points classified correctly. Kuiper and Fisher repeated this experiment over 30 trials. They report
percentages obtained for sets of 5, 10 and 15 points per class. The percentages are averaged with a varying from
0.5 to 3.5 in steps of 0.5. The input to NIlC is a k-d tree. As in the Iris experiment (see previous section), where
appropriate the leaf cluster variance is set to a, = o,), = exp( ) and ay = 0. The following table compares the
results of the 8 algorithms with an ideal linear discriminant functior (in column L) calculated with the means and
variances of the Gaussians known.

method
size 0 1 2 3 4 5 6 7 L
5 77.4 67.5 78.8 74.5 75.4 74.2 77.4 78.0 81.3
10 76.5 60.2 75.6 72.0 72.4 71.8 75.8 78.8 81.3
15 76.6 55.0 75.3 70.7 69.7 69.6 76.4 78.9 81.3
means 76.9 60.9 76.6 72.4 72.5 71.9 76.5 78.6 j 81.3
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Stanard error for the reported values is < 0.8. In this two-class problem NI/IC with entropy performs at least
marginally better on average than all other hierarchical methods, and agglomeration with entropy is in second place.
Single linkage does not do well on this data due to "chaining", an effect arising from the close proximity of the two
clusters causing the minimal spanning tree computed by single-linkage to "chain" from one cluster into the odher.

Kuiper and Fisher measured the effect of different size clusters by considering two unequal sample sizes from
unit-variance bivariate Gaussians. The following table shows the average percentage of points classified correctly
by the 8 algorithms, following the same procedure as the first experiment but taking 15 sample points from one
Gaussian and 5 from the other. In this case the averages are over 30 trials and d varying from 1 to 3.5 in steps of
0.5.

method
0 11 1 2 1 3 1 4 1 5 16j 1

% 68.7 166.2 168.4 172.1 172.0 170.5 168.3 170.0

The standard error is < 0.1. This experiment illustrates a more difficult clustering problem for NI//C, but the
new algorithm did not perform significntly worse than any other. Because of chaining single linkage also has
problems with this data. For a discussion of the problems of clustering with unequal class size see (17] page 217ff).

Our variation of the Kuiper-Fisher experiment considers the case of two clusters with equal means which may
be distinguished by the orthogonality of their major axes. We used a sample of 30 points from each of two bivariate
Gaussians having covariance matrices

0 c1 0 (9)

and
0 (lO)0

C2  0 02) (10)

respectively. In the trials al = I/(n + 2) and U2 = (n + 2), with the results averaged over n = 0, ... , 5 in steps of 1.

The following table shows the results averaged over 30 trials.

method
0 1 1 2 1 3 41 51 6 1 7

% 58.4 1 49.2 1 50.9 1 49.8 1 51.0 1 49.8 ]53.6 _67.2

The standard error is < 0.8. This final experiment highlights the ability of NIJIC with entropy to cluster points
from overlapping distributions. The clusters generated by other hierarchical algorithms are no better than random,
but NliC clustered an average of two thirds of the points correctly. This experiment also shows that the Gaussian
entropy function in conjunction with the agglomerative algorithm (method 0) does not produce clusters as good as
those generated by Nl/1C (method 7) using Gaussian entropy.

5. Discussion

Elsewhere [39] we discuss the details of the NIiC complexity argument and measure several methods for further
speedups, such as a branch-and-bound procedure, heuristics to prune the grab search and parallel versions of NI1C.
Also, we developed a program using Nil/C that tracks time-varying clusters such as the data obtalAed from a robot
range sensor in the presence of moving obstacles.
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The largest clustering problem NIIIC has so far solved consisted of 6400 2-d points, and it required 23 minutes

on a single scalar piocessor of the Cray XMP. NIIIC can solve smaller problems of 100 points from I to 5
dimensions in under I second of XMP time, using only one scalar processor. Profiling reveals that the program
spends the largest share of its time (typically about 25%) computing log-determinants for the entropy calculation
in the grab search. A vectorized or parallel implementation of the Gaussian entropy calculation will theorctically

speed up the log-determinant computation from O(d 3) steps on one processor to O(d) on d2 processors. We are
investigating further parallel speedups in the NllIC routines.

The experiments and analysis presented in this paper warrant the following conclusions:

" NIIIC using Gaussian entropy is competitive with other hierarchical clustering programs in speed and space
requirements. In particular the algorithm's linear memory utilization means that it may be applied to large-

scale cluster analysis problems such as 6-dimensional Hough transforms for object localization.

" In our experiments we quantitatively measured the ability to NIIIC to find natural clusters and demonstrated
in one case that VIIIC using Gaussian entropy found natural clusters where the results of other hierarchical
procedures were no better than random.

" NItlC never performed significantly worse than any agglomerative hierarchical algorithm in our tests.

" Future versions of NIIIC running on hardware only 10 times faster than the Cray XMP will cluster small
point patterns as fast as a sensor such as a scanning laser or a TV camca can measure them, fast enough to

use clusters in a robot perception-control loop.
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ABSTRACT

Regression analysis (fitting a model to noisy data) is a basic techniques in computer vision. Robust regres-
sion methods which remain reliable in the presence of various types of noise are therefore of considerable impor-
tance. We present a new paradigm based on the least median of squares (LMS) method proposed by Rousseeuw
(1984). The method yield the correct result even when 49.9% of the data is severely corrupted. Its efficiency in
the presence of Gaussian noise can be improved by complementing it with a weighted least squares based pro-
cedure. The high time complexity of the LMS algorithm can be reduced by a Monte Carlo type speed up tech-
nique. The algorithm was successfully applied to mode-based cluster detection, line fitting to noisy data, and
designing a local operator performing robust plane fitting in images.

1. INTRODUCTION

Regression analysis (fitting a model to noisy data) is an important statistical tool frequently employed in
computer vision for a large variety of tasks. Tradition and ease of computation have made the least squares
method the most popular form of regression analysis. The least squares method achieves the optimum results
when the underlying error distribution is Gaussian. However, the method becomes unreliable if the noise has
non-Gaussian components and/or if outliers (samples with values far from the local trend) are present in the
data. The outliers may be the result of clutter, large measurement errors, or impulse noise corrupting the data.
At a transition between two homogeneous regions of the image, samples belonging to one region may become
outliers for fits to the other region.

Three concepts are usually employed to evaluate a regression method: relative efficiency, breakdown point,
and time complexity. The relative efficiency of a regression method is defined as the ratio between the lowest
achievable variance for the estimated parameters (the Cramer-Rao bound) and the actual variance provided by
the given method. The efficiency also depends on the underlying noise distribution. For example, in the pres-
ence of Gaussian noise the mean estimator has an asymptotic (large sample) efficiency of 1 (achieving the lower

2

bound) while the median estimator's efficiency is only - - 0.637 (Mosteller and Tukey, 1977).

The breakdown point of a regression method is the smallest amount of outlier contamination which may
force the value of the estimate outside an arbitrary range. For example, the breakdown point of the mean is 0
since a single large outlier can corrupt the result. The median remains unchanged if less than half of the data
are contaminated, yielding asymptotically the maximum breakdown point, 0.5.

The time complexity of the least squares method is O(np2 ) where n is the number of data points and p is
the number of parameters to be estimated. Feasibility of the computation requires a time complexity of at most,
0(n 2).

A new. improved regression method should provide:

'Science Exchange Program Fellow from the Agenicy for Defense Development, Taejeon, Korea
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reliability in the presence of various types of noise, i.e., good asymptotic and small sample efficiency;

- protection against a high percentage of outliers, i.e., a high breakdown point;

- a time complexity not much greater than that, of the least squares method.

Many statistical techniques have been proposed which satisfy some of the above conditions. These tech-
niques are known as robust regression methods. In Section 2 a review of robust regression methods is given. In
Section 3 the least median of squares (LN1S) method is discussed in detail. This method is then applied to
several comi)uter vision problems: in Section 4 to mode-based cluster detection; in Section 5 to line fitting; and
in Section 6 to noise cleaning in images through robust local plane fitting.

2. ROBUST REGRESSION METHODS

The early attempts to introduce robust regression methods involved straight line fitting. In one class of
methods the data is first partitioned into two or three nearly equal sized parts (i<L ; L <i<R; R K i) where i
is the index of the data and L -- R in the former case. The slope 31 and the intercept )0 of the line are found
by solviig the system of nonlinear equations

med ( y - - 3e ) m ed ( yj -/3o - 31x )i<! i>R(1

med ( yi -z3o -f3.r ) 0
rer all i

where reed represents the median operator applied to the set defined below it. The breakdown poin, of the
method is 0.5/k where k is the number of partitions (2 or 3) since the median is used for each part separately.
Brown and Mood (1951) investigated the method for k 2, and Tukey introduced the resistant line procedure
for k - 3 (see Johnstone and Velleman, 1985).

Another class of methods uses the slopes between each pair of data points v.ithout splitting up the data
set. Theil (1950) estimated the slope as the median of all n (n -1)/2 slopes which are defined by n data points.
The breakdown point of these methods is 0.293 since at least half the slopes should be correct in order to obtain
the correct estimate. That is, if ( is the fraction of outliers in the data we must have (1-_)2 > 0.5. The inter-
cept can be estimated from the input data by employing the traditional regression formula.

The theory of multidimensional robust estimators was developed in the 70's. The basic robust estimators
are classified as M-estimators, [-estimators and L-estimators ([luber, 1981).

The ,M-estimators are the most popular robust regression methods. These estimators minimize the sum of
a symmetric, positive-definite function p of the residuals ri. (A residual is defined as the difference between the
lata point and the fitted value.) For the least squares method p(ri) -ri2-. The NI-estimates of the parameters

are obtained by iteratively solving the minimization problem

min p ( r; ) (2)

Notice that tile sought parameters are represented through the residuals. Several p functions have been pro-

pose(d. luber (1981) employed the squared error for small residuals and the absolute error for large residuals.
Andrews (197 1) use(d a squared sine function for small and a constant for large residuals. Beaton and Tukey's
(19I71) biweight is another example of these p functions. Holland and Velsch (1977) developed algorithms for
solving the numerical problems associated with M-est imators.

?-'st imators are based on ordering the set of residuals. Jaeckel (1972) proposed obtaining the parameter
estiiat es by solving the iuinimization problem

nin a. o.(R;) r, (3)

wvere r, i, the residual: PJ? is the location of the residual in the ordered list.. i.e., its rank; and a, is a score frne-
ion. 'I'lu s,'ore function illust be monotonic and >_ a,(lH ) 0. The inost frequently used score function is that

of \Vilcoxon: a,(H,) ?,. (n a 1)/2. Since I a,(Jj)j < (1 1),-12 the largest, residuals caused by outliers cannot
hav a too larg weight. Scale invariance (indepeudthnce from the variance of the noise) is an important advan-
tage of l-estilnators over N-estinuators. (1m1-ng and ltettlmnust)erger (1983) presented ,ai it eratively reweighted
le(a.mt squares algorithun for solving the miiimuizatl probem associated with I-estimators.

The L-estinuators employ linear conbinations of order statistics. The iediami and ,k-triuinied ilmean based
rmethod, belonlg to t his class. It is ilmport;luit to notice, however, that tile mean (a 0) is a least squares
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estinlitc. while thle miedi:1ii c:n be regairdedl aklo 'l.,t lie' N-estiniate obtailitd for p I ri1. Variouls simiulationi
Stuidies ha:1v shownt t hat L-est iliiators.. give less satisfactory results thlani the( other two classes (Hller. 1981).

IliSpite of' their robuistntess f'oi various (listilut ioiis t lie- \I-. I?- :111(] L-estiziiators have b~reakdIown points
tli:it ire le"s thiait 1 (p) 1). where p Is, thle num11ber of paraiiieters ill thle regressionl (Li, H985). F'or example. in
platiar suirlfilinitg wve have :1 .3and the breakdown point Is less tihan 0.25, making it senisitive to outliers.

IPecett several rolwwA 'st iniators hayving breakdlown points close to0 0.5 were p)roposedl. Siegel (1982)
nt rouced tilie repeated mledia ii (?N I) met hod of solvinig mul t idimnsionial regression problems. Suppose p
paranlilet ers are,( to be est iri at ed f'rom n dLi aipies. A para met er is, estimated in t lie following way: First, for
each possible P -t iiple 'A samples tielue of thle paramiiet er is comipulted yielding a list of ((n,p ) (thle binomial
OCtfilieiit ) turins. Thletin ihe niedian.. fot each of tile p itidices (llaracteiiziig a p -tuple are obtained rectursivel.y.

\\li thle list has collapsed inito otie terim, the result is the PMI estimiate of the lparameter. Once( a parameter
has beeii estiliiited, the( aui1otiiut of compuitationi call be reduce-d for tilie reining p -1I parameters.

lor exvitiiple. let 1) 3 aiid suppose thant wve start l)v estimating tile paratieter 3. of' thle planar lit

z .3t) 3 ] X - .y()

lr t tile valuecs

3, k ( i -7,')(X1  X k )-( Zk)(r )()

(Yi Yj )(-r2 - - k ) - Yk A( X i )

ire Coiipiitedl for1 all thle triplets defitied by i'1j=,k . The estimate is then

tiledl iiied med 3.( i'j'.k ) (6)

The pa:rameiiter 3, is estiiiated next. bN apply ing the saine algorithmn for p -2 to thle data Zi - 30 y. Similarly
thie v :llie of 3, is a)lai tied b\v t iking thle miedlian of tie( sampleIS _' -~ 3,Yi- i xj . 'I'lie, brea kdown point of lie
repeated mled iain metho 101is 0.5 iiceall tile partial med iaii compu tat ions are Iperformied over the entire dat a set.
Comnput at ion of thle med ian is 0(n, ) and thbus the itime omiplexity of tile P N met hod is high, of O( u l') ordler.
'I'lie. Gaussiani efficiecvc of the method0( was fouind u. periientally as being only around 0.6 (Siegel. 1982). The T-

estimate int rod ucedl by Yohai and~ 'Lamar (1988) achlieves high efilnNIandl high breakdown p)oint sinmtlt ane-
ouisl b)ut Its t iriie comiplexity is vet' high.

The least mnedian of s quares robust regression niethod p~rop~osedh by Pousseeuw( 198-1) also achieves 0.5
breakdowni point. The relative efficiency of thle nietliod cati be Imnproved by combining it withI least squares
based t ech niquies. The time cotnplexity cati be reduced by a Mont e Carlo type sp~eed-up technique. In tile next
sectioni we describe the( IAIS itiethod ill (detail.

3. THE LEAST MEDIAN OF SQUARES METHOD

Poussecuiw (198 1) p~rop~osedl thle least, mediaii of squares (LNIS) miet hod Ii which th liplaranmet ers are
estitiatedl by solvinig lie nonlinear nmiriimiization priolemi

huhII tiied r.. (7)

Tli~ is. the( est itnwtes i]list yield thle smnallest value for the mnedian of residuals comiputed for the enitite dhata set.
hhIe( Jprvcihe Iianimig of tl( lie ti Iniiiizatloll is clarified below. A\s iii the case of thle repeated mledianl nit od, thle

mAStiniiiizat iotn proletii (7) is also solved by a search iii the( space of possible estimates geilerate(I from thme
da~t a.

Let :i dist jiet -ttimple of (dat1a points bfe denoted by the indices I',,. ip For every iP-t uple lie va lies
of p I p~iramoet ers (Ail except thitint eree pt, 1)) are computed. Thel( intercept is clioseti as variable bec'ause It thle

a-utto tiiatii'uilate inl Comuitatiotis. There are (n p) p -tilples atnd thle iiimization is performied ill two

tevp. Vit. C or au givvii P-p tl(e iitercept valule d(m. .. I',)) t hat solves thle iniiziat ion p~roblemtt

min hiied r,' giveti 3j( . . . . . . . ), , I . . . I ;u1) 8

is ohut ined. 'I'( iuroedhumr is re-peated for everN J)-tilm'l anii tie( oile violdiiig thle stnalhst value for ( ) smipplies
tl AISut iite of (11 ll( p umr:11metuirs.

Steee nd Stveg ( l9*St) lprolpose- to solve (8) by a miode est inuat ion technique. (Thie mode of a histogram,
je.probliliy di.trikution, is thet locaition of its largest valuec.) Let <S, <s .

1 e a sorted list of valtles
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oht inied from ile( d:ita. To locat e il( Iliode of' tile uldclelig COnt 11Union distribution the minimni of the
d ifferenTc es

Di 3 2 3a 1 12, . [n i 21 (9)

is- *oughit Thrie funeit ioll, L- j and~ [ -1 are tlit, floor and~ ceiling funlcltons respectively. The nmiinimumi difference
will a ppealr where mlost of tlie valutes, are slinil ar anld sinlce tile list was sorted this coincides with thle peak of the

di~t i hu ril Te resolutionl Of thle method0( is conitrtolledl by the (list ance het we i the two samples (9) and local
101iII11 'IIPar avoided h~v c lioosiug thle largest p~ossib Id(ist 3 nc! In 2j.

:\ssu mllc t hat the mode was found to corresponid to 1*-- k .Its value is then taken as

-Ilk (-5k Ln12] 'S . ) 2 (10)

le iiiiillll 11il111r111c ('al e rittIenl :1s fIictii o f 0 ' Ak

IDk - 1 k 5k - Ln2i -~ (11)

amid lie folloNM ig ordlcri hg relaions are also valid:

> Dk if I <1 k n ork 2j j

Ijeca u~e thle ,;, air( ordered. From (11) ,and (121 we obtain

mk--ned IA1k ;J(13)

,111ce Lit --] difference aloes are always less than Or equal to Dk while the same nuniber of differences are larger
liati 01. equal to it.

Xlieni the above procedure is performed for the n intercept v'alues computed for a given p -tuple of data
points. tile resulting minimum 1ifferencu is the solution of the minimization problem (8). For n data points
('(np ) mnilnua differences Dk(i. . . ..... i) are obtained and the smallest one yields the LMS estimate for the
p paranmeters, i.e, the solution of (7). A detailed example of the LMS algorithm is given in Section 5.

The breakdown point of the least ii..dian squares method is 0.5 because all the median computations are
over thle whole (lata set. The timie complexity of the method, howevcr, is very, high. There are O(71 P) p -tuples
andl for each of them the sorting takes 0(n log it) time. Thus the amount of computation required for the basic
IAIS algoritini is 0(n" " log a ), prohibitively large. Notice that this complexity is valid only if p >! 2, since for
p -- I only sort ilng is requ iredl.

Thie time complexity is redulced to practical values when a Monte Carlo type speed-up technique is
elllplcoyed in which a Q ~<- 1 probability of error is tolerated. Let (be the fraction of data contamninated by
outliers. Then the prob~ability tilat all in different p-tuples chosen at. random will ci)ntain at lea~st one or more
outliers is

P 1 (1 )P ~'(14)

Note t hat I P' is lie- probability that, at least, one p -ttople from the chosen ?n has onfly uncorrupted samples and
th us the correct pira niet er values, can be recovere(f. The smallest acceptable value for mn is the solution of the
eqult iolu

rounrded u pwardlt t i" Closest ilit ewr, and is inideplendent of n t lie size of the dat a. The amount of comiput a-
1 iol becomies 0(in n log it ). This time cliiplex il reduction is very sign ificanlt. InI Table I tilie va~'lutes of ?n are
giveli for thfurec vain's of Q9 P bet weeni 2 and 8, and (bet ween 0.05 an(I 0.499. For emiample, if p -- 3. Q 0.01
aiid f - 0.3 then ino I I for a ny a . Thus. \%hein at mlost 30 p)ercenit of t lie dat a is cont aminat ed b,- outliers, by
eliooig II I triplets for thle colhiIpuitat cml of tlie L\1S robust planar fit. the probability of having tile whlole set of
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Table 1: Number of p-tuples required to achieve the probability of error Q
as a function of f. the fraction of outliers.

4- 0.01

fP\ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.499

2 2 3 4 5 6 7 9 11 13 16
3 3 4 5 7 9 11 15 19 26 35
4 3 5 7 9 13 17 24 34 48 71
5 -t 6 8 12 17 26 38 57 90 144
6 4 7 10 16 2.1 37 59 97 165 289
7 4 8 12 20 33 54 92 16;: 301 579
8 5 9 15 26 44 78 143 272 548 1158

Q = 0.005

p \ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.499

2 3 4 5 6 7 8 10 12 15 19
3 3 5 6 8 10 13 17 22 30 40
4 -1 5 8 11 11 20 27 39 56 82
5 4 6 10 14 20 29 43 66 103 166
6 -1 7 12 18 28 43 68 111 189 333
7 5 9 14 23 37 62 106 187 316 667
8 5 10 17 29 51 90 164 313 631 1333

Q = 0.001

p 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.499

2 3 5 6 7 9 11 13 16 20 24
3 4 6 8 10 13 17 22 29 38 52
41 5 7 10 14 19 26 36 50 72 107

5 5 8 12 18 26 38 57 86 134 216
6 6 10 15 23 36 56 89 145 247 434

7 6 11 18 30 49 81 138 244 451 869
8 7 13 22 38 66 117 214 408 822 1737

When Gaussian noise is present in addition to outliers the relative efficiency of the LMS method is low.
Iousseeuw (198.4) has shown that the LMS method converges for large sample sizes as n /3 much slower than
the usual n-1/ 2 for maximum ll, lihood estimators. To compensate for this deficiency he proposed combining
the LMS method with a weighted least squares procedure which has high Gaussian efficiency. Either one-step
weighted lea-st squares or an M-estimator with Ilampel's redescending function can be employed. For more
detail see the book of Rousseeuw and Leroy (1987).

The breakdown point of the combined method is still 0.5 since the standard deviation of the noise, a, is
estimate(] from the LNIS part. and thus the weights in the least squares procedure can be correctly determined.
The standard deviation estimate

a -1.1826 1 filed Iri (16)

can be immediately obtained since the median of the residual is the value returned by the LIMS procedure for
thl parameter estimates Note that the usual robust standard deviation estimate does not contain the term
5 (n p ). This term is recommended by 1ousseeuw and Leroy (1987) as a finite sample correction factor.
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In the following sections we describe different applications of the LMS technique to computer vision prob-
lems. The number of estimated parameters p increases from one in mode-based clustering, to three in the com-
putation of local planar fits.

4. MODE-BASED CLUSTER DETECTION

Given n data points in a plane, finding the centers of their clusters is a classical problem in pattern recog-
nition. The number of clusters K is usually known a priori. Most clustering algorithms have four steps (see
Jain and Dubes (1988) for a monograph on the subject):

Step 1. The n points are initially partitioned arbitrarily into K groups.

Step 2. The center of each group is estimated.

Step 3. The points are re-partitioned based on their distances to the current cluster centers.

Step 4. Steps 2 and 3 are repeated until the changes no longer exceed a convergence threshold.

The weight center of the points belonging to a cluster is often taken as its center, i.e., the mean of the z
and y coordinates of the points. This method is known as the K-means clustering technique. The K-means
approach, however, introduces artifacts whenever the data points are corrupted by non-uniformly distributed
noise. The time complexity of the K-means technique is 0(n).

Aniother basic method of cluster detection involves searching for regions of high density-that is, mode
seeking. In the mode seeking approach uniformly distributed noise points do not offset the mode of the original
data unless the noise destroys the data entirely. Two classes of mode seeking methods are described in the
literature. In the first class the points are grouped into bins and local maxima of the resulting multi-dimensional
histogram are sought. The method is very sensitive to bin size; too small a size yields false alarms, while too
large a size may smooth out significant maxima. The method requires large storage space, but its time complex-
ity is still 0(n). In the other class of mode seeking methods the distances between all the possible point pairs
are taken into consideration for clustering. These methods have the time complexity 0(n 2).

In Section 3 we have shown that mode estimation is part of the least median of squares algorithm and
therefore application of the algorithm to mode-based cluster detection is immediate. As the examples will show,
cluster detection using the LMS method accurately locates the cluster centers even in non-uniform background
noise.

Assume that after the (I-1)st iteration the n data points were partitioned into K clusters having centers
SC,(l-1), y ,(l-1) 1, where i = 1,2, .... K. The ith cluster contains ni(l) data points.

The /th iteration of the clustering algorithm starts by independently computing the updated x and y coor-
dinates for the new cluster centers. The same LMS based procedure is employed. Let x 1, . .. , xn,(i) be the list

of abscissas for the points currently belonging to the ith cluster. After the application of the LMS algorithm
(p 1 in this case), the mode of the underlying distribution (9) is taken as a first approximation to the abscissa
of the ith cluster center, X,,(). The robust standard deviation &,,(I) (16) of this one-dimensional distribution is

also estimated.

One-step weighted least square fitting is performed next for each two-dimensional cluster to increase the
relative efficiency of the clustering algorithm to Gaussian noise. The distance between the jth data point

Sxj ,yj ) belonging to the ith cluster and the current center of the cluster is defined as:
0 2

-\'24,) xi -"X-(1) (i 7)

At the initial partition, the directional standard deviations are set to one. Hence, (17) gives the Euclidean dis-
tance initially, and gives normalized distances at subsequent partitions. Notice that we assumed that each clus-
ter hats an elliptical shape with the major axes parallel to one of the sides of the image. For rotated clusters a
cross-term including the correlation coefficient estimated from *he data should be added t.o (17). Based on its
distance the data point, can be allocated with the weight wij(I):

S I 
d ,.,j < 2 .9 6l0 di.j  _>. 2.96 18

wher, f, thelre-hold 2.96 corresponds to 98.76 percent of the two-dimensional normal distribution being taken as
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inlier . The coordinate- '.r ,(I ) y,,(I) of tile ith cluster center after tile I th iteration are then the solutions of

the least squares problems
n, ()

in 11 1 (1 .j __ X"(1) ra min ij (I) yj - Y,,(t) (19)
"r ( } j = i Y% (:) j ~ l

To further increase the Gaussian efficiency of the clustering algorithm the directional standard deviations are
reestimated from the two-dimensional data taking into account only the inliers of the cluster:

n, t(I)  
n, I)

t,,,l) - (I= Xj 1
(,)1 ,.( I i (, ) ( 2 0 )

E ,,ijt)- 1 ,,,.(I) - 1
j~l j=l

where F, and Y, are the mean coordinates of the ith cluster's inlier points.

Once the updated coordinates of all the K cluster centers are found the new, (/ 1)st partitioning of the
data points can be performed. The partitioning is done by finding the closest cluster center for each point. The
distance (17) is computed from a given point to every cluster center, employing the new directional standard
deviations of the given cluster. The point is allocated to the cluster yielding the smallest, distance. The (1+1)st
iteration can now start. The iterations are repeated until no change occurs between two consecutive partitions.

Since only one parameter (the abscissa or the ordinate) is estimated by the LMS algorithm the time com-
plexity is given by the sorting of the data points and is O(n log n ) per iteration. Putting the restriction on the
data that every point lie on an integer grid of a fixed size, which is the most common case in computer vision,
the sorting can be accomplished in linear time. The complexity of the LMS algorithm is then only O(n). the
same as the K-means algorithm mentioned at the beginning of the section.

To compare the LMS based clustering method with other techniques three typical test data sets were used:
circularly symmetric clusters (CSC), CSC's in uniform background noise, and CSC's in non-uniform background
noise. Three cluster detection methods were applied to each data set. Besides the K-means and K-LMS
methods the K-weighted-means technique proposed by Jolion and Rosenfeld (1988) was also investigated. In

this method each data point is given a weight according to the density of points in its vicinity and thus the time
complexity is O(n 2).

Figure la shows the first data set, two CSC's having 100 and 150 points, distributed as Gaussians with
means (10, 10) and (35, 35) and standard deviations 5. The experimental results are given in Table 2.

Table 2: Detected Cluster Centers. Noiseless case.

Method Center 1 Center 2

K-means (10.01, 10.06) (35.06, 34.74)
IC-weighted-means (10.77, 10.93) (35.14, 34.92)
K-LMS (9.86, 9.98) (35.01, 34.81)

As expected, Gaussian clusters are best estimated by the maximum likelihood I-means method but. the other
two algorithms also give correct answers.

In Figure lb 75 uniformly distributed points were added as background noise to t set.

Table 3: Detected Cluster Centers. Uniform Background Noise.

Method Center 1 Center 2

IC-means (11.11, 11.49) (34.86. 33.46)
K-weighted-means (9.85, 9.90) (35.14, 3.1.70)
K-ILIS (10.55, 10.33) (35.17, 34.76)

As -shown in Table 3, only the result of K-means is significantly affected by the noise.
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Figure 1. Test data for the clustering experiments, a) Two circularly symmetric clusters. b) The clusters from
a) embedded in uniform background noise. c) Two data clusters with a biased noise cluster (top).

Figure ic shows two CSC's having 100 and 150 points, distributed as Gaussians with means (20,15) and
(30, 15) and standard deviations 5, together with 30 biased noise points also normally distributed around (25, 40)
with standard deviation 3.

Table 4: Detected Cluster Centers. Non-uniform Background Noise.

Method Center I Center 2

K-means (23.95, 15.26) (25.22, 40.18)
K -weighted- means (20.00, 1,4.91) (28.84, 18.21)
K-LMS (20.59, 15.06) (30,25, 15.28)

The results given in Table 4 show that only the K-LMS method gives the correct result. The noise can also be
regarded as a cluster not taken into account, i.e., the a priori information about thb number of clusters was
wrong. In this case the output of the K-LMS method can be employed for detecting the overlooked cluster.
Subtracting the result from thc original data and performing a clustering on the difference the third cluster is
detected.
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In our experiments with the K-LMS method the data points were restricted to a lattice with unit step size,
i.e., the coordinates of a point, were rounded to the nearest integers. While this coarse quantization was not
present in the other two methods the LMS based algorithm's performance was always equal or superior to them.
The number of storage bins required by the K-LMS algorithm increases only linearly with the dimension of the
feature vectors (two in our examples) since the modes are determined separately along each coordinate axis.
This is another advantage of the K-LMS algorithm relative to the histogram based methods, in which the
storage increases exponentially with the dimension of the feature vector.

5. LINE FITTING TO NOISY DATA

Detection of straight lines in noisy data containing fragmented segments is an important task in computer
vision. The Hough transform, one of the most often employed methods, can already be classified as a robust
technique since it has the ability to detect the longest line segment even if it comprises less than 50% of the
data points. For purposes of comparison with the LMS based line fitting method to be described below we con-
sider the pairu,ise variant of the Hlough transform in which for each pair of data points (xi,yi) and (x ,yj) the
values of the parameter pair (p, 0) are calculated from the equations

p .X; cos 0 + yj sin 0 (21)

p =X cos 0 - y1 sin 0

A histogram in (p, 0) space is built for all combinations of pairs of points. The line segments are detected by
finding the peaks of the histogram, i.e., its modes.

The disadvantage of any type of Hough transform method is due to the histogram usage. A histogram
using a bin size that is too small may have a wrong mode, while a histogram using a bin size that is too large
may yield estimates that are too coarse. The discretization of image space also makes the distribution of param-
eters in Hough space non-homogeneous and non-equiprobable. The time complexity of the pairwise Hough
transform is 0(n 2).

In the previous sections we have shown how the least median of squares algorithm finds the mode of a dis-
tribution, and how this algorithm can be employed for clustering problems. The histogram bin size does not
create artifacts for the K-LMS clustering method, since the resolution of its mode seeking procedure is con-
trolled only by the distance employed when computing the differences (11) between the sorted samples. For n
data points, however, the K-LMS algorithm requires an additional 0(n 2 log n) processing time to detect the
clusters in the Hough space.

Before proceeding to give the details of the LMS based line fitting method we will prove that a speed-up
technique similar to the one described in Section 3 cannot be successfully applied to the pairwise Hough
transform. For example, the number of sample pairs which can guarantee a 0.01 error probability for a
speeded-up LMS line fitting method yields a much larger error probability for the Hough transform. In the data
given in Figure 4 five out of the eleven data points are outliers, that is, c is approximately 0.45. To achieve 0.01
probability of error in line fitting (p = 2), from Table 1 we see that an LMS based line fitting technique should
employ only "2 = 13 pairs of points instead of the total 55. Let a be the number of pairs chosen (from the total
15) containing only inlier points. Similarly, let b be the number of chosen pairs (from the total 10) containing
only outliers and let c be the number of pairs containing one inlier and one outlier point (a maximum of 30 such
pairs). Several triplets of the a, b and c values yield Hough spaces from which the correct line fit cannot be
recovered. The probability of such a triplet is

Prob ( a =3, b =3, c =7 I ? =13) C(30,7) C(15,3) C(10,3) 0.0766. (22)

C(55,13)

Other triplets have similar probabilities and the sum of all the unfavorable cases is much higher than 0.01.

The least median of squares based line fitting method is an application (for p - 2) of the general procedure
described in Section 3. To obtain the LMS estimates for the parameters [3 and 01 first, the slopes 031(jIlJ2) are
computed for each pair of points ( y,) and (x,y:

13lb") jI-y 2  (23)
Xj- --- j,

Then for every f0diJ J2) the values
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(a)

(b)

Figure 2. Line fits to data corrupted by symmetric noise. (a) Least squares. (b) MI and LMS algorithms.

aj,j(i) = Yi - 01(UiJ 2) Xi = , ... , n (24)

are sorted and the mode of the distribution (10) is computed by the procedure described in Section 3. The mode
is taken as the intercept 3o(Jl,J2) and it was shown that the difference (13) is

med 1 3oi(Jl,J2) -ail y,2(i ) ed= 3o(JJ2) - Yi + 31(i,j) Xied I ri 1 (25)
i i i

The initial values for the parameters of the fitted line are the ones yielding the minimum of (25) for all the rn
pairs of points considered in the speeded up algorithm.

One-step weighted least squares fit is performed next to increase the relative efficiency of the LMS based
procedure to Gaussian noise. The ith data point is given the weight wi depending on the value of the residual
q1 obtained from the initial fit values:

1 <2
6r -

3-Iq; I 1I ; (26
wi 3 2j< i < 3 (26)

I3 I
0 3< -

where & is the estimated standard deviation of the noise (16). The final estimates of the slope and intercept are
the solutions of the classic weighted least squares minimization problem:

n

in w[ - /3 x - 3012 (27)

The algorithm has the LMS part's high breakdown point., but is made more efficient when the underlying resi-
dual distribution (i.e. the noise) is Gaussian. The time complexity of the LMS method is significantly reduced
by employing the Monte-Carlo type of speed-tip technique described in Section 3.

Three different line fitting methods were compared in our experiments: The traditional least, squares
approach, the median of intercepts (MI) method of Kamgar-Parsi et al. (1989), and the LMS based algorithm.
In the MI method the intercept and slope is computed for every pair of points the medians of the obtained lists
are the MI estimates of the two parameters. As was mentioned at the beginning of Section 2 algorithms in this
class have a theoretical breakdown point of 0.293.
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Figure 3. Line fits to data corrupted by asymmetric noise. (a) Least squares. (b) MI algorithm. (c) LMS algo-
rithm.

The data shown in Figure 2 contains fraction f = 0.42 of outliers. While the least squares method fails to

find the correct fit (a), the results of the NI and LMS algorithms are identical (b). Although ,he breakdown
point of the median of intercepts method is 0.293, it was able to find the correct line due to the symmetry of the
noise distribution.

In the second example (Figure 3) f --0.4 and the data is corrupted by Weibull distributed asymmetric
noise. The Weibull random process that was used had amplitude A = 2 and cumulative probability distribution

F(u )=0 for u <0, F(u )=l - _,2 for u >0. The least square method (a) fails, the MI algorithm (b) produces a
close approximation, and only the LMS algorithm (c) succeeds in finding the original line.

Two different line segments are combined in the third example (Figure 4). Six points belong to one line

segment and five to the other, and thus f - 0.45 when we want to fit a line to this discontinuity. Only the LNIS
method (c) fits the line to the majority of the points.

For the above three examples, the Hough transform correctly finds the line segment corresponding to the
majority of the points. However, the Hlough transform may fail when systematic errors are present in the data.

In Figure 5 a coarsely digitized line segment gave rise to the data points. In this case the three methods recover
the correct line, but the Hough transform fails since several false modes are generated by the aligned data
points.

We conclude that the robust LMS line fitting algorithm provides the best results for the types of data

degradation that were investigated.

6. ROBUST LOCAL OPERATORS

Median and trimmed mean based local operators (L-estimators) have been employed in computer vision for
a long time (see for example Bovik et al. (1987) for recent results). Recently NI-estimators have also become

popular. Kashyap and Eom (1988) treated an image as a causal autoregressive model driven by a noise process

assumed to be Gaussian with a small percent of the samples (at most 8%) contaminated by impulse noise, i.e.

outliers. By employing NI-estimators the parameters of the autoregressive process were iteratively refined simul-

taneously with cleaning the outliers in the noisy image. Bes et al. (1988) proposed a hierarchical scheme in

which local fits of inc" asing degrees were obtained by M-estimators. The different fits were compared through a

robust fit quality measure to determine the optimal parameters. The authors' claim of a 0.5 breakdown point,
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(b)

(a)

Figure .1. Line fits to a discontinuity. (a) Least squares. (b) lvII algorithm. (c) LMS algorithm.

Figure 5. Line fit to quantization effects.

must be regarded with caution since for planar surfaces (p = 3) it would exceed the theoretical limit of 0.25
mentioned in Section 2. Ilaralick and Joo (1988) applied M-estimators to solve the correspondence problem
between two sets of 2D perspective projections of model points in 3D. The correct pose solution was then
obtained with up to 30% of the pairs mismatched.

The theoretical value of the breakdown point may not be achieved when local operators are applied to
image discontinuities. Consider a noiseless, ideal step edge to which a 5 X 5 robust local operator was applied.
Assume that 10 pixels in the window belong to the edge (high amplitude) and 15 to the background (low ampli-
tude) and that the center of the window falls on a background pixel. Let the operator have the largest, possible
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breakdown point, 0.5. The operator returns the value of the majority of pixels, that is, the low amplitude of the
background.

The image is then corrupted with fraction c = 0.2 of asymmetric noise driving the corrupted samples into
saturation at the upper bound. Without loss of generality we can assume that only 3 of the pixels belonging to
the background were corrupted in the processing window. There are now 13 pixels with high amplitudes and the
operator returns, incorrectly, a high value similar to the amplitude of the edge. Thus, even when the fraction of
outliers is much smaller than the theoretical breakdown point of a robust estimator, the operator may systemati-
cally fail near transitions between homogeneous regions in images. At transitions, samples of one region are
outliers (noise) when fitting a model to the other region and a small fraction of additional noise may reverse the
class having the majority.

The size of the local operator also limits c, the maximum amount of tolerated contamination. For a one-
dimensional window 2n -1 pixels long at most n pixels should be corrupted, yielding f < n /(2n +1), which only
in the limit is 0.5. For example, if n -4 (window length 9) an operator with breakdown point 0.5 tolerates only

0.-14 contamination.

Least median of squares based local operators perform the algorithm described in Section 5. In every' win-
dow, the parameters minimizing the median of squares are obtained. Their values can then be employed in vari-
o.s ways. We describe here the smoothing of images corrupted by asymmetric (impulse) noise. This application
is of special interest since most smoothing methods fail to achieve good results for this type of noise.

(a)

(b)

(c)

(d)

Visire ti6. Local line fitting operators applied to one-dimensional data. a) Noiseless data. b) Result of LIS a]-
gorithm with speed-up applied to a). c) Noisy data, 0.22 fraction of the saimple-s corrupted with
Weibull noise. d) Least squares method. e) Result of an .I-estimator (llubel's p function). f) LMS
algorithn with speed-up. g) EX.MS algorith m without speed-up.
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In a smoothing algorithlin the value of the tit in the center of the window becomes the new pixel amplitude.
Tile window coordinates of' the center can be taken as (0,0) and thus only the value of the intercept 30 must be
returned by the local operator. Recall, however, that the LMS minimization procedure supplies the values of the
other parameters as well.

'Fle experiments were performed with linear (one dimensional) and planar (two dimensional) models.
While the algorithm is unchanged for higher order models we have observed that the additional degree of free-
dori introduced by a second order fit strongly reduces the smoothing achieved in images corrupted by asym-
metric impulse noise. If desired, quadratic fits can be applied to the image presmoothed with linear models. It
must be mentioned that for images corrupted only with impulse noise, one-step weighted least squares post-
processing is not necessary. The LNIS algorithm has already eliminated all the noise with possible exceptions
around transitions. The post-processing is of importance, however, when Gaussian noise is also present. This
case is discussed later in this section.

Iui Figure 6a a noiseless, piecewise linear waveform containing 400 samples is shown. When an odd sized
processing window is applied to the noiseless signal, tile majority of the pixels always belong to the region on
which tie center of window% falls. Therefore we have the following important proprt.v:
.-\ny noiseless, piecewise polynomial signal built f,'ont segments of degree r or less will remain unchanged after
being processed by a smoothing operator with 0.5 breakdown point taking into acciilit nmodels of tip to order r;
in other words, such a signal is a root signal of that operator.
B eing built from line segments. the waveform remains unchanged when it is processed by the robust LMS
smoothing operator of length 9 employing first order models (Figure 6b).

In Figure 6c fraction 0.22 of the samples in the waveform were corrupted with \Veibull noise of ampli-
tide .4 - 8. The cumulative distribution of this asymmetric noise process was given in Section 5. Note the
severe perceptual distortions of the signal around the transition regions. Several smoothing algorithms were then
comparetd using the sa ie processiiing window size of 9 samples.

\lien tle least squares procedure is applied to obtain the intercept values. tile outlput is oversmoothed
siiultantously with the removal of tile impulse noise (Figure 6d). A robust M-estiniator employing lIihel's p
fit 1id ion (Ilubel, 1981) gave siuilar results (Figure 6e). To measure the convergence of the estination process,
tie Euc lidean distance between the points defined by two consecutive estitnate pairs i(I1). 3 :( ) and
A7( 1 1), 31(-- 1)" was employed. The iterations were stopped once this distance became less than 0.05. Th,

poor performance of tlit' M-estinator is caused by the as mninetric nature of the noise and the relative high value
of (. While the theoretical breakdown point of this M-estimnator is 0.25, the contamination produces regions
with HIich higher e around transitions.

The IYIS algorithm with speed-up (Figure 6f) is clearly superior to the previous methods. The original
waveform is accurately recovered except at a few tilansitiois where the above drCtissed artifact appears, and in
regions where the conta mination exceeds the 0.1 upper bound. Note the recovery of the small step at tile right
of tle waveform. The speed-up is of lesser importance in tle one-dimensional case. From the total of 36 possi-
ble pairs in the processing window only 19 were considered. Since < 0.44 from Table 1 we obtain the probabil-
ity of error Q < 0.001. The )roLal)ilistic nature of the speed-up procedure does not degrade the results. The
result of the comiplete LMIS algorithim in which all the pairs were considered for the minimization (Figure 6g)
does not produce a significantly different result.

hit lhe ex perinlelts ith two-dimensional data, we have applied the least iiedian square algorithim with,pp.d-up to both S.nliihtic Images and natural scenes. The size of tile processing window was 5 X 5. Instead of

lie 2300 possible triplet-- only 19 were chosen at randomi, yielding 120-fold speed-up. Since p -:-3 tle assumed
coi t:1 in Mat loll Is 0. 1 for a probability of error Q - 0.01 (Table 1).

In Figure 7a the per,,wctive plot of a noiseless 61 X 61 synthetic image is shown. The image contains
several polh, hedral object, and :a hollow cylinder. \hen tie IAIS sinoothinlg algoritini is applied to the noiseless
ilage (Figure 7h) the only dtgradation is the removal of the pixels at the corners. This effect is present when-
ever indianws are coinpultd over a rectlangular processing window. It can be elininat ed by selectively computing
le livedlians along principl direct lOis (0. 15, 90 degrees).

hi wlie noiy iniagl' fraction C -0.15 of the sa tiples were corrupted with a \Veibull randomn process having
anplitide .1 75 (l'igir 7c). The output of tlhi L\xS smnoothiig algorit lhn is given in Figure 7d. Note that
\l4ile lie iioi-e is colniplft ly cleanei( in t lie unifori regions distortlions may retnati around transitions. 'le pro-
ceS-itig took 3,85 second' of (.PU tiine on a VA\X 11 785 compluter. (sing paralll hardware instead of a serial

Ial:wcline Inuch faster proet-ittg titlie' could be achieved,

A 128 X 128 aerial scvne (upper It-ft. Vigire 8) wkas also corrupted ithll \\'eibull lois,, haviig .1 255
Oitqr right ). Tit, niplov.d noise 1)lrocvu was eqilivalt il to reimovilig t Il, of iil, I 1ixek tnd replacing lheln
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Figure 8. Aerial image. Uppei left: Noiseless. Upper right: Noisy with 15% of the the samples removed. Lower
left: After applicatior. of the LMS algorithm. Lower right: Gaussian smoothing.

(b)

(c)

(d)

(e)

Figure 9. Smoothing of waveform corrupted by Gaussian noise, a) Noisy data. a 2. b) Least squares method.
c) Result of lHubel's M-estimator. d) LMS algorithm and one-step weighted least squares. e) LNIS al-

gorithm alone.
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7. FURTHER DIRECTIONS OF RESEARCH

\We have presented a novel robust paradigm based on the least median of squares method for solving com-
puter vision problems. Severa' directions for further investigation are suggested:

- I)esign of robust clustering algorithmns in which the number of clusters is not known a priori.

- Dewvlopnent of a Iough transform variant in which the analysis of the accumulator is done by the clustering
technique described in Section 4. The dependence of the Hough transform's accuracy on the chosen bin size
and the effect of digitization of the data will be eliminated.

- Emi ploying heuristics to improve the performance of LMS based algorithms around transitions between homo-
gineolis regions in images. If local connectivity can be established before processing the impulse noise can be
separated from the samples belonging to the adjacent regions. Successive application of differently sized win-
d&Ns (l multiresolut ion appronch) may also be employed to dichotomize a local region into data and impulse
lluise.

To ilhl1rove the performance of the L\IS algorithm's output in the presence of zero mean, symmetric noise
proce-,> (e.g. (,aussian). the following approach may be helpful. The input is first smoothed by an LMS pro-
elurc which better preserves the transitions. The resulting signal is pi-segmented into homogeneous regions

%%lii h then i are processed with a robust M-estimator.

- The capacity of the L\IS smoothing algorithm to act, as a nonlinear interpolation scheme, which preserves
transiti onsl better than do linear methods, can be employed in solving computer vis'on problems where irregu-
larly -111pled data is frequent (stereo, optical flow etc.).

- Developritent of L.\lS based algorithms for other computer vision problems in which regression analysis is
involvd
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Abstract

inage curves often correspond to the bounding contours of objects as they appear in the image. As such, they provide
important structural information which may be exploited in matching and recognition tasks. However, these curves often do
not appear as coherent events in the image; they must, therefore, be (re)constructed prior to their effective use by higher-level
processes. The system described herein exploits principles of per.'eptual organization such as proximity and good continuation
to identify co-curving or curvilinear structure. This process entails three subprocesses: linking, grouping, and replacement.
Components of each structure are first organized based on pairwise geometric consistencies. Groups of these linked components
are then classified according to the geometric trend apparent at a single perceptual scale. Finally the constituciits of each
groiip are replaced by a single curve, thus making their coherence explicit. The system is iterative, operafi.g over a £aiige of
perceptual scales-fine to coarse--and yielding a hierarchy of alternative descriptions. Results are presented for two images
showing the performance of the system using only straight-line and conic replacement models and indicating the reasonableness
of the paradigm for more complex replacements such as inflections, corners, etc.

1 Introduction

Image curves often correspond to the bounding contours of objects as they appear in the image. As such, they provide

important structural information which may be exploited in matching and recognition tasks. There is general
agreement about the importance of extracting and describing image curves, but there seems to be no consensus

about how best to do this. More importantly, agreement is lacking about which are the salient features of curves
and, therefore, which features are worthy of description [2,11,16]. Part of the problem, as Fischler and Bolles have

observed 18], is that perceptual significance is directly related to the goals of the system. Thus, for a parts inspection
system with fixed viewpoint, a faithful tracing of the edge contour might suffice. On the other hand, our goal is to
facilitate the recognition of 3D objects in terms of image curves so, as suggested by Lowe [15], only those features
that remain invariant or quasi-invariant over a wide range of viewpoints are perceptually significant. This means that
2D curve features such as collinearities, inflections, smooth curves, corners, and cusps are important to explicitly
detect and describe.

With respect to image curves, a general definition of perceptual grouping can thus be formulated as: the search for
and explicit description of significant curvilinear structure-i.e., any of the invariant curve features mentioned above.

To this end, we have developed a computational framework, much like that of Boldt and Weiss [3], that measures
geometric relations on symbolic/geometric entities called tokens. This geometric analysis is guided by principles of
perceptual organization: ideas originating with the (estalt psychologists and discussed, more recently, by Kanizsa

[13], Lowe [14,151, and others [3,24,26,8,231. Within the system we are currently building, the perceptual organization
of image curves consists of the successive, hierarchical organization of tokens into coherent curvilinear events.

The remainder of this section discusses: problems associated with digital curves; the role of scale; our choice of
primitive descriptors; and computational issues. The treatments will be brief, intending to acquaint the reader with
the overall rationale of our design choices, rather than provide an in-depth treatment of each issue.

1.1 Problems with digital curves

In the context of image curves, the goal is the discovery and explicit description of significant curvilinear structure.

However, two problems, associated with the appearance of curves in the digital image, prevent a straight-forward
approach. First, curves are not explicitly present in the image; rather, they are encoded as differences in intensities

of neighboring pixels. This means that some detection process, often like edge detection 2 based on local differencing.
is required to make local portions of a curve explicit. Second, the continuity and coherence of image curves is

destroyed by a combination of factors including: aliasing due to the geometry of the sample grid; digitization error
associated with the sampling method; noise introduced during imaging; as well as "natural phenomena" in the scene
itself-such as occlusion and shadows. Moreover, because of its simple local nature, the detection process itself can

add to the difficulties. In fact, any detection process can and will result in: gaps-false negatives-where subtle

'This work was supported by the Defense Advanced Research Projects Agency under grant F30602-87-C-0140 and by the Natinkil

Science Foundation under grant DCR-8500332.
2 A process, like region segementation, that is based on similarity of features might also be used.
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but significant structures are missed; spurious locations false positives- where events that do not correspond to
significant structure are marked by the detection process; deviations in position and uncertainties of orientation-

where the detection operation is ill-defined (e.g., corners) or where local estimates of these quantities are adversely
affected bv noise. This suggests that some organizing process, like perceptual grouping, is required to overcome the
effects of such fragmentation/errors--i.e., to restore the coherence of image curves.

1.2 Scale dependence of structure

Structure and its description vary with perceptual scale. Here perceptual scale is equivalent to spatial extent [3,141-
corresponding in some sense to the radius of activity of visual cells [22]--as distinguished from "scale" in the sense of
scale-space [24,171. which corresponds to a frequency decomposition of the signal. As a simple example of perceptual
scale, consider the curving contour shown in Figure 1. At a very fine scale, say at the level of the edge-detection

process, a small portion of the contour in Figure la may appear as a straight, segment. At the somewhat larger
scale of Figure lb. simple curving structure is apparent. At the still larger scale of Figure Ic, complicated curving

structure is perceived. Finally, at a very large scale, Figure id, the contour again appears straight.

It is therefore reasonable to conclude as others have [14,23,25] that structure can and does occur over arbitrary
spatial extent-in Figure 1, straight structure was apparent at both the finest and the coarsest perceptual scales.
Thus, it is necessary to search for significant structure at various scales and to create explicit descriptions of the
structure found at each of those scales. Furthermore, a hierarchical description is desirable, since the structural
description of any one scale is not likely to be valid across all scales.

1.3 Primitive descriptors

The vocabulary of primitive descriptors must be suWiently rich to describe all significant structures of interest:
collinearities, smooth curves, inflections, corners, cusps. in addition, primitive descriptors should be computationally

tractable-i.e., reliably and efficiently computed from few data. We have chosen straight-line and conic-spline
descriptors by the following rationale.

Collinearity is invariant under all but degenerate views. Its presence in the image is thus highly significant, and
it therefore merits an explicit primitive descriptor---the straight line. The usual choices to describe smooth curves
are conics [21,18,11 and culics [6.201. Conics have fewer parameters and provide greater simplification, but cubics
are arguably richer in descriptive power. However, inflections are also highly invariant and therefore should be
explicitly recognized and desctibed. As a composition of conics, inflections must be explicitly represented-because
no conic can cross the inflection point. Cubics, on the other hand, render inflections implicit if knots are chosen at
curvature extrema. If knots are placed at inflections, there is little justification for the additional cost/complexity of
cubics. Thus we choose conics, and because we will want to impose continuity constraints across inflections, we have
chosen the spline form of conics. Finally, corners and cusps are most naturally handled as assemblages of primitive
descriptors, since it is desirable to explicitly note the location of these discontinuities.

1.4 Computational complexity

Structure is an n'ary (as opposed to binary) geometric relation-i.e., it is defined over sets (rather than pairs) of
tokens. Searching for a significant curvilinear structure (e.g., inflections) is thus equivalent to determining a single
such n'ary relation on the set of all tokens, which in itself is comnbinatorially explosive. As was shown by Boldt and
Weiss in the case of straight lines [31, this amounts to examining all subsets of cardinality at most n-for a set of

m tokens this is -'. 2 C(m, n) which is o(m"). In the case of curvilinear grouping, the search is for all relations of

interest for curves (inflections, corners, etc.) and at multiple scales; this is clearly blows up to an impossibly large
task unless this search is somehow constrained.

We propose to manage this complexity by the techniques of Linking, Grouping, Replacement. and Iteration.

* Linking. Our contention is that significant curve structure exhibits simple binary consistencies3 (e.g., proximity.
angular compatibility, etc.) among neighboring components. Thus, simple binary tests can be used to build a

graph of feasible sequences. Then, in searching for structural relations, it is no longer necessary to consider all
subsets of tokens, but only sets of feasible-sequences.

* Grouping. A set of simple geometric tests is used to determine which structural relations, if any, are applicable
Lo a given sequence. Only sequences corresponding to significant structure are passed to the replacement
module. By limiting possible replacements, the overall cost of constructing replacements is minimized and the
appropriateness of the replacements is better assured.

'This view has been advanced in the case of straight lines by Boldt and Weiss 131 and in the case of conics by Pavlidis [21).
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" Replacement. Each sequence of tokens is replaced by a single token. Provided redundancy among sequences
can be kept low, a dramatic reduction in the total number of tokens from level to level can be achieved.

" Iteration. Each iteration consists of linking, grouping, and replacement. Iterating over a sequence of scales
(fine to coarse) means it is necessary to search only one scale at a time, with linking and grouping controlling
the complexity within that scale. Replacement manages complexity across scales: as the spatial area to be
searched increases, the total number of tokens in that area should remain constant or, ideally, decrease due to
replacement.

It makes sense to iterate fine to coarse, since the initial tokens are the result of a highly-local detection process.
Furthermore, such iteration facilitates the construction of the desired hierarchical descriptions.

2 Computational Paradigm

In the previous section it was argued that an exhaustive search for an optimal correspondence between local contour
fragments and models of significant structure is not feasible, even for a single such model. By contrast, the system
described herein applies geometric rules hierarchically to solve a local search problem. Linking finds, within the set
of tokens, pairs satisf,'ying the binary relations of the particular grouping principles employed. Grouping performs
a detailed geometric analysis on sets of linked tokens whose extent is limited by the current perceptual scale. This
ana I,,iq entails a ciassification oi each token sequence according to its geometric configuration and an evaluation
reflecting how good it is within its class and across classes. Only the "n" best sequences are retained for the replace-
ment process.4 Replacement encodes the geometry of a surviving group by substituting a single primitive descriptor
or an assemblage of such descriptors. The key rationale for each of these steps is simplification of computation. The
linking step filters out most combinations of tokens which are not likely to lie on the same curve. Grouping simplifies
the replacement step since onl, one type of fitting procedure needs to be applied. Replacement reduces the number
or complexity of tokens to be considered by the next linking phase, since a sequence of tokens is replaced by a single
new token or a simpler sequence of new tokens.

Scale, as indicated previously, is a key issue in perceptual grouping both for computational and descriptive
reasons. The processes of linking and grouping cannot be applied to the entire image at once; it is necessary to
restrict the number of combinations which are examined by each of these processes. In the case of linking, this is
(lone by examining only those tokens that are within a small distance from each other. In the case of grouping, the
combined lengths of tokens is restricted. This latter distance constraint is referred to as the perceptual window. Since
the replacement process reduces the number of tokens, the perceptual window can be enlarged in successive cycles.
Scale is also important for the description process. In particular, curvature depends on scale, and this will influence
decisions whether a line is straight or curved and whether a curve is smooth or has a corner.

2.1 Initial Token Generation

The goal of the initial token generation process is to produce a set of tokens that are approximations to the local
edge structure. Finding an optimal solution to this problem has been studied by many researchers [5,4,9] and is not
considered here. The output of this process, a field of unit tangents, is used by subsequent processes to construct
more-comprehensive/less-local descriptions of the underlying curve events. Currently, we employ a two-stage process
that is virtually identical to the one used for straight lines by Boldt and Weiss [3]. First, edges are localized by
finding zero-crossings of the Laplacian; then, local orientation is es I. by computing the gradient at each such
edge point.'

The edge direction for every identified edge point (ei) is defined to L erpendicular to the gradient at that point
and is given by the vector (-Iy(ei), I,(e 1 )). For each edge point, an edge token is generated as the unit line segment
in the edge direction and centered at the edge location. Eaca token is thus a local approximation of the position
and orientation of the edge structure and, as such, it represents a "best" local description of that structure. The
orientation defines a direction of the token, which is an ordering of the endpoints. For a more complete discussi-n
of this entire process see [3] and also [7].

The principles of grouping employed by subsequent operations of the system are independent of the processes that
generate the initial set of tokens, although in general the results will be different. Thus, the system can be applied
to tokens produced by other edge detectors or by processes other than edge detection (e.g., region segmentation).

'Ungrouped tokens are carried forward to the next iteration if they are still active-i.e., if they were created by a recent enough

iteration.

'We have recently coded a version of the Canny's edge-algorithm [4 for performance comparison.
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2.2 The Linking Process

In order to recover curvilinear structures, it is first necessary to identify which fragments form the same curve; or

more precisely, which tokens are potentially neighbors along the same curve. For tokens to be neighbors they will, in
general, satisfy constraints on certain geometric measure", especially in terms of prozimity, anonlar comp atibility, and
continuation.' See Figure 2. The constraints imposed on these measures by each of the structural models (inflection,
corner, smooth curve. etc.) help prune the search space so that the grouping process need only consider feasible
sequences of tokens rather than all subsets of tokens. However, care must be taken in applying these constraints so
that the probability, of rejecting correct links and the probability of accepting incorrect links are both sufficiently
I Ow.

From a graph theoretic point of view, the task of linking is one of constructing the graph of tokens under the following
compatibility relation: R(T) t{(t,,t,) , t, T A 8(t,, t,) < pA O0 - 0.,I < 0 A t, t, < A}; where T is the set of

tokens (nodes). 6(t,, t7) is the minimum distance between the endpoint of token ti and any point of token t, (the

link radius), 0, - 0, is the minimum angular difference between the endpoint tangents of tokens t, and t, (the link

angle), and t, 1V t, is the percentage of overlap of token t, and token t1 , projected onto t, (the link overlap). The
maximum allowable values for link radius, link angle, and link overlap are given by p, 0, and A, respectively. Note, the

overlap criterion embodies the notion of continuation, in that for a token to represent the continuation of a contour

we require that the percentage of its length that overlaps a neighboring token be sufficiently small. Fit another way,
t, represent the ctntinuation of a contour, a token should extend either forward or backward (in the sense of its
directedness) from a neighboring token a sufficient portion of its own length.

2.3 The Grouping Process

The grouping process is concerned with analyzing the geometric structure of sets of tokens which, after the linking

process, are believed to constitute contiguous pieces of curvilinear contours. The analysis, in a sense, matches pieces
of contour to models of straight line, conic, inflection, corner, and cusp. Taking the results of the linking phase as a
compatibility graph over the set of tokens, this entails enurmerating for each token all paths of the subgraph contained
within a perceptual window centered at the token, where the size of the window is given by a parameter (perceptual

radius) that corresponds to the perceptual scale of the particular level of iteration. Each such concatenation of
tokens we term a strand, and it consists of three parts: a backward path into the initial endpoint of the token, the
token itself, and a forward path from the final endpoint. Each strand is then classified and evaluated in terms of

the geometric properties that it exhibits. The "best" il strands (where n is some small integer) for each token are
passed to the replacement module. Thus, the purpose of grouping is to identify those strands at a given scale that
will yield, in terms of the set of primitive descriptors, the clearest and most appropriate description of the contour
events passing thrnugh each token. We will not discuss issues of path enumeration here other than to say that such

enumeration may be treated as a graph traversal problem, with neighborhoods of the graph expanded via search

trees. Neither will evaluation be discussed here. A more complete treatment is available in [71; the present discussion
will focus instead on classification and issues of redundancy.

The purpose of classification is to explicitly identify which significant curvilinear structure obtains for each strand
at the current perceptual scale so that it may be appropriately and explicitly represented by the replacement step.

The classes ot curvilinear events that we discriminate are: STRAIGHT, CONIC, INFLECTION, CORNER, CUSP, and

UNKNOWN. Moreover, classification mediates between complex curvilinear events and the set of primitive descriptors
(straight lines and conics). This is useful because of the relatively high cost of directly fitting each of our primitive
descriptors, which would be necessary if the type of event were unknown. in our case, this would involve at least

straight-line and general-quadratic fits. More significantly, there are many commonly occurring curvilinear events,
like inflections and corners, which involve combinations of straight lines and conics. In such cases, direct fitting

would be inappropriate and uninformative, whereas, the explicit information obtained in the classification step can
be used to select a descriptor that better agrees with perception. Figure 3 shows an example ii which minimizing
the fit error alone does not produce an adequate description.

Classification is accomplished by measuring the positional and angular distributions of the tokens comprising a

strand. Since the tokens satisfy the geometric constraints of the linking process, they are hypothesized to lie n

a single curve structure, and a polygonal approximation to this is constructed by connecting sample points of the
strand as shown in Figure 4. This really amounts to a reparameterizatin of the tokens in terms of points. So, for
example, a straight line is fully specified by its endpoints; so too a conic is fully specified by any 5 poins On the

curve. The polygonal approximation is closed by a chord connecting the first and last sample points. Now, if the

6
Other measures such as contrast across tokens, intensities of abitting regions, etc., could be used to further refine the determination

of neighbors.
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"aspect ratio" (width/ length) of the resulting polygon is sufficiently small, the strand is classified as STRAIGHT-i.e.,

the strand fits within a narrow bounding rectangle.7 The positional and angular constraints on a polvgon inscribed
in a conic are discussed in detail by Pavlidis [211, and by these we are able to discriminate CONic-like strands.
These same measurements-like the angular differential between adjacent tokens-are also useful in discriminating
the remaining classes. For example, a strand that crosses its chord while maintaining a smooth angular differential
passing through zero is considered an INFLECTION. A strand lying entirely on one side of its chord, exhibiting an
angular discontinuity and a sign change in the angular differential, is classified a cusP; likewise, a similar strand
with no sign change in the angular differential is a CORNER. Any strand classified as one of these significant curve

structures is term'd grouped. Finally, a strand not fitting any of these categories is called UNKNOWN. This only
means that, at the current scale, the strand is beyond the descriptive power of our primitive descriptors.

One of the consequences of constraining the grouping process to perceptual windows centered at each token is that
a token will often be a member of more than one strand. In the instances where these strands represent alternative
descriptions- i.e., they describe different curve events----their retention is desirable. However, multiple strands may
also reflect redundancy in the grouping process--i.e., single pieces of the underlying structure may be "discovered"
multiple times. Such redundancies are obviously detrimental to system performance: actually increasing rather than
decreasing the number of tokens. Operationally there are two types of redundancy. The first type occurs when one
strand is a sub-sequence of another. This type is relatively easy to detect and eliminate directly by a process that
amounts to selecting strands of maximum cover. The second type occurs when neighboring strands share si6,:fqc'nt
overlap, but neither strand is entirely subsumed by the other-i.e., each strand accounts for slightly different portions
of the data. This type gives rise to a sort of feathering of tokens, especially on curving contours (as may be seen
in the second experimental example). Since there is no strand of inaxinium cover, redundancies of this type should
properly to be treated as collateral grouping, where neighboring quasi-parallel strands are bound together for a single
replacement.

2.4 The Replacement Process

The primary function of the replacement process is to generate a description for every strand of tokens (after
elimination of redundancies) that has been grouped during the current iteration. For each strand, this amounts
to constructing a best-fit replacement token of the appropriate class and updating the database of tokens with the
resulting token. In addition, any tokens that have not been grouped but that are still current' remain active. Tokens
that have not been successfully grouped and are no longer current are simply dropped. The generation of new tokens
entails three basic operations: 1)description (constructing the"curve" that best summarizes the geometry of the
configuration of tokens): 2)feature determination (the calculation of token attributes, like contrast, aggregate error,
etc. in general by measurements either directly on the tokens themselves or on their constituents); and 3)graph
construction (the maintenance of internal pointer linkages----e.g., between a replacement token and its constituents
yielding the hierarchical aspect of description).

The discussion that follows will focus primarily on issues of description; the feature determination and graph
construction tasks are treated, in detail, elsewhere !7]. We distinguish two types of replacement, simple replacement
and complez replacement, depending on the correspondence between the particular curve event and the primitive
descriptors. Straight lines and conics entail simple replacement since there is a unique primitive available for each.
However, the other classes (inflections, corners and cusps) each entail complex replacement since their proper de-
scription requires an assemblage of primitive descriptors. Figures 5a and 5b show examples of simple replacement,
while 5c and 5d show examples of complex replacements. Figure 5a shows the simple replacement of a sequence
of straight tokens by a single conic spline. Figure 5b illustrates the simple replacement of a sequence of inflected
curves and a straight line by single straight line. Figure 5c illustrates the how complex replacements are for corners,
inflections, and cusps are handled by point-event tokens. These are effectively place-tokens that act as concatenation
operators on the primitive descriptors. In Figure 5(1, a more general point-event token the SNIOOTH-JOIN is shown.
This allows neighboring sequences to joined and simplified even if there is no corresponding curve-event class. AIs,
shown in 5d, the recursive nature of these complex replacements permits the composition of arbitrarily conmlplicated
curves from two simple primitives.

If the class of a token group is STRAIGHT, a least squares principal axis method is used to fit the appropriate
line segment. If the class is CONIC, then we first derive the endpoint tangent conditions yielding a one-parameter
family of conic sections. From this, we select the one that minimizes the total point-to-curve distance over the tokens
of the strand. If the total angle, through which the conic turns, exceeds a threshold ( 7r), 9 then the strand is

'in fact, Lowe (141 rightly points out that a quasi-uniform distribution within a narrow rectangle is a better indicator of linearity.
" A current token is one created by a recent iteration.

"The rational parametric form of the spline is unstable at 7r, and the desirable convex hull property is violated for angles > 7r.
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subdivided and each resulting subdivision is fit with a conic-successive conics are constrained to G ( 11 (tangent)
continuity. Similarly, an INFLECTION is subdivided at the predicted inflection point into two conics whose curvature

is oppositely signed but constrained to G 1 ) continuity at the inflection. Strands of CORNER and cusp classes are
also subdivided at the predicted location of the critical event, and the components are appropriately fit with only a
positional or GO"' continuity constraint. Strands classified as UNKNOWN are not considered grouped and are therefore
not replaced. They are either carried forward to the next iteration or dropped.

3 Preliminary Results

Preliminary experimental results are shown for two images: an image of a chimney from an outdoor scene of a house,
and a near-binary image of a calligraphic symbol: the letter "in". These images were chosen to demonstrate perfor-
mance on essentially straight data (chimney) and extended, simply curving data (Big M). They were also selected
because the significant structure conforms roughly to the perceptual scale of the early iterations. Redundancies of
the first type (cf. section 2.3) have been subsumed-i.e., only strands of maximum cover are retained. Only simple
replacements are shown-i.e., straight-lines and conics. Replacement by aggregate descriptors (corners, cusps, and
inflections) is coded, but not yet fully operational. Identical initial settings of the system's parameters were used to
produce all results. The link-angle was 60.0', the link-overlap was 50%, the link-radius was 0.25 pixel-units, and the
perceptual radius (1/2 the maximum strand length) was 2.5 pixel-units. The radii were scaled by a factor of 1.5 per

iteration. An argument could be made for different settings-in particular, the link-angle may seem overly generous.
However, in the early iterations, the system should be forgiving of perturbations resulting from digitization, noise,
etc.; and, in practice, these settings have given satisfactory results.

Chimney. This example is meant to ihlustrate the performance of the system in the face of essentially straight
data. The sytem has done a reasonable job on straight data in spite of the more complicated machinery required
to handle more general curving structures. Figure 6a shows the original gray-scale sub-image, which is a (16 x 16)
detail of the chimney of a house, taken from an original (256 Y 256) outdoor scene. Figure 6b shows the initial edge
tokens extracted from this sub-image. In Figure 6c the results of the first replacement cycle (representing structure
4-5 pixels in length) are shown. Already the major vertical edges of the chimney are reconciled as nearly vertical
straight lines. The left top diagonal of the chimney is also a single line. Each of these lines represents a reduction
of roughly 5 tokens to a single token. By contrast, the right top diagonal is a collection of conics and overlapping
straight-lines, the result of redundancy of the second type (cf. section 2.3) and alternative description. 1" Figures 6d,
6e, and 6f show the results of the second, third, and fourth iterations respectively. It is interesting to trace the
evolution of the two major diagonal lines of the roof. The lower diagonal starts as fairly smooth curving arrangement
of lines and, largely because of type-two redundancy, evolves into a band of feathered lines and conics. In fact, this
band becomes progressively more dense, indicating the combinatorial nature of redundancies. Compare this with
the upper diagonal, which starts as a rather noisey arrangment of unit tangents and evolves into a single straight
line. Ironically, the initial noise here suppresses type-two redundancies; and those of type-one are eliminated by the
system. Thus, an appropriate and simple description is derived, albeit fortuitously.

Statistics for the first four iterations are as follows. Iteration 1: 170 links created; 89 straight lines, 27 conics,
and 9 corners identified; 68 redundant groups subsumed; 48 total simple replacement tokens generated, 52 tokens
propagated. Iteration 2: 102 links created; 43 straight lines, 16 conics, 9 corners, 3 cusps identified; 22 redundant
groups subsumed; 37 total simple replacement tokens generated, 58 tokens propagated. Iteration 3: 98 links created;
28 straight lines, 8 conics, 34 corners, and 4 cusps identified; 12 redundant groups subsumed; 24 total simple
replacement tokens generated, 62 tokens propagated. Iteration 4: 48 links created; 10 straight lines, 16 conics, 28
corners, and 15 cusps identified; 9 redundant groups subsumed; 19 total simple replacement tokens generated, 44
tokens propagated.

Big M. A (32 x 32) detail of an original (128 x 128) image of a calligraphic "in", this example shows system
performance on a nearly binary image. The image presents extended stuctures composed of simple monotone curves
and straight lines. Thus, simple repla-ements alone should suffice in most instances. Figure 7a is the original
(128 x 128) gray scale image; and it imarks the (64 Y 64) area from which the (32 x 32) sub-image is averaged:
Figure 7b shows the initial edge tokens overlayed on the attenuated intensity data of this (32 - 32) sub-image.
Because the image is nearly binary and because no filtering is used, many spurious edges appear-due to the
wanderings of the zero-crossing contours in essentially fiat areas. These might have been eliminated by thresholding

the edge-filter response, but they serve to contrast the density of grouping along coherent structure with that in
ill-defined, in this case, flat areas. Figures 7c and 7d show the output of the first replacement cycle as respectively
all active tokens and new tokens only. Figures 7e and 7f present the same information for the second replacement

lThe absence of corner replacements also contributes to the confusion, as corners would provide anchor points for later grouping
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cycle. Throughout, type-two redundancies are apparent as a dense bands of feathered conics and straight lines all
along the perimeter of the "i" and the bounding circular arc. These are particularly apparent in 7d and 7f, where
only new tokens are displayed. Such redundancies are also observable along the horizontal line in the top region of
the image. Nonetheless, it is important to note that these bands are densely arranged about the underlving curves,
so that collateral grouping promises an effective strategy for assimilating type-two redundancies into more unified
structures.

Statistics for the first two iterations are as follows. Iteration 1: 734 links created; 366 straight lines, 148 conics, 25
corners, and 30 cusps identified; 184 redundant groups subsumed; 332 total simple replacement tokens generated, 250
tokens propagated. Iteration 2: 2564 links created; 220 straight lines, 306 conics, 82 corners, and 16 cusps identified;
103 redundant groups subsumed; 435 total simple replacement tokens generated, 286 tokens propagated.

4 Conclusions

Perceptual grouping on symbolic tokens provides a mechanism for discovering structure underlying seemingly dis-
parate data. However, any grouping is inherently combinatoric. By determining a set of models of significant
structure and by operating in an iterative/hierarchical fashion it is possible to manage computational complexity.
Local pairwise geometric constraints (imposed bv the models) are exploited to build a reduced search graph of tokens
(linking). Neighborhoods of this graph are then analyzed for instances of the models (grouping). However, because
the search for significant structure is conducted in a neighborhood centered at each token, redundancies of description
can and do arise. These show up as feathered patterns of curves and lines in the results and have an explosive effect
on graph complexity. Certain redundancies (type-one) are effectively eliminated by detecting sub-sequences. Others
(type-two) require a more sophisticated strategy entailing collateral grouping. Finally, and most importantly, the
search graph is simplified by encapsulating multiple tokens as single tokens (replacement). With each iteration a
less-local graph is constructed and searched. The result is a hierarchical description of significant structure.

Our short-term goals include: making the complex replacements operational and eliminating redundancies of
description via a restricted form of collateral grouping. Long term goals include: treating junctions and intersections,
explicitly recognizing closed contours, and incorporating full collateral grouping-i.e., grouping over 2D areas instead
of just along curves.
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(a)

Q (d)

)C

Figure 3. The effect of structural information on

the appropriateness o f description. Each
. ..... ... ... ...... .. . .................. structure (a), (b), and (c) has roughly the sam e

F g r ............................................... fit-error with respect a best-fit line. However,
Figure 1. Role of scale in perceived structure. At the straight-line descriptor is perceptually

a very fine scale(a), the structure appears appropriate in (a); less so in (b); and

straight, but at a slightly larger scale (b), it undesirable in (c).

appears as a simple curve. At a still larger

scale (c), complex curving behavior is apparent.
Finally, at a very large scale(d), the strucutre
again appears straight.

Figure 2. Link criteria. Link

angle and link radius are
t n P I' ,..-" token t shown in (a): 0 = maximum

0 t t link angle; p =maximum
link radius; 8= distance

. ,and 101- jI = angular dif-
ference between tokens ti

tokentk and tj. Link overlap is

token t token t k  shown in (b): tllltj is the
overlap of token ti onto

token t/ token tj.

(a) (b)
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C.ONIC INLECTION l

STRAIGHT NOISE

Figure 4. Simple examples of classes of significant curvilinear structures. Polygonal approximations
(thin lines) are superimposed on intial unit tangent tokens (thick lines).

c

B o B

ATC

(a) A(b)

Hierarchical Agarelo

Influctin >

(c) (d)

Figure 5. Types of replacement: Simple Replacements in Figures 5(a) and 5(b); Complex Replacements in
Figures 5(c) and 5(d). In 5(a), a sequence of linear tokens is replaced by a single conic-spline token.
The guiding polygon ACB and the endpoint tangents TA and T B of the new spline are also shown. In
Figure 5(b). a sequence of inflected curve tokens and a straight token are replaced by a single
straight-line token. In Figure 5(c), examples are shown of point-event tokens: inflection, corner, and
cusp. These effect a concatenation of simple descriptors yielding a single replacement token. This
new descriptor is usually a triple of the form:(simple descriptor, point token, simple descriptor).
Figure 5(d) shows another useful point token, the smooth-join which is not directly related to the set
of significant curve structure but allows closing of forms. Also shown in Figure 5(d), point-event
tokens can be composed in hieracrchical fashion to yield arbitrarily complex descriptions.
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(a) (b) -

(c) (d)

........

(e) )

Figure 6. Intensity image (16 x 16) detail 6(a). Initial 150 unit tangent tokens 6(b). Results
of Ist-41h iterations 6(c)-6(f). Relevant statistics (Jr =link radius, pr =perceptual
radius, nt = new tokens): (c) Jr = 0.25, pr = 2.5, nt = 48; (d) Ir = 0.375, pr = 3.75,
nt = 37; (e) Jr = 0.5625, pr = 5.625, nt = 24; (f) Ir = 0.84375, pr = 8.4375, nt = 19.
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Three (3) Color Photographs from the paper, "Color
Image Segmentation Using Markov Random Fields",
Michael J. Daily; Hughes Research Laboratories ........ 1147
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4W

Coilor J)hot o 4. \l NI s-giwnr ation on 2,'x I 2, rect- Color Phloto 5. i NI' segmentation on l28x10I2 rect-

1- ii~ ng Vti~c !in liC;13 color difference miet- an ILII r lattice using EneideanM RG 13 color difference met-

-p !'ft (tia iia o rp fitt inal segrielnteIl rc. (Top left) original imiage, (top right) finial segmeontedl

i: i i fltnij M proc>.,. hisconriniliti nn iage, (hot torn) final line, proces-.s discontinuitiesb.

Color Photo 6. Hexagonally sampled image from

rectangular image of Figure IA using hexagons of width 8

pixels (creates a 64x64 hexagonal lattice).
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B 0l

Color Photo 7. Comparison of rectangular and hexagonal MRFs using a 35x40 lattice (14 pixel width hexagons).

The rectangular MRF on the left displays a marked bias toward unnatural right angles.

Color Photo 8. Segmentation results for Color Photo
2 using a 64x64 hexagonal lattice and the Euclidean RGB

color difference metric.

Color Photo 9. A comparison of two color difference methods computed using the same parameter values.
Left, Euclidean RGB segmentation. Right, Maximum IttS segmentation. The IlS method produces excessive
fragmentation since hue is a more sensitive difference measure at equal line process penalty values than RGB.
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